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Steenrod [1] solved the problem1* of enumerating the homotopy classes of
maps of an (n4-1)-complex K into an /ι-sphere Sn utilizing the cup-i-product
the far-reaching generalization of the Alexander-Cech-Whitney cup product [7]
and the Pontrjagin *-product [5].

Since Steenrod's paper [1] appeared, the efforts to extend the result to the
case where an (n- D-connected space takes the place of Sn have been made
by Whitney [8], Postnikov [10] in case n = 2. and by Postnikov [11] in case
n>2.

On the other hand, the {n+ 2)-homotopy group 7r«+2(S
w) of Sn was recently

determined to be cyclic of order 2 by Pontrjagin [6], G. W. Whitehead [13].
then an attempt to enumerate the homotopy classes of maps of an (n -f 2)-complex
K into Sn is expected.2)

In the present paper this problem will be solved in case n = 2. As a partial
result as to the ^-dimensional case a theorem concerning the third obstruction
was obtained (this was announced in our previous note [20] without proof).
Let two maps /, g of an (n + 2)-complex K into Sn be homotopic to each other
on the (w+ l)-skeleton K71*1 then there exists a map gf such that g' is homotopic
to g(g'~>g) and g'=f on Kn+\ and hence f*Sn = g'*Sn^g*Sn (where Sn is the
generating Λ-cocycle of Sn and /*, g* are the cochain homomorphisms induced
by /, g). The separation cocycle dn+2(f, gf) with coefficients in πn+2(Sn) is
readily defined. In case n = 2, f*+>g on K if and only if there exists a 1-cocycle
λι of K such that 2/*S2W/*1^0 and the cohomology class

(dHf,g')} = <A~t>i} mod SηoH
2(K, τr3(S2)),

where v\ is a 2-cochain such that δυl = 2/*S2v"'λ1. In case n>2, a sufficient (not

necessary) condition for/, g to be homotopic is obtained*

{dn+2(f, g')}~0 mod San_2H
n(K, 7r«+i(SΛ)).

Received September 30, 1952.
!) The problem in case n- 2 was solved by Pontrjagin [4] and independently by Whitney (an

abstract in Butt. Amer. Math. Soc., 42 (1936), p. 338).
2> Problem 15 in Eilenberg. "On the problems of topology," Ann. of Math., 50 (1949),

247-260.
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Here SQi is the Steenrod /-square. This condition is necessary in the special
case when, for example, Hn~\K, πn(Sn))=0.

The homotopy classification theorem is obtained as a corollary of an exten-
sion theorem3) in case n = 2 which states that if a map / of the 2-skeleton K2

of a complex K into S2 is extended to a map / of K* into S2, then the third
obstruction

{C 5 (/)}ΞΞ0{/*S 2 } mod SQίH\K, τr3(S2)).

Here ψ is a new type of squaring operation defined for a 2-cohomology class
W2 such that W2^W2~0, which determines a coset of the factor group H*(K,
Z2) mod SQlH\K, Z). The ^-square is a special case of ^-product, ψ{V2, W2),
defined for a pair of 2-cohomology classes V2, W2 such that V2^W2 = 0, in which
0(jy2) = ψ(W2, W2). The ^-product is defined in terms of the ^-product newly
defined and of the w*-product, and it has a topological invariant meaning. The
relation between the ^-product and the functional cup product (Steenrod [2])
is given.

The author should like to express his hearty thanks to Professors A. Komatu,
R. Shizuma, M. Kuranishi and Mr. H. Uehara for their kind encouragements
and valuable criticisms during preperation of the present papen

Added after the submission: I was just informed, through a correspondence
with Professor N. E. Steenrod, of the thesis of Doctor Jose Adem,*) in which he
solved the ^-dimensional case (n*±2) of the classification problem and obtained
several results which may be even more important. According to a copy of the
announcement of Dr. Adem's results, which Prof. Steenrod was kind enough to
send me, the method employed there is far more fruitful than the older one used
in the present paper. Dr. Adem's method relies upon the use of the Steenrod's
conceptual definition of the squaring operations introduced recently in the Annals
of Mathematics, which appeared after the preparation of the present paper.

PART I. PRODUCTS

Preliminary. Denote by K a finite simplicial complex, by Z the group of
integers and by Z<> the group of integers reduced mod 2. Elements of the p-
dimensional cochain group LP{K, Z) of K with integer coefficients and those of
the i>-dimensional cochain group LP{K, Z») of ϋΓwith coefficients in Z* are called
for simplicity ^-integer cochains and ^-cochains mod 2 respectively. Similarly
we say i>-integer cocycles and i>-cocycles mod 2, There is a natural reduction
T2'LP(K, Z)~*LP(K, Zi) and we have r 2d = δn for the coboundary operator δ.
Since this reduction is onto, on calculation reduced mod 2 we often do not

3 ) This problem was proposed by Steenrod (see the last section in [1]).
*> Added in proof: His note "The Iteration of the Steenrod Squares in Algebraic Topology''

appeared in Proc. Nat. Acad. Sci. vol. 38 (1952), 720-726.
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distinguish a cochain mod 2 from one of its representative cochain with integer

coefficients and we shall exclusively use ordinary cochains even if we call them

cochains mod 2 or cocycles mod 2.

If a is a ^?-cocycle, with coefficients in Z or Z2, then {a} denotes its co-

homology class, a^b means that a-b is a coboundary.

An order in K is a partial order of vertices such that the vertices of any

simplex are linearly ordered. A fixed order a in K will be assumed until further

notice. The array (AoAi Ap) of vertices Ai of a ^-simplex a ordered as in

a will denote the oriented simplex a and will be written simply (01 p)

without ambiguity.

In various products of integer cochains, the pairing of the coefficients is

defined as the product (reduced mod 2 if necessary) of integers.

§ 1. ^-product.

We have the following formula, due to H. Car tan [33, relating to the cup

product and the squaring operations:

(1.1) SqP{ar^bs)^T>(SQia
r)"(Sqjb

s) mod 2,
i j

for two cocycles mod 2, ar and bs, (superscripts denote the dimension). Let

us consider this formula in a simplical complex K with ordered vertices, especial-

ly in case p — r+ s — 2. We intend to find explicitly a cochain mod 2 whose

coboundary will give the difference of the left and the right-hand sides of (1.1).

For this purpose, define the (r + s + 1)-cochain mod 2, afΛ/~ιbs, for two cocycles

mod 2, a and b\ by setting

arV-χbs (0,1, . . . , r + s + l) = Σ a(0,1, . . . , r^i,. . . , r+l )
•/:odci>0

α 2 ) *(0, 1, . . . , r) Σδ(r,r+l, . . . , r + Λ . . . , r+ s+l)
j:eveu>o

b(r+l, . . . , r+s+l) mod 2,

where the symbol " / N v " means the deletion of the marked vertex. Then the

following coboundary formula holds for r + s ^ 5 :

dia^'b3) = S^^ia^b8) + {Sqr..aΊ ~(S,s_Lbs)
{ l ' 3 ) +a^\ SQs_2b") + (SQr_2a

r) ^bs mod 2.

Indeed this is verified by a direct computation. In the below (1.3) will be used

only for the case when both r and s are not greater than 2.

§ 2. ^-product and ^-square.

We shall restrict ourselves to the case r = s = 2. Let a and b be 2-dimension-

al integer cocycles. Then we have by (1.2)

av-1fc(012345) =tflO23)0(O12)6(235)(345) mod 2,

and by (1.3)
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d(aw'ιb) = (a^b)^(a^b) + (a^a)^(b^b)
( 2 Λ ) + (a^a)^b + a^(b^b) mod 2.

If a^b^O (not mod 2) and a^b = δu for a 3-integer cochain w? we have

(2.2) δ(p!u) = (a^b)^2(a^b) mod 2,

where J>i denotes the generalized Pontrjagin square:

ft u = « Wχw + u ̂ zδu.

Recalling that (a^a)^b = a^(a^b), a^(b^b) = (a^b)^b and 0Wl<z^O (see

Theorem 12.6 in Steenrod [1]), we can define a 5-cocycle mod 2,ψ(a,b; u),

by setting

(2.3) ψ(a,b; « ) = α v - ^ + Λ w ( ^ w ^ ) + l)iiί + α w « + ι ι w f t mod 2,

w-here « is a 2-integer cochain such that δa = a^ιa. φ{a9 b\ u) depends on the

choice of a, but its cohomology class {ψ(a,b; u)) is independent of the choice

of a because of b^ιb^Q.

We shall enumerate some properties of ψ(a9 b; u).

(2.4) φ(a,b\ u + λ)-ψ(a, b; u)^SQιλ+(a + b)^λ mod 2,

for a 3-integer cocycle λ.

Φ(a9b + c\ u + v) -ψ(a, b; u)-ψ(a,c; v)
( 2 ' 5 ) ^a^ib^ti + υ^b + u^c mod2 ?

for a, b, c, u and v such that a^'b^O, a^c^O, δu = a^b and δυ~a^c (not

mod 2).

ψ(a + b, cl u + υ) -~ψ(a, c\ u)-ψ(b,c; v)

*s*(a ιb) c-\-a v + b u mod 2,

for a, b, c, u and v such that a c^Q, b c^
mod 2).

(2.6) φ(a9 b+δe\ uΛ a^e)^\

(2.6)' φ(a + δe9b; u + e^b)^

for a 1-integer cochain e.

(2.7) ψ(a9 δe; a^e)^

(2.7)' φ(δe9 b; e^b)^

for a 1-integer cochain ̂ .

(2.8) ψ(a, b; u)^ψ(b, a\ u

0, δu =

ρ(a, b;

0(a9 b;

a c

u)

u)

)

and δv = b c (not

mod 2, and

mod 2,

mod 2, and

mod 2,

mod 2,

Let c b e a 2-integer cocycle such that c^c^O (not mod 2) and c^c-δu

for a 3-integer cochain, We can define a 5-cocycle mod 2, 0(c «), by setting
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(2.9) φ(c u) = cy-'c + c^{c^c) + Piu mod 2,

where c is a 2-integer cochain such that δc^c^c. φ(cl u) is independent of

the choice of c.

We shall enumerate some properties of ψ(cl u).

(2.10) φ(c; u + λ)-φ(c; u)^SQlλ mod 2.

for a 3-integer cocycle λ.

(2.11) φ(c; u)^ψ(c,c; if) mod 2.

(2.12) 0(te; e ^ t e ) ^ 0 mod 2, and

(2.13) φ(c + δe; u + c^e + e^c + e^δe)^φ(c; u) mod 2,

for a 1-integer cochain £.

(2.14) If f:Kf->K is an order-preserving simplicial map, then

/fy(α, ft u) = 0(/*α, /*ft /*«) and,

/*0(c; u)=φ(f*c; /*«),

where y(α W 2 «~α) is used as 51

It is conjectured that the following formula should hold

(2.15) φ(a + b; u + v + w + a^ti-φia; u)-ψ(b; v)-w^1w^0 mod 2,

for a, b, u, v and w such that a^a- δu, b^b = δv and 2 a^b = <?w.

Before we prove all these formulae (2.4)-(2.8) and (2.10)-(2.14), we

state the conclusions which are deducible from them. Consider the cohomology

class {ψ{a, b; u)}, then (2.4) shows that {ψ(a, b\ U))ELH~\K, Z2) is determined

by a and b up to the subgroup σ*LH*{K, Z)\ the image of a homomorphism

a,:H\K, Z)-*H*(K, Z2), induced by

(2.16) σ(λ ) = λ^1λ

for a -3-integer cocycle λ. In the definition of a9 the pairing of coefficients is

defined as the product, reduced mod 2, of integers. And (2.6), (2.6)', (2.7),

{2.7Y show that the coset {φ(a, b\ u)} mod σ*LH*(K, Z)Λ depends only on the

cohomology classes {a} and {b}. We denote the coset by ψ({a}9 {b}).

THEOREM 2.1. For {a}, {b}&H2(K, Z) such that {a)^{b} = 0Gi?4(iϊΓ, Z),

we can determine an element φ{{a), {b}) of the factor group H5(K, Z2) mod

ajLH\K, Z)] and we have φ{{a}9 {b))=φ({b}, {a}).

This operation is called (/--product. The latter part of the theorem follows

from (2.8).

Similarly, from (2.10), (2.12) and (2.13), we obtain
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THEOREM 2.2. For {c}&H2(K9 Z) such that {c}^{c} = Q&H4(K, Z), we can

determine an element ψ{c) of the factor group H5(K, Z2) mod SQιH
s(K, Z), and

toe have ψ{c) -ψi{c), {c}).

This operation is called ^-square.

§ 3. Proofs of the formulae in § 2.

We shall first describe auxiliary formulae. In the following α, b, c, d are

2-integer cocycles and u, υ are 3-integer cochains

(3.1) p1(u + υ)^p1u + piV + δu^3δv mod 2.

(3.2) iα^b)^c^(b^α)^c mod 2.

(3.3) (α^ιb)^c + α^ι(b^c) + b^(α^c)^0 mod 2.

(3.3)' {α^b)^α^α^ι(b^α) mod 2.

(3.3)" c^(c^c)^0 mod 2.

(3.4) (α^b) ^(c^d) = αcdb + cαbd+ (α^c) ̂ (b^d) + (α^c) ̂ (b^d) mod 2,

where αcdb denotes a 5-cochain mod 2 defined as #α/M012345) = α(023)c(012)

d(235)K345) mod 2.

δiα^e + α^e^e) = αw-*δe + (α^α)^(e^e + e^δe)
( 3 5 ) +pAα^e) + α^α^e + α^e^δe mod 2,

for a 1-integer cochain e, where α^~ιe denotes a 4-cochain mod 2 defined as

tfv-V(O1234)=a(O23)0( 012)^(23)^(34).

δ(ev-ib + e^e^b)^δew->b+(e^e + e^δe)^(b^b)
( 3 5 V +pι(e~b) + de~e~b + e~bκ'b mod 2,

for a 1-integer cochain e, where ey~ιb denotes a 4-cochain mod 2 defined as

^ M 01234) =e(01)έ?U2)£(124)M234).

(3. 5)" δ{ey-'δe) = δev~ιδe +(e^e + e^ιδe) "(δe^δe) + ^ ( β w f e ) mod 2,

for a 1-integer cochain ̂ .

We shall prove (3.3). This follows from

(3.3)° δ(αbc) = (α^b)^c + α^{b^c)-rb^(α^c) mod 2,

where αbc is a 4-cochain mod 2 defined as αbc(01234) = β(024)^(012M234) mod 2.

Now we begin to prove the formulae in §2. Among them (2.8) will be

proved later (in §4).

(2.4) and (2.10) immediately follow from (3.1).

(2.5) and (2.5)' follow from a direct computation by means of 13.4).

(2.6) and (2.6)' follow from (2.5) and (2.5)'.
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(2.7) and (2,7V follow from (3,5) and (3.5)'.

(2.11) follows from (3.3)".

(2.12) follows from (2.11) and (2.7)' or directly from (3.5)".

(2.13) follows from (2.11), (2.6), (2.6)', (2.7) and (2.7)'.

(2.14) is easily seen from the definition of ψn

§ 4o Change of order in K, simplicia! map, and proof of (2β 8).

In this section we shall prove that the ^-product is independent of the choice

of an order in K, This is done in a similar way as in the proof of the inde-

pendence of the squaring operation le i Section 8 in Steenrod [1]).

Let L = Kxl be the product complex of K and the unit interval [0, 1]. We

shall subdivide L simplicially as follows. Let (Ao) and (Ai) be two disjoint sets

of vertices of Kx 0 and of Kx 1 each in a 1 - 1 correspondence with the vertices

(A) of K. Let MA) = A>9 MA) = Λι be the correspondences. The union of

(AD) and (Ai) form the set of vertices of L, Let <κ be an order in K, A set

of vertices Ao . . . Ao Aι+1 . . . Af are those of a ̂ -simplex in L if, in the order

a, A°<AL< . . . <Ak^Ak1rl< . . . <AP, and these are the vertices of a p- or

(p - 1)-simplex of K. The maps / 0 , fι define simplicial maps of K into L, The

map g: L->K, defined by g(A0) ~g(Aι) = A for each A, is a simplicial map and

(4.1) gfo = ̂ /i = the identity map of K*

If ^ is a ^-cochain of L (P>0), define a (^ — l)-cochain Du oί K by

(4.2) D^(A° . . . Ap'1) = Σ ( - Ό V A S . . . Ao

fe Aί . . . Af"1).

Then we have

(4.3) δDu^fiU-fou-Dδu, for a ̂ -cochain u oί L (P>0),

(4.4) 0 =/?»~/o*w- D^«, for a 0-cochain u oί I,

(4.5) Ite* = 0,

where / * , / * and g* axe the cochain maps induced by A, /o and g respectively.

(For the proof, see Section 7 in Steenrod Cl].)

Let α0, or! be two orders in K. The orders α0, cei define two cup-i-products

^'S ^ and two (/'-products ψo, ψi in iί. An order («o, on) is defined in Z as

follows. Order (Ao) as their correspondents (A) are ordered by α0, order (Ai)

as their correspondents (A) are ordered by αi9 and agree that, on any simplex

of L9 a vertex of (Ao) precedes one of {Ai). Then (α0, αι) deϋnes products
w* and ̂  in Lo Since /o(/i) preserves αo(«ι), it follows from (2.14) that / * ( / * )

maps M ' into Wί°(w*Λ) and φ into (/ΌI^I) respectively.

Corresponding to the orders αθ5 #ι define a 4-cochain mod 2 of # by

(46) α*b = Dφ(g*α, g*b; v) mod 2,
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for 2-integer cocycles a, b of K such that a^b^O and for a 3-integer cochain

v of L such that δv = g*a^g*b. Then from (4.3), (4.1), (2.14) we have

(4.7) d(a*b)=ψi(a, b\ f*v)-ψo(a, b\ ftυ) mod 2.

This proves

THEOREM 4.1. The ψ-product and the ψ-square are independent of the order

used to define them.

THEOREM 4.2. / / / : K1->K is simplicial, then ψ-operation commutes with / * .

Since, for any order a in K, there exists an order in K1 such that / is

order-preserving, Theorem 4.2 follows from (2.14) and Theorem 4.1.

We shall prove here (2.8). .Take the order ct\ as the inversion of a0 in

(4.6). Then thereby we have

= M012)β(234),

" (01321) = - 0(013)6(123),
( 4 ' 8 ) " (01232) =0,

" (01233) =0,

" (01234) = a(0l2)b(234) etc.

Choose v such as

t>(32Ϊ0) = κ(0123) + tf(023)£(012) - α

e;(032Ϊ) = - κ(0123) -f β(013)*(123),

i;(02ΪO)=0,

(4.9) «;(0132)= - «(0123),

z;(0123) = «(0123),

^(0123) = M(0123) etc.,

where i(i) denotes AliAl) and δu-a^°b, then we have δυ-g*a^g*b, f*v

and ftv = u. It follows from (4.7) that

(4.10) ψΛa, b; u + a^°b)-ψo(a, b, ιι)^d{a*b) mod 2.

Since it is easy to see that ψι(a, b\ uΛ a^1 b)^ψo(b, a\ u-\-a^xb) mod 2, we

obtain (2.8).

§ 5. φ -product in space and topological in variance of ^-product.

Let X be a topological space. Let HP(X, G) denote the Cech cohomology

group of X with coefficients in G. An element {ξ)&Hp(X, G) is represented by

ςEzHp(K9 G), where K is the nerve of some finite covering of X by closed sets.

If ξ'E:Hp(Kf, G) for a second covering complex Kr, and {£} = {?'}, then there

exists a common refinement of the two coverings with nerve Ktf such that
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(δ. l ) g*ς=g'*ξ' in HP(K", G)

where g : Kft -» K and g1: /£" -+ K1 are simplicial projections determined by in-

clusion relations among the closed sets of the various coverings. From (5.1)

and Theorem 4.2 it follows that {ψ(ξ, 7])} = {ψ(ξ', -q')} for £, 7]<ΞH2(K, Z) and

$', y'E:H2(K', Z) such that ξ~v = 0, ?'w?' = 0, {ξ} = {£'}, M - {if}. Therefore

(5.2) ψ({ξ}, {y}) = {0(f, 7 )}efΓ B U, Za) mod <;*[#3(X, Z)]

defines 0-product for {£} and U)^H2(X, Z) such that {ξ}^{y} =0<ΞHi(X, Z).

If / : Xf-*X is continuous, then / induces a homomorphism

(5.3) f*:H(X, G)->H(Xf, G).

It is determined as follows. Let ξE:Hp(K, G), represent {ξ}E:Hp(X, G), where

ϋf is the nerve of the covering [Z7]. Then L/^iUΏ is a covering of X' with

nerve Kr. Let fκ'K
f-*Kbe the simplicial map which attaches the vertex /-1(Z7)

of A'' to the vertex U of K. Then (5.3) is obtained by

(5.4) /*{£> = {/**£}.

By (5.4), (5.2) and Theorem 4.2

(5.5) f*Φ = Φf*.

Suppose now that X is the space of.a complex K. Then K is the nerve of

the covering of X by the closed stars of the vertices of K in the first barycentric

subdivision K' of K. If ξ<ΞHp(K, G), then ψξ = {ξ)eHp(X, G) is known to be

an isomorphism <f:Hp(K, G)^HP(X, G).

Since φψ(ξ, η) = {φ(ξ, -η)} = Φ({ξ), {v})-φ(<pξ, ψη)9 it follows that ψφ = φψ.

Therefore the operation ψ as defined in a complex has a topological invariant

meaning.

§6. Relation between the ^-product and the functional cup product.

Let kl K1 -> K be an order-preserving simplicial map of a complex K' into

another complex K. Let k* be the cochain map induced by k. Then we have

from (2.14)

(6.1) k*ψ(a,b; u) =ψ(k*a, k*b; k*u).

If k*a^Q in K1, then the right hand side vanishes in the sense of mod *

Z ) l But here we shall compute it mod ^%[i/3(/f, Z)\ then we have by (6.1)

(6.2) k*φ(a, b, tι)^k*ay~'k% + k*a^{k%^k%) + hk*u + tf

Since, from (3.5)', we have

tfaΊ-%*b + tfa^{k*b ^k*b) ^pά e ^k*b)
( 6 3 ) +k*a~{e^k*b) + (e~k*b)~k*b mod 2,
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where de = k*a, (6.2) and (6.3) give

k*φ(a, b; u)*pi(k*u-e^k*b) + h*a~(k*u-e~k*b)
( 6 4 ) 4- (k*u - e wft*6) "k*b mod 2.

This implies

(6.5) k*φ(a,b; u)^SQι(a^kb) + (a^kb)^k*b mod 2.

where a^kb = k*u -e^k*b is the functional cup product of a and b (see Steenrod

[2]). The both sides of (6.5) have an invariant meaning and they are de-

termined mcd the same group k*σJJI*(K, Z)l. Change of order in A' or in Kf

does not effect (6.5) in this sense. Therefore, for any simplicial map k, we have

THEOREM 6.1. If k:K'->K is a simplicial map such that k*{a}=0 in K\

then we have

k*ψ({a},{b}) = SqMa}^k{b)) + ({a}^Hb})~k*{b} mod k*σ*lH3(K, Z)\

where {a), {b}ξΞH'2(K, Z) and {a)^{b) = 0&HA(K, Z).

THEOREM 6,2, // **{c} =0, {c}^{c} = 0ei? 4 ( iC Z), then we have

k*φ<c) = SQλ{c} ^k{c)) mod k*SQιH
2(K, Z).

Remark. These theorems hold for spaces.

PART IL EXTENSION AND HOMOTOPY CLASSIFICATION PROBLEMS

§ 7. Pairing of coefficients and the i-square»

In this section, an algebraic preparation is described, which will be made

use of in the next section.

Let G be an arbitrary abelian group/ and let H be an abelian group, each

element of which has order p {p: prime number).

LEMMA 7.1.4) If S' G-*H is a homomoiphism, then there exists a symmetric

homomorphism ψ of the p-fold tensor product G& . . . S G of G into H such that

ψ(a® . . . S a ) ~S(ar). (The adjective"symmetric" means that <f{<Xix'S) . . . &acip)

~ f (<*ιS <*2<* . . . Qocp) if Hi . . . ip) is a permutation of l l . . »p).)

Proof H is considered as a module over the prime field of characteristic

p, therefore H has a base and H is a weak direct sum *ΣHμ. of cyclic groups
μ

Hμ of order p. Let Sμ{a) be the /i-th component of S{a) and set

(7.1) 9Γμ(*i® . * . •8;ap) = Sμ{aί)°S,λ(a2) Sμ{ap),

Where "•" denotes the multiplication in Hμ as the field of p elements. Then fμ

is a symmetric homomorphism of G g β . . x G into // and
4) This lemma is suggested during discussion with professors Y, Matsushima, M. Kuranishi

and Mr. N. Itό.
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(7.2) φμ(a® . . . S)ct)^[Sμ(a)lp^SM) mod p.

Define

(7.3) f(αi® . .

then we have the required homomorphism.

By a pairing of G with itself to H, we mean a distributive multiplication

"°" which gives an element arop of ϋΓ for two elements a, j3 of G.

COROLLARY TO LEMMA 7. l.δ Suppose p-2, then any homomorphism S:G

-»II is extensible to a commutative pairing of G with itself to H.

Let K be a finite sίmplicial complex, and let G be an abelian group, and

let G' be an abelian group each element of which has order 2.

LEMMA 7.2.5' The i-square Sqi: H
n( K, G > -* H2n~'{ K, G1) is independent of the

choice of a commutative pairing of the coefficient group G with itself to G so

far as <x°<x — Sia* for a given homomorphism S-G-+G'.

Proof, Let cn = Σ<w? (α/GG, σ? > an /2-simplex of K) be a cocycle. The

coefficients ou of cn generate a subgroup B of G. 5 is a finitely generatsed

abelian group and, therefore, has a minimal system {βμ} of generators /3μ. Then

cn is written by βμ. to be cn = Σ^u ίμ, where Cμ is a cocycle mod mμ {mμ^0

is the order of βj. if either 2̂̂  or mv is odd, then βμ°βv = O. Then S^c"

^v)(c2^c:ϊ + c;^c2), where c^'c'l2 ^
μ μ>V

4-Cv^μ^O mod 2 since both z, and m, are even. Thus we have

(7.4) Sqιc
n^S{βu)<SQicl.

This proves the lemma.

§8 . The third obstruction.

For the application of the results in Part I to the problems of extension and

homotopy classification, we shall exclusively deal with mappings of a simplicial

complex K into a 2-sphere S" in the sequal. However, we shall here prove a

theorem concerning the extension cocycles of mappings in a generalized case

which shows the behavior of the third obstructions. The result was already

announced in a previous note [20].

Let K denote a finite simplicial complex, Kr its r-skeleton. Let Y be an

(72 — 1)-connected5 topological space (besides the (n — 1)-connectedness we as-

sume no restriction to the homotopy groups of Y). It f, g are normal0 maps
5 ) T h i s was s t a t e d firstly by Postnikov [11],
6 ) A space Y is called (w — Ij-connected if it is arcwise connected and its i-th homotopy

group κι(Y) vanishes for ί - i , 2, . . . ,n~\,
Ίi A map / of a complex K into an {n — lj-connected space Y is called normal when f{K7i~ι)

is a point of Y.
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of Kn+2 into Y which coincide on Kn, then the (n + 3)-extension cocycles CM+3( / ) ,

Cn+3(g) with coefficients in 7r«+2(y) are related as follows.

THEOREM 8.1. Cn+3(f) - Cn+3(g)^SQn.ιd
n+1 incase n>2,

C 5 (/) - CHg) ^SQιd
3 + c2^d* in case n = 2,

where dn+1 = dn+1(f, g) is the separation cocycle of f and g, and c2^=c2{f)

~c2(g) is the characteristic cocycle with coefficients in π2(Y). Let rj*'πnu(Y)
>2[7rw+2(y)]8) be the homomorphism induced by the superposition of the elements

of 7r«+i(y) by an essential element y of 7Γn+2(SM+1). The pairing of coefficients

in SGii^dn+1 is an extension of y* {see Corollary to Lemma 7.1), while the coef-

ficients in the term c2 ̂ d3 are paired by the Whitehead product.

COROLLARY TO THEOREM 8. l . Suppose that the space Y is an nsphese S'\

then in the same notations as in the theorem,

CnJ'3(g)^S<ίn_ιd
n+1 for

Proof of Corollary. The Whitehead product aβ of a&π2(S2) and /3£7Γ3(S2)

vanishes and also the term c2^d\ (cf. (3.72) in G. W. Whitehead [12]).

Proof of Theorem 8.1. Denote K"*2 the cell complex, the image of a cel-

lular map ft :/JL"+2-»/ΪΓO"+2 such that h is homeomorphic on an open simplex of

dimension r for r^n while h{Kn~ι) = j>0 is a point. Since the map f:Kn+2-+ Y

is normal, i.e. f(Kn~ι) = * a fixed point in Y, there exists a map φ:K"+2 -• Y

such that the composition

(8.2) φoh=f.

The coefficients dn+1(σ?+ι) of dn*ι(f, g) generate a subgroup B of πn+Λ Y). Since

B is finitely generated, B has a minimal system {βμ} of generators βμ with order

raμ^0. Then dn*Hf, g) = ΣiV4> w + ι where ύ?μ

Wfl is an integer cochain such that

0 ^ < + 1 ( ^ + 1 ) < m μ (if *wμ>0) and ̂ + 1 = 0 mod m μ . Let £ μ

+ 2 == S*' 1 " < £ + 2 be

a cell complex composed of an (rc-f 1)-sphere S μ

+ 1 and an (?ί-f 2)-cell e μ

+ 2 at-

tached to Sμ+1 by a map of 9eμ

+ 2 into S μ

+ 1 with degree w μ . Let Bn+2 - Σ ^ Γ 2

μ

be a collection of £ μ

+ 2 such that ΠB^+2 = p is a point of BnJr2 and Bl"2^BT2

= A Let i?M+2 = iCoM+2 + B 7 ί f 2 where ϋΓ0

Wf2 is attached to £ M f 2 by the identifi-

cation of the point J>0 to p. The map ψ is naturally extended to a map f: i?w + 2

->y.
Define now a map &: ϋ r + 2 - » # ? i + 2 as follows. Set ft = ft on i£? ί. Order line-

arly the vertices of if. In each (n-1-1)-simplex afn (Ao . » . An+i)9 we take an

^-sphere Sp where the south pole is the first vertex Ao, S? — A> C the inner of

<j?+1, S? bounds an <Λ + l)-cell e Γ 1 . Define ft:tf?+1->ftU?+1) + S S ? H such that

S ) 2G denotes the subgroup generated by elements with order 2 of an abelian group GΛ
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MS!1) = Po and ftUΓ1 - εf+1) = h(σ?+1) - p0 is homeomorphic and * U ? + ι ) C Σ 3 Γ ι

has degree - d?*\σΐYl) on S μ

m for each /ι. Thus we have rf*+1(Λ, ft) = Σ ^ < H

<>>•* a generator of πn+iiB"*2) and

<8.3) rfΛ+1(/, ^ = Σ β μ < + 1 = dΛ + 1(^°*,ίP o*) = -AΨΣi9μ ^ : + l ,

where Sμ+1 denotes the generating (w + l)-cocycle mod mμ of J3,T2. Form

(8.3) and (8.2), it follows that

(8.4) dn+1(φ°k, g)=0

This means that f °k and # are homotopic on Kn+X rel. /£n. Since dn¥1(h, k)

is the image of the cocycle Σ - <μ Sj!+ι in 2Γ+2 by ft*, we can extend H o a

map k:Kn+2-»Rn+2 such that if p'.R^-^KΓ2 be the projection, then

(8.5) pok^h

on Kn+\ Then (8.4) shows that Cn+\g)^Cn+\<f°k) (cf. Eilenberg [15]), to-

gether with (8.2) we have

<8. 6) Cn+\f) - Cn+Hg) ^C"+S(φ°h) - Cn+S(φ°k).

We shall compute the latter. Let KΓ2 = iίΓow+3WΣe?+3

? B
Λ + ί = B Λ + I W Σ ^ ' 3

and let ΛΛ+8 = ̂ oW f 3 + BM+3 in case w>2, /?δ = (A? + B 5 ) ^ Σ^y,μ in case w = 2,

such that each cell ef+3 is attached to iίo/+2 by a map of 9e?+ίl into ϋΓ<Γf2 repre-

senting each generator of jτ«+2(iίΓ+2), each cell e£+* is attached to BM+2 by a

map of de"+3 into Sμ f l (m μ : even) representing a generator of 7rn+2(B,χ+2) and

each cell ej,μ is attached to Ko+Bδ by a map of dej,μ into SjwSμ representing

the Whitehead product of a generator of ^(Sy) and that of 7r3(Sμ

3), where S'j

= Mtf2) for each 2-simplex <ry of K. Then π M+2(/?M+3) vanishes (cf. Blakers and

Massay [14]) and the maps h, k:KnA2->Rn+2 are extended to maps of Kn+*

into Rn+\ where h(Kn+*)CK?+*.

Denote by ξι, v*(βμ), ocjβμ the elements of 7r«+2(F) represented by the maps

<p(deι+B), φ(deΐ+*)9 ψ(dej>μ) respectively. Then

(8.7) Cn+Xφ*h)^h*Cn+\φ), Cn*\φ°k) - k*Cn+\φ) and

{8.8) CM + 3(f)=Σf/ εΓ3+ Σ 7*(/ίμ) ^ + 8 + Σ ^ μ ^μ,
mμ : et'βn

where the last term is added only in case of n = 2. From the way of con-

struction of ft, we have ft*e£+i = 0, ft*βjf μ = 0, From (8.5) we have ftV+3 = ftV+\

Thus we obtain, by (7.4), (8.3)

(8.9) C n + 3 ( ^ o ^ ) ^ c n + 3 ( f o ^ ) = - ^ ( 2
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^Sqn^dn+ι(f9 g) + c2(f)^d*(f, g).

Here we used the fact that S^.β^^e"^ mod 2 in Bn™ (m^: even). (8.6)

and (8.9) prove the theorem.

§ 9. Extension theorem.

Let K be finite simplicίal complex, / a map of K2 into the 2-sphere S2

which is extensible to a map / of Kk into S2. Then from Corollary to Theo-

rem 8.1, we conclude that the third obstruction {C°(f)} is determined inde-

pendently of the choice of an extension / : ϋ f 4 - * S 2 of a given map / : K2~>S2

up to the subgroup SQxH
3(K, τ:3(S2)) of H\K, xAS2)). An algebraic determi-

nation of the residue class C δ ( / ) / mod SqiH
s(K, πΛS2)) is furnished by

THEOREM 9.1. If a map f: K2 -» S2 is extensible to a map f of K \ i.e., dc2( f)

= 0 and c2(f)^c2(f)^0 in K, where c 2 ( / ) = / * S 2 is the characteristic cocycle,

then the residue class reprscrJed by the third obstruction

{CHf)} mod SQιH\K, π*(S2)) =ψ{c2(f)}9

where 7Γ2(S
2) and τr3(S2) are regarded as the group of integers, and rrUS2) is re-

garded as the group oj integers reduced mod 2 {see §2).

Proof Let P°~S2^e° be a cell complex constructed from a 2-sphere S2

and a 5*cell e* attached to S2 by an essential map of Be5 into S3, Let M~° = S 3 " e'°

be a cell complex constructed from a 3-sphere S 3 and a 5-cell e"° attached to S 3

by an essential map of de"a into S* (see Steenrod [1], Section 20). Let K : (M%

S3)->(P°, S2) be a cellular map such that K is homeomorphic on the open cell

?° and is of Hopf invariant 1 on S3. Then the functional cup product {S2} ^K{S2}

= {S3} (see Steenrod [2]) and Sqι{S*} = {P/ mod 2. By making use of theorem

6.2 and its remark, we have

&) - Sί7l{S*} = {e*} = ,r*{^5} mod 2.

Since K* : H5(P*) ~*H'O(M°) is isomorphic, we obtain

(9.1) < {̂S2} = {e5/ mod 2 in P\

The given map /:ϋC 4->S 2 is extensible to a m a p / : / ί δ - * P 5 and

(9.2) <Cδ(/)} = fHe5} - /->{S2} =0(/*{S2}) -^{c 2(/)} mod

S(hHHK, rτ3(S2)).

This prove the theorem,

§ 10. Classification theorem,

THEOREM 10.1. Let f, g be two normal map of a ^-dimensional finite sim-

plicial complex K into the 2-sphere S2 which coincide on the ^-skeleton K3> Then

f~~g if and only if there exists a 1-cocycle λι with coefficients in ~ΆS~'* such
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that

(10.1) 2c2^Λ1^o in K,

for the characteristic cocycle c2 =/'VS2 = £•*(• S2, {in (10.1) the pairing of coef-
ficients is defined as rv = τ? for a generator c of π2(S2) and a generator y of
πΛS2)) and

(10.2) id\f, g)) = {SQuv\) mod SQΰH
2(K, ^(S 2)),

where dHf, g) is the separation cocycle of f and g, v\ is a 2-cochain icith coef-
ficients in πs(S2) such that

(10.3) 3vl = 2c*^X\

In defining SQt)vi = vl^ vl, the coefficients are paired as 7/*η = ζ for a generator ς
of π,(S2).

Let Γι(K, τr2(S2)) denote the subgroup, generated by classes {λ1} of 1-co-
cycles λι satisfying 110.1), of the l cohomology group H\K9 7r2(S

2)) of K with
coefficients in π AS2). Then setting

(10.4) ΦcMλL)) = {S(lΰvl} mod SqίH
2(K, rr3(S2)),

we have a homomorphίsm

(10.5) Φc*:Γι(K, τ:o{S2))^H4(K9 xΛS2))/SQ(ίH
2(K, τr3(S2)).

The homomorphism Φct depends only on the cohomology class {c2} as it is easi-
ly seen from the definition (10.4).

THEOREM 10.2. Let K be a ^-dimensional finite simplicial complex. Con-
sider the homotopy classes of those mapping of K into S2 which are homotopic
to one another on Kz. All such homotopy classes are in a one to one corre-
spondence with the cosets of the factor group

(10.6) HA{K, π,{S2))!SQ,H2{K9 r*(&)) ΦwJίΓHK, T: 2 (S 2 ))]

where W2 — {c2} is the characteristic class of these mappings.

Since Theorem 10.2 follows from Theorem 10.1, we shall prove the letter.

Proof. As it is well known, / and g are homotopic to each other if and
only if d4if, g^^OA{ff f), the latter being one of the homotopy obstruction co-
cycles. Which satisfies the following condition: There exists a map F of the
4-skeJeton U of the product complex L = KxI into S2 such that F = f on (K
xQ)^(Kxl) and O\f f)=^DC5(F) for the extension cocycle C5(F) of F (for
the operator D, see (4.2)). Thus the problem is reduced to seek such maps
F and to compute C"°(F) by making use of Theorem 9.1. We take a simplicial
subdivision of L such as described in §4. Let F:L4->S2 be normal and have



142 NOBUO SHIMADA

the above mentioned property: F-f on (K xO) w ( i Γ x Ί ) 5 such a map is called

allowable. Then the characteristic cccycle c2(F) of F satisfies

(10.7) c2(F)^c2(F)^Q.

Henceforth we regard cochains with coefficients in π»(S2) or πs(S2) integer co-

chains, cochains with coefficients in πΛS2) as cochains mod 2. ϊf we put

(10.8) λ\σ) = c2(F)(σxIV for each l-simplex a of if,

(where the symbol " ' " denotes the subdivision) it follows that λι is an integer

1-cocycle of K and from (10.7) that

(10.9) c\f)^λι + λι^c\f)*Q, or 2c2(/)W^0,

Conversely, for any such 1-cocycle λ1 we can choose an allowable map F

which satisfies (10.7). For the sake of convenience, let us consider the case

with the following restriction to allowable maps F without losing the generality.

Denote c2(F) by w2, c2(f) by c2, then we have

(10.10) w(012) = c(012)

fί?(0Π)=;(01), ^ ( 0 δ ΐ ) = 0 etc.,

thereby we have

w^tvi 01233) = c(012W(23)

" (01223) =0,
(10.11)

/; (01123) =;(01) c(012),

" (05Ϊ23) = 0 etc.,

or simply,

ws~/w^(cκyc)xθ-'(c^λ + λ^c)xl+(c^c)xl.

For two allowable maps F, F':lJ-+S2 such that c\F) = c\F') = w\ we have

C\F) -C5(F')^SQιd
9(F, F')* In order to compute {C5(F}} mod SfUH\L, Z)

~ψ{ιv2}? we choose a 2-integer cochain dl of K and a 3-integer cochain u2 of

L such that

(10.12) δdκ = c^λ + λ^c,

and dΰ~7V^ιv, for example, set

«(0123) = w(0123) - w(0Γ23),

M(0Ϊ23) - «(0123),

M(0123) = «

(10.13)

7̂(0122) =dλ(012),

»(00Ϊ2) = w(0lT2) = 0 etc.,
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where u is a 3-integer cochain of K such that δu = c^c. By means of (10.10),

<10.12) and (10.13), we obtain

<10.14) Dψitv; ΰ)^Φc(λ; dλ) mod 2,

where ΦcXλ d>.) is a 4-cocycle mcd 2 of K defined as follows.

< 10,15) ΦAλ; dχ)=cy'1λ + λy-1c+(λ^λ)^ι(c^1c)

^ " w r ^ mod 2.

Here pudx = dλ^dχ-j- dx^'ddx is the Pontrjagin square. The residue class {0C(/;

dx)} mod SqJH2(K, Z) is determined independently of the choice of dχ. The

expression (10.15) can be reduced to a simple form:

O0.16) Φctt; dλ)^Podx + po(c^λ)^Saovχ mod 2.

where #λ = <r/λ -f c^M is a 2-cocycie mod 2 such that £#λ = 2 e^Λ. From the ear-

lier part of the proof and (10.14) and (10.16), we obtain (10.2). This complete

the proof.
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