ON ABSOLUTELY SEGREGATED ALGEBRAS

MASATOSHI IKEDA

Cohomology groups of (associative) algebras have been introduced (fos: higher dimensions) and studied by G. Hochschild in his papers [2], [3] and [4]. 1-. 2-, and 3 -dimensional cohomology groups are in closest connection with some classical properties of algebras. In particular, an algebra is absolutely segregated ${ }^{11}$ if and only if its 2 -dimensional cohomology groups are all trivial. It is thus of use and importance to determine the structure of algebras with universally vanishing 2 -cohomology groups, i.e. absolutely segregated algebras; they form a class which is wider than the class of all algebras with universally vanishins 1 -cohomology groups, i.e. separable algebras in the sense of the Dicl-son-Wedderburn theorem.

In the present note we offer a structural characterization of absolutely segregated algebras. As the preliminary we consider some simple lemmas on M_{0}-modules of an algebra (Definition 1) which have been studied by W. Gaschütz ${ }^{2 \prime}$ in the case of finite groups and by H. Nagao, T. Nakayama. ${ }^{3)}$ and the writer ${ }^{1}$ in the case of algebras ($\$ 1$). Combining these lemmas with a criterion for an algebra to have trivial m-dimensional cohomology groups, obtaned by G. Hochschild in terms of Hochschild modules (Definition 3). we can refne Hochschild's criterion and show that the m-dimensional cohomology groups of an algebra are all trivial if and only if the same holds for A_{k}, Where K is an extension of the ground field of $A(\$ 2)$. Next, after showing that A is absolutely segregated if and only if the basic algebra of A is so ($\S 3$), we show a direct decomposition of the Hochschild module of the basic algebra of A into two-sided modules (§4). Then, by the direct analysis of Hochschild modules, we have our structural characterization of absolutely segregated algebras ($\$ 5$).

The writer wishes to express his gratitude to Professor T. Nakayama fo: his valuable suggestions.

§ 1. M_{0}-modules of an algebra

Let A be, throughout this paper, an associative algebra with a finite ran?:
Received April 17, 1953.
${ }^{1)}$ An algebra A is called absolutely segregated if any algebra B containing a two-sided ideal C such that $B / C \cong A$ contains a subalgebra A^{\prime} with $B=C+A^{\prime}$.
\Rightarrow Gaschütz [1].
: Nagao and Nakayama [6].
: Ikeda [5].
over a field F. Moreover we assume, without mentioning each time, that A has unit element 1. Let

$$
A=\sum_{\kappa=1}^{n} \sum_{i=1}^{t(\kappa)} A e_{\kappa, i}=\sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} e_{\kappa, i} A
$$

be direct decompositions of A into indecomposable left or right ideals respectively. Here $e_{\kappa, i}$ are primitive idempotents such that $\sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} e_{\kappa, i}=1$ and $A e_{\kappa, i}$ $\cong A e_{\lambda, j} \quad\left(e_{\kappa}, i A \cong e_{\gamma, j} A\right)$ if and only if $\kappa=\lambda$. For the sake of brevity, we write $e_{\kappa, 1}=e_{\kappa}$ for each κ. We use, moreover, matric units $c_{\kappa, i, j}$ with $c_{\kappa, i, j} c_{\lambda, h, k}$ $=\delta_{\kappa}, \lambda \delta_{j, h} c_{\kappa, i, k}, c_{\kappa, i, i}=e_{\kappa, i}$ for $\kappa, \lambda=1, \ldots, n ; i, j=1 \ldots f(\kappa)$ and $h, k=1, \ldots$, $f(\lambda)$.

Definition 1. Let \mathfrak{M} be an A-module (one-sided or two-sided). \mathfrak{M} is called an $M_{0}-$ modutle if, for any A-module \mathfrak{R} containing an A-submodule \Re^{\prime} such that $\mathfrak{R} / \mathfrak{M}^{\prime} \cong \mathfrak{M}$, there exists an A-subrnodule $\Re^{\prime \prime}$ of \mathfrak{M} such that \mathfrak{R} is the direct sum $\mathfrak{M}=M^{\prime}+\Re^{\prime \prime}$.

Then we can easily verify
Lemma 1. Let \mathfrak{M} be an A-left module. If $\mathfrak{M}=\mathfrak{M}_{1}+\mathfrak{M}_{2}$ is a direct decomposition of \mathfrak{M} into A-left modules \mathfrak{M}_{1} and \mathfrak{M}_{2}, then \mathfrak{M} is an M_{0}-module if and only if \mathfrak{M}_{1} and \mathfrak{M}_{2} are $M_{0}-$ modules.

Recently H, Nagao and T. Nakayama ${ }^{5)}$ proved
Lemma 2. If 1 asts as the identity operator on an A-left module \mathfrak{M}, then \mathfrak{M} is an M_{0}-module if and only if \mathfrak{M} is a restricted direct sum of A-submodules isomorphic to indecomposable left ideals $A e_{\kappa}$ of A.

By Lemma 2 we have
Lemma 3. If \mathfrak{M} is an A-left module with finite rank over F on which 1 acts as the identity operator, then \mathfrak{M} is an M_{0}-module of A if and only if \mathfrak{M}_{K} is an M_{6}-module of A_{K}, where K is an extension of F.

Proof. The "only if" part is trivial. We prove the "if" part. Assume that \mathfrak{M}_{K} is an M_{0}-module of A_{K}. Then, by Lemma $2, \mathfrak{M}_{K}$ is a direct sum of finite number of A_{K}-submodules isomorphic to indecomposable left ideals of A_{K}, say $\mathfrak{M}_{K} \cong \sum_{i=1}^{r} m_{i}, m_{i} \cong A_{K} \widetilde{e}_{\kappa_{i}}$. Now, since $\widetilde{e}_{\kappa_{i}}$ is a primitive idempotent of A_{K}, we can assume that $A_{K} \widetilde{e}_{\kappa_{l}}$ appears as a direct component of $\left(A e_{\lambda}\right)_{K}$ for suitable e_{λ}. Since $\left(A e_{\lambda}\right)_{K}$ is a restricted direct sum of A-modules isomorphic to $A e_{\lambda}$, it is an M_{v}-module of A. Therefore, by Lemma 1 , its direct component $A_{\kappa} \widetilde{e}_{\kappa_{i}}$ is also an M_{0}-module of A. Then, being the direct sum of submodules isomorphic to

[^0]$A_{K} \tilde{e}_{\kappa_{i}}, \mathfrak{M}_{K}$ is an M_{0}-module of A. Since \mathfrak{M}_{K} is a direct sum of \mathfrak{M} and a suitable A-submodule $\mathfrak{M}^{\prime}, \mathfrak{M}$ is an M_{0}-module of A.

As for A-two-sided modules, ${ }^{6)}$ we can consider them as $A \times A^{\prime}$-left modules where A^{\prime} is an algebra anti-isomorphic to A, and the above lemmas hold also for them.

§ 2. Hochschild modules and absolutely segregated algebras

Now we turn to lemmas from the cohomology theory. ${ }^{7}$
Definition 2. Let $\mathfrak{M}, \mathfrak{R}$ be A-two-sided modules. Then we call an A-twosided module \mathfrak{Z} an extension module of \mathfrak{R} by \mathfrak{M} if $\mathcal{Z} \supseteq \mathfrak{R}$ and $\mathbb{R} / \mathfrak{N} \cong \mathfrak{M}$. If a direct decomposition $\mathbb{Z}=\mathfrak{R}+\mathfrak{M}^{\prime}$ holds with an A-right submodule $\mathfrak{M}{ }^{\prime}$, which is necessarily (A-right) isomorphic to \mathfrak{M}, then we say that \mathbb{Z} is a right inessential
 module $\mathfrak{R}^{\prime \prime}$, which is necessarily isomorphic to \mathfrak{M}, then we say the extension splits.

Lemma 4. (Hochschild) Let $\mathfrak{M}, \mathfrak{M}$ be A-two-sided modules. Then every right inessential extension of \mathfrak{R} by \mathfrak{M} splits if and only if $H^{(1)}(A ; R(\mathfrak{M}, \mathfrak{M}))=0$, where $R(\mathfrak{M}, \mathfrak{M})$ is an A-two-sided module consisting of right operator homomorphisins of \mathfrak{M} into \mathfrak{M} and the operation of an element a of A on $R(\mathfrak{M}, \mathfrak{N})$ is defined by $(a * \lambda)(m)=a \lambda(m),(\lambda * a)(m)=\lambda(a m)(m \in \mathfrak{M}, \lambda \in R(\mathfrak{M}, \mathfrak{R}))$.

Definition 3. Let $P_{m}=A \otimes \ldots \otimes A$ be the m-fold direct product of the underlying vector space of A. We make P_{m} into an A-two-sided module as follows: Let $A \in a_{0}, \quad P_{m} \ni a_{1} \otimes \ldots \otimes a_{m}$. Then we define

$$
\begin{aligned}
\left.\left(a_{1} \otimes\right) \ldots \otimes a_{m}\right) * a_{0}= & a_{1} \otimes \ldots \otimes a_{m} a_{0} \text { and } \\
a_{0} *\left(a_{1} \otimes \ldots \otimes a_{m}\right)= & a_{0} a_{1} \otimes \ldots \otimes a_{m}-a_{0} \otimes a_{1} a_{2} \otimes \ldots \otimes a_{m}+\ldots \\
& \ldots+(-1)^{r} a_{0} \otimes \ldots \otimes a_{r} a_{r+1} \otimes \ldots \otimes a_{m}+\ldots \\
& +(-1)^{m-1} a_{0} \otimes a_{1} \otimes \ldots \otimes a_{m-1} a_{m} .
\end{aligned}
$$

We call P_{m} thus defined the m-dimensional Hochschild module of A.
In distinction from ordinary direct products, we use the notation \otimes for the Hochschild module P_{m}, while we use the notation \times for ordinary direct products of two-sided modules, that is, $A^{(n)}=A_{1} \times \ldots \times A_{m}$ is an A-two-sided module under the operation $a_{0}\left(a_{1} \times \ldots \times a_{m}\right)=a_{0} a_{1} \times \ldots \times a_{m}$ and $\left(a_{1} \times \ldots\right.$ $\left.\times a_{m}\right) a_{0}=a_{1} \times \ldots \times a_{n} a_{0}$.

Lemma 5. (Hochschild) The m-dimensional cohomology grouts of A are all trivial if and only if every right inessential extension of any A-two-sided

[^1]module by P_{m} splits.
Since P_{m} is an M_{0}-module as an A-right module, every extension of any A-two-sided module by P_{m} is right inessential. Therefore

Lemma 6. The m-dimensional colomology groups of A are all trivial if and only if the m-dimensional Hochschild module P_{m} of A is an A-two-sided M_{0} module.

Lemma 7. Let 引 be an A-two-sided module. If \mathfrak{M} is an M_{0}-module as an A-right modnile and if $1 \mathfrak{M}=0$, then \mathfrak{M} is an A-two-sided M_{0}-module.

Proof. Since every extension of any two-sided module \Re by \mathfrak{R} is right inessential, it is sufficient to show that $H^{(1)}(A ; R(\mathfrak{M}, \mathfrak{P}))=0$. From the definition, we have $(\lambda * a)(m)=\lambda(a m)=0$ for every $\lambda \in R(\mathfrak{M}, \mathfrak{M})$ and $m \in \mathfrak{M}$. Therefore $R(\mathfrak{M}, \mathfrak{M}) * A=0$. Let ρ be a 1 -cocycle from A into $R(\mathfrak{M}, \mathfrak{M})$. Then $\delta \rho(a, b)=a * \rho(b)-\rho(a b)+\rho(a) * b=0$. Since $R(\mathfrak{M}, \mathfrak{M}) * A=0$, we have $a * \rho(b)$ $=\rho(a b)$. This shows that ρ is an operator homomorphism of A into $R(\mathfrak{M}, \mathfrak{M})$. Since A has unit element $1, \rho(a)=a * \rho(1)=a * \rho(1)-\rho(1) * a=(\partial \rho(1))(a)$. Thus any 1 -cocycle is a coboundary.

Since $P_{m}=1 * P_{m}+P_{m}^{(0)}$ where $P_{m}^{(0)}$ is the two-sided submodule of P_{m} consisting of elements annihilated by 1 on the left-hand side, we have, by Lemmas 6 and 7,

Lemma 8. The m-dimensional cohomology groups of A are all trivial if and only if $1 * P_{m}$ is an A-two-sided M_{0}-module, that is, $1 * P_{m}$ is isomorphis to a direct sum of indecomposable left ideals of $A \times A^{\prime}$.

On the other hand we have, from Lemmas 3 and 6,
Lemma 9. Let \bar{K} be an extension of \bar{F}. Then the m-dimensional cohomology grouts of A are all trivial if and only if the m-dimensional cohomology groups of A_{κ} are all trivial.

Definition 4. An algebra A is called absolutely segregated if any algebra B containing a two-sided ideal C such that $B / C \cong A$ contains a subalgebra A^{\prime} with $B=C+A^{\prime}$.

Then
Lemma 10. (Hochschild) An algebra A is absolutely segregated if and only if the 2 -dimensional cohomology groups of A are all trivial.

By Lemmas 9 and 10, we have
Profosition 1. An algebra A is absolutely segregated if and only if A_{K} is absolutely segregated, where K is an extension of F. If A is an algebra over an algebraic closed field, then A is absolutely segregated if and only if $1 * P_{2}$ is isomorphic to a direct sum of A-two-sided modules isomorphic to the modules of the form $A e_{\kappa} \times e_{\wedge} A$.

Now we give the next proposition which gives the relation between $1 * P_{n}$ and $A^{(m)}$ ．

Proposition 2．8）By the correstondence $a_{1} \times \ldots \times a_{m} \rightarrow a_{1} *\left(a_{2}, \ldots .<a_{m}\right)$ ， $A^{(n)}$ is mapped homomorplically onto $1 * P_{m-1}$ and the kernel of this homomorphism is isomorthic to $1 * P_{m}$ ．

Proof．The above mapping is obviously＂onto．＂Since $\left(a_{0} a_{1}\right) *\left(a_{2}\right.$ 区）．．． $\left.\left.\ldots \otimes a_{n n}\right)=a_{0}^{*}\left(a_{2} \otimes \ldots \otimes a_{n 2}\right)\right)$ and $a_{1} *\left(a_{2} \ldots \ldots a_{m} a_{n+1}\right)=a_{1} *\left(\left(a_{2} \otimes \ldots\right.\right.$ $\left.\left.\ldots \otimes a_{m}\right) * a_{n+1}\right)=\left(a_{1} *\left(a_{2} \otimes, \ldots a_{m n}\right)\right) * a_{m+1}$ ，this is an A－homomorphism． Since $1 *\left(a_{1} \otimes \ldots \otimes a_{n}\right)=a_{1} \otimes \ldots \otimes a_{n}-1 \otimes\left(a_{1} *\left(a_{2} \otimes\right) \ldots \otimes a_{m}\right)$ ，the rest of the proposition is clear．

Remark．Since $a_{j} *\left(a_{1}\right.$ 友 $\left.\ldots a_{i n}\right)=a_{i} a_{1} \& \ldots a_{m}-a_{0}$（ $a_{1} *\left(a_{2}, \ldots\right.$ $\left.\otimes a_{m}\right)$ ），we see that the left multiplication of an element of A to an element of $1 * P_{m}$ coincides with the ordinary multiplication．

§ 3．The basic algebra of an absolutely segregated aligebra

Definition 5．The subalgebra $A_{0}=E A E$ of A is called the basic algebra of A ，where $E=\sum_{x=1}^{n} p_{x}$ ．

Lemma 11．（Hochschild $)^{9)}$ An algebra A is absolutely segregated if and only if any alsebra B containing a two－sided ideal C sucth thai $B C=A$ and $C^{2}=0$ ，contains a subalgehra A^{\prime} such tilat $B=C+A^{\prime}$ ．

Proposition 3．An alsebra A is absolutely segresated if and only if its basic algebra A_{0} is absolutoly segregrated．

Proof．First we prove the＂if＂part．Assume that A_{0} is absolutely segre－ gated．Let B be an algebra containing a two－sided ideal C such that $B / C \cong A$ ． Then，by Lemma 11，we can assume $C^{2}=0$ and consequently we can construct matric units $\left\{\widetilde{c}_{\kappa, i, j}\right\}$ such that each $\widetilde{c}_{\kappa, i, j}$ belongs to the class $c_{\kappa, i, j} \bmod C$ ．Then $\left(\sum_{k=1}^{n} \tilde{c}_{\kappa, 1,1}\right) B\left(\sum_{k=1}^{n} \tilde{c}_{\kappa, 1,1}\right)=B_{0}$ contains $\left(\sum_{k=1}^{n} \tilde{c}_{\kappa, 1,1}\right) C\left(\sum_{\kappa=1}^{n} \tilde{c}_{\kappa, 1,1}\right)=C_{0} \quad$ and $\quad B_{0} / C_{0} \cong A_{0}$. Therefore B_{0} contains a subalgebra A_{0}^{\prime} such that $B_{0}=C_{0}+A_{v}^{\prime}$ ．Since $A_{0}^{\prime} \cong A_{0}$ ． A_{0}^{\prime} contains idempotents $\tilde{c}_{\kappa}^{\prime}$ corresponding to $e_{\kappa}=c_{\kappa, 1,1}$ and，since $\sum_{\kappa=1}^{n} \widetilde{c}_{\kappa}, 1,1$ is the unit element of B_{0} ，we have $\sum_{k=1}^{n} \widetilde{e}_{k}^{\prime}=\sum_{k=1}^{n} \widetilde{c}_{k, 1,1}$ ．Then $\widetilde{c}_{\kappa}, t, i(i \neq 1)$ and $\widetilde{e}_{k}^{\prime}$ forms mutually orthogonal primitive idempotents and therefore there exists matric units $\left\{\tilde{c}_{\kappa, i, j}^{\prime}\right\}$ such that $\tilde{c}_{\kappa, i, j}^{\prime}$ belongs to the class $c_{\kappa, i, j} \bmod . C$ and $\tilde{c}_{\kappa, i, i}^{\prime}=\tilde{c}_{\kappa, i, i}$ for $i \neq 1$ and $\widetilde{c}_{\kappa, 1,1}^{\prime}=\widetilde{e}_{\kappa}^{\prime}$ ．Now we consider $A^{\prime}=\sum_{\kappa, \lambda, i, j} \tilde{c}_{\kappa, i, 1}^{\prime} A_{c}^{\prime} c_{\lambda, 1, j}^{\prime}$ ．It is clear that

[^2]A^{\prime} is a subalgebra and $B=C \cup A^{\prime}$. From $C_{0} \cap A_{0}^{\prime}=0$, it is clear that $C \cap A^{\prime}=0$. Thus A is absolutely segregated.

Next we prove the "only if" part. Assume that A is absolutely segregated and B_{0} is an algebra containing a two-sided ideal C_{0} such that $B_{0} / C_{0} \cong A_{0}$. Let $\left\{\widetilde{e}_{\kappa}\right\}$ be a system of idempotents in B_{0} constructed in such a way that \widetilde{e}_{k} corresponds to e_{κ} of A_{0}. Now let $\left\{\tilde{\kappa}_{\kappa, i, j}\right\}(\kappa=1, \ldots, n ; i, j=1, \ldots, f(\kappa))$ be a system of symbols. $B_{0}=\sum_{\kappa, \lambda} \widetilde{e}_{\kappa} B_{\mathrm{c}} \widetilde{e}_{\lambda}+\sum_{\kappa} B_{0}^{(1)} \tilde{e}_{\kappa}+\sum_{\kappa} \widetilde{e}_{\kappa} B_{0}^{(2)}+B_{0}^{(3)}$, where $B_{0}^{(1)}, B_{j}^{(2)}$ and $B_{0}^{(3)}$ consist of elements annihilated by left, right or two-sided multiplications of $\sum_{k=1}^{n} \widetilde{e}_{k}$, respectively. It is clear that $B_{0}^{(1)}, B_{0}^{(2)}$ and $B_{0}^{(3)}$ are contained in C_{0}. Let B be the direct sum of modules $\widetilde{c}_{\kappa}, i, 1 \widetilde{e}_{\kappa} B_{0} \widetilde{e}_{\kappa} \widetilde{c}_{\lambda, 1, j}, B_{0}^{(1)} \widetilde{e}_{\kappa} \widetilde{c}_{\lambda, 1, j}, \widetilde{c}_{\kappa, i, 1} \widetilde{e}_{\kappa} B_{0}^{(2)}$ and $B_{0}^{(3)}$:
 $=\delta_{\kappa, \lambda} \lambda j, h \tilde{\kappa}_{\kappa, i, k}, \quad \tilde{c}_{\kappa, 1,1}=\widetilde{e}_{\kappa}, \quad \widetilde{c}_{\kappa}, i, j B_{0}^{(1)}=0, \quad B_{0}^{(2)} \tilde{c}_{\kappa, i, j}=0 \quad$ and $\quad \tilde{c}_{\kappa, i, j} B_{0}^{(3)}=B_{0}^{(3)} \widetilde{c}_{\kappa, i, j}=0$. Then it is clear that B becomes an algebra. Let $C=\sum_{\kappa, \lambda, i, j} \widetilde{c}_{\kappa, i, 1} \widetilde{e}_{\kappa} C_{0} \tilde{e}_{\lambda} \widetilde{c}_{\lambda, 1, j}$ $+\sum_{\kappa, i} B_{0}^{(1)} \tilde{e}_{\kappa} \widetilde{c}_{\kappa, 1, i}+\sum_{\kappa, i} \tilde{c}_{\kappa, i, 1} \tilde{e}_{\kappa} B_{0}^{(2)}+B_{0}^{(3)}$, then C is a two-sided ideal of B and it is not hard to verify that $B / C \cong A$. Therefore B contains a subalgebra A^{\prime} such that $B=C+A^{\prime}$ and consequently $\left(\sum_{k=1}^{n} \tilde{e}_{k}\right) B\left(\sum_{k=1}^{n} \tilde{e}_{k}\right)=\sum_{k, \lambda} \tilde{\lambda}_{k} B_{0} \tilde{e}_{\lambda}$ contains $\left(\sum_{k=1}^{n} \tilde{e}_{k}\right) A^{\prime}\left(\sum_{k=1}^{n} \tilde{e}_{k}\right)$ $=A_{\nu}^{\prime}$ and $\sum_{\kappa, \lambda} \tilde{e}_{\kappa} B_{0} \tilde{e}_{\lambda}=A_{0}^{\prime}+\left(\sum_{\kappa=1}^{n} \tilde{e}_{\kappa}\right) C\left(\sum_{\kappa=1}^{n} \tilde{e}_{\kappa}\right)$. Since $B_{0}=\sum_{\kappa, \lambda} \tilde{e}_{\kappa} B_{0} \tilde{e}_{\lambda} \cup C_{0}$ and $A_{\nu}^{\prime} \cap C_{0}$ $=0$, we have $B_{0}=A_{0}^{\prime}+C_{0}$. This shows that A_{0} is absolutely segregated.

§4. A direct decomposition of $1 * P_{2}$ into two-sided submodules

In this section we assume that A is an algebra with rank m over an algebraically closed field Ω and coincides with its basic algebra, i.e. satisfies the condition (B): if $A=\sum_{\kappa=1}^{n} A e_{\kappa}=\sum_{\kappa=1}^{n} e_{\kappa} A$ are direct decompositions into indecomposable left and right ideals of A, respectively, then $A e_{\kappa} \neq A e_{\lambda}\left(e_{\kappa} A \neq e_{\kappa} A\right)$ for $\kappa \neq \lambda$.

Lemma 12. $\left(1 * P_{2}: \Omega\right)=n^{2}-m$.
Proof. By Proposition 2, $A^{(2)} / \mathbb{Z} \cong 1 * P_{1} \cong A$ and $\mathfrak{P} \cong 1 * P_{2}$. Therefore $\left(1 * P_{2}: \Omega\right)=\left(A^{(2)}: \Omega\right)-(A: \Omega)=m^{2}-m$.

Lemma 13. Let $\left\{u_{i}(\kappa, \lambda)\right\}, \kappa \neq \lambda$, be an Ω-basis of $e_{\kappa} A e_{\lambda}$, and let $\left\{u_{i}(\kappa, \kappa)\right\}$ be an Ω-basis of $e_{\kappa} N e_{\kappa}$. Then, if we put $v_{i}(\kappa, \lambda)=e_{\kappa} \otimes u_{i}(\kappa, \lambda)-u_{i}(\kappa, \lambda) \otimes e_{\lambda}$, $A * v_{i}(\kappa, \lambda)$ and $v_{i}(\kappa, \lambda) * A$ are contained in $1 * P_{2}, A * v_{i}(\kappa . \lambda)$ is A-left-isomorpnic to $A e_{\kappa}$ and $v_{i}(\kappa, \lambda) * A$ is A-right-isomorphic to $e_{\lambda} A$. Moreover the sums $\cup_{\kappa, \lambda, i}^{\cup} A * v_{i}(\kappa$, 1) and $\underset{\kappa, \lambda, i}{\cup} v_{i}(\kappa, \lambda) * A$ are direct.

Proof. Since $a * v_{i}(\kappa, \lambda)=a e_{\kappa} \otimes u_{i}(\kappa, \lambda)-a \otimes u_{i}(\kappa, \lambda)-a u_{i}(\kappa, \lambda) \otimes e_{\lambda}+a \otimes u_{i}(\kappa$, $\left.\lambda)=a a_{\kappa} \otimes u_{i}(\kappa, \lambda)-a u_{i}(\kappa, \lambda) \otimes\right) e_{\lambda}, 1 * v_{i}(\kappa, \lambda)=v_{i}(\kappa, \lambda) \in 1 * P_{2}$. Therefore $A * v_{i}(\kappa$,
\therefore) and $v_{i}(\kappa, \lambda) * A$ are contained in $1 * P_{2}$. If $\sum_{\kappa, \lambda, i} a(\kappa, \lambda, i) * v_{i}(\kappa, \lambda)=0$ for some $a(\kappa, \lambda, i) \in A$, then $\left(\sum_{\kappa, \lambda, i} a(\kappa, \lambda, i) * v_{i}(\kappa, \lambda)=\right) 0 \stackrel{\sum_{\kappa, \lambda, i}}{ }\left(a(\kappa, \lambda, i) e_{\kappa} \otimes u_{i}(\kappa, \lambda)-a(\kappa, \lambda\right.$, i) $\left.u_{i}(\kappa, \lambda) \otimes e_{\lambda}\right)=\sum_{\kappa, \lambda, i} a(\kappa, \lambda, i) e_{\kappa} \otimes u_{i}(\kappa, \lambda)-\sum_{\lambda}\left(\sum_{\kappa, i}^{\kappa, \lambda} a(\kappa, \lambda, i) u_{i}(\kappa, \lambda)\right) \otimes e_{\lambda}$. Since $u_{i}(\kappa, \lambda)$ and e_{κ} form an Ω-basis of A, we have $a(\kappa, \lambda, i) e_{\kappa}=0$ and consequently $a(\kappa, \lambda, i) * v_{i}(\kappa, \lambda)=0$. This shows that the $\operatorname{sum} \bigcup_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)$ is direct. At the same time, this shows that $A * v_{i}(\kappa, \lambda)=A e_{\kappa} * v_{i}(\kappa, \lambda) \cong A e_{\kappa} . \quad$ By the same way we have that the $\operatorname{sum}_{\kappa, \lambda, i} \bigcup_{i}(\kappa, \lambda) * A$ is direct and $v_{i}(\kappa, \lambda) * A \cong e_{\lambda} A$.

For the sake of brevity, we put $\left(A e_{\kappa}: \Omega\right)=s_{\kappa},\left(e_{\kappa} A: \Omega\right)=r_{\kappa}$ and $\left(e_{\kappa} A e_{\lambda}: \Omega\right)$ $=c_{\kappa, \lambda}$.

Lemma 14. $1 * P_{2}=\sum_{\kappa \neq \lambda} A e_{\kappa} \otimes e_{\lambda} A+\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)=\sum_{\kappa \neq \lambda} A e_{\kappa} \otimes e_{\lambda} A+\sum_{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A$.
Proof. By direct computation, we see $A e_{\kappa} \otimes e_{\lambda} A \subset 1 * P_{2}$ if $n \neq \lambda$. Since P_{2} $\left.=\sum_{\kappa, \lambda} A e_{\kappa} \otimes\right) e_{\lambda} A$ and since $\sum_{\kappa} A e_{\kappa} \otimes e_{\kappa} A$ contains $\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)$ and $\sum_{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A$, the $\operatorname{sum}\left(\sum_{k \neq \lambda} A e_{\kappa} \otimes e_{\lambda} A\right) \cup\left(\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)\right)$ and $\left(\sum_{\kappa \neq \lambda} A e_{\kappa} \otimes e_{\lambda} A\right) \cup\left(\sum_{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A\right)$ are direct. We show that these direct sums coincide with $1 * P_{2}$. To prove this, we compute the ranks of $\sum_{\kappa \neq \lambda} A e_{\kappa} \otimes e_{\lambda,} A+\sum_{\kappa, \lambda, i} A v_{i}(\kappa, \lambda)$ and $\sum_{\kappa+\lambda} A e_{\kappa} \otimes e_{\lambda} A+\sum_{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A$. By Lemma 13 and the definition of $u_{i}(\kappa, \lambda),\left(\left(\sum_{\kappa \rightarrow \lambda} A e_{\kappa} \otimes e_{\lambda} A+\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)\right): \Omega\right)$ $=\sum_{\kappa \neq \lambda} s_{k} r_{\lambda}+\sum_{\kappa, \lambda} s_{\kappa}\left(c_{\kappa, \lambda}-\delta_{\kappa, \lambda}\right)=\sum_{\kappa \neq \lambda} s_{\kappa} r_{\lambda}+\sum_{\kappa} s_{\kappa}\left(\sum_{\lambda} c_{\kappa, \lambda}{ }^{\kappa+\lambda}-1\right)=\sum_{\kappa \neq \lambda} s_{k} r_{\lambda}+\sum_{\kappa}^{\kappa, \lambda, i} s_{\kappa}\left(r_{\kappa}-1\right)=\sum_{\kappa, \lambda} s_{\kappa} r_{\lambda}$ $-\sum_{\kappa} s_{k}=m^{2}-m=\left(1 * P_{2}: \Omega\right)$. In the same way, we have $\left(\left(\sum_{\kappa \neq \lambda} A e_{\kappa} \otimes\right) e_{\lambda} A+\sum_{\kappa, 1, i} v_{i}(\kappa\right.$,入) $* A): \Omega)=\left(1 * P_{2}: \Omega\right)$.

Lemma 15. $\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)=\sum_{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A=\mathfrak{M}$ is a two-sided module.
Proof. Since $\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda) \subset \sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda) * A \subset\left(\sum_{\kappa} A e_{\kappa} \otimes e_{\kappa} A\right) \cap 1 * P_{2}$, we have $1 * P_{2}=\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda) * A+\sum_{\kappa * \lambda} A e_{\kappa} \otimes e_{\lambda} A$ and consequently $\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda) * A=\sum_{\kappa, \lambda, i} A * v_{i}(\kappa$, 1.). By the same way, we have $\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda) * A=\sum_{\kappa, \lambda, i}^{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A$.

By these two lemmas and the fact that $\sum_{\kappa \neq \lambda} A e_{\kappa} \otimes e_{\lambda} A \cong \sum_{\kappa \neq \lambda} A e_{\kappa} \times e_{\lambda} A, A$ is absolutely segregated if and only if \mathfrak{M} is isomorphic to a direct sum of A-twosided modules $A e_{\kappa} \times e_{\lambda} A$.

Lemma $16 \cdot e_{\kappa} a * v_{i}(\lambda, \nu)=\left(e_{\kappa} \otimes a u_{i}(\lambda, \nu)-e_{\kappa} a u_{\Sigma}(\lambda, \nu) \otimes e_{\nu}\right)-\left(e_{\kappa} \otimes\right) e_{\kappa} a e_{\lambda}-e_{\kappa} a e_{\lambda}$ $\left.\otimes e_{\lambda}\right) * u_{i}(\lambda, \nu)$.

§5 Structure of absolutely segregated algebras

Consider an absolutely segregated algebra A over an algebraically closed field Ω satisfying (B). As was mentioned above, \mathfrak{M} in Lemma 15 is a direct sum of submodules isomorphic to $A e_{\kappa} \times e_{\lambda} A$, say $\mathfrak{M} \cong \sum_{\kappa, \lambda} t_{\kappa}, \lambda\left(A e_{\kappa} \times e_{\lambda} A\right)$ as we want to write.

Now we assume that the indices $1, \ldots, n$ are so arranged as $s_{1} \leqq \ldots \leqq s_{n}$. Then,

Lemma 17. $s_{\lambda}=1+\sum_{\kappa} t_{\kappa, \lambda} s_{\kappa}$ and $r_{\kappa}=1+\sum_{\lambda} t_{\kappa}, \lambda r_{\lambda} . \quad t_{\kappa, \lambda}=0$ if $\kappa \geq \lambda$.
Proof. Since $\mathfrak{M}=\sum_{\kappa, \lambda, i} A * v_{i}(\kappa, \lambda)=\sum_{\kappa, \lambda, i} v_{i}(\kappa, \lambda) * A \cong \sum_{\kappa, \lambda} t_{\kappa, \lambda}\left(A e_{\kappa} \times e_{\lambda} A\right)$, we have, comparing indecomposable summands isomorphic to $e_{\lambda} A, \sum_{\kappa}\left(c_{\kappa, \lambda}-\delta_{\kappa, \lambda}\right)=s_{\lambda}-1$ $=\sum_{\kappa} t_{\kappa}, \lambda s_{\kappa}$. Since $s_{\lambda} \leqq s_{\kappa}$ for $\lambda \leqq \kappa, t_{\kappa, \lambda}=0$ if $\lambda \leqq \kappa$. By the same way, we have $r_{\kappa}=1+\sum_{\lambda} t_{\kappa}, \lambda r_{\lambda}$.

Corollary. $s_{1}=1$, that is, $A e_{1}=\Omega e_{1}$.
By this corollary, $\mathfrak{g} \Omega=\sum_{\lambda, i} A * v_{i}(1, \lambda)+\sum_{\kappa \neq 1 ; \lambda, i} A * v_{i}(\kappa, \lambda)=\sum_{\lambda, i} \Omega v_{i}(1, \lambda)+\sum_{\kappa \neq 1 ; \lambda, i} A * v_{i}(\kappa$, ג). We denote $\sum_{\kappa \neq 1 ; \lambda, i} A * v_{i}(\kappa, \lambda)$ by \mathfrak{M}. On the other hand, $\mathfrak{M} \cong \sum_{\kappa, \lambda} t_{\kappa, \lambda}\left(A e_{\kappa} \times e_{\lambda} A\right)$ and consequently $\mathfrak{M} \mathfrak{\lambda}=\sum_{\kappa, \lambda, i} \mathfrak{M}_{i}(\kappa, \lambda)$, where, for each pair $(\kappa, \lambda), \mathfrak{M}_{i}(\kappa, \lambda)$ are t_{κ}, λ two-sided submodules of \mathfrak{M} isomorphic to $A e_{\kappa} \asymp e_{\lambda} A$. Let $m_{i}(\kappa, \lambda)$ be the element of $3 \lambda_{i}(\kappa, \lambda)$ corresponding to $e_{\kappa} \times e_{\lambda}$ by the above isomorphism, then $\mathfrak{M} \mathfrak{M}_{i}(\kappa, \lambda)$ is generated by $m_{i}(\kappa, \lambda)$.

Lemma 18. $\mathfrak{M}_{1}=\sum_{\kappa \neq 1 ; \lambda, i} \mathfrak{M}_{i}(\kappa, \lambda)$; in particular, \mathfrak{M}_{1} is a two-sided module.
Proof. Since $\mathfrak{M}=\sum_{\lambda, i} \Omega v_{i}(1, \lambda)+\mathcal{M}_{1}$, if $\kappa \neq 1, m_{i}(\kappa, \lambda) * a=e_{\kappa} * m_{i}(\kappa, \lambda) * a$ is contained in $e_{\kappa} \mathfrak{M}=e_{\kappa} \mathfrak{M}_{1}\left(\subset \mathfrak{M}_{1}\right)$ for any $a \in A$. Therefore $m_{i}(\kappa, \lambda) * A \subset \mathfrak{M}_{1}$ if $\kappa \neq 1$ and consequently $\mathfrak{M} \Omega_{1} \supseteq \sum_{\kappa \neq 1, \lambda, i} A * m_{i}(\kappa, \lambda) * A=\sum_{\kappa \neq 1, \lambda, i} \mathfrak{R}_{i}(\kappa, \lambda)$. On the other hand $\left(\sum_{\lambda, i} \Omega v_{i}(1, \lambda): \Omega\right)=\sum_{\lambda}\left(c_{1, \lambda}-\delta_{1, \lambda}\right)=r_{1}-1=\sum_{\kappa} t_{1, \kappa} r_{\kappa}=\left(\sum_{\kappa, i} M_{i}(1, \kappa): \Omega\right)=(\mathfrak{M}: \Omega)$ $-\left(\sum_{\kappa \neq 1, \lambda, i} \mathfrak{M}_{i}(\kappa, \lambda): \Omega\right)$. Therefore $\mathfrak{M}_{1}=\sum_{\kappa \neq 1 ; \lambda, i} \mathfrak{M}_{i}(\kappa, \lambda)$.

By Lemma 18, M $\mathfrak{K} / \mathfrak{M l}_{1} \cong \sum_{\kappa} t_{1, \kappa}\left(A e_{1} \times e_{\kappa} A\right)=\sum_{\kappa} t_{1, \kappa}\left(\Omega e_{1} \times e_{\kappa} A\right)$. Since \mathfrak{M} $=\sum_{\lambda, i} \Omega v_{i}(1, \lambda)+M M_{1}$, we can, for each κ, take $t_{1, \kappa}$ elements, say $x_{h}(1, \kappa)=\sum_{i} \omega_{i}(\kappa$, h) $v_{i}(1, \kappa)\left(\omega_{i}(\kappa, h) \in \Omega\right)$, as the representatives of the $t_{1, \kappa}$ classes corresponding to $t_{1, \kappa} e_{1} \times e_{\kappa}{ }^{\prime} s$. Then, since $A e_{1}=\Omega e_{1}, \mathfrak{M}=\sum_{\kappa, h} x_{h}(1, \kappa) * A+\mathfrak{M}_{1}$. We donote $\sum_{i} \omega_{i}(\kappa, h) u_{i}(1, \kappa)$ by $w_{h}(1, \kappa)$. Then $w_{h}(1, \kappa) \in e_{1} A e_{\kappa}$ and $x_{h}(1, \kappa)=e_{1} \otimes w_{h}(1, \kappa)$ $-w_{h}(1, \kappa) 凶 e_{\kappa}$.

Lemma 19. $e_{1} N=\sum_{\kappa, h} w_{h}(1, \kappa) A$ and $w_{h}(1, \kappa) A \cong e_{\kappa} A$ if $t_{1, \kappa} \neq 0$.
Proof. Assume that $\sum_{\kappa, h} w_{h}(1, \kappa) e_{\kappa} a_{\kappa, h}=0$ for some $a_{\kappa, h} \in A e_{\nu}$, where ν is an arbitrarily fixed. Since $t_{1,1}=0, \sum_{\kappa, h} w_{h}(1, \kappa) e_{\kappa} a_{\kappa, h}=\sum_{\kappa \neq 1 ; h} w_{h}(1, \kappa) e_{\kappa} a_{\kappa, h}=0$. Then $\sum_{\kappa \neq 1, h} x_{h}(1, \kappa) * e_{\kappa} a_{\kappa, h}=e_{1} \otimes\left(\sum_{\kappa \neq 1, h} w_{h}(1, \kappa) e_{\kappa} a_{\kappa, h}\right)-\sum_{\kappa \neq 1 ; h} w_{h}(1, \kappa) \otimes e_{\kappa} a_{\kappa, h}=-\sum_{\kappa \neq 1: h} w_{h}(1$, $\kappa) \otimes e_{\kappa} a_{\kappa}, h$. We can write $e_{\kappa} a_{\kappa}, h=e_{\kappa} a_{\kappa}, h e_{\nu}=\sum_{j} \beta(\kappa, h, j) u_{j}(\kappa, \nu)+\delta_{\kappa, \nu} \beta(h) e_{\nu}$,
where $\beta(\ldots) \in \Omega$. Hence $-\sum_{\kappa \neq 1, h} w_{h}(1, \kappa) \otimes e_{\kappa} a_{\kappa, h}=-\sum_{\kappa<1 i n, j} \beta(\kappa, h, j)\left(w_{h}(1, \kappa) \otimes u_{j \backslash \kappa}\right.$, $\nu))-\left(\sum_{h} \hat{\beta}(h) w_{h}(1, \nu)\right) \otimes e_{\nu}$. Now let $a(\kappa, j) e_{\kappa}=-\sum_{h} \beta(\kappa, h, j) w_{h}(1, \kappa)$. Then $\mathfrak{M}_{1} \ni \sum_{\kappa \neq 1: j} a(\kappa, j) * v_{j}(\kappa, \nu)=\sum_{\kappa * 1 ; j} a(\kappa, j) e_{\kappa} \otimes u_{j}(\kappa, \nu)-\left(\sum_{\kappa \neq 1: j} a(\kappa, j) u_{j}(\kappa, \nu)\right) \otimes e^{\prime}$ $=-\sum_{\kappa \neq 1, h, j} \beta(\kappa, h, j)\left(w_{h}(1, \kappa) \otimes u_{j}(\kappa, \nu)\right)+\left(\sum_{\kappa \neq 1 ; h, j} \beta(\kappa, h, j) w_{h}(1, \kappa) u_{j}\left(\kappa,{ }_{1}\right)\right) \otimes e_{\nu}$. Since $\sum_{\kappa \neq 1 ; h} w_{h}(1, \kappa) e_{\kappa} a_{\kappa, h} \underset{\kappa \neq 1: h, j}{=} \beta(\kappa, h, j) w_{h}(1, \kappa) u_{j}(\kappa, \nu)+\sum_{h} \beta(h) w_{h}(1, \quad \nu)=0$, $\sum_{\kappa \neq 1 ; h, \nu} \beta(\kappa, h, j) w_{h}(1, \kappa) u_{j}(\kappa, \nu)=-\sum_{h} \beta(h) w_{h}(1, \nu)$. Therefore $\sum_{\kappa \geqslant 1 ; h} x_{h}(1, \kappa) * e_{\kappa} a_{\kappa, h}$ $=\underset{\kappa \neq 1 ; j}{ } a(\kappa, j) * v_{j}(\kappa, \nu) \in \mathfrak{M}_{1}$ and consequently $e_{\kappa} a_{\kappa, h}=0$.

Thus the sum $\bigcup_{\kappa, h} w_{h}(1 . \kappa) A$ is direct. If $t_{1, \kappa} \neq 0$, then $u^{\prime} h(1, \kappa) \neq 0$ and, as was shown above, $w_{h}(1, \kappa) A \cong e_{\kappa} A$. On the other hand $e_{1} N \supseteqq \sum_{\kappa, h} w_{h}(1, \kappa) A$ and $\left(e_{1} N: \Omega\right)$ $=r_{1}-1=\sum_{\kappa} t_{1, \kappa} r_{\kappa}=\left(\sum_{\kappa, h} w_{h}(1, \kappa) A: \Omega\right)$. Therefore $\epsilon_{1} N=\sum_{\kappa, h} w_{h}(1, \kappa) A$.

Lemma 20. $\mathfrak{M}_{1}=\sum_{\kappa \neq 1 ; \lambda, i} A * v_{i}(\kappa, \lambda) \underset{\kappa \neq 1 ; \lambda, i}{=} \sum_{i}(\kappa, \lambda) * A+\underset{\kappa \neq 1 ; \lambda, h, i}{ } w_{h}(1, \kappa) * v_{i}(\kappa, \lambda) * A$.
Proof. By Lemma 19, we can take $w_{h}(1, \kappa)$ and $w_{h}(1, \kappa) u_{l}(\kappa, \lambda)(\kappa \neq 1)$ as an Q-basis of $e_{i} N$. By Lemma 16, $w_{h}^{\prime}(1, \kappa) * v_{i}(\kappa, \lambda)=\left\{e_{i}, w_{h}^{\prime}(1, \kappa) u_{i}(\kappa, \lambda)\right.$ $\left.-w_{h}(1, \kappa) u_{i}(\kappa, \lambda) \otimes e_{\lambda}\right)-x_{h}(1, \kappa) * u_{i}(\kappa, \lambda)$. Consequently, using the above Ω basis, we have $\sum_{\lambda, i} v_{i}(1, \lambda) * A=\sum_{\kappa \neq 1 ; h} x_{i}(1, \kappa) * A+\sum_{k \neq 1 ; h, i} w_{i}(1, \kappa) * v_{i}(\kappa, \lambda) * A$. Since $\left.\mathfrak{M}=\sum_{\kappa \neq 1 ; \hbar} x_{h}(1, \kappa) * A+\mathfrak{M}_{1} \underset{\kappa \neq 1 ; \lambda, h, i}{ }\left(\sum_{h} w_{h}(1, \kappa) * v_{i}(\kappa, \lambda) * A\right) \underset{\kappa \neq 1 ; i, i}{\bigcup} v_{i}(\kappa, \lambda) * A\right) \subseteq \mathfrak{M}_{1}$, we have $\left.\mathfrak{M}_{1}=\left(\sum_{\kappa \neq 1 ; \lambda, h, i} w_{h}(1, \kappa) * v_{i}(\kappa, \lambda) * A\right) \bigcup \underset{\kappa \neq 1 ; \lambda, i}{\bigcup} v_{i}(\kappa, \lambda) * A\right)$. It is easy to see that $\mathfrak{M} \boldsymbol{R}_{1}=\sum_{\kappa \neq 1 ; \lambda, i} v_{i}(\kappa, \lambda) * A+\sum_{\kappa \neq 1 ; \lambda, h, i} w_{h}(1, \kappa) * v_{i}(\kappa, \lambda) * A$.

Lemma 21. The following conditions (i), (ii) and (iii) hold for every k.
(i) $\mathfrak{M}_{\kappa}=\sum_{\mu>k ; \lambda, i} A * v_{i}(\mu, \lambda)=\sum_{\mu>\kappa ; \lambda, i} \mathfrak{M}_{i}(\mu, \lambda)$.
(ii) There exist $t_{\kappa, \lambda}$ elements $w_{h}(\kappa, \lambda)$ in $e_{\kappa} A e_{\lambda}$ such that $e_{k} N=\sum_{\lambda, h} w_{h}(\kappa, \lambda) A$, $N e_{\kappa}=\sum_{\lambda=\kappa ; h} A w_{h}(\lambda, \kappa)$ and if $t_{\lambda, \kappa} \neq 0, A w_{h}(\lambda, \kappa)$ is A-left -isomorplic to $A e_{\lambda}$, and if $t_{\kappa, \lambda} \neq 0, w_{h}(\kappa, \lambda) A$ is A-right-isomorphic to $e_{\lambda} A$.
 $\left.\left.\mu_{2}\right) w_{h_{2}}\left(\mu_{2}, \mu_{3}\right) \ldots w_{h_{r}}\left(\mu_{r}, \nu\right)\right) * v_{i}(\nu, \lambda) * A+\underset{i_{k}: \lambda, h_{1}, \ldots, h_{1}, i}{+}\left(w_{h_{1}}(1,2) \ldots w_{h_{k}}(\kappa, \nu)\right) * v_{i}(\nu$,人) $* A$.

Proof. We assume that (i), (ii) and (iii) are satisfied for indices $\kappa \leqq p$. (p is a fixed integer.) We want to prove that (i), (ii) and (iii) hold for $\kappa=p$ +1. From (ii), we can see, for $\kappa \leq 1 \leq p, s_{\kappa}=1+\sum_{\mu<k}^{i} t_{\mu_{\mu}, \kappa}+\sum_{\mu_{1}<\mu_{2}<\kappa} t_{\mu_{1}, \mu_{2}} t_{\mu_{2}, \kappa}+\ldots$ $+\sum_{\mu_{1}<}^{+} \sum_{\mu_{, 1,}, p_{k}} t_{\mu_{2}, \mu_{3}} \ldots t_{\mu_{r}, \kappa}+\ldots+t_{1,2} t_{2,3} \ldots t_{\kappa-1, k}$. From (i) and (iii), $A * v_{i}(p$ $+1, \lambda) \supseteqq \Omega v_{i}(p+1, \lambda)+\sum_{\mu \equiv y ; h} \Omega w_{h}(\mu, p+1) * v_{i}(p+1, \lambda)+\ldots+\sum_{\mu_{1}, \ldots, \mu_{r} \leqslant \sum_{i} ; \mu_{1}, \ldots, h_{h}} \Omega\left(w_{h_{1}}\left(\mu_{1}, \mu_{2}\right) \ldots\right.$
$\left.\ldots w_{h_{r}}\left(\mu_{r}, p+1\right)\right) * v_{i}(p+1, \lambda)+\ldots+\sum_{h_{1}, \ldots, h_{p}} \Omega\left(w_{h_{1}}(1,2) \ldots w_{h_{p}}(p, p+1)\right) * v_{i}(p$ $+1, \lambda)$.

The rank of the right hand side is equal to $1+\sum_{\mu \equiv p} t_{\mu, p+1}+\ldots+\sum_{\mu_{1}<\mu_{2}, \ldots,\left\langle r, \mu_{1}, \mu_{1}\right.} t_{\mu_{2}, \mu_{1}} \ldots$ $t_{\mu r, p+1}+\ldots+t_{1,2} t_{2,2} \ldots t_{p, p+1}$. Since $s_{\kappa}=1+\sum_{\mu<\kappa} t_{\mu, \kappa}+\ldots+t_{1,2} t_{2,3} \ldots t_{k-1, \kappa}$ for $\kappa \leqq p, 1+\sum_{\mu \leqq p} t_{\mu, p+1}+\ldots \sum_{\mu_{1}<\mu_{2} \ldots<\mu_{r}, \mu_{1}, \mu_{2}} \ldots t_{\mu r_{, p+1}}+\ldots+t_{1,2} t_{2,3} \ldots t_{p, p+1}=1+\sum_{\mu=1}^{p} t_{y, p+1} s_{\mu}$ $=s_{i+1}=\left(A * v_{i}(p+1, \lambda): \Omega\right)$. This shows that $A * v_{i}(p+1, \lambda)=\Omega v_{i}(p+1, \lambda)$ $+\sum_{\mu \equiv p ; h} Q w_{h}(\mu, p+1) * v_{i}(p+1, \lambda)+\ldots+\sum_{\mu_{1}<\ldots<\mu \geqslant \sum_{2} ; h_{1}, \ldots, h_{r}} \Omega\left(w_{h_{1}}\left(\mu_{1}, \mu_{2}\right) \ldots w_{h r}\left(\mu_{1}, p+1\right)\right) * v_{i}(p$ $+1, \lambda)+\ldots+\sum_{h_{1}, \ldots, h_{p}}\left(w_{h_{1}}(1,2) \ldots w_{h_{p}}(p, p+1)\right) * v_{i}(p+1, \lambda)$. Since $A * v_{i}(p+1, \lambda)$
 $p+1))+\ldots+\sum_{h_{1}, \ldots, h_{r}} \Omega\left(w_{h_{1}}(1,2) \ldots w_{h_{p}}(p, p+1)\right)$. Then it is easy to see that $N e_{p+1}=\sum_{\kappa<p+1 ; h} A w_{h}(\kappa, p+1)$ and $A w_{h}(\kappa, p+1)=A e_{\kappa} w_{h}(\kappa, p+1) \cong A e_{\kappa}$. This proves the second part of (ii) for $\kappa=p+1$.

As was shown above, $\sum_{\lambda, i} A * v_{i}(p+1, \lambda)=\sum_{\lambda, i} \Omega v_{i}(p+1, \lambda)+\ldots{ }_{\lambda, i, h_{1}, \ldots, h_{i}}^{+} \sum_{h_{1}} \Omega(1$, 2), , $\left.w_{h_{p}}(p, p+1)\right) * v_{i}(p+1, \lambda)$. Since $\mathfrak{M}_{p}=\sum_{\lambda, i} A * v_{i}(p+1, \lambda)+M_{p+1}$, we have $\mathfrak{M}_{p}=\left(\sum_{\lambda, i} \Omega v_{i}(p+1, \lambda)+\ldots+\sum_{\lambda, i, h_{1}, \ldots, h_{p}} \Omega\left(w_{h_{t}}(1,2) \ldots w_{h_{p}}(p, p+1)\right) * v_{i}(p+1, \lambda)\right)+\mathfrak{M}_{p+1}$. Then, by the same way used in Lemma 17, we have $\mathfrak{M}_{p+1} \underset{\kappa}{ } \underset{\kappa<p+1 ; \lambda, i}{ } \mathfrak{M}_{i}(\kappa, \lambda)$. On the other hand, $\left(\sum_{\lambda, i} A * v_{i}(p+1, \lambda): \Omega\right)=s_{p+1}\left(\sum_{\lambda}\left(c_{p+1, \lambda}-\delta_{p+1, \lambda}\right)\right)=s_{p+1}\left(r_{p+1}-1\right)$ $=s_{p+1}\left(\sum_{\lambda} t_{p+1,2, r_{\lambda}}\right)=\left(\sum_{\lambda, i} \mathfrak{M}_{i}(p+1, \lambda): \Omega\right)=\left(\mathfrak{M}_{p}: \Omega\right)-\left(\sum_{\kappa>p+1 ; \lambda, i} \mathfrak{M}_{i}(\kappa, \lambda)\right)$. Therefore $\mathfrak{M}_{p+1}=\underset{\kappa<p+1 ; \lambda, i}{=} \mathfrak{M}_{i}(\kappa, \lambda)$. This proves (i) for $\kappa=p+1$.

Now $\mathfrak{M}_{p} / \mathfrak{M}_{p+1} \cong \sum_{\lambda} t_{p+1, \lambda}\left(A e_{p+1} \times e_{\lambda} A\right)$. Since $\mathfrak{M}_{p}=\sum_{\lambda, i} \Omega v_{i}(p+1, \lambda)+\ldots$ $+\sum_{\lambda_{i}, h_{1}, \ldots, h_{p}} Q\left(w_{h_{1}}(1,2) \ldots w_{h_{p}}(p, p+1)\right) * v_{i}(p+1, \lambda)+\mathfrak{M}_{p+1}$, we can take $t_{p+1, \kappa}$ elements, say $x_{h}(p+1, \kappa)=\sum_{i} \omega_{i}(\kappa, h) v_{i}(p+1, \kappa)\left(\omega_{i}(\kappa, h) \in \Omega\right)$ as the representatives of the classes corresponding to $t_{p+1, \kappa} e_{p+1} \times e_{\kappa}$'s. Then $\mathfrak{M}_{p}=\sum_{\kappa, h} A * x_{h}(p+1, \kappa) * A$ $+\mathfrak{M}_{p+1}$. As before, we denote $\sum_{i} \omega_{i}(\kappa, h) u_{i}(p+1, \kappa)$ by $w_{h}(p+1, \kappa)\left(\in e_{p+1} A e_{\kappa}\right)$. If $\sum_{\lambda, h} w_{h}(p+1, \lambda) e_{\lambda} a_{\lambda, h}=0$ for some $e_{\lambda} a_{\lambda, h} \in A$, then, since $t_{p+1, \lambda}=0$ for $\lambda \leqq p+1$, $\sum_{\lambda, h} w_{h}(p+1, \lambda) e_{\lambda} a_{\lambda, h}=\sum_{\lambda \lambda 1 ; 1 ; h} w_{h}(p+1, \lambda) e_{\lambda} a_{\lambda, h}=0$ and consequently, by the same way used in Lemma 1.9, we have $\sum_{\lambda>p+1 ; h} x_{h}(p+1, \lambda) * e_{\lambda} a_{\lambda, h} \equiv 0\left(\mathfrak{M}_{p+1}\right)$ which implies $e_{\lambda} a_{\lambda, h}=0$. This shows that $e_{p+1} N \supseteqq \sum_{\lambda, h} w_{h}(p+1, \lambda) A$ and $w_{h}(p+1, \lambda) A \cong e_{\lambda} A$ if $t_{p+1, \lambda} \neq 0$. Comparing the ranks of $e_{p+1} N$ and $\sum_{\lambda, n} w_{h}(p+1, \lambda) A$, we have $e_{p+1} N$ $=\sum_{\lambda, h} w_{h}(p+1, \lambda) A$. This proves the first part of (ii) for $\kappa=p+1$.

Now we consider (iii). From the facts that $e_{p+1} N=\sum_{\kappa, h} w_{h}(p+1, \kappa) A$ and
that $t_{p+1, \kappa}=0$ for $\kappa=1, \ldots, p+1$, we can take $w_{h}(p+1, \kappa)$ and $w_{h}(p+1, \kappa) u_{i}(\kappa$, 1) $(\kappa \neq 1, \ldots, p+1)$ as an Ω-basis of $e_{p+1} N$. Using this Ω-basis, we have $e_{p+1} \otimes w_{h}(p+1, \kappa) u_{i}(\kappa, \lambda)-w_{h}(p+1, \kappa) u_{i}(\kappa, \lambda) \otimes e_{\lambda}=w_{h}(p+1, \kappa) * v_{i}(\kappa, \lambda)+x_{h}(p$ $+1, \kappa) * u_{i}(\kappa, \lambda)$. Consequently $\sum_{\kappa, i} v_{i}(p+1, \kappa) * A=\sum_{\kappa<p+1: h} x_{h}(p+1, \kappa) * A+\sum_{\kappa \sim \nu+1: \lambda, i, h} w_{h}(p$ $+1, \kappa) * v_{i}(\kappa, \lambda) * A$ and $\sum_{\kappa, i}\left(w_{h_{1}}\left(\mu_{1}, \mu_{2}\right) \ldots w_{h_{r}}(\mu r, \quad p+1)\right) * v_{i}(p+1, \kappa) * A$ $=\sum_{\kappa>p+1 ; h}\left(w_{h_{1}}\left(\mu_{1}, \mu_{2}\right) \ldots w_{h_{r}}(\mu, \quad p+1)\right) * x_{h}(p+1, \kappa) * A+\sum_{\kappa=p+1 ; \lambda, i, h} w_{h_{1}}\left(\mu_{1}, \mu_{2}\right) \ldots w_{h_{r}}\left(\mu_{r}\right.$, $\left.p+1) w_{h}(p+1, \kappa)\right) * v_{i}(\kappa, \lambda) * A$. Then, by the facts that $\mathfrak{M}_{p}=\sum_{\kappa, h} A * x_{h}(p+1, \kappa) * A$
 $\left.\left.\mu_{2}\right) \ldots w_{h_{r}}\left(\mu_{r}, p+1\right)\right) * v_{i}(p+1, \kappa) * A+\ldots \underset{\kappa, i, h_{1}, \ldots, h_{h_{1}}}{\sum}(1,2) \ldots w_{h_{p}}(p, p$
 $\left.\lambda) * A+\underset{\kappa \geqslant p+1 ; \lambda, i, h_{1}, \ldots, h_{p}}{+}\left(w_{h_{1}}(1,2) \ldots w_{h_{\nu}}(p, \kappa)\right) * v_{i}(\kappa, \lambda) * A\right]$ and that $\mathbb{M}_{p+1} \supseteq\left[\sum_{\kappa \geqslant p+1 ; \lambda, i}^{h_{1}} v_{i}(\kappa\right.$, $\left.\left.\lambda) * A+\underset{\kappa<p+1 ; \lambda, i, h_{1}, \ldots, h_{p}}{+}(1,2) \ldots w_{h_{p}}(p, \kappa)\right) * v_{i}(\kappa, \lambda) * A\right]+\left[\sum_{\kappa<v+1 ; \lambda, i, h} w_{h}(p+1, \kappa) * v_{i}(\kappa\right.$, $\left.\lambda) * A+\underset{\kappa<p+1 ; \lambda, i, h_{1}, \ldots, h_{p+1}}{+}\left(w_{h_{1}}(1,2) \ldots w_{h_{p}}(p, p+1) w_{h_{p+1}}(p+1, \kappa)\right) * v_{i}(\kappa, \lambda) * A\right]$, we have
 $+\underset{\kappa>p+1 ; \lambda, i, h_{1}, \ldots, h_{p+1}}{ }\left(w_{h_{1}}(1,2) \ldots w_{h_{p+1}}(p+1, \kappa)\right) * v_{i}(\kappa, \lambda) * A$. This proves (iii) for κ $=p+1$. Therefore we have Lemma 21 by induction.

Proposition 4. Let A be an absolutely segregated algebra over an algebraically closed fleld satisfying (B), then there exists a system of non-negative integers $\left\{t_{\kappa}, \lambda\right\}$ such that $e_{\kappa} N \cong \sum_{\lambda} t_{\kappa, \lambda} e_{\lambda} A$ and $N e_{\kappa} \cong \sum_{\lambda} t_{\lambda, \kappa} A e_{\lambda}$ for each κ. Moreover $e_{\kappa} A e_{\kappa}$ $=\Omega e_{\kappa}$ for each κ.

Proof. As was shown above, we have that, for each $\kappa, N e_{\kappa}=\sum_{\lambda<\kappa} A w_{h}(\lambda, \kappa)$. Since $t_{\lambda, \kappa}=0$ for $\lambda>\kappa$ and $A w_{h}(\lambda, \kappa) \cong A e_{\lambda}$ if $t_{\lambda, \kappa} \neq 0$, we have $N e_{\kappa} \cong \sum_{\lambda} t_{\lambda, \kappa} A e_{\lambda}$. Then it can easily be seen that $N e_{\kappa}$ has only $\bar{A} \bar{e}_{\lambda}(\lambda<\kappa)$ as its composition residuemodules. This shows that $e_{\kappa} A e_{\kappa}=\Omega e_{\kappa}$. In the same way, we have $e_{\kappa} N$ $\cong \sum_{\lambda} t_{\kappa, \lambda} e_{\lambda} A$.

Now we consider a general algebra over an algebraically closed field, and prove

Proposition 5. Let A be an algebra over an algebraically closed field. Then A is absolutely segregated if and only if there exists a system of non-negative integers $\left\{t_{\kappa, \lambda}\right\}$ such that $N e_{\kappa} \cong \sum_{\lambda} t_{\lambda, \kappa} A e_{\lambda}$, that is, N is an A-left M_{0}-module.

Proof. By Proposition 2 and the fact that there exists such a system $\left\{t_{\kappa, \lambda}\right\}$ for A if and only if the same holds for the basic algebra A_{0} of A, it is sufficient to prove our assertion for an algebra satisfying (B).

As the "only if" part has been settled above, we prove the "if" part. As before we assume that $s_{1} \leqq \ldots \leqq s_{n}$. Then, by the above relation, we have that $s_{\kappa}-1=\sum_{\lambda} t_{\lambda, \kappa} s_{\lambda}$ and $t_{\lambda, \kappa}=0$ if $\lambda \geq \kappa$. Therefore $N e_{\kappa} \cong \sum_{\lambda<\kappa} t_{\lambda, \kappa} A e_{\lambda}$. Now let $w_{h}(\lambda, \kappa)$ be $t_{\lambda, \kappa}$ elements corresponding to e_{λ} by the above isomorphism. Then it is not hard to see that $e_{\kappa}, w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right), w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) w_{h_{2}}\left(\kappa_{2}, \kappa_{3}\right), \ldots, w_{h_{1}}(1,2) w_{h_{2}}(2,3) \ldots$ $w_{h_{n-1}}(n-1, n)\left(\kappa_{i}=1, \ldots, n ; \kappa_{i}>\kappa_{i-1}\right)$ form an Ω-basis of A. By this Ω-basis we can decompose \mathfrak{M} (of Lemma 15) into indecomposable left modules. Here, by Lemma 16, $e_{\kappa_{1}} \otimes w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) w_{h_{2}}\left(\kappa_{2}, \kappa_{3}\right) \ldots w_{h_{r}}\left(\kappa_{r}, \kappa_{r+1}\right)-w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) \ldots w_{h_{r}}\left(\kappa_{r}\right.$, $\left.\kappa_{r+1}\right) \otimes e_{\kappa_{r}+1}=\left(w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) \ldots w_{h_{r-1}}\left(\kappa_{1-r}, \kappa_{r}\right)\right) *\left(e_{\kappa_{r}} \otimes w_{h_{r}}\left(\kappa_{r}, \kappa_{r+1}\right)-w_{h_{r}}\left(\kappa_{r}, \kappa_{r+1}\right)\right.$ ब $\left.\otimes e_{\kappa_{r-1}}\right)+\left(e_{\kappa_{1}} \otimes w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) \ldots w_{h_{r-1}}\left(\kappa_{r-1}, \kappa_{r}\right)-w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) . . . w_{h_{r-1}}\left(\kappa_{r-1}, \kappa_{r}\right)\right.$ $\left.\otimes e_{\kappa_{r}}\right) * w_{h_{r}}\left(\kappa_{r}, \kappa_{r+1}\right)$. Therefore, by induction, we have $e_{\kappa_{1}} \otimes w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) \ldots$ $w_{h_{r}}\left(\kappa_{r}, \kappa_{r+1}\right)-w_{h_{1}}\left(\kappa_{1}, \kappa_{2}\right) \ldots w_{h_{r}}\left(\kappa_{r}, \kappa_{r+1}\right) \otimes e_{\kappa_{r}+1}$ is contained $\operatorname{in}_{\kappa, \lambda, h}^{\bigcup} A *\left(e_{\kappa} \otimes w_{h}(\kappa, \lambda)\right.$ $\left.-w_{h}(\kappa, \lambda) \otimes e_{\lambda}\right) * A$. This shows that $\mathfrak{M}=\bigcup_{\kappa, \lambda, h} A *\left(e_{\kappa} \otimes w_{h}(\kappa, \lambda)-w_{h}(\kappa, \lambda) \otimes e_{\lambda}\right) * A$. On the other hand, $\left(A *\left(e_{\kappa} \otimes w_{h}(\kappa, \lambda)-w_{h}(\kappa, \lambda) \otimes e_{\lambda}\right) * A: \Omega\right) \leqq s_{\kappa} r_{\lambda}$ and consequently $\sum_{\kappa, \lambda, h}\left(A *\left(e_{k} \otimes w_{h}(\kappa, \lambda)-w_{h}(\kappa, \lambda) \otimes e_{\lambda}\right) * A: \Omega\right) \leqq \sum_{\kappa, \lambda} t_{\kappa, \lambda} s_{k} r_{\lambda}=\sum_{\lambda} r_{\lambda}\left(\sum_{\kappa} t_{\kappa, \lambda} s_{k}\right)$ $=\sum_{\lambda} r_{\lambda}\left(s_{\lambda}-1\right)=\sum_{k, \lambda} r_{\kappa} s_{\lambda}-\left(\sum_{k \neq \lambda} A e_{\kappa} \otimes e_{\lambda} A: \Omega\right)-m=(\mathfrak{M}: \Omega)$. Therefore the sum $\cup_{\kappa, \lambda, h} A *\left(e_{\kappa} \otimes w_{h}(\kappa, \lambda)-w_{h}(\kappa, \lambda) \otimes e_{\lambda}\right) * A$ is direct and $A *\left(e_{\kappa} \otimes w_{h}(\kappa, \lambda)-w_{h}(\kappa, \lambda)\right.$ $\left(e_{\lambda}\right) * A \cong A e_{\kappa} \times e_{\lambda} A$. Thus A is absolutely segregated.

Theorem. Let A be an algebra with unit element over a field F. Then A is absolutely segregated if and only if
(i) A / N is soparable,
(ii) the A-left-nsodule N is directly decomposed into submodules isomorphic to some left-ideal direct components $A e_{\kappa}$ of A, i.e. there exists a system of nonnegative integers $\left\{t_{\kappa}, \lambda\right\}$ such that

$$
N e_{\kappa} \cong \sum_{\lambda} t_{\lambda, \kappa} A e_{\lambda} .
$$

Proof. We prove the "if" part. Assume that A satisfies (i) and (ii). Then from (ii), N is an A-left M_{0}-module, therefore $N_{\Omega}(\Omega$ is an algebraic closer of F), the radical of A_{Ω}, is also an A_{Ω}-left M_{0}-module. Therefore A_{Ω} is absolutely segregated and consequently A is absolutely segregated.

Next we prove the "only if" parc. Assume that A is absolutely segregated and $A_{/} N$ is inseparable. Then $(A / N)_{\Omega}$ contains a nilpotent element belonging to the centre of $(A / N)_{\Omega_{2}}$. Let c be a representative of that class. Then c belongs to the radical N^{\prime} of A_{ϱ} and there exists a primitive idempotent of A, say e, such that $c e \not \ddagger N_{\mathrm{Q}}$. Since the residue class of $c \bmod N_{\mathrm{Q}}$ is in the centre of $(A / N)_{\Omega}, \quad e c e \neq 0$. Therefore $e A_{\Omega} \ell \supset e N^{\prime} e \neq 0$. This contradicts $e A_{\Omega} e=\Omega e$. Thus A / N is separable, and N_{Ω} is an A_{Ω}-left M_{0}-module. Hence N is an A-left M_{0}-module. This completes the proof.

Corollary. Let A be an algebra without unit element, then A is absolutely segregated if and only if $A^{*}=(1, A)$, the algebra obtained by adjunction of 1 to A, has the properties stated in our Theorem.

Added note. T. Nakayama and H. Nagao have given simpler proofs of our theorem. These will appear in this journal.

References

[1] W. Gaschütz. Üter den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen. Math. Z. Pd. 56 (1952).
[2] G. Hochschild. On the cohomology groups of an associative a!gebra, Ann. of Math., Vol. 46 (1945).
[3] -. On the cohomology theory for associative alge bras, Ann. of Math., 47 (1946).
[4] -. Cohomology and representations of associative algebras, Duke Math. J., Vol. 14 (1947).
[5] M. Ikeda. On a theorem of Gaschütz, Osaka Math. J. Vol. 5 (1953).
[6] H. Nagao and T. Nakayama. On the structure of (M_{0})- and ($M u$)-modules, forthcoming in Math. Z.
[7] T. Nakayama. Derivation and cohomology in simple and other rings I, Duke Math. J., Vol. 19 (1952).

[^0]: 5) Cf. Nagao and Nakayama [6].
[^1]: 6) " A-two-sided module" means " A-double module" (A-Doppelmodul). Namely a module \mathfrak{M} is an A-two-sided module if \mathfrak{M} is an A-right as well as A-left module and satisfies (am)b $=a(m b)$. $(a, b \in A, m \in \mathfrak{M})$.
 i) Lemmas 4, 5 and 10 are in Hochschild [4].
[^2]: ${ }^{\text {8）}}$ Cf．Nakayama［7］，Lemmas 4,1 and 4， 2.
 9）Hochschild［2］．

