CLASSIFICATION OF MAPPINGS OF AN (n+2)-COMPLEX INTO AN (n-1)-CONNECTED SPACE WITH VANISHING (n+1)-ST HOMOTOPY GROUP

NOBUO SHIMADA and HIROSHI UEHARA

The present paper is concerned with the classification and corresponding extension theorem of mappings of the (n+2)-complex K^{n+2} (n>2) into the space Y whose homotopy groups $\pi_i(Y)$ vanish for i < n and i = n + 1, and the *n*-th homotopy group $\pi_n(Y)$ of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2]. He introduced the important concept of the \bigcup -products of cocycles, which enables us to define \mathscr{Y}_i -Square (refer to §1), a certain type of a combination of U-products. This square is a modification of the so-called Pontrjagin square (Pontrjagin [1], Whitehead [4], and Whitney [3]). It induces a homomorphism of $H^{n}(K, I_{m})$, the *n*-th cohomology group with integral coefficients reduced mod. m of a complex K, into $H^{2n-i}(K, I)$, the (2n-i)-th cohomology group with integral coefficients, when m is even and n-i is odd. Together with squaring products we have a homomorphism (refer to §5) of $H^n(K, \pi_n(Y))$ into $H^{n+3}(K, \pi_{n+2}(Y))$ in the case i = n - 3. As its application, Eilenberg-MacLane's cohomology class K^{n+h+1} of the semi-simplicial complex $K(\pi_n(Y), n)$ with coefficients in $\pi_{n+h}(Y)$ is determined in case where h = 2 and n > 2 (Eilenberg-MacLane [7]).

Another information from the homomorphism may contribute partially to the homotopy type problem of A_n^3 -complexes (J. H. C. Whitehead [5], Chang [12], Uehara [13]).

In §1 the above mentioned product will be defined. In §2 we shall sketch the computation of the homotopy groups of some elementary types of reduced A_n^3 -complexes. In §3 relations of products of cocycles in such complexes are discussed. The (n+3)-extension cocycle and the present classification of mappings will be embodied in §4, §5 respectively. The final section §6 will contain some applications to related subjects.

§1. \mathscr{V}_i -square

Let K be a finite simplicial complex or a cell complex. Let us consider the *n*-dimensional integral cochain group C^n of K and its subgroup $Z^n(m)$ of all cocycles *mod.* m for an even integer m. If $u^n \in Z^n(m)$, then $\delta u^n \equiv 0 \pmod{n}$.

Received September 17, 1951.

m) and $\theta_m^{n+1}u^n = \frac{1}{m}\delta u^n$ is an (n+1)-integeral cocycle.

If we define

$$\mathscr{Y}_{i}u^{n} = u^{n} \bigcup_{i} u^{n} + mu^{n} \bigcup_{i+1} \theta_{m}^{n+1}u^{n} + (-1)^{n} \frac{m^{2}}{2} \theta_{m}^{n+1}u^{n} \bigcup_{i+2} \theta_{m}^{n+1}u^{n} ,$$

for $u^n \in Z^n(m)$ $(m \ge 0$ is even), straightforward calculations, by means of the coboundary formula of Steenrod [2], give the following

LEMMA 1. If n-i is odd, then we have 1) $\mathscr{Y}_{i}u^{n}$ is a (2n-i)-dimensional integal cocycle, 2) $2\mathscr{Y}_{i}u^{n} \simeq 0$, 3) $\mathscr{Y}_{i}(ku^{n}) = k^{2}\mathscr{Y}_{i}u^{n}$, 4) $\mathscr{Y}_{i}(u^{n}+v^{n}) \simeq \mathscr{Y}_{i}u^{n} + \mathscr{Y}_{i}v^{n}$ for $u^{n}, v^{n} \in \mathbb{Z}^{n}(m)$, 5) $\mathscr{Y}_{i}(mx^{n}) \simeq 0$ for $x^{n} \in \mathbb{C}^{n}$, 6) $\mathscr{Y}_{i}(\delta x^{n-1}) \simeq 0$ for $x^{n-1} \in \mathbb{C}^{n-1}$.

Thus \mathscr{Y}_i induces a homomorphism such that:

$$\mathscr{Y}_i: H^n(K, I_m) \longrightarrow {}_2H^{2n-1}(K, I),$$

where $_{2}H = \{g; g \in H, 2g = 0\}$ for any abelian group *H*. We shall use this homomorphism in the following only when i = n - 3.

§2. Some types of elementary A_n^2 -complexes

We shall refer to the following types of polyhedra as elementary A_n^2 -complexes;

- i) $B^0 = S^n$, *n*-sphere,
- ii) $B^{1}(m) = S^{n} \bigcup e^{n+1}$, where an (n+1)-element e^{n+1} is attached to S^{n} by a map $f: \partial e^{n+1} \rightarrow S^{n}$ of degree m,
- iii) $B^{2}(0) = S^{n} \bigcup e^{n+2}$, where e^{n+2} is attached to S^{n} by an essential map $\eta : \partial e^{n+2} \rightarrow S^{n}$,
- iv) $B^2(2r) = B^2(0) \bigcup e^{n+1}$, when e^{n+1} is attached to S^n of $B^2(0)$ by a map $f: \partial e^{n+1} \rightarrow S^n$ of degree 2r.

Then we have

LEMMA 2.

- α) $\pi_{n+1}(B^2(0)) = 0$,
- β) $\pi_{n+1}(B^{1}(2r+1)) = 0;$

 $\pi_{n+1}(B^1(2r)) = (2)$, cyclic group of order 2, whose generator ζ is represented by an essential map of S^{n+1} onto $S^n \subset B^1(2r)$,

 $\boldsymbol{\gamma}) \ \pi_{n+1}(\boldsymbol{B}^2(2\boldsymbol{r})) = 0.$

LEMMA 3.

 α) $\pi_{n+2}(B^2(0)) = I$, free cyclic group, whose generator ω is represented by a

map of degree 2,

 $\beta) \ \pi_{n+2}(B^{1}(2r+1)) = 0;$

 $\pi_{n+2}(B^1(2r)) = (2) + (2)$, direct sum of two cyclic groups of order two, with generators ξ and $\overline{\zeta}$, where ξ is represented by a map covering e^{N+1} essentially and $\overline{\zeta}$ is represented by an essential map $\eta: S^{n+2} \to S^n \subset B^1(2r)$, γ) $\pi_{n+2}(B^2(2r)) = I + (2)$: direct sum of the free cyclic group with the gener-

ator ω and the cyclic group of order 2 with the generator ξ .

Proof of Lemmas.

Some of these statements are easily deducible from known results of Freudenthal, J. H. C. Whitehead [6], G. W. Whitehead [9], Pontrjagin [10]. Thus we shall sketch here the proof of Lemma 3.

3, α) Any map which is homotopic to a map of S^{n+2} into S^n of $B^2(0)$, is contractible in $B^2(0)$ to a point, so that there is no essential map of degree 0. Next we prove that there is no essential map f of odd degree k. If we denote f^* the inverse homomorphism between cohomology groups of the two spaces, we obtain $f^*(S^n \cup S^n) = f^*S^n \cup f^*S^n \approx 0$ in S^{n+2} , while in $B^2(0)$, $S^n \cup S^n = e^{n+2}$ (mod 2) and thereby $f^*(S^u \cup S^n) = f^*e^{n+2} = kS^{n+2}$ (mod 2). This is a contradiction.

Consider a map $\varphi: S^{n+2} \to B^2(0)$ such that $\varphi \mid V_{\geq 0}^{n+2}$ represents twice of a suitably chosen generator of the relative homotopy group $\pi_{n+2}(B^2(0), S^n)$ and extend $\varphi \mid V_{\geq 0}^{n+2}$ through the lower hemisphere $V_{\geq 0}^{n+2}$ by contracting in S^n the resultant inessential map of the equator S^{n+1} into S^n to an point. φ has degree 2 and represents ω .

3, β) Let g be a map of S^{n+2} into $B^1(2r)$ such that $g \mid V_{\geq 0}^{n+2}$ represents of a generator of $\pi_{n+2}(B^1(2r), S^n)$, and extend g through the lower hemisphere $V_{\equiv 0}^{n+2}$ by contracting the resulting inessential map of the equator S^{n+1} into S^n to a point in S^n . g represents ξ . $2\xi = 0$. ξ is essential, for the superposition hg of g by the map h of $B^1(2r)$ onto S^{n+1} , is essential, where h maps S^n into a point p of S^{n+1} and e^{n+1} topologically to $S^{n+1} - p$.

3, γ) $\bar{\zeta}$ in $\pi_{n+2}(B^1(2r))$ vanishes by imbedding $B^1(2r)$ in $B^2(2r)$.

We add here some remarks which will be needed later.

Let $R^{n+1} = \sum_{\mu} B^{i}_{\mu}(n_{\mu})$ be a cell complex consisting of a finite number of $B^{i}_{\mu}(n_{\mu})$ (even n_{μ}) with a single common point belonging to each $S^{n}_{\mu} \subset B^{i}_{\mu}(n_{\mu})$ and let $R^{n+2} = \sum_{\mu} B^{2}_{\mu}(n_{\mu})$ be a cell complex constructed similarly. Let $\alpha_{\mu} \alpha_{\nu}$ denote the Whitehead product of α_{μ} and α_{ν} , where α_{μ} is a generator of $\pi_{n}(S^{n}_{\mu})$, etc. Let $(\alpha_{\mu}\alpha_{\nu})$ denote the subgroup of $\pi_{2n-1}(S^{n}_{\mu} \vee S^{n}_{\nu})$ generated by $\alpha_{\mu}\alpha_{\nu}$.

Then we have

$$\begin{aligned} \pi_{n+1}(R^{n+1}) &= \sum_{\mu} \pi_{n+1}(B^{1}_{\mu}(n_{\mu})), \\ \pi_{n+2}(R^{n+2}) &= \sum_{\mu} \pi_{n+2}(B^{2}_{\mu}(n_{\mu})) \quad \text{for} \quad n > 3, \end{aligned}$$

and

$$\pi_{n+2}(R^{n+2}) = \sum_{\mu} \pi_{n+2}(B^2_{\mu}(n_{\mu})) + \sum_{\mu \prec \nu} (\alpha_{\mu}\alpha_{\nu}) \quad \text{for} \quad n=3 ,$$

by the recurrent usage of a result of G. W. Whitehead [8] or a slight generalization of lemma 5. 3. 2. of Blakers and Massay [11].

§3. Products in some types of elementary A_n^3 -complexes

In §2 we sketched elementary A_n^2 -complexes whose (n+1)-st homotopy groups vanish but whose *n*-th homotopy groups do not vanish. Among them $B^2(0)$ and $B^2(2r)$ have non-trivial (n+2)-nd homotopy groups. Here we construct from $B^2(0)$ and $B^2(2r)$. A_n^3 -complexes whose (n+2)-nd homotopy groups vanish.

Let $B^3(0, k) = B^2(0) \bigcup e^{n+3}$ and let $B^3(2r, k) = B^2(2r) \bigcup e_1^{n+3} \bigcup e_2^{n+3}$ where e^{n+3} and e_1^{n+3} are attached to $B^2(0)$ and to $B^2(2r)$ by maps of ∂e^{n+3} , ∂e_1^{n+3} representing $k\omega \in \pi_{n+2}(B^2(0))$, $\pi_{n+2}(B^2(2r))$ respectively and e_2^{n+3} is attached to $B^2(2r)$, by a map ∂e_2^{n+3} into $B^2(2r)$ representing $\xi \in \pi_{n+2}(B^2(2r))$.

THEOREM 1. In $B^{3}(0, k)$ we have

$$\alpha) \qquad \qquad S^{n} \bigcup_{n=3} S^{n} = k e^{n+3}, \ 2 k e^{n+3} \infty 0,$$

where S^n and e^{n+3} represent cocycles.

- In $B^{3}(2r, k)$, we have
- $\beta) \ \mathscr{Y}_{n-3}S^n = ke_1^{n+3}, \ 2ke_1^{n+3} > 0 \quad and$
- $\gamma) \ \theta_{2r}^{n+1}S^{n} \bigcup \theta_{2r}^{n+1}S^{n} = e_{2}^{n+3} \pmod{2},$

where S^n represents itself as cocycle mod 2r [see §1].

We denote $B^{3}(m, 1)$ simply by $B^{3}(m)$, $(m \ge 0$ is even).

Proof of Theorem 1. In $B^3(0, k)$, by orienting e^{n+3} suitably, we can define $S^n \bigcup_{n=2} S^n = (-1)^n e^{n+2}$. By Lemma 3, α) in §2, we have $\delta e^{n+2} = 2ke^{n+3}$. Since $\delta(S^n \bigcup_{n=2} S^n) = (-1)^n 2(S^n \bigcup_{n=3} S^n)$, we obtain α).

In $B^{3}(2r, k)$ S^{n} is a cocycle mod 2r. Let $\kappa : B^{3}(0, k) \to B^{3}(2r, k)$ be the injection mapping, and let κ^{*} be its inverse homomorphism of cochain groups. Then $\kappa^{*}\mathscr{Y}_{n-3}S^{n} = \mathscr{Y}_{n-3}\kappa^{*}S^{n} = \kappa^{*}S^{n} \bigcup_{\substack{n=3\\n=3}} \kappa^{*}S^{n} = ke^{n+3} = \kappa^{*}ke^{n+3}_{1}$ in $B^{3}(0, k)$. We obtain therefore, $\mathscr{Y}_{n-3}S^{n} = ke^{n+3}_{1} + le^{n+3}_{2}$, but $2\mathscr{Y}_{n-3}S^{n} \simeq 0$. It follows that l = 0 and β) is proved.

For the part of γ), set $M^{n+3} = S^{n+1} \bigcup e^{n+3}$, where e^{n+3} is attached to S^{n+1} by an essential map $f: \partial e^{n+3} \to S^{n+1}$. And let $\kappa: B^3(2r, k) \to M^{n+3}$ be such a map that κ maps $B^3(0, k)$ into a point p of S^{n+1} and maps e_2^{n+3} onto e^{n+3} , e^{n+1} onto $S^{n+1} - p$ topologically. Then, in M^{n+3} , $S^{n+1} \bigcup S^{n+1} = e^{n+3}$. It follows that

$$e_2^{n+3} = \kappa^* e^{n+3} = \kappa^* (S^{n+1} \bigcup_{n=1}^{n-1} S^{n+1}) = \kappa^* S^{n+1} \bigcup_{n=1}^{n-1} \kappa^* S^{n+1} = e^{n+1} \bigcup_{n=1}^{n-1} (mod \ 2). \quad \text{q.e.d.}$$

46

§4. The (n+3)-extension cocycle

Let K be a finite complex, the r-skelton of which is denoted by K^r. Let Y be an arcwise connected topological space such that $\pi_i(Y) = 0$ for each i < n and for i = n + 1, and $\pi_n(Y)$ has a finite number of generators α_{μ} ($\mu = 1, 2, ..., l$).

Let $n_{\mu} \ge 0$ be the order of α_{μ} . Define following reduced complexes:

$$\begin{split} R^{n} &= \sum_{\mu} B^{0}_{\mu}(n_{\mu}) = \sum_{\mu} S^{n}_{\mu} ,\\ R^{n+2} &= \sum_{n_{\mu} \in even} B^{2}_{\mu}(n_{\mu}) + \sum_{n_{\mu} : odd} B^{1}_{\mu}(n_{\mu}) ,\\ R^{n+3} &= \sum_{n_{\mu} : even} B^{3}_{\mu}(n_{\mu}) + \sum_{n_{\mu} : odd} B^{1}_{\nu}(n_{\mu}) \quad \text{for} \quad n \ge 3 , \end{split}$$

and

$$R^{n+3} = \sum_{n_{\mu}: even} B^{3}_{\mu}(n_{\mu}) + \sum_{n_{\mu}: odd} B^{1}_{\mu}(n_{\mu}) + \sum_{\mu < \nu} e^{6}_{\mu,\nu} \quad \text{for} \quad n = 3.$$

where $e_{\mu,\nu}^{5} = S_{\mu}^{3} \times S_{\nu}^{3} - S_{\mu}^{3} \vee S_{\nu}^{3}$ and $B^{i}(n_{\mu})$'s and $e_{\mu,\nu}^{6}$'s in each reduced complex have only one point p in common. Then we can consider that $R^{n} \subset R^{n+2} \subset R^{n+3}$. (cf. §2).

Let us define a map $\varphi: \mathbb{R}^n \to Y$ such that $\varphi: S_{\mu}^n \to Y$ represents $\alpha_{\mu} \in \pi_n(Y)$. Then it is easily seen that φ is extended to a map $\varphi: \mathbb{R}^{n+2} \to Y$. For a given normal map $f: \mathbb{K}^n \to Y$, there exists a map $h: \mathbb{K}^n \to \mathbb{R}^n$ such that $h: \mathbb{K}^{n-1} \to p$ and f is homotopic to φh . Thus it may be supposed that f and φh define the same map on \mathbb{K}^n . If f is extensible to \mathbb{K}^{n+1} , then f is also extensible to \mathbb{K}^{n+2} from $\pi_{n+1}(Y) = 0$. Then the secondary obstruction $c^{n+3}(f)$ is defined. Correspondingly, h can be extended to a map $h: \mathbb{K}^{n+2} \to \mathbb{R}^{n+2}$ such that φh and f are homotopic on \mathbb{K}^{n+2} relative to \mathbb{K}^n , Notice that h, moreover, can be extended to a map of \mathbb{K}^{n+3} into \mathbb{R}^{n+3} . It follows that $c^{n+3}(f) \simeq c^{n+3}(\varphi h) = h^*c^{n+3}(\varphi)$. If $\omega(\alpha_{\mu})$ is such an element of $\pi_{n+2}(Y)$ as is represented by a map $\varphi \omega$, where ω is a map representing a generator of order 0 of $\pi_{n+2}(B_{\mu}^2(n_{\mu}))$ (n_{μ} even) (see § 2), and if $\xi(\alpha_{\mu})$ is such an element of $\pi_{n+2}(Y)$ as is represented by a map $\varphi \xi$, where ξ is a map representing a generator of order 2 of $\pi_{n+2}(B_{\mu}^2(n_{\mu}))$, then, we have by theorem 1 in § 3,

$$c^{n+3}(\varphi h) = h^* c^{n+3}(\varphi) = h^* \Big[\sum_{\substack{n\mu \ge 0, \text{ even}}} \omega(\alpha_{\mu}) e_{1,\mu}^{n+3} + \sum_{\substack{n\mu > 0, \text{ even}}} \xi(\alpha_{\mu}) e_{2,\mu}^{n+3} + (\sum_{\mu < \nu} \alpha_{\mu} \alpha_{\nu} e_{\mu,\nu}^{\mathfrak{g}}) \Big] \\ = h^* \Big[\sum_{\substack{n\mu \ge 0, \text{ even}}} (\mathscr{G}_{n-3} S_{\mu}^n) \omega(\alpha_{\mu}) + \sum_{\substack{n\mu > 0, \text{ even}}} (S_{q_{\mu-1}} \theta_{n_{\mu}}^{n+1} S_{\mu}^n) \xi(\alpha_{\mu}) + (\sum_{\mu < \nu} (S_{\mu}^3 \bigcup S_{\nu}^3) \alpha_{\mu} \alpha_{\nu}) \Big],$$

where the last terms $\sum_{\mu < \nu} (S^3_{\mu} \bigcup S^3_{\nu}) \alpha_{\mu} \alpha_{\nu}$ are added only when n = 3.

If we put $c_{\mu}^{n} = h^{*}S_{\mu}^{n}$, then the first obstruction $c^{n}(f)$ of f is expressible in the following form: $c^{n}(f) = \sum_{\mu} \alpha_{\mu} \cdot c_{\mu}^{n}$.

Thus we obtain the following

THEOREM 2. Let K be a finite complex, and let K^r be its r-skeleton. Let Y be an (n-1)-connected topological space whose (n+1)-th homotopy group vanishes. Given a mapping $f: K^n \to Y$ such that f maps K^{n-1} into a point of Y.

If the first obstruction $c^{n}(f)$ is a cocycle, then f is extensible to a map $f: K^{n+2} \rightarrow Y$ and its (n+3)-extension cocycle $c^{n+3}(\bar{f})$ is determined from $c^{n}(f)$ in the following form: $(n \leq 3)$

$$c^{n+3}(\overline{f}) \simeq \sum_{\substack{n\mu \geq 0, \text{ even}}} (c^n_{\mu} \bigcup_{n=3} c^n_{\mu} + n_{\mu} c^n_{\mu} \bigcup_{n=2} \lambda^{n+1}_{\mu} + (-1)^n \frac{n^2_{\mu}}{2} \lambda^{n+1}_{\mu} \bigcup_{n=1} \lambda^{n+1}_{\mu}) \omega(\alpha_{\mu})$$

+
$$\sum_{\substack{n>0, \text{ even}}} (\lambda^{n+1}_{\mu} \bigcup_{n=1} \lambda^{n+1}_{\mu}) \xi(\alpha_{\mu}) + \sum_{\mu < \nu} (c^3_{\mu} \bigcup c^3_{\nu}) \alpha_{\mu} \alpha_{\nu},$$

where the last terms is added only when n = 3, and $c^n(f) = \sum_{\mu} \alpha_{\mu} c^n_{\mu}$, $\lambda^{n+1}_{\mu} = \theta^{n+1}_{n_{\mu}} \cdot c^n_{\mu}$ = $\frac{1}{n_{\mu}} \delta c^n_{\mu}$ $(n_{\mu} > 0)$, and $\lambda^{n+1}_{\mu} = 0$ $(n_{\mu} = 0)$.

§5. Classification

We shall apply Theorem 2 in §4 to the present classification problem in a usual way. Let Y be a space as was referred to above. It is our aim to classify all the classes of mappings of an (n+2)-dimensional complex K into the space Y. If we denote by $\mathscr{P}_{n-3}c^n(f)$ the first terms in the expression of $c^{n+3}(\bar{f})$ (n>3) in Theorem 2 and if we denote the second terms by $S_{q_{n-1}}\theta^{n+1}c^n(f)$, then we have

$$c^{n+3}(f) \sim (\mathscr{G}_{n-3} + S_{q_{n-1}}\theta^{n+1})c^n(f)$$
.

We shall use this notation in the following.

Since $\mathscr{Y}_{n-3} + S_{q_{n-1}}\theta^{n+1}$ is a homomorphism of $H^n(K, \pi_n(Y))$ into $H^{n+3}(K, \pi_{n+2}(Y))$, we have the classification theorem through analogous arguments of Steenrod [2].

THEOREM 3. (n > 3).

Let K be an (n+2)-dimensional finite complex, and let Y be a space with the same property in Theorem 2.

All the homotopy classes of mappings of K into Y, that are contained in one homotopy class of mappings of K^n into Y, are in one to one correspondence with the cosets of the factor group:

 $H^{n+2}(K, \pi_{n+2}(Y))/(\mathscr{Y}_{n-4}+S_{q_{n-2}}\theta^n)H^{n-1}(K, \pi_n(Y)),$

where $\mathscr{Y}_{n-4} + S_{q_{n-2}}\theta^n$; $H^{n-1}(K, \pi_n(Y)) \to H^{n+2}(K, \pi_{n+2}(Y))$ is a homomorphism.

THEOREM 3'. (The case n = 3). All the homotopy classes of mappings of K^5 into Y, that are homotopic to each other on K^3 , are in one to one correspondence with the cosets of the factor group:

$$H^{5}(K^{5}, \pi_{5}(Y))/\Psi H^{2}(K^{5}, \pi_{3}(Y))$$

where $\Psi: H^2(K^5, \pi_3(Y)) \to H^5(K^5, \pi_5(Y))$ is a homomorphism defined in the following way.

Let $\{\lambda^2\} \in H^2(K^5, \pi_3(Y))$, and let $\lambda^2 = \sum_{\mu} \alpha_{\mu} \lambda_{\mu}^2$, where α_{μ} are generators of $\pi_3(Y)$. Then $\Psi\{\lambda^2\}$ is a cohomology class represented by

$$\begin{split} \sum_{n_{\mu}>0, \text{ even}} &(n_{\mu}\lambda_{\mu}^2 \bigcup \theta_{n_{\mu}}^3 \lambda_{\mu}^2 - \frac{n_{\mu}^2}{2} \theta_{n_{\mu}}^2 \lambda_{\mu}^2 \bigcup_1 \theta_{n_{\mu}}^3 \lambda_{\mu}^2) \omega(\alpha_{\mu}) \\ &+ \sum_{n_{\mu}>0, \text{ even}} (\theta_{n_{\mu}}^3 \lambda_{\mu}^2 \bigcup_1 \theta_{n_{\mu}}^3 \lambda_{\mu}^2) \xi(\alpha_{\mu}) + \sum_{\mu<\nu} (c_{\mu}^3 \bigcup \lambda_{\nu}^2 + \lambda_{\mu}^2 \bigcup c_{\nu}^3) \alpha_{\mu} \alpha_{\nu} \,. \end{split}$$

It is seen that $2\Psi\{\lambda^2\} = 0$.

§6. Invariant cohomology class a^{n+3}

Eilenberg and MacLane [7] have introduced, for a space Y such that $\pi_i(Y) = 0$ (i < n < i < n + h), a cohomology class \mathcal{A}^{n+h+1} of an abstract complex $K(\pi_n(Y), n)$, and studied the influence of \mathcal{A}^{n+h+1} on homology groups of Y. We shall here deal with a space Y with the same property as in preceding sections. We consider the case n > 2 and h = 2.

THEOREM 4. Let \mathcal{X}^{n+3} be a cocycle belonging to \mathcal{A}^{n+3} , then

$$\chi^{n+3} \simeq (\mathscr{Y}_{n-3} + S_{q_n-1}\theta^{n+1})d^n \quad for \quad n \ge 3,$$

$$\chi^{n+3} \simeq (\mathscr{Y}_0 + S_{q_2}\theta^4)d^3 + \sum_{\mu \le \gamma} (d^3_{\mu} \bigcup d^3_{\nu})\alpha_{\mu}\alpha_{\nu} \quad for \quad n = 3,$$

where d^n represents the element of $H^n(\pi_n(Y), n, \pi_n(Y))$ which acts as the identity endomorphism of $\pi_n(Y)$, and $d^n = \sum_{\mu} \alpha_{\mu} d^n_{\mu}$.

BIBLIOGRAPHY

- L. Pontrjagin, Mappings of the 3-dimensional sphere into an *n*-dimensional complex, C. R. Acad. Sci. URSS., 34 (1942), 35-37.
- [2] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.
- [3] H. Whitney, An extension theorem for mappings into simply connected spaces, Ann. of Math., 50 (1949), 285-296.
- [4] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math. Helv., 22 (1949), 48-92.
- [5] J. H. C. Whitehead, The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon. der Math., 21 (1948), 176-186. (This is inaccessible to us here.)
- [6] J. H. C. Whitehead, On adding relations to homotopy groups, Ann of Math., 42 (1941), 409-428.
- [7] S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces II, Ann. of Math., 51 (1950) 514-533.
- [8] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.
- [9] G. W. Whitehead, The (n+2)-nd homotopy group of the n-sphere, Ann. of Math., 52 (1950), 245-247.

- [10] L. Pontrjagin, C. R. Acad. Sci. URSS, 70 (1950), 957-959.
- [11] A. L. Blakers and W. S. Massay, Homotopy groups of a triad I, Ann. of Math., 53 (1951), 161-205.
- [12] S. C. Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc. of London, A, 202 (1950), 253-263.
- [13] H. Uehara, On homotopy type problems of special kind of polyhedra, to appear shortly.

Mathematical Institute, Nagoya University