ON KRULL'S CONJECTURE CONCERNING VALUATION RINGS

MASAYOSHI NAGATA

Introduction. Previously W. Krull conjectured¹⁾ that every completely integrally closed primary²⁾ domain of integrity is a valuation ring. The main purpose of the present paper is to construct in §1 a counter example against this conjecture. In §2 we show a necessary and sufficient condition that a field is a quotient field of a suitable completely integrally closed primary domain of integrity which is not a valuation ring.

By a ring we mean a commutative ring with identity. We refer to the notations like o_p as the ring of quotients of p with respect to o when o is a ring and p is a prime ideal of o.

1. A counter example.

Let K be an algebraically closed field with a non-trivial special valuation w whose value group G does not fill up all real numbers. Take a positive number α which is not in G. Consider a rational function field K(x) of one variable x with constant field K. Let us define the following two types of valuations of K(x) which are extensions of w: (1) For every element e of K such that $\alpha < w(e) < 2\alpha$,³ we define a valuation w_e (of K(x)) such that

$$w_e(\sum_{i=0}^n a_i(x+e)^i) = \min(w(a_i) + 2\alpha i) \quad (a_i \in K).$$

(2) For every real number λ such that $\alpha \leq \lambda \leq 2\alpha$, we define a valuation w_{λ} such that

$$w_{\lambda}(\sum_{i=0}^{n}a_{i}x^{i})=\min(w(a_{i})+\lambda i)\quad (a_{i}\in K).$$

THEOREM 1. Let v_e and v_{λ} be the valuation rings determined by w_e and w_{λ} respectively ($\alpha < w(e) < 2\alpha$, $\alpha \leq \lambda \leq 2\alpha$) and let v_e be the intersection of all such v_e and v_{λ} . Then v_e is completely integrally closed and primary, but v_e is not a

Received May 22, 1951.

¹⁾ W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche II, Math. Zeit. 41 (1936). p. 670.

²⁾ A ring is called primary if it has at most one proper prime ideal.

³⁾ Observe the fact that $2\alpha \notin G$, because K is algebraically closed.

⁴⁾ Since $2x \notin G$, w_e is uniquely determined by the relation $w_e(x + e) = 2x$.

valuation ring.

Proof. Let $c(\neq 0)$ be an element of \mathfrak{o} . First we prove that (1) if $w_{\lambda_{\mathbf{0}}}(c) = 0$ for some λ_0 ($\alpha \leq \lambda_0 \leq 2\alpha$), then $w_{\lambda}(c) = 0$ and $w_e(c) = 0$ for every w_{λ} and w_e , and that (2) if $w_{\alpha}(c) > 0$, there exist the least and the largest values $\varepsilon > 0$ and δ among values of c taken by w_{λ} and w_e ($\alpha \leq \lambda \leq 2\alpha$, $\alpha < w(e) < 2\alpha$).

Since K is algebraically closed, c is of the form

$$c_0\prod_{i=1}^n (x+a_i)/\prod_{j=1}^m (x+b_j)$$
 $(c_0, a_i, b_j \in K).$

Every factor x + d $(d = a_i \text{ or } b_j)$ such that $w(d) > 2\alpha$ may be replaced by x, since we only consider the values of c taken by w_{λ} and w_e . Similarly we may replace by d every factor x + d $(d = a_i \text{ or } b_j)$ such that $w(d) < \alpha$. Therefore we may assume without loss of generality that (i) $\alpha < w(a_i) < 2\alpha$ or $a_i = 0$, $\alpha < w(b_j) < 2\alpha$ or $b_j = 0$ for each i and j $(1 \le i \le n, 1 \le j \le m)$, (ii) $a_i \ne b_j$ for every pair (i, j) and (iii) $w(a_i) \le w(a_{i+1})$, $w(b_j) \le w(b_{j+1})$ $(1 \le i < n, 1 \le j < m)$.

First we assume that $w_{\lambda_0}(c) = 0$ for some λ_0 ($\alpha \leq \lambda_0 \leq 2\alpha$). If there exists one j_1 such that $w(b_{j_1}) = \lambda_0$, then we have $w_{b_{j_1}}(c) < 0$, which is a contradiction. Therefore no $w(b_j)$ is equal to λ_0 . Assume that $w(a_i) < \lambda_0$ if $i \leq i_0$, $w(a_i) = \lambda_0$ if $i_0 < i \leq i_0 + s$, $w(a_i) > \lambda_0$ if $i > i_0 + s$; $w(b_j) < \lambda_0$ if $j \leq j_0$, $w(b_j) > \lambda_0$ if $j > j_0$. Set $\lambda_1 = \max(\alpha, w(a_{i_0}), w(b_{j_0})), \lambda_2 = \min(2\alpha, w(a_{i_0+s+1}), w(b_{j_0+1}))$. Then

$$\begin{split} w_{\lambda_1}(c) &= w(c_0) + \sum_{i \leq i_0} w(a_i) - \sum_{j \leq j_0} w(b_j) + (n - i_0)\lambda_1 - (m - j_0)\lambda_1 \ge 0, \\ w_{\lambda_0}(c) &= w(c_0) + \sum_{i \leq i_0} w(a_i) - \sum_{j \leq j_0} w(b_j) + (n - i_0)\lambda_0 - (m - j_0)\lambda_0 = 0, \\ w_{\lambda_2}(c) &= w(c_0) + \sum_{i \leq i_0} w(a_i) - \sum_{j \leq j_0} w(b_j) + s\lambda_0 + (n - i_0 - s)\lambda_2 - (m - j_0)\lambda_2 \ge 0. \end{split}$$

Hence we have

 $w_{\lambda_1}(c) = w_{\lambda_1}(c) - w_{\lambda_0}(c) = (n - i_0)(\lambda_1 - \lambda_0) - (m - j_0)(\lambda_1 - \lambda_0) \ge 0,$ whence $n - i_0 \le m - j_0.5^{(0)}$

Similarly we have

$$w_{\lambda_2}(c) = w_{\lambda_2}(c) - w_{\lambda_0}(c) = (n - i_0 - s)(\lambda_2 - \lambda_0) - (m - j_0)(\lambda_2 - \lambda_0) \ge 0,$$

whence $n - i_0 - s \ge m - j_0^{(5)}$

Thus we have s = 0 and $n - i_0 = m - j_0$. s = 0 shows that no $w(a_i)$ is equal to λ_0 . Further, $n - i_0 = m - j_0$, s = 0 show $w_{\lambda_1}(c) = w_{\lambda_2}(c) = 0$. Therefore neither $w(a_i)$ nor $w(b_j)$ are equal to λ_1 or λ_2 , by the above observation. This means that $\lambda_1 = \alpha$ and $\lambda_2 = 2\alpha$. From $\lambda_1 = \alpha$ we have that $i_0 = j_0 = 0$, whence m = n; From $\lambda_2 = 2\alpha$ we have that $a_i = 0$, $b_j = 0$ $(1 \le i \le n, 1 \le j \le m)$. By our assumption

30

⁵⁾ If $\alpha = \lambda_0$ or $2\alpha = \lambda_0$, we see easily that $n - i_0 = m - j_0$ because $\alpha \notin G$. In this case, s = 0 is also clear.

that $a_i \neq b_j$, it follows that m = n = 0, i.e., $c = c_0 \in K$. Since $w_{\lambda_0}(c) = 0$, we have w(c) = 0. This proves (1). Next assume that $w_{\alpha}(c) > 0$. Let us consider $w_{\lambda}(c)$ as a function of variable λ ($\alpha \leq \lambda \leq 2\alpha$). Then it is evidently continuous, and it takes the least and the largest values ε_1 and δ_1 in $\alpha \leq \lambda \leq 2\alpha$. By virtue of (1), we see that ε_1 is positive. Then (2) follows easily from the fact that $w_e(c) \neq w_{w(e)}(c)$ holds only if e is one of a_i or b_j and in this case $w_e(c) \notin G$, whence $w_e(c) \neq 0$.

These being proved, we see that 0 is primary. Let $a(\neq 0)$ and $b(\neq 0)$ be two non-units in 0. Then there exist positive numbers ε and δ such that $w_{\lambda}(a) \ge \varepsilon$, $w_{\ell}(a) \ge \varepsilon$, $w_{\lambda}(b) \le \delta$, $w_{\ell}(b) \le \delta$ ($\alpha \le \lambda \le 2\alpha$, $\alpha < w(e) < 2\alpha$). Let k be an integer such that $k\varepsilon > \delta$. Then we have $w_{\lambda}(a^{k}/b) \ge 0$, $w_{\ell}(a^{k}/b) \ge 0$ ($\alpha \le \lambda \le 2\alpha$, $\alpha < w(e) < 2\alpha$), whence $a^{k}/b \in 0$, i.e., $a^{k} \in b0$.

It is evident that \mathfrak{o} is completely integrary closed, because \mathfrak{o} is an intersection of special valuation rings. That \mathfrak{o} is not a valuation ring follows from that $e/x \notin \mathfrak{o}$, $x/e \notin \mathfrak{o}$ if $\alpha < w(e) < 2\alpha$.

2. An existence theorem.

LEMMA 1. Let r be an integrally closed integral domain which has only one maximal ideal \mathfrak{p}_0 . Let K be the quotient field of r. If Z is a field containing K, $\mathfrak{o}_{\mathfrak{p}} \cap K = \mathfrak{r}$, where \mathfrak{o} is the totality of r-integers in Z and \mathfrak{p} a maximal ideal of \mathfrak{o} .

Proof. We may assume without loss of generality that Z is algebraic over K because the quotient field of \mathfrak{o} is algebraic over K.

First we assume that Z is finite normal over K. Let $\{\sigma_1, \ldots, \sigma_n\}$ be the totality of automorphisms of Z over K. We show that every maximal ideal of \mathfrak{d} is one of \mathfrak{p}^{σ_i} : Assume that a maximal ideal \mathfrak{q} of \mathfrak{d} is none of \mathfrak{p}^{σ_i} . Then there exists an element c of \mathfrak{q} such that $c \notin \mathfrak{p}^{\sigma_i}$ for every $i = 1, \ldots, h$. A power e of $\prod_{i=1}^{h} c^{\sigma_i}$ is in K, whence in r. Since $c \in \mathfrak{q}$, we have $e \in \mathfrak{p}_0$, whence $e \in \mathfrak{p}_{0}^{\mathfrak{h}}$. Therefore one of c^{σ_i} must be in \mathfrak{p} , i.e., c is in some \mathfrak{p}^{σ_i} , which is a contradiction. This being shown, we have $\mathfrak{d} = \bigcap_{i=1}^{h} (\mathfrak{d}_p)^{\sigma_i}$. Therefore $\mathfrak{d}_p \cap K = (\mathfrak{d}_p)^{\sigma_i} \cap K = (\bigcap_{i=1}^{h} (\mathfrak{d}_p)^{\sigma_i})$ $\cap K = \mathfrak{d} \cap K = \mathfrak{r}$.

Next we assume that Z is finite algebraic over K. Let Z^* be a field containing Z which is finite normal over K. Let \mathfrak{d}^* be the totality of r-integers in Z^* and let \mathfrak{p}^* be a maximal ideal of \mathfrak{d}^* which contains $\mathfrak{p}\mathfrak{d}^*$. Then evidently $\mathfrak{d}_{\mathfrak{p}^*}^* \cong \mathfrak{d}_{\mathfrak{p}}$. Since $\mathfrak{d}_{\mathfrak{p}^*}^* \cap K = \mathfrak{r}$, we have $\mathfrak{d}_{\mathfrak{p}} \cap K = \mathfrak{r}$.

Making use of this, we prove the general case. Let c be an element of $\mathfrak{o}_{\mathfrak{p}} \cap K$. c may be written in a form a/b $(a, b \in \mathfrak{o}, b \notin \mathfrak{p})$. We consider $Z^* = K(a, b)$. We set $\mathfrak{o}^* = \mathfrak{o} \cap Z^*$, and $\mathfrak{p}^* = \mathfrak{p} \cap \mathfrak{o}^*$. Then \mathfrak{p}^* is a maximal ideal because \mathfrak{o}

⁶⁾ Because o is integral over r, $p_0 = r \cap p = r \cap q$.

is integral over \mathfrak{d}^* . It is clear that $a, b \in \mathfrak{d}^*$, $b \notin \mathfrak{p}^*$ whence $\mathfrak{d}^*_{\mathfrak{p}^*} \supseteq c$. Since Z^* is finite over K, we have $\mathfrak{d}^*_{\mathfrak{p}^*} \cap K = \mathfrak{r} \supseteq c$, which proves our assertion.

LEMMA 2. Let K be a field with a valuation ring v and let Z be a field containing K which is algebraic over K. Let v be the totality of v-integers in Z and let $\{v_{\lambda}; \lambda \in A\}$ be the totality of maximal ideals of v. Then every valuation ring w of Z, such that the valuation given by w is an extension of that given by v, is one of $v_{p_{\lambda}}$ ($\lambda \in A$). Conversely, every $v_{p_{\lambda}}(\lambda \in A)$ is a valuation ring.

Proof. It is clear that any such valuation ring w contains one of $\mathfrak{o}_{\mathfrak{p}_{\lambda}}$. Hence we have only to prove the converse part. But this follows immediately from the following facts:

 $(1)^{7}$ An integrally closed domain m of integrity is a multiplication ring if and only if $\mathfrak{m}_{\mathfrak{p}}$ is a valuation ring for every maximal ideal \mathfrak{p} of m.

 $(2)^{\$}$ Let \mathfrak{m} be a multiplication ring with quotient field K. If a field Z containing K is algebraic over K, then the totality \mathfrak{o} of \mathfrak{m} -integers in Z is also a multiplication ring and Z is the quotient field of \mathfrak{o} .

LEMMA 3. Let r be a completely integrally closed integral domain with quotient field K. If Z is a field containing K, the totality \circ of r-integers in Z is also cmpletely integrally closed.

Proof. Assume that Z is finite normal (algebraic) over K. Let $\{\sigma_1, \ldots, \sigma_n\}$ be the totality of automorphisms of Z over K. Set r = [Z:K]/h. Assume that $(a/b)^n c \in \mathfrak{o}$ for every natural number *n*, where *a*, *b* and *c* are non-zero elements of \mathfrak{e} . Let *f* be an arbitrary elementary symmetric formula of $[(a/b)^{\sigma_1}]^r$, $\ldots, [(a/b)^{\sigma_n}]^r$, and set $c' = (\prod_{i=1}^h c^{\sigma_i})^r$. Then $f^n c' \in \mathfrak{e}$, whence $f^n c' \in \mathfrak{r}$ for every natural number *n*. This shows that $f \in \mathfrak{r}$, whence a/b satisfies a monic equation with coefficient in \mathfrak{r} , i.e., $a/b \in \mathfrak{o}$, which proves our assertion when Z is finite normal over K. This being proved, we can reduce our problem to the ganeral case by the same way as in the proof of Lemma 1.

THEOREM 2. Let K be a field. Then there exists a completely integrally closed primary domain of integrity which is not a valuation ring such that its quotient field is K if and only if K satisfies one of the following two conditions:

(1) K is of characteristic 0 and K is not algebraic over its prime field.

(2) K is of characteristic $p(\neq 0)$ and K contains at least two algebraically independent elements over its prime field.

⁷) W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Zeit. 41 (1936), Theorem 7 (p. 554).

⁸⁾ Prüfer, Untersuchungen über die Teilbarkeitseigenschaften in Körpern, Crelle 168, p. 31 or 1. c. note 6) Theorem 8 (p. 555).

Proof. (1) The case where K satisfies neither of these conditions. Let \mathfrak{o} be any integrally closed⁹⁾ primary domain of integrity with quotient field K. When K is algebraic over its prime field, let K_0 be its prime field. When K is not algebraic over its prime field, let K_0 be its subfield which is isomorphic to the rational function field of one variable with its prime field as the constant field. Then evidently $\mathfrak{o} \cap K_0$ is a valuation ring. Then by Lemma 2 it follows that \mathfrak{o} is also a valuation ring.

(II) Assume that K satisfies one of the above two conditions. Then it is easy to see that there exists a subfield K_0 of K such that K_0 has a non-trivial discrete special valuation and such that K has transcendental degree 1 over K_0 , that is, there exists an element x of K such that x is not algebraic over K_0 and K is algebraic over $K_0(x)$. Let \overline{K}_0 and \overline{K} be the algebraic closures of K_0 and K respectively. Then by Theorem 1 we can construct a completely integrally closed primary domain r of integrity which is not a valuation ring and whose quotient field is $\overline{K}_0(x)$. Let \overline{v} be the totality of r-integers in \overline{K} and let \overline{v} be a maximal ideal of \overline{v} . Set $v = \overline{v_{\overline{v}}} \cap K$. Then since r is completely integrally closed, \overline{v} is so too by Lemma 3. Therefore v is also completely integrally closed. Since r is primary, so is $\overline{v_{\overline{v}}}$ too, whence v is primary. On the other hand, since $\overline{v_{\overline{v}}}$ $\cap K_0(x) = r$ by Lemma 1, $\overline{v_{\overline{v}}}$ is not a valuation ring and therefore v is not a valuation ring again by virtue of Lemma 2. Thus our proof is complete.

Mathematical Institute, Nagoya University

⁹⁾ We need not assume here that o is "completely" integrally closed.