CLASSIFICATION OF MAPPINGS OF AN ($n+2$)COMPLEX INTO AN ($n-1$)-CONNECTED SPACE WITH VANISHING ($n+1$)-ST HOMOTOPY GROUP

NOBUO SHIMADA and HIROSHI UEHARA

The present paper is concerned with the classification and corresponding extension theorem of mappings of the ($n+2$)-complex $K^{n+2}(n>2)$ into the space Y whose homotopy groups $\pi_{i}(Y)$ vanish for $i<n$ and $i=n+1$, and the n-th homotopy group $\pi_{n}(Y)$ of which has a finite number of generators. Our methods followed here are essentially analogous to those of Steenrod [2]. He introduced the important concept of the \bigcup_{i}-products of cocycles, which enables us to define \mathscr{Y}_{i}-Square (refer to $\S 1$), a certain type of a combination of \bigcup_{i}-products. This square is a modification of the so-called Pontrjagin square (Pontrjagin [1], Whitehead [4], and Whitney [3]). It induces a homomorphism of $H^{n}\left(K, I_{m}\right)$, the n-th cohomology group with integral coefficients reduced mod. m of a complex K, into $H^{2 n-i}(K, I)$, the ($2 n-i$)-th cohomology group with integral coefficients, when m is even and $n-i$ is odd. Together with squaring products we have a homomorphism (refer to §5) of $H^{n}\left(K, \pi_{n}(Y)\right.$) into $H^{n+3}\left(K, \pi_{n+2}(Y)\right.$) in the case $i=n-3$. As its application, Eilenberg-MacLane's cohomology class K^{n+h+1} of the semi-simplicial complex $K\left(\pi_{n}(Y), n\right)$ with coefficients in $\pi_{n+h}(Y)$ is determined in case where $h=2$ and $n>2$ (Eilenberg-MacLane [7]).

Another information from the homomorphism may contribute partially to the homotopy type problem of A_{n}^{3}-complexes (J. H. C. Whitehead [5], Chang [12], Uehara [13]).

In §1 the above mentioned product will be defined. In §2 we shall sketch the computation of the homotopy groups of some elementary types of reduced A_{n}^{3}-complexes. In $\S 3$ relations of products of cocycles in such complexes are discussed. The $(n+3)$-extension cocycle and the present classification of mappings will be embodied in $\S 4$, $\S 5$ respectively. The final section $\S 6$ will contain some applications to related subjects.

§ 1. \mathscr{q}_{i}-square

Let K be a finite simplicial complex or a cell complex. Let us consider the n-dimensional integral cochain group C^{n} of K and its subgroup $Z^{n}(m)$ of all cocycles mod. m for an even integer m. If $u^{n} \in Z^{n}(m)$, then $\delta u^{n} \equiv 0$ (mod.

[^0]$m)$ and $\theta_{m}^{n+1} u^{n}=\frac{1}{m} \delta u^{n}$ is an ($n+1$)-integeral cocycle.
If we define
$$
\mathscr{Y}_{i} u^{n}=u^{n} \bigcup_{i} u^{n}+m u_{i+1}^{n} \bigcup_{m}^{n+1} u^{n}+(-1)^{n} \frac{m^{2}}{2} \theta_{m}^{n+1} u^{n} \bigcup_{i+2} \theta_{m}^{n+1} u^{n}
$$
for $u^{n} \in Z^{n}(m)$ ($m \geqslant 0$ is even), straightforward calculations, by means of the coboundary formula of Steenrod [2], give the following

Lemma 1. If $n-i$ is odd, then we have

1) $\mathscr{F}_{i} u^{n}$ is $a(2 n-i)$-dimensional integal cocycle,
2) $2 \mathscr{q}_{i} u^{n} \operatorname{co} 0$,
3) $\mathscr{q}_{i}\left(k u^{n}\right)=k^{2} \mathcal{O}_{i} u^{n}$,
4) $\mathscr{q}_{i}\left(u^{n}+v^{n}\right) c \mathscr{q}_{i} u^{n}+\mathscr{Y}_{i} v^{n}$ for $u^{n}, v^{n} \in Z^{n}(m)$,
5) $\mathscr{q}_{i}\left(m x^{n}\right) \cos 0$ for $x^{n} \in C^{n}$,
6) $\mathscr{q}_{i}\left(\delta x^{n-1}\right) \propto 0$ for $x^{n-1} \in C^{n-1}$.

Thus \mathscr{q}_{i} induces a homomorphism such that:

$$
\mathscr{q}_{i}: H^{n}\left(K, I_{m}\right) \longrightarrow{ }_{2} H^{2 n-i}(K, I),
$$

where ${ }_{2} H=\{g ; g \in H, 2 g=0\}$ for any abelian group H. We shall use this homomorphism in the following only when $i=n-3$.

§ 2. Some types of elementary A_{n}^{2}-complexes

We shall refer to the following types of polyhedra as elementary A_{n}^{2}-complexes;
i) $B^{0}=S^{n}, n$-sphere,
ii) $B^{1}(m)=S^{n} \cup e^{n+1}$, where an $(n+1)$-element e^{n+1} is attached to S^{n} by a map $f: \partial e^{n+1} \rightarrow S^{n}$ of degree m,
iii) $B^{3}(0)=S^{n} \cup e^{n+2}$, where e^{n+2} is attached to S^{n} by an essential map $\eta: \partial e^{n+2} \rightarrow S^{n}$,
iv) $B^{2}(2 r)=B^{2}(0) \cup e^{n+1}$, when e^{n+1} is attached to S^{n} of $B^{2}(0)$ by a map $f: \partial e^{n+1} \rightarrow S^{n}$ of degree $2 r$.
Then we have
Lemma 2.
a) $\pi_{n+1}\left(B^{2}(0)\right)=0$,

乃) $\pi_{n+1}\left(B^{1}(2 r+1)\right)=0$;
$\pi_{n+1}\left(B^{1}(2 r)\right)=(2)$, cyclic group of order 2 , whose generator ζ is represented by an essential map of S^{n+1} onto $S^{n} \subset B^{1}(2 r)$,
r) $\pi_{n+1}\left(\boldsymbol{B}^{2}(2 \boldsymbol{r})\right)=0$.

Lemma 3.
a) $\pi_{n+2}\left(B^{2}(0)\right)=I$, free cyclic group, whose generator ω is represented by a
map of degree 2,
B) $\pi_{n+2}\left(B^{1}(2 r+1)\right)=0$;
$\pi_{n+2}\left(B^{1}(2 r)\right)=(2)+(2)$, direct sum of two cyclic groups of order two, with generators ξ and $\bar{\zeta}$, where ξ is represented by a map covering $e^{\mathrm{N}+1}$ essentially and $\bar{\zeta}$ is represented by an essential map $\eta: S^{n+2} \rightarrow S^{n} \subset B^{1}(2 r)$,
$r) \pi n+2\left(B^{2}(2 r)\right)=I+(2)$: direct sum of the free cyclic group with the generator ω and the cyclic group of order 2 with the generator ξ.

Proof of Lemmas.

Some of these statements are easily deducible from known results of Freudenthal, J. H. C. Whitehead [6], G. W. Whitehead [9], Pontrjagin [10]. Thus we shall sketch here the proof of Lemma 3.

3, α) Any map which is homotopic to a map of S^{n+2} into S^{n} of $B^{2}(0)$, is contractible in $B^{2}(0)$ to a point, so that there is no essential map of degree 0 . Next we prove that there is no essential map f of odd degree k. If we denote f^{*} the inverse homomorphism between cohomology groups of the two spaces, we obtain $f\left(S_{n-2}^{n} \cup S^{n}\right)=f^{*} S_{n-2}^{n} f^{*} S^{n} c \infty 0$ in S^{n+2}, while in $B^{2}(0), S_{n-2}^{n} \cup S^{n}=e^{n+2}($ mod 2) and thereby $f^{\prime \prime}\left(S_{n-2}^{n} \cup S^{n}\right)=f^{*} e^{n+2}=k S^{n+2}(\bmod 2)$. This is a contradiction.

Consider a map $\varphi: S^{n+2} \rightarrow B^{2}(0)$ such that $\varphi \mid V_{\geqq 0}^{n+2}$ represents twice of a suitably chosen generator of the relative homotopy group $\pi_{n+2}\left(B^{2}(0), S^{n}\right)$ and extend $\varphi \mid V_{\geqq 2}^{n+2}$ through the lower hemisphere $V_{\equiv 0}^{n+2}$ by contracting in S^{n} the resultant inessential map of the equator S^{n+1} into S^{n} to an point. φ has degree 2 and represents ω.

3, β) Let g be a map of S^{n+2} into $B^{1}(2 r)$ such that $g \mid V_{\cong 0}^{n+2}$ represents of a generator of $\pi_{n+2}\left(B^{1}(2 r), S^{n}\right)$, and extend g through the lower hemisphere $V_{\stackrel{y}{n+2}}^{n+2}$ by contracting the resulting inessential map of the equator S^{n+1} into S^{n} to a point in S^{n}.g represents $\xi .2 \xi=0 . \quad \hat{\xi}$ is essential, for the superposition $h g$ of g by the map h of $B^{1}(2 r)$ onto S^{n+1}, is essential, where h maps S^{n} into a point p of S^{n+1} and e^{n+1} topologically to $S^{n+1}-p$.
$3, \gamma) \bar{\zeta}$ in $\pi_{n+2}\left(B^{1}(2 r)\right)$ vanishes by imbedding $B^{1}(2 \boldsymbol{r})$ in $B^{2}(2 \boldsymbol{r})$.
We add here some remarks which will be needed later.
Let $R^{3+1}=\sum_{\mu} B_{\mu}^{1}\left(n_{\mu}\right)$ be a cell complex consisting of a finite number of $B_{\mu}^{1}\left(n_{\mu}\right)$ (even $\left.n_{\mu}\right)^{\mu}$ with a single common point belonging to each $S_{\mu}^{n} \subset B_{\mu}^{1}\left(n_{\mu}\right)$ and let $R^{n+2}=\sum_{\mu} B_{\mu}^{2}\left(n_{\mu}\right)$ be a cell complex constructed similarly. Let $\alpha_{\mu} \alpha_{\nu}$ denote the Whitehead product of α_{μ} and α_{ν}, where α_{μ} is a generator of $\pi_{n}\left(S_{\mu}^{n}\right)$, etc. Let $\left(\alpha_{\mu} \alpha_{\nu}\right)$ denote the subgroup of $\pi_{2 n-1}\left(S_{\mu}^{n} \vee S_{\nu}^{n}\right)$ generated by $\alpha_{\mu} \alpha_{\nu}$

Then we have

$$
\begin{aligned}
& \pi_{n+1}\left(R^{n+1}\right)=\sum_{\mu} \pi_{n+1}\left(B_{\mu}^{1}\left(n_{\mu}\right)\right), \\
& \pi_{n+2}\left(R^{n+2}\right)=\sum_{\mu} \pi_{n+2}\left(B_{\mu}^{2}\left(n_{\mu}\right)\right) \text { for } n>3,
\end{aligned}
$$

and

$$
\pi_{n+2}\left(R^{n+2}\right)=\sum_{\mu} \pi_{n+2}\left(B_{\mu}^{2}\left(n_{\mu}\right)\right)+\sum_{\mu<\nu}\left(\alpha_{\mu} \alpha_{\nu}\right) \text { for } n=3
$$

by the recurrent usage of a result of G. W. Whitehead [8] or a slight generalization of lemma 5. 3. 2. of Blakers and Massay [11].

§3. Products in some types of elementary A_{n}^{3}-complexes

In $\S 2$ we sketched elementary A_{n}^{2}-complexes whose $(n+1)$-st homotopy groups vanish but whose n-th homotopy groups do not vanish. Among them $B^{2}(0)$ and $B^{2}(2 r)$ have non-trivial ($\left.n+2\right)$-nd homotopy groups. Here we construct from $B^{2}(0)$ and $B^{2}(2 r) \cdot A_{n}^{3}$-complexes whose $(n+2)$-nd homotopy groups vanish.

Let $B^{3}(0, k)=B^{2}(0) \cup e^{n+3}$ and let $B^{3}(2 r, k)=B^{2}(2 r) \cup e_{1}^{n+3} \cup e_{2}^{n+3}$ where e^{n+3} and e_{1}^{n+3} are attached to $B^{2}(0)$ and to $B^{2}(2 r)$ by maps of $\partial 2^{n+3}, \partial e_{1}^{n+3}$ representing $k \omega \in \pi_{n+2}\left(B^{2}(0)\right), \pi_{n+2}\left(B^{2}(2 r)\right)$ respectively and e_{2}^{n+3} is attached to $B^{2}(2 r)$, by a map ∂e_{2}^{n+3} into $B^{2}(2 r)$ representing $\xi \in \pi_{n+2}\left(B^{2}(2 r)\right)$.

Theorem 1. In $B^{2}(0, k)$ we have
α)

$$
S_{n-3}^{n} \cup S^{n}=k e^{n+3}, \quad 2 k e^{n+3} \cos 0
$$

where S^{n} and e^{n+3} represent cocycles.
In $B^{3}(2 r, k)$, we have
乃) $\mathscr{q}_{n-3} S^{n}=k e_{1}^{n+3}, 2 k e_{1}^{n+3} c s 0$ and
r) $\theta_{2 r}^{n+1} S_{n-1}^{n} \bigcup_{n r}^{n+1} S^{n}=e_{2}^{n+3} \quad(\bmod 2)$,
where S^{n} represents itself as cocycle mod $2 r$ [see §1].
We denote $B^{3}(m, 1)$ simply by $B^{3}(m),(m \geqslant 0$ is even $)$.
Proof of Theorem 1. In $B^{3}(0, k)$, by orienting e^{n+3} suitably, we can define $S_{n-2}^{n} S^{n}=(-1)^{n} e^{n+2}$. By Lemma 3, α) in $\S 2$, we have $\delta e^{n+2}=2 k e^{n+3}$. Since $\delta\left(S_{n-2}^{n} \cup S^{n}\right)=(-1)^{n} 2\left(S^{n} \cup S_{n-3}^{n}\right)$, we obtain α).

In $B^{3}(2 r, k) S^{n}$ is a cocycle mod $2 r$. Let $\kappa: B^{3}(0, k) \rightarrow B^{3}(2 r, k)$ be the injection mapping, and let κ^{*} be its inverse homomorphism of cochain groups. Then $\kappa^{*} \mathscr{q}_{n-3} S^{n}=\mathscr{q}_{n-3} \kappa^{*} S^{n}=\kappa^{*} S^{n} \cup_{n-3}^{*} S^{n}=k e^{n+3}=\kappa^{*} k e_{1}^{n+3}$ in $B^{3}(0, k)$. We obtain therefore, $\mathscr{\mathscr { q }}_{n-3} S^{n}=k e_{1}^{n+3}+l e_{2}^{n+3}$, but $2 \mathscr{q}_{n-3} S^{n} c \infty$. It follows that $l=0$ and β) is proved.

For the part of γ), set $M^{n+3}=S^{n+1} \cup e^{n+3}$, where e^{n+3} is attached to S^{n+1} by an essential map $f: \partial e^{n+3} \rightarrow S^{n+1}$. And let $\kappa: B^{3}(2 r, k) \rightarrow M^{n+3}$ be such a map that κ maps $B^{3}(0, k)$ into a point p of S^{n+1} and maps e_{2}^{n+3} onto e^{n+3}, e^{n+1} onto $S^{n+1}-p$ topologically. Then, in $M^{n+3}, S^{n+1} \bigcup_{n-1}^{n+1}=e^{n+3}$. It follows that

$$
e_{2}^{n+3}=\kappa^{*} e^{n+3}=\kappa^{*}\left(S^{n+1} \cup S_{n-1}^{n+1}\right)=\kappa^{*} S^{n+1} \bigcup_{n-1} \kappa^{*} S^{n+1}=e^{n+1} \bigcup_{n-1} e^{n+1}(\bmod 2) \text {. q.e.d. }
$$

§4. The ($n+3$)-extension cocycle
Let K be a finite complex, the r-skelton of which is denoted by K^{r}. Let Y be an arcwise connected topological space such that $\pi_{i}(Y)=0$ for each $i<n$ and for $i=n+1$, and $\pi n(Y)$ has a finite number of generators $\alpha_{\mu}(\mu=1,2, \ldots, l)$.

Let $n_{\mu} \geqslant 0$ be the order of α_{μ}. Define following reduced complexes:

$$
\begin{aligned}
& R^{n}=\sum_{\mu} B_{\mu}^{0}\left(n_{\mu}\right)=\sum_{\mu} S_{\mu}^{n}, \\
& R^{n+2}=\sum_{n_{\mu}, \text { even }} B_{\mu}^{2}\left(n_{\mu}\right)+\sum_{n_{\mu}: \text { ood }} B_{\mu}^{1}\left(n_{\mu}\right), \\
& R^{n+3}=\sum_{n_{\mu}: \text { even }} B_{\mu}^{3}\left(n_{\mu}\right)+\sum_{n_{\mu}: o d d} B_{\mu}^{1}\left(n_{\mu}\right) \text { for } n>3,
\end{aligned}
$$

and

$$
R^{n+3} \underset{n_{\mu}: e v e n}{=} \sum_{\mu}^{3}\left(n_{\mu}\right)+\sum_{n_{\mu}: o, t d} B_{\mu}^{1}\left(n_{\mu}\right)+\sum_{\mu<\nu} e_{\mu, \nu}^{6} \quad \text { for } \quad n=3 .
$$

where $e_{\mu, \nu}^{6}=S_{\mu}^{3} \times S_{\nu}^{3}-S_{\mu}^{3} \vee S_{\nu}^{3}$ and $B^{i}\left(n_{\mu}\right)$'s and $e_{\mu, \nu}^{6}$'s in each reduced complex have only one point p in common. Then we can consider that $R^{n} \subset R^{n+2} \subset R^{n+3}$. (cf. §2).

Let us define a map $\varphi: R^{n} \rightarrow Y$ such that $\varphi: S_{\mu}^{n} \rightarrow Y$ represents $\alpha_{\mu} \in \pi_{n}\left(Y^{\prime}\right)$. Then it is easily seen that φ is extended to a map $\varphi: R^{n+2} \rightarrow Y$. For a given normal map $f: K^{n} \rightarrow Y$, there exists a map $h: K^{n} \rightarrow R^{n}$ such that $h: K^{n-1} \rightarrow p$ and f is homotopic to φh. Thus it may be supposed that f and φh define the same map on K^{n}. If f is extensible to K^{n+1}, then f is also extensible to K^{n+2} from $\pi_{n+1}(Y)=0$. Then the secondary obstruction $c^{n+3}(f)$ is defined. Correspondingly, h can be extended to a map $h: K^{n+2} \rightarrow R^{n+2}$ such that φh and f are homotopic on K^{n+2} relative to K^{n}, Notice that h, moreover, can be extended to a map of K^{n+3} into R^{n+3}. It follows that $c^{n+3}(f) \sim c^{n+3}(\varphi h)=h^{*} c^{n+3}(\varphi)$. If $\omega\left(\alpha_{\mu}\right)$ is such an element of $\pi_{n+2}(Y)$ as is represented by a map $\varphi \omega$, where ω is a map representing a generator of order 0 of $\pi_{n+2}\left(B_{\mu}^{2}\left(n_{\mu}\right)\right)\left(n_{\mu}\right.$ even $)$ (see $\S 2$), and if $\xi\left(\alpha_{\mu}\right)$ is such an element of $\pi_{n+2}(Y)$ as is represented by a map $\varphi \xi$, where ξ is a map representing a generator of order 2 of $\pi_{n+2}\left(B_{\mu}^{2}\left(n_{\mu}\right)\right)$, then, we have by theorem 1 in §3,

$$
\begin{aligned}
& c^{n+3}(\varphi h)=h^{*} c^{n+3}(\varphi)=h^{*}\left[\sum_{n_{\mu} \geq 0, \text { eren }} \omega\left(\alpha_{\mu}\right) e_{1, \mu}^{n+3}+\sum_{n_{\mu}>0, \text { even }} \xi\left(\alpha_{\mu}\right) e_{2, \mu}^{n+\mu}+\left(\sum_{\mu<\nu} \alpha_{\mu} \alpha_{\nu} e_{\mu, \nu}^{6}\right)\right] \\
& =h_{n_{\mu}, ~ E}^{*}\left[\sum_{0, \text { even }}\left(\mathscr{F}_{n-3} S_{\mu}^{n}\right) \omega\left(\alpha_{\mu}\right)+\sum_{n_{\mu}>0, \text { even }}\left(S_{q_{\nu-1}} n_{n_{\mu}}^{n+1} S_{\mu}^{n}\right) \xi\left(\alpha_{\mu}\right)+\left(\sum_{\mu<\nu}\left(S_{\mu}^{3} \cup S_{\nu}^{3}\right) \alpha_{\mu} \alpha_{\nu}\right)\right] \text {, }
\end{aligned}
$$

where the last terms $\sum_{\mu<\nu}\left(S_{\mu}^{3} \cup S_{\nu}^{3}\right) \alpha_{\mu} \alpha_{\nu}$ are added only when $n=3$.
If we put $c_{\mu}^{n}=h^{*} S_{\mu}^{n}$, then the first obstruction $c^{n}(f)$ of f is expressible in the following form: $c^{n}(f)=\sum_{\mu} \alpha_{\mu} \cdot c_{\mu}^{n}$.

Thus we obtain the following
Theorem 2. Let K be a finite complex, and let K^{r} be its r-skeleton. Let Y be an ($n-1$)-connected topological space whose $(n+1)$-th homotopy group vanishes. Given a mapping $f: K^{n} \rightarrow Y$ such that f maps K^{n-1} into a point of Y.

If the first obstruction $c^{n}(f)$ is a cocycle, then f is extensible to a map $f: K^{n+2}$ $\rightarrow Y$ and its $(n+3)$-extension cocycle $c^{n+3}(\bar{f})$ is determined from $c^{n}(f)$ in the following form: $(n \leqq 3)$

$$
\begin{aligned}
c^{n+3}(\bar{f}) & \underset{n \mu \geq 0, \text { even }}{ }\left(c_{\mu}^{n} \bigcup c_{n}^{n}+n_{\mu} c_{\mu}^{n} \bigcup_{n-2} \lambda_{\mu}^{n+1}+(-1)^{n} \frac{n_{\mu}^{2}}{2} \lambda_{\mu}^{n+1} \bigcup \lambda_{\mu}^{n+1}\right) \omega\left(\alpha_{\mu}\right) \\
& +\sum_{n>0, \text { even }}\left(\lambda_{\mu}^{n+1} \bigcup \lambda_{n-1}^{n+1}\right) \tilde{s}\left(\alpha_{\mu}\right)+\sum_{\mu<\nu}\left(c_{\mu}^{3} \cup c_{\nu}^{3}\right) c_{\mu} \alpha_{\nu},
\end{aligned}
$$

where the last terms is added only when $n=3$, and $c^{n}(f)=\sum_{\mu} \alpha_{\mu} c_{\mu}^{n}, \lambda_{\mu}^{n+1}=\theta_{n_{\mu}}^{n+1} \cdot c_{\mu}^{n}$ $=\frac{1}{n_{\mu}} \delta c_{\mu}^{n}\left(n_{\mu}>0\right)$, and $\lambda_{\mu}^{n+1}=0\left(n_{\mu}=0\right)$.

§ 5. Classification

We shall apply Theorem 2 in §4 to the present classification problem in a usual way. Let Y be a space as was referred to above. It is our aim to classify all the classes of mappings of an ($n+2$)-dimensional complex K into the space Y. If we denote by $\mathscr{q}_{n-3} c^{n}(f)$ the first terms in the expression of $c^{n+3}(\bar{f})(n>3)$ in Theorem 2 and if we denote the second terms by $S_{q_{n-1}} \theta^{n+1} c^{n}(f)$, then we have

$$
c^{n+3}(\bar{f}) \cos \left(\mathcal{q}_{n-3}+S_{q_{n-1}} \theta^{n+1}\right) c^{n}(f)
$$

We shall use this notation in the following.
Since $\mathscr{\mathscr { q }}_{n-3}+S_{q_{n-1}} \theta^{n+1}$ is a homomorphism of $H^{n}\left(K, \pi_{n}(Y)\right)$ into $H^{n+3}(K$, $\pi_{n+2}(Y)$), we have the classification theorem through analogous arguments of Steenrod [2].

Theorem 3. ($n>3$).
Let K be an ($n+2$)-dimensional finite complex, and let Y be a space with the same property in Theorem 2.

All the homotopy classes of mappings of K into Y, that are contained in one homotopy class of mappings of K^{n} into Y, are in one to one correspondence with the cosets of the factor group:

$$
H^{n+2}\left(K, \pi_{n+2}(Y)\right) /\left(\mathcal{F}_{n-4}+S_{q_{n-2}} \theta^{n}\right) H^{n-1}\left(K, \pi_{n}(Y)\right),
$$

where $\mathscr{q}_{n-4}+S_{q_{n-2}} \theta^{n} ; H^{n-1}\left(K, \pi_{n}(Y)\right) \rightarrow H^{n+2}\left(K, \pi_{n+2}(Y)\right)$ is a homomorphism.
Theorem 3'. (The case $n=3$). All the homotopy classes of mappings of K^{5} into Y, that are homotopic to each other on K^{3}, are in one to one correspondence with the cosets of the factor group:

$$
H^{5}\left(K^{5}, \pi_{5}^{5}(Y)\right) / \Psi H^{2}\left(K^{5}, \pi_{3}(Y)\right)
$$

where $\Psi: H^{2}\left(K^{5}, \pi_{5}(Y)\right) \rightarrow H^{5}\left(K^{5}, \pi_{5}(Y)\right)$ is a homomorphism defined in the following wav.

Let $\left\{\lambda^{2}\right\} \in H^{2}\left(K^{5}, \pi_{s}(Y)\right)$, and let $\lambda^{2}=\sum_{\mu} \alpha_{\mu} \lambda_{\mu}^{2}$, where α_{μ} are generators of $\pi_{3}(Y)$. Then $\Psi\left\{\lambda^{2}\right\}$ is a cohomology class represented by

$$
\begin{aligned}
\sum_{n_{\mu}>0, \text { even }}\left(n_{\mu} \lambda_{\mu}^{2} \cup \theta_{n_{\mu}}^{3} \lambda_{\mu}^{2}\right. & \left.-\frac{n_{\mu}^{2}}{2} \theta_{n_{\mu}}^{2} \lambda_{\mu \nu}^{2} \cup \theta_{1} \theta_{n_{\mu}}^{3} \lambda_{\mu}^{2}\right) \omega\left(\alpha_{\mu}\right) \\
& +\sum_{n_{\mu}>0, \text { even }}\left(\theta_{n_{\mu}}^{3} \lambda_{\mu}^{2} \cup \theta_{1} \theta_{n_{\mu}}^{3} \lambda_{\mu}^{2}\right) \xi\left(\alpha_{\mu}\right)+\sum_{\mu<\nu}\left(c_{\mu}^{3} \cup \lambda_{\nu}^{2}+\lambda_{\mu}^{2} \cup c_{\nu}^{3}\right) \alpha_{\mu} \alpha_{\nu} .
\end{aligned}
$$

It is seen that $2 \Psi\left\{\lambda^{2}\right\}=0$.
§6. Invariant cohomology class $\dot{\delta}^{n+3}$
Eilenberg and MacLane [7] have introduced, for a space Y such that $\pi_{i}(Y)$ $=0(i<n<i<n+h)$, a cohomology class \mathfrak{f}^{n+h+1} of an abstract complex $K(\pi n(Y)$, n), and studied the influence of δ_{2}^{n+h+1} on homology groups of Y. We shall here deal with a space Y with the same property as in preceding sections. We consider the case $n>2$ and $h=2$.

Theorem 4. Let \mathfrak{K}^{n+3} be a cocycle belonging to $\mathcal{2}^{n+3}$, then

$$
\begin{aligned}
& \mathfrak{K}^{n+3} \cos \left(\mathscr{q}_{n-3}+S_{q_{n-1}} \theta^{n+1}\right) d^{n} \text { for } n>3, \\
& \mathfrak{K}^{n+3} \cos \left(\mathscr{q}_{0}+S_{q_{2}} \theta^{4}\right) d^{3}+\sum_{\mu<i}\left(d_{\mu}^{3} \cup d_{\nu}^{3}\right) \alpha_{\mu} \alpha_{\nu} \text { for } n=3,
\end{aligned}
$$

where d^{n} represents the element of $H^{n}\left(\pi_{n}(Y), n, \pi_{n}(Y)\right)$ which acts as the identity endomorphisin of $\pi_{n}(Y)$, and $d^{n}=\sum_{\mu} \alpha_{\mu} d_{\mu}^{n}$.

Bibliography

[1] L. Pontrjagin, Mappings of the 3 -dimensional sphere into an n-dimensional complex, C. R. Acad. Sci. URSS., 34 (1942), 35-37.
[2] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.
[3] H. Whitney, An extension theorem for mappings into simply connected spaces, Ann. of Math., 50 (1949), 285-296.
[4] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comm. Math. Helv., 22 (1949), 48-92.
[5] J. H. C. Whitehead, The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon. der Math., 21 (1948), 176-186. (This is inaccessible to us here.)
[6] J. H. C. Whitehead, On adding relations to homotopy groups, Ann of Math., 42 (1941), 409-428.
[7] S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces II, Ann. of Math., 51 (1950) 514-533.
[8] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.
[9] G. W. Whitehead, The $(n+2)$-nd homotopy group of the n-sphere, Ann. of Math., 52 (1950), 245-247.
[10] L. Pontrjagin, C. R. Acad. Sci. URSS, 70 (1950), 957-959.
[11] A. L. Blakers and W. S. Massay, Homotopy groups of a triad I, Ann, of Math., 53 (1951), 161-205.
[12] S. C. Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc. of London, A, 202 (1950), 253-263.
[13] H. Uehara, On homotopy type problems of special kind of polyhedra, to appear shortly.

Mathematical Institute,
 Nagoya University

[^0]: Received September 17, 1951.

