HOMOTOPY CLASSIFICATION OF MAPPINGS
OF A 4-DIMENSIONAL COMPLEX INTO
A 2-DIMENSIONAL SPHERE

NOBUO SHIMADA

Steenrod [1] solved the problem” of enumerating the homotopy classes of
maps of an (n#+4 1)-complex K into an n-sphere S™ utilizing the cup-i-product,
the far-reaching generalization of the Alexander-Cech-Whitney cup product [7]
and the Pontrjagin *-product [5].

Since Steenrod’s paper [1] appeared, the efforts to extend the result to the
case where an (z — 1)-connected space takes the place of S” have been made
by Whitney [8]. Postnikov [10] in case n=2. and by Postnikov [11] in case
n>2,

On the other hand, the (#+ 2)-homotopy group ma+2(S™) of S” was recently
determined to be cyclic of order 2 by Pontriagin [6], G. W. Whitehead [13].
then an attempt to enumerate the homotopy classes of maps of an (2 + 2)-complex
K into S" is expected.”

In the present paper this problem will be solved in case n=2. As a partial
result as to the n-dimensional case a theorem concerning the third obstruction
was obtained (this was announced in our previous note [20] without proof).
Let two maps /, g of an (7+2)-complex K into S” be homotopic to each other
on the (n+ 1)-skeleton XK' then there exists a map g’ such that g’ is homotopic
to g(g'~g) and g’ =f on K", and hence f*S” = g'*S"g*S” (where S” is the
generating n-cocycle of S™ and f*, g* are the cochain homomorphisms induced
by f, . The separation cocycle d"™*(f, g') with coefficients in mn+2(S™) is
readily defined. In case #=2, f~g on K if and only if there exists a 1-cocycle
' of K such that 2/%S*~2'«x0 and the cohomology class

{d'(f, g} ={5"v} mod S,,H K, ny(S*)),

where v} is a 2-cochain such that 605 =27*S* 2. In case #n>2, a sufficient (not
necessary) condition for f, £ to be homotepic is obtained :

{@"%f, g')}=0 mod S, H"(K, nma::(S™)).

Received September 30, 1952.

1) The problem in case n = 2 was solved by Pontrjagin (4] and independently by Whitney (an
abstract in Bull. Amer. Math. Soc., 42 (1936), p. 338).

2 Problem 15 in Eilenberg. *“On the problems of topology,” Ann. of Math, 50 (1949),

247-260.
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Here S, is the Steenrod 7¢-square. This condition is necessary in the special
case when, for example, H" (K, na(S")) = 0.

The homotopy classification theorem is obtained as a corollary of an exten-
sion theorem® in case » =2 which states that if a map f of the 2-skeleton K?
of a complex K into S* is extended to a map f of K* into S% then the third
obstruction

{C(F)=¢{f*S’} mod S, H K, n:(S?)).

Here ¢ is a new type of squaring operation defined for a 2-cohomology class
W* such that W?>~ W?=0, which determines a coset of the factor group H*(K,
Z,) mod S, H K, Z). The ¢-square is a special case of ¢-product, ¢(V? W?),
defined for a pair of 2-cohomology classes V%, W? such that V>~ W? =0, in which
G(W?) = p(W?* W?*). The ¢-product is defined in terms of the V-*-product newly
defined and of the “#product, and it has a topological invariant meaning. The
relation between the ¢-product and the functional cup product (Steenrod [2])
is given.

The author should like to express his hearty thanks to Professors A. Komatu,
R. Shizuma, M. Kuranishi and Mr. H. Uehara for their kind encouragements
and valuable criticisms during preperation of the present paper.

Added after the submission: I was just informed, through a correspondence
with Professor N. E. Steenrod, of the thesis of Doctor José Adem,” in which he
solved the #z-dimensional case (#22) of the classification problem and obtained
several results which may be even more important. According to a copy of the
announcement of Dr. Adem’s results, which Prof. Steenrod was kind enough to
send me, the method employed there is far more fruitful than the older one used
in the present paper. Dr. Adem’s method relies upon the use of the Steenrod’s
conceptual definition of the squaring operations introduced recently in the Annals
of Mathematics, which appeared after the preparation of the present paper.

ParT I. PrODUCTS

Preliminary. Denote by K a finite simplicial complex, by Z the group of
integers and by Z, the group of integers reduced mod 2. Elements of the p-
dimensional cochain group L?(K, Z) of K with integer coefficients and those of
the p-dimensional cochain group I?(K, Z.) of K with coefficients in Z; are called
for simplicity p-integer cochains and p-cochains mod 2 respectively. Similarly
we say p-integer cocycles and p-cocycles mod 2. There is a natural reduction
7 IP(K, Z) > IP(K, Z:) and we have 70 = dr for the coboundary operator d.
Since this reduction is ento, on calculation reduced mod 2 we often do not

® This problem was proposed by Steenrod (see the last section in [1]).
*) Added in proof: His note “The Iteration of the Steenrod Squares in Algebraic Topology”
appeared in Proc. Nat. Acad. Sci. vol. 38 (1952), 720-726.
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distinguish a cochain mod 2 from one of its representative cochain with integer
coefficients and we shall exclusively use ordinary cochains even if we call them
cochains mod 2 or cocycles mod 2.

If @ is a p-cocycle, with coefficients in Z or Z:, then {a} denotes its co-
homology class. avb means that ¢ — b is a coboundary.

An order in K is a partial order of vertices such that the vertices of any
simplex are linearly ordered. A fixed order a in K will be assumed until further
notice. The array (Ao4:- - - Ap) of vertices A; of a p-simplex ¢ ordered as in
a will denote the oriented simplex ¢ and will be written simply (01: .- p)
without ambiguity.

In various products of integer cochains, the pairing of the coefficients is
defined as the product (reduced mod 2 if necessary) of integers.

§1. V-tproduct.

We have the following formula, due to H. Cartan [3], relating to the cup
product and the squaring operations:
(1.1) Sapla”b%) N 2(Shia”) T (S,6°) mod 2,

t+2=p
for two cocycles mod 2, @ and &°, (superscripts denote the dimension). Let
us consider this formula in a simplical ccmplex K with ordered vertices, especial-
ly in case p=7+s—2. We intend to find explicitly a cochain mod 2 whose
coboundary will give the difference of the left and the right-hand sides of (1.1).
For this purpose, define the (7 + s+ 1)-cochain mod 2, &'V='6°, for two cocycles
mod 2, @ and &, by setting
N\
a1, ..., r+s+1)=2al0,1, ..., r—d,...,7+1)"

itodd>0

/\
(1.2) al0,1, ..., 2blr,r+1, ..., 7+ ..., 7+s+1)°

«jieven>(
blr+1,...,7r+s+1) mod 2,

€ /N 9

where the symbol means the deletion of the marked vertex. Then the

following coboundary formula holds for r+s<5:

( Ma’™V°) =8, ., a7 b) +(S,_a’) T (S, b°)
1.3) @ (S b+ (Syd) "B mod 2.

Indeed this is verified by a direct computation. In the below (1.3) will be used
only for the case when both » and s are not greater than 2.

§2. ¢-product and ¢-square.
We shall restrict ourselves to the case » =s =2. Let @ and & be 2-dimension-
al integer cocycles. Then we have by (1.2)
aVb(012345) = a1 023)a(012)56(235)(345) mod 2,
and by (1.3)
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3(a¥=b) = (a™b) “*(a™b) + (a'a) ~ (b™b)

(2.1) +(@~a)"b+a>~(b7b) mod 2.

If @~ b0 (not mod 2) and @b = du for a 3-integer cochain %, we have
(2.2) 0(pu) = (@~'b) "(a™~'b) mod 2,
where p; denotes the generalized Pontrjagin square:

mu=u u+u"0u.

Recalling that (@~ a)“b=a"(a~b), a~(b~b) =(a~b) b and a a0 (see
Theorem 12.6 in Steenrod [1]), we can define a 5-cocycle mod 2, ¢(a, b; u),
by setting

(2.38) dla, b; w)=a""b+a~ (b b)+pu+au+ub mod 2,

where @ is a 2-integer cochain such that é@=a"a. ¢(a, b; ) depends on the
choice of @, but its cohomology class {¢(a, b; )} is independent of the choice
of @ because of b~b 0.

We shall enumerate some properties of ¢(a, b; u).

(2.4) a, b; u+id)—¢la, b; u)nSph+(a+b6)~k mod 2,
for a 3-integer cocycle A.

oa, b+c; u+v)—¢la, b; u)—¢la, c; v)

(2.5) e~ e) v Tbtue mod 2,

for a, b, ¢, # and v such that @ “b0, @ “¢c0, du=a"b and dv=a""c (not
mod 2).

dla+b,c; utov)—¢la, c; u)—¢b, c; v)

!
(2.5) @~ B)ct+a~v+b"u mod 2,

for @, b, ¢, # and v such that a~“¢c0, b ¢c0, du=a~c and dv=56"¢c (not
mod 2).

(2.6) ¢la, b+de; u+ae)ngla b; u) mod 2, and
(2.6) dla+de, b; ute bywngla, d; u) mod 2,
for a l-integer cochain e.

2.7 ola, 6e; a~e) 0 mod 2, and
@.7y o(de, b; b)) N0 mod 2,

for a l-integer cochain e.
(2.8) dla, b; )b, a; u-t+ab) mod 2.

Let ¢ be a 2-integer cocycle such that ¢ ¢ 0 (not mod 2) aund ¢ ¢ =du
for a Z-integer cochain. We can define a 5-cocycle mod 2, ¢{c; ), by setting
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(2.9) ole; u)=cV-e+8(c™e) +pu mod 2,

where € is a 2-integer cochain such that 6¢=c"%c. ¢(c; #) is independent of
the choice of ¢.
We shall enumerate some properties of ¢(c; ).

(2.10) ¢le; u+2)—¢lc; u)wS,h mod 2.
for a 3-integer cocycle A.

(2.11) ¢le; wywole, ¢; u) mod 2.
(2.12) ¢(de; e de) 0 mod 2, and
(2.13) dle+de; ut+cet+e c+ede)glc; u) mod 2,

for a l-integer cochain e.
(2.14) If f: K'> K is an order-preserving simplicial map, then
*¢la, b5 u)=¢(f*a, f*b; f*u) and,
oles w)=¢(ffe; fFu),
where %(avza —a) is used as a.

It is conjectured that the following formula should hold
(2.15)  ¢la+b; u+v+w+a~)-¢(a; u)—¢B; v)—w w0  mod 2,

for a, b, u, v and w such that a~“a=06u, b~"b=6v and 2a b = dw.

Bafore we prove all these formulae (2.4)-(2.8) and (2.10)-(2.14), we
state the conclusions which are deducible from them. Consider the cohomology
class {¢(a, b; %)}, then (2.4) shows that {¢(a, b; u)}= H* (K, Z,) is determined
by @ and b up to the subgroup ¢.[H*(K, Z)], the image of a homomorphism
o.  HYK, Z)-» H(K, Z.), induced by

(2.16) dA) =21+ (a+b)>1,

for a 3-integer cocycle A. In the definition of s, the pairing of coefficients is
defined as the product, reduced mod 2, of integers. And (2.6), (2.6), (2.7),
(2.7)" show that the coset {¢(a, b; u)} mod ¢,LH*(K, Z)] depends only on the
cohomology classes {a} and {b}. We denote the coset by ¢({a}, {b}).

THeOREM 2.1. For {a), (b)Y H (K, Z) such that {a}~{b}=0= H (K, 2),
we can determine an element ¢({a), {b}) of the factor group H*(K, Z.) mod
oL H (K, Z)] and we have ¢({a}, {b}) = ¢({b}, {a}).

This operation is called ¢-product. The latter part of the theorem follows
from (2.8).
Similarly, from (2.10), (2.12) and (2.13), we obtain
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THEOREM 2.2. For {c}e H (K, Z) such that {c}{c} =0 H (K, Z), we can
determine an element ¢{c} of the factor group H K, Z,) mod S, H K, Z), and
we have {c} =¢{c}, {c}).

This operation is called ¢-square.

§3. Proofs of the formulae in §2.
We shall first describe auxiliary formulae. In the following a, b, ¢, d are
2-integer cocycles and %, v are 3-integer cochains

(3.1) pilm + 0) Py + pv + du 0 mod 2.
(3.2) (@) e (b™a) ¢ mod 2.
(3.3) (@) "c+a b c)+ b (ac) 0 mod 2.
(3.3) (@a~)"ava~(b " a) mod 2.
(3.3)" ¢ (c>e) 0 mod 2.

(3.4) (a~B)~(c~'d) = acdb+ cabd + (@~ ¢) ™ (b~d) + (a~%) ~(6™"d) mod 2,

where acdb denotes a 3-cochain mod 2 defined as acdb(012345) = a(023)c(012)-
d(235)b(345) mod 2.

o d(ate+a~ee) =aVde+ (a'a) (e e+ e T 1e)
(8.5) +pla~e)+aa"e+a e e mod 2,

for a l-integer cochain e, where a"~'e denotes a 4-cochain mod 2 defined as
aVe(01234) = a(023)at 012)e(23)e(34).
8eV-h+ e e~b) = eV b+ (e e+ e 20e) (D)

3.5y +p(e~b)+0e~e~b+ebb mod 2,

for a l-integer cochain e, where e“—'b denotes a 4-cochain mod 2 defined as
eV-'5(01234) = e(01)e(12)5(124)b(234).
(3.5)" d(eV-1de) = deV-tde + (e “e+ e Tide) T (de Trde) + pi(e ~de) mod 2,

for a 1-integer cochain e.
We shall prove (3.3). This follows from

(2.3)° dabe) = (a~b) “c+a~ b7 c)+b"(a>c) mod 2,

where abc is a 4-cochain mod 2 defined as abc(01234) = a(024)5(012)c(234) mod 2.
Now we begin to prove the formulae in §2. Among them (2.8) will be
proved later (in §4).

(2.4) and (2.10) immediately follow from (3.1).
(2.5) and (2.5) follow from a direct computation by means of (3. 4).
(2.6) and (2.6)" follow from (2.5) and (2.3)".
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(2.7) and (2.7) follow from (3.5) and (3.5)",

(2.11) follows from (3.3)".

(2.12) follows from (2.11) and (2.7)" or directly from (3.5)".
(2.13) follows from (2.11), (2.6), (2.6), (2.7) and (2.7)".
(2.14) is easily seen from the definition of ¢.

§4. Change of order in K, simplicial map, and proof of (2.8).

In this section we shall prove that the ¢-product is independent of the choice
of an order in X, This is done in a similar way as in the proof of the inde-
pendence of the squaring operation (cf. Section & in Steenrod [1]).

Let L=Kx1 be the product complex of K and the unit interval [0, 1]. We
shall subdivide L simplicially as follows. Let (A4,) and (A1) be two disjoint sets
of vertices of K x0 and of K x1 each in a 1 —1 correspondence with the vertices
(A) of K. Let folA) = Ao f1lA) = A1 be the correspondences. The union of
(Ap) and (A,) form the set of vertices of L. Let « be an order in K. A set
of vertices AS ... A% A¥' ... A? are those of a p-simplex in L if, in the order
a, A°<A'<, .. <A < AP < ... <A? and these are the vertices of a p- or
(p—1)-simplex of K. The maps fs, /1 define simplicial maps of K into L. The
map g: L- K, defined by g(As) = g(A;) = A for each A4, is a simplicial map and

(4.1) gfo=gf1 =the identity map of K.

If u is a p-cochain of L (P>0), define a (p — 1)-cochain Du of K by
p-1 .

(4.2) Du(A’ ... A" = 3 -Dku(AS ... AF AL L. AT,

Then we have

(4.3) 8Du =fu—fou— Dou, for a p-cochain u of L (P>0),

(4.4) 0=fFu—sfdu— Dou, for a O-cochain # of L,

(4.5) Dg™=0,

where 71, /& and g* are the cochain maps induced by fi, fo and g respectively.
(For the proof, see Section 7 in Steenrod [1].)

Let ay, ay be two orders in K. The orders ao, a; define two cup-i-products
~E 4 and two ¢-products ¢o, ¢1 in K. An order (ao, a;) is defined in L as
follows. Order (A,) as their correspondents (A) are ordered by ao, order (A,)
as their correspondents (A) are ordered by ai, and agree that, on any simplex
of L, a vertex of (A4,) precedes one of (A;). Then (&, a1) defines products
“iand ¢ in L. Since fol f1) preserves aola), it follows from (2.14) that /¢ (/1)
maps ¢ into (MY and ¢ into dol¢1) respectively.

Corresponding to the orders ay, a; define a 4-cochain mod 2 of K by

(4.6) a*b = Dy(gFa, g7b; v) mod 2,
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for 2-integer cocycles @, b of K such that a0 and for a 3-integer cochain
v of L such that év=g"a"g"d. Then from (4.3), (4.1), (2.14) we have

(4.7) 0(a) = ¢i(a, b5 i) —ola, b; fiv) mod 2.
This proves

THEOREM 4.1. The J-product and the ¢-square are independent of the order
used to define them.

THEOREM 4.2. If f: K'- K is simplicial, then y-operation commutes with 1.

Since, for any order « in K, there exists an order in K’ such that f is
order-preserving, Theorem 4.2 follows from (2.14) and Theorem 4.1.

We shall prove here (2.8). .Take the order a; as the inversion of a, in
(4.6). Then thereby we have

g*a~ g% h(43210) = b(012)a(234),
" (03210) = a(023)6(012),
"o (01321) = —a(013)h(123),
(4.8) " (01232) =0,
" (01233) =0,
" (01234) = a(012)b(234) etc.

Choose v such as

v(0321) = — #(0123) + a(013)5(123),
v(O?T(_)) = 0,
(4.9) v(0132) = — #(0123),
v(0123) = %(0123),
v(0122) =0, »(0121) =0,
v(0123) = #(0123) etc.,

where #(7) denotes A A!) and du=a"’b, then we have dv=g%a>g*p, fiv
~u+a"b and ffv=u. It follows from (4.7) that

(4.10) dia, by u+a>*'b) - pola. b, u) =3(a’b) mod 2.

Since it is easy to see that ¢i(a, b; u+a ""b)¢u(b, @; u+a b)) mod 2, we
obtain (2.8).

§5. ¢-product in space and topological invariance of ¢-product.

Let X be a topological space. Let H?(X, G) denote the Cech cohomology
group of X with coefficients in G. An element {&}& H?(X, G) is represented by
te HP(K, G), where K is the nerve of some finite covering of X by closed sets.
If #€H?(K', G) for a second covering complex K', and {&}={#}, then there
exists a common refinement of the two coverings with nerve K" such that
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.1 gie=g""% in HYK", G)

where g:K"—- K and g': K" -~ K' are simplicial projections determined by in-
clusion relations among the closed sets of the various coverings. From (5.1)
and Theorem 4.2 it follows that {¢(£, 1)} ={¢(&, #')} for &, yEH (K, Z) and
¢, o€ H*(K', Z) such that £ =0, &9 =0, {&} ={&}, {s} ={y'}. Therefore

(5.2) ¢({e}, {n)) ={¢(¢, PteHNX, Z)) mod o [H X, 2)]

defines ¢-product for {£} and {y}€ H*(X, Z) such that {&}“{y} =0 H{(X, Z).
If f: X'> X is continuous, then f induces a homomorphism

(5.3) [ H(X, G)-~H(X, G).

It is determined as follows. Let é¢€ H?(K, G), represent {£}& H?(X, G), where
K is the nerve of the covering [U]. Then [ '(U)] is a covering of X' with
nerve K'. Let fx: K'- K be the simplicial map which attaches the vertex f~(U)
of K' to the vertex U of K. Then (5.3) is obtained by

(5.4) ey = {128y,
By (5.4), (5.2) and Theorem 4.2
(5.5) =9t

Suppose now that X is the space of.a complex K. Then K is the nerve of
the covering of X by the closed stars of the vertices of K in the first barycentric
subdivision K’ of K. If ¢€ H?(K, G), then ¢¢ ={¢)e H?(X, G) is known to be
an isomorphism ¢: H?(K, G)=H?(X, G).

Since ¢¢(%, 7) ={¢(5, 9)} = ¢({&}, {n}) — ¢ (@&, @n), it follows that ¢¢ = ¢¢.
Therefore the operation ¢ as defined in a complex has a topological invariant
meaning.

§6. Relation between the ¢-product and the functional cup product.

Let k; K'- K be an order-preserving simplicial map of a complex K’ into
another complex K. Let £* be the cochain map induced by k.. Then we have
from (2.14)

(6.1) E'¢la, b; u) =¢(k'a, E'b; K'u).

If k*a0 in K', then the right hand side vanishes in the sense of mod o [ H*(K’,
Z)]. But here we shall compute it mod £*¢.[H*(K, Z)], then we have by (6.1)
(6.2) E'¢(a, b, u) =k a2k + @ (K" k"D) + pku+ B*a~ K 'u+ E*u~ kD .
Since, from (3.5), we have

EiaV- kb + B*a@ (B*0 'k b) wpi(e T kD)
(6.3) +Ea>~ (e~ kD) + (e kD) VR mod 2,
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where de =k*a, (6.2) and (6.3) give

E¢la, b; w)op(B'u—e kb)) + kFa~ (EF'u—e~k*D)

(6.4) (K u—e~ kD) VKD mod 2.
This implies
(6.5) E*¢(a, b; u)S,(a~*b) + (a~*b) ~k'D mod 2.

where a b = k*u — e “£*b is the functional cup product of @ and & (see Steenrod
[27). The both sides of (6.5) have an invariant meaning and they are de-
termined mcd the same group &0, [H*(K, Z)]. Change of order in K or in K’
does not effect (6.5) in this sense. Therefore, for any simplicial map &, we have

THEOREM 6.1. If k:K'> K is a simplicial map such that k*{a} =0 in K',
then we have

K¢({a), (b)) = Sq,({a) “Mb)) + Ua) “Hb}) “kb} mod k'alH'(K, 2)],
where {a}, {bYEH K, Z) and {a}>~{b} =0 H' (K, Z).
THEOREM 6.2, If E*{c} =0, {c}~{c} =0 H K, Z), then we have
E*p{ct = S;,({c} ™ec})) mod E*SeH K, Z).

Remark. These theorems hold for spaces.

ParT II. ExXxTENsION AND HoMoTOPY CLASSIFICATION PROBLEMS

§ 7. Pairing of coefficients and the f{-square.

In this section. an algebraic preparation is described, which will be made
use of in the next section.

Let G be an arbitrary abelian group, and let H be an abelian group, each
element of which has order p (p: prime number).

Lemma 7.1 If S: G- H is a homomorphism, then there exists a symmetric
homomorphisin ¢ of the p-fold tensor product GX .. .% G of G into H such that
Pla® ... & a)=Sla). (Theadjective " symmetric” means that ¢(ai,® . . . 8 ai,)
=¢(a1RasX ... Rap) if (41 ... 4 is a permutation of (1...p).)

Proof. H is considered as a module over the prime field of characteristic
b, therefore H has a base and H is a weak direct sum >.H, of cyclic groups
w

H, of order p. Let S.(«) be the x#-th component of S(a) and set
(7.1) clar® ... ‘83&;‘:) =Sulay)Silaz) - - - Sulap),

Where “+” dznotes the multiplication -in H, as the field of p elements. Then ¢,
is a symmetric homomorphism of G& ... & G into H and

4 This lemma is suggested during discussion with professors Y, Matsushima, M. Kuranishi
and Mr. N, Ito.



HOMOTOPY CLASSIFICATION OF MAPPINGS 137

(7.2) o (a®...Ra)=[S.a) =S.(a) mod p.
Define
(7.3) Clar® ... Rap) =2¢.(a1® ... Qap),

"

then we have the required homomorphism.
By a pairing of G with itself to H, we mean a distributive multiplication
which gives an element a° 3 of H for two elements a, 3 of G.

&
0?2

COROLLARY TO LEMMA 7.1°  Suppose p =2, then any homomorphism S:G
- H is extensible to a commutative pairing of G with itself to H.

Let K be a finite simplicial complex, and let G be an abelian group, and
let G’ be an abelian group each element of which has order 2.

LEMMA 7.2 The i-square Syi: H' K, G- H” (K, G') is independent of the
choice of a commutative pairing of the coefficient group G with itself to G' so
far as aca =Sla’ jor a given homomorphism S:G—-G'.

Proof. Let ¢" =il (ai€G, o an n-simplex of K) be a cocycle. The
coefficients a; of ¢” generate a subgroup B of G. B is a finitely generatsed
abelian group and, therefore, has a minimal system {3,} of generators 8,. Then
¢" is written by F. to be ¢” =2)3.°cl;, where ¢ is a cocycle mod m, (m, >0
is the order of 3.). [f either m. or m., is odd, then 3,°3,=0. Then S,c¢”
= (203,60 TH208.67) = 208308, + D Buo 3. )eh Tieh + ¢ iel), where ¢ e

“ u=yv
+ ¢} i} «~0 mod 2 since both m. and m, are even. Thus we have
(7.4-) S(],C"‘/’ZS(Bu)'Sq.;CZ.
This proves the lemma.

§8. The third obstruction.

For the application of the results in Part I to the problems of extension and
homotopy classificarion, we shall exclusively deal with mappings of a simplicial
complex A into a 2-sphere S in the sequal. However, we shall here prove a
theorem concerning the extension cocycles of mappings in a generalized case
which shows the behavior of the third obstructions. The result was already
announced in a previous note [20].

Let A denote a finite simplicial complex, K™ its r-skeleton. Let Y be an
(2 —1)-connected® topological space (besides the (# — 1)-connectedness we as-
sume no restriction to the homotopy groups of Y). If f, g are normal” maps

2" This was stated firstly by Postnikov [11].
6 A space Y is called (n—1)-connected if it is arcwise connected and its #th homotopy
group =(Y) vanishes for i=1, 2,...,n—1.

“ A map f of a complex K into an (n—1;-connected space Y is called normal when f(K"~!)
is a point of Y.
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of K"** into Y which coincide on X", then the (» + 3)-extension cocycles C***( f),
C""%(g) with coefficients in mn+2(Y) are related as follows.

THEOREM 8.1. C"**(f) —C"*(g)S,,.d"™" in case n>2,
Cf)—=CH@ S d*+ > d in case n=2,

where d"*'=d""(f, g) is the separation cocycle of f and g and ¢ =c(f)
= c*(g) is the characteristic cocycle with coefficients in n(Y). Let 7y mnii(Y)
> o[mnea(Y)I® be the homomorphism induced by the superposition of the elements
of mn+1(Y) by an essential element 7 of mno(S™™). The pairing of coefficients
in S, d""" is an extension of . (see Corollary to Lemma 7.1), while the coef-
ficients in the term c¢*~d® are paired by the Whitehead product.

CorOLLARY TO THEOREM 8.1.- Suppose that the space Y is an n-sphese S”.
then in the same nolations as in the theorem,

C*""(f) = C""*(g) S, d"™" for n=2.

Proof of Corollary. The Whitehead product af of a € m:(S*) and BE my(S°)
vanishes and also the term ¢*~d®. (cf. (3.72) in G. W. Whitehead [12]).

Proof of Theorem 8.1. Denote K{*** the cell complex, the image of a cel-
lular map k:K”""*— K{'** such that % is homeomorphic on an open simplex of
dimension 7 for = n while 2(K™™!) = p is a point. Since the map f: K""*->Y
is normal, i.e. /(K" ') = a fixed point in Y, there exists a map ¢: K/ > Y
such that the composition

(8.2) Qoh = f.

The coefficients d™'(a7**) of d"*'(f, g) generate a subgroup B of mn+1(Y). Since
B is finitely generated, B has a minimal system {8,} of generators B, with order
m,=0. Then d""(f, g) =) B.*d]*" where d'" is an integer cochain such that
0<d!™ (") <m, (if m,>0) and 6d*' =0 mod m,. Let BI**=SI'"""el** be
a cell complex composed of an (n+ 1)-sphere Si*' and an (n+2)-cell e;** at-

tached to Si'*' by a map of oe]*® into S;** with degree m,. Let B*"*=2>)B}"
W
be a collection of Bj*? such that NB}**= p is a point of B*** and B;'* . BJ"*
w

=p. Let R"™*=K"**+ B"*"* where K" is attached to B*'® by the identifi-
cation of the point py to #. The map ¢ is naturally extended to a map ¢: R""*
- Y.

Define now a map k: K" R"*? as follows. Set k=% on K”. Order line-
arly the vertices of K. In each {n+1)-simplex o*™ (4) ... An+1), we take an
n-sphere S’ where the south pole is the first vertex Ao, SI* — Ay C the inner of
o', SI' bounds an (7 +1)-cell &f*!. Define k: ol - (al™) +%S‘f“ such that

8) »G denotes the subgroup generated by elemenis with order 2 of an abelian group G.
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S’ = po and k(o?™ — ') = R(sI"*") — Py is homeomorphic and k(e! +1)C}_.S" !

has degree — 4" (s7") on St for each #. Thus we have d""'(h, k) = Ezu d!
{41 a generator of =y (Bj*?) and

(8.3) dn+1(]r’ g) - 26u°d&1‘+1 =d"+l(¢°h7 SDOk) —— k:!r'zﬁu.s;-lfl’

where S)'*' denotes the generating (#+ 1)-cocycle mod m, of Bi*’. Form
(8.3) and (8.2), it follows that

(8.4) d" N (gok, g) =

This means that ¢ok and g are homotopic on X" rel. K”. Since d""(h, k)
is the image of the cocycle >} —¢,*Sit! in B"*® by k%, we can extend % to a
map k: K™% R"? such that if p: R"**-> K{*** be the projection, then

(8.5) pok~h

on K"®, Then (8.4) shows that C""*(g) «~»C"**(¢ok) (cf. Eilenberg [151), to-
gether with (8.2) we have

(8.6) C"3(f) = C" (g C""(goh) —~ C""¢ok).

We shall compute the latter. Let KJ**? = K"~ 3 e, B*"2 = B*"2 >~ > el
and let R"*= K"+ B"*® in case n>2, R°=(K;+B") ™~ S—‘e, . in case n=2,
such that each cell ¢™® is attached to Ky'*? by a map of 2¢/'** into Ki'*? repre-
senting each generator of mn+2(K7?), each cell ei*® is attached to B*"* by a
map of dei*® into Si'*' (m,: even) representing a generator of mn+2(Bi+?) and
each cell &}, is attached to K; + B° by a map of de},, into S/ VS, representing
the Whitehead product of a generator of m:(S;) and that of ms(S:), where S}
= h(d}) for each 2-simplex 4; of K. Then ma+2(R™"*) vanishes (cf. Blakers and
Massay [14]1) and the maps &, k: K"*?->R""* are extended to maps of K™
into R***, where (K™ *)C K3,

Denote by &1, 7+(Bu), ajB. the elements of m,+2(Y) represented by the maps
(el ), ¢(0ef™), ¢(2e},,.) respectively. Then

(8.7) C™¥¢oh) =h*C" (@), C" ™ ¢ok)=k"C""*¢) and

(8.8) C™UP) =208+ 2 nulBu) el + 2 aiBuee, s

my, D even

where the last term is added only in case of #=2., From the way of con-
struction of , we have k¥¢}"* =0, h*e},, =0. From (8.5) we have k*e/** = h¥el ™"
Thus we obtain, by (7.4), (8.3)

(8.9) C™¥@oh)~C"¥gok) = —E*( D) nlBu)el ™+ D aifucel, )

iy §even

- k*E ﬂ*(ﬁu)sqn—xs::H - k*E leruS; usf
B S (RS = (D askS)) T 2IBuS
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qu)z—zd"+l(f’ g) + cz(f) vds(f} g)-

Here we used the fact that S;,_S;"'vel™ mod 2 in B*™® (m,: even). (8.6)
and (8.9) prove the theorem.

§9. Extension theorem.

Let K be finite simplicial complex, / a map of K’ into the 2-sphere S°
which is extensible to a map 7 of K* into S>. Then from Corollary to Theo-
rem 8.1, we conclude that the third obstruction {C°(f)} is determined inde-
pendently of the choice of an extension f:K'-S® of a given map f: K*- S’
up to the subgroup S, H’(K, =(S°)) of H’(K, =/S%)). An algebraic determi-

nation of the residue class ‘C*( )} mod S, H*(K, 73(S?)) is furnished by

THEOREM 9.1. If @ map /: K* - S® is extensible to a map f of K*, i.e., dc’(f)
=0 and ()7 E(f) A0 in K, where ¢\ f) = f*S* is the characteristic cocycle,
then the residue class reprscrted by the third obstruction

{CH)} mod S HK, m(SH) =¢{c*(f)},

where 73(S%) and =3(S?) are regarded as the group of integers, and =(S?) is re-
garded as the group of integers reduced mod 2 (see §2).

Proof. Let P°=5*"¢" be a cell complex constructed from a 2-sphere S°
and a 5-cell ¢* attached to S° by an essential map of 9¢° into S®. Let M°=S8*~¢°
be a cell complex constructed from a 3-sphere S° and a 3-cell ° attached to S°
by an essential map of 9¢° into S® (see Steenrod [1], Section 20). Let « : (M?,
S%) - (P’, S°) be a celiular map such that » is homeomorphic on the open cell
¢° and is of Hopf invariant 1 on S°. Then the functional cup product {S®} ~*{S*}
={S®} (see Steenrod [2]) and S,;{S?} ={€°} mod 2. By making use of theorem
6.2 and its remark, we have

£*Q(S) = 5,,(S%) = {2°} = £*{e"} mod 2.
Since «*: H*(P°) > H*(M®) is isomorphic, we obtain
(9.1 ¢{S* ={e’} med 2 in P
The given map f:K*'->S’ is extensible to a map f: K°— P and
(9.2) (CN=7Het =98} = (/NS =¢{c*(f)} mod
S, HY (K, =3(S%).
This prove the theorem.

§10. Classification theorem.

Tieorem 10. 1. Let f, g b2 two normal map of a 4-dimensional finite sim-
plicial complex K into the 2-sphere S* which coincide on the 3-skeleton K°. Then
S~g if and only if there exists a l-cocycle i with coefficients in =AS*1 such
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that
(10.1) 28210 in K,
Jfor the characteristic cocycle ¢ =f*:+S* = g*¢+S%, (in (10.1) the pairing of coef-

ficients is defined as tr¢=7n for a generator ¢ of m(S?) and a genmerator 7 of
7:(S*)) and

(10.2) {d'(f, @)} ={Se3} mod S, H(K, m(S")),

where d'(f, g) is the separation cocycle of f and g, vi is a 2-cochain with coef-
ficients in n3(S®) such that

(10.3) dvi=2c""1L

In defining S,vi = v~ v5, the coefficients are paired as v+q = ¢ for a generator &

Of m( SZ).

Let I'(K, 7(S?)) denote the subgroup, generated by classes {i'} of 1-co-
cycles 1' satisfying (10.1). of the 1-cohomology group H'(K, 7:(S%)) of K with
coefficients in 7(S*). Then setting

(10. 4 O:({2'}) ={Se,vi} mod S, H (K, m3(S%)),
we have a homomorphism
(10.5) Oc: (K, m:(S%)) > HYK, n:i(S*)) /S, H (K, m:(S%)).

The homomorphism & depends only on the cohomology class {c¢’} as it is easi-
ly seen from the definition (10.4).

THeOREM 10.2. Let K be a 4-dimensional finite simplicial complex. Con-
sider the homcotopy classes of those mapping of K into S* which are homotopic
to one another on K° All such homotopy classes are in a one to ome corre-
spondence with the cosets of the factor group

(10.6) HUK, 7:(S)/Sp,HY K, 7(S%)) / 0, LT K, m(S*)]

where W? =1{c*} is the characteristic class of these mappings.
Since Theorem 10.2 follows from Theorem 10.1, we shall prove the letter.

Proof. As it is well known, f and g are homotcpic to each other if and
only if d*(f, g1vO'(f, f), the latter being one of the homotopy obstruction co-
cycles. Which satisfies the following condition: There exists a map F of the
4-skeleton L' of the product complex L =X xI into S° such that F=f on (X
x0) Y (Kx1) and O'(f, f) = DC*F) for the extension cocycle C*(F) of F (for
the operator D, see (4.2)). Thus the problem is reduced to seek such maps
F and to compute C*(F) by making use of Theorem 9.1. We take a simplicial
subdivision of L such as described in §4. Let F:L'->S* be normal and have
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the above mentioned property: F=/ on (Kx0)~(Kx1), such a map is called
allowable. Then the characteristic cccycle ¢*(F) of F satisfies

(10.7) E(F) E(F) 0.

Henceforth we regard cochains with coefficients in 7(S?) or 7:(S*) integer co-
chains, cochains with coefficients in z(S?) as cochains mod 2. If we put
(10.8) (o) =c*(F)(exI) for each 1-simplex ¢ of K,

(where the symbol “’” denotes the subdivision) it follows that A' is an integer
1-cocycle of K and from (10.7) that

(10.9) EHTXHITES) N0, or 2685() Y0,

Conversely, for any such l-cocycle A' we can choose an allowable map F
which satisfies (10.7). For the sake of convenience, let us consider the case
with the following restriction to allowable maps F without losing the generality.
Denote ¢*(F) by w® ¢*(f) by ¢%, then we have

w(012) = ¢(012),
(10.10) w(012) = ¢(012) + A(01),
w(011) = 4(01), w(001) =0 etc.,

thereby we have
w ™~ w(01233) = ¢(012)+2(23)

" (01223) =0,
7 (01123) = 2(01)-c(012),
" (00123) =0 etc.,

(10.11)

or simply,

w w=(c"e)X0—-(cTA+217e)xI+ (¢ c)x 1.
For two allowable maps £, F':L'->S? such that ¢’(F) =c*(F') =w’. we have
C*(F) — C*(F') xS, d%(F, F'). In order to compute {C*(F)} mod S, L, Z)
= ¢{w?}), we choose a 2-integer cochain d; of K and a 3-integer cochain #’ of
L. such that

(10.12) ody=c>2+4"¢c,
and 0% =w " w, for example, set
7#(0123) = #(0123) = #(0123),
#(0123) = u(0123),
#(0123) = 2(0123) + 2(01)*¢c(123),
#(0123) = u(0123) + 2(01)+¢(123) + d,\(012),
#(0122) = dy(012),
#(0012) = %(0112) =0  etc.,

(10.13)
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where u is a 3-integer cochain of K such that du=c¢ ~"c. By means of (10.10),
{10.12) and (10.13), we obtain

{10.14) D¢(w; w) @45 dy) mod 2.
where @.(1; d.) is a 4-cocycle med 2 of K defined as follows.

(10.15) DA d) =V R4+ 2+ (A7) e M)
+ DA ) F 2T e e) + podn mod 2.

Here by =d, "~ dy+ dr'6ds is the Pontrjagin square. The residue class {@c(1;
)t mod S, HY K, Z) is determined independently of the choice of dy. The
expression (10.15) can be reduced to a simple form:

(10.16) 0%, dA)V‘Dod)\—}-Do(Cv‘X)V’Sq“’I))\ mod 2.

where vy =dy+ ¢ 7' is a 2-cocycle mod 2 such that 6v, =2¢ 2. From the ear-
lier part of the proof and (10.14) and (10.16). we obtain (10.2). This complete
the proof.
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