ON A HOMOTOPY CLASSIFICATION OF MAPPINGS
OF AN (72+1) DIMENSIONAL COMPLEX INTO AN
ARCWISE CONNECTED TOPOLOGICAL SPACE WHICH
IS ASPHERICAL IN DIMENSIONS LESS THAN 72 (12> 2)

NOBUO SHIMADA and HIROSHI UEHARA

Pontrjagin classified mappings of a three dimensional sphere into an #
dimensional complex, where he made use of a new type of product of cocycles.
By the aid of the generalized Pontrjagin’s product of cocycles Steenrod enumerat-
ed effectively all the homotopy classes of mappings of an (#+41) dimensional
complex into an # sphere. According to the recent issue of the Mathematical
Reviews it is reported that M. M. Postnikov extended Steenrod’s case to the
case where an arcwise connected topological space which is aspherical in di-
mensions less than #, takes place of an » sphere. (Postnikov M. M., Classifi-
cation of continuous mappings of an (#+1) dimensional complex into a con-
nected topological space which is aspherical in dimensions less than #. Doklady
Akad. Nauk SSSR (N.S.) 71., 1027-1028, 1950 (Russian. No. proof is given.)) But
here in Japan no details are yet to hand. We intend to give a solution to this
problem in case where n#>>2, and also to give an application concerning the (%
+3)-extension cocycle.

§1. The simplest case where the n-th homotopy group n,(Y) of Y has a
finite base, each element of which is not of finite order.

Let X be a finite complex with a fixed decomposition and let Y be an arcwise
connected topological space aspherical in dimensions less than #. {a;;i=1,
. . .,A} denotes a base of n,(Y) and a mapping h; : S*>Y ({=1,...,A) repre-
sents a;. Let »:S”*1—>S” be a mapping, which represents the generator # of
7n+1(S?).  (hin) denotes the element of n,.;(Y) which is represented by a
mapping hin:S**'->Y. Now two groups n,(Y) and n,(Y) form a group pair
with respect to 7»+;(Y) when we define

i) aioa;j=0, where % j, and O is the unity of =, (Y),
ii) aioa; = (hiy),
iii) the bilinearity is assumed with respect to o operation.
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Then for two elements «, & n,(Y), where a=ﬁa,’a,~, B:‘Z‘b;ai, ao°f is
=1 =]
uniquely determined to be an element of 7py (Y):
A A A
aof= (?];aiai)o ( E’bja'j) = ‘E(Gibj)a'ﬁa’j = 'Z; (@ibi)(hin) E sy (V).
= = 7 =

We have the following properties concerning o operation.

i) aofl=foa
ii) ao(f+71)=acf+acr
iii) 2a 08 =0.
As was shown by Steenrod [2], a cell complex M;*** (i=1,...,4) is con-
structed by suspension, starting with a two dimensional complex projective plane
M4, M*+* (i=1,...,2) is decomposed into three cells:an (z+ 2) dimensional

cell E»*?, an n dimensional cell E;?, and a point E°. Steenrod showed (E,-”)Q

{Ei"*} = {E"**}). Let M"*? be a cell complex M,***VM,"**V . ..V M)"*** which

is an union of Mi**? (i =1, .. .,A), joined together at a point E*=E’=. .. =E)".

Then it is easily seen that {E;"} U {Ei*}={E***} and {E*} sz{Ej"}-: 0 (7).
n-~9 n-

Thus we define that E;"JE;” = E;**? and E?UE;"=0 (ixi). Let si” be a
n=2 n=2

cocyle a; Ei” of M”** and let s;"*? be a cocycle (ki) Ei**? of M”+%, then we have

i) si*Usi" = si"*?
i) s"Us =0 (i%j).

Let f be a mapping of X” into Y such that f(X”~') =%, where X7 is the 7-
skelton of a complex X and * is a fixed point of Y. Following Eilenberg [1].
Cs™ denotes an z cochain > 6;0;” where the coefficient 0; of an » simplex 4;” of X

i

is an element belonging to =,(Y, *) such that the mapping f: ¢;" > Y represents.

TueoreM 1. If 0Cs" =0, we have
the secondary obstruction {C"+*(f)} = {Cs”} U {Cs"}.
n-2

A
Proof. Let f(s;") represent an element > \mjia; of 7,(Y). We construct
i=1

a mapping k: S,V . . .V S\ ->Y such that #(S;*) represents a; (for i=1,.. .,
1), where SV ...V S\ denotes, as is usually designated, a union of spheres
Si? (i=1,...,4) joined together at a point £E% Again, defining a mapping
: X572V S"V ...V S” such that ¢ maps boundary 9¢;” of ¢;# (for any j)
onto E° and maps ¢;” ontn S;” with degree mj;, we see that f is homotopic to
h¢. Since C”*2(f) is cohomologous to C***(h¢), we may assume f = h¢ with-
out loss of generality. As Cs”" is an % cocyle and so 8 Cs” (ar*?) = Cs" (0ar™*")
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A
= h(p(Qar™")) = h( El ari Si™) =( Ellak;a;= 0, we have ar; =0 for every % and for
i=] =

¢=1,...,A ‘Therefore ¢ can be extended to a mpping D Xt 8§V Sy
...VS" Let 7 be k@, then we have C**2(f)=C"*(f). As mpy;i (S"V S

A A
V.. VS™) =D mnu(Si"), ¢ (00r"*?) represents D ex’ Bi where j; is the gener-
i=1 i=1

ator of 7,.1(S") and e is 1 or 0 according as ¢ maps the boundary 9¢;"*? of
an (n+2) simplex ¢z"*? of X into S;” essentially or not. Therefore it is easily

_ A

verified that C#*2(f) (op"*?) = f (0 ar*?) = hG(9ar"*?) =‘_2] e’ (him). As was shown

by Steenrod [2], ¥ can be extended to a mapping ¢ : X#+:— Mntz= M2V . . .
A Py A A

V M,**2, Putting S”+2=‘El(hi7])Ei"+2= E}s;”” and s*=>a; E"=>)s;, we have
= ] i=1 i=]

s"t?=g"|Js" from discussions referred to above.

n-2

f* §n+e (Uk"”) = @'——*(‘i} (h‘. v)Ei"“) (ak"”)
A — Ao
=(§l(hm)Ef"”)(¢(ak"“))=§ek'(hfv),
so that we have

Prsntr=Cree( ),
Evidently ¢ *s"+? =("¢:*S”)n\:g($*8")=(97*3") U(@*s") and (§*s™)(0;") = s"(P(0;™))

=S"(¢'(O'j”))=‘>i-_:,mjiai=Cfn(0‘j"), so that we have
'(7)'_‘*sﬂ+2 = Cj" U Cf".
n=2
It follow that {C"**2(f)} = (Cf"}L,i(Cfn }. This proves Theorem 1.

§2 The cace where the 7z-th homotopy group z,(Y) of Y is a cyclic
m

group {&) of order m.

THEOREM 2. The analogous Theorem holds true in this second case.

Proof. Let f(o;”) represent an element p;a and let a mapping 2: S*"->Y
represent the generator a of 7,(Y). Define a mapping ¢ : X”? - S” such that
¢ (") =p;S” then f is homotopic to k¢. It follows that Cs"=Cs,” and
{C"2(f)}y={C"*2(h¢)}. Without loss of generality it may be assumed that
f=h¢. As Cs"is an n-cocycle and so dCs” (0;"!) = h(¢(20;™*")) = h(q;S™)
=gqja =0, we have g; =+ r;m where 7; is an integer =0. Let £7*' be an (»
+ 1) element, whose boundary 9E7%! is mapped onto S” with degree m. Then
we designate by E#*1\JS" a cell complex which attaches £7*! to S”, identify-
ing the boundary point of E™*! with its image on S™. If ;=0, ¢ : 0g;**!' > S"
can be extended to a mapping ¢ : ¢;7t'> S”. In case 7;% 0 ¢ can be extended
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to a mapping ¢ : ¢;*"* > E**'|JS” in the following way. Dividing a simplex
oi"=(a,a, . . . ,an) into p; parts by (n—1) faces a,4;"* (t=1,...,(p;—1)),
we may assume without loss of generality that ¢ maps @, 4;*"? into a point E°
on S” (¢(00;?)=E") and also each of p; subdivided n-simplexes onto S” with
degree 1. Then we can separate all the subdivided simplexes on 9¢;**! into 7;
sets Y/ ={rix/ (i=1,...,7,k=1,....s))) of simplexes such that the sum of
degrees with which 7/ (k=1,. . .,s;) belonging to %;’ are mapped onto S”, is
equal to m. Join s; simplexes belonging to %;’ by a tube 3/ in the interior of
o;7*1 such that the tubes {3/ (=1, .. .,7)} do not intersect one another. Now
¢ can be extended such that ¢ maps 93;7 into E°. As the boundary &/ (i=1,

.,7) of the point set which consists of {rix* (=1,...,si)} and the tube
3;7 is a topological #-sphere and ¢ maps 4;/ onts S” with degree =, it is seen
that ¢ can be extended to a mapping ¢ : ¢;7*' > E?*1\JS” for such j as 7;x0.
It follows that we have an extended mapping ¢ : X**!'—» E**!'\JS” of ¢. Then
it is easily verified that there is an extended mapping %z : E**!'\JS”->Y of h.
We designate by f an extended mapping %« @ of f.

With respect to the closed subset S” of E”#*1\JS”, considering the homotopy
sequence

> 211 (SP) > s (B %) > s (BPH1U S7, SP)—> 2 (ST)—>

it is easily seen that the boundary operation @ maps isomorphically 7. (E"**
\JS* S*) into a subgroup {mk; k=0, x1,...} of n,(S”), isomorphic to the
integer group and that n,,;(S”) (n>2), isomorphic to the cyclic group of order
two, is mapped by 7 onto w4 (E?*'\US"). In case where m is even, iy :S”**!

" i
—> S"—> E711JS”, (where 7 represents the generator of mny;(S”) and ¢ the

injection), represents the generator of =,y (E**'\JS"), which is of order two,
while if m is odd, 7. (E™*'\JS") is a trivial group.

Now ¢ :9¢;”*2—» En+1JS” is homotopic to ey or to an inessential map-
ping. In the former case, tdking an (n+ 2) element E;”**? in the interior of
¢;7*°, mapping OE;"** onto the closed subset S? of E#*'|JS” by 7, we may
have a homotopy between ¢ |94;%** and i.n over o;"**— E;"** and also, with
Steenrod, extend % : 9 E;”*? > S” to a mapping E;**?-> M7*2S”, Therefore we
have an extended mapping ¢ : X#+2—> Mnt2\J En+3,

C™2(f) (0;74%) = €™ (F) (0j7*) = BF (20;"**) = ¢ (o),
where (k+n) is an element of 7,.;(Y) represented by a mapping hzn: S"*!

n 3
—>»S"—Y, and ¢ is 1 or 0 according as ¢ : 90;7**—~ E7+1|JS” is homotopic to



HOMOTOPY CLASSIFICATION OF MAPPINGS 71

iy or to an inessential mapping. Now the following discussions are the same*

as used in §1 and so omitted. It is concluded that {C"*2(f)} ={C/*}U{Cs")}.
n-=2

§ 3. The most general case where 7, (Y) has a countable infinite base.

Let {ar: (A=1,2,...)} be the elements of a base of 7, (Y), whose orders
are not finite and let {B.:(2£=1,2,...)} be the elements of a base, whose
orders are m, (#=1,2,...). Define a mapping %:(S"VS:"V...)V (5"
VSV ...)>Y such that ha=h|S\* and h.=h|S," represents a) and 3,
respectively. As discussed in §§1. 2. we can define a mapping ¢ : X”*— (S,*
VSV .. )V (S”VS"V...) such that f is homotopic to k+¢. Since §Cs*

=0, we have ¢ (og;"*") =§;,i:r,~ m;Si”, where 7; is a integer =0, and all the

spheres onto which ¢;#*! is mapped by ¢ are finite and so are designated by
Si* (i=1,...,k), changing the index. In virtue of arguments in §§ 1. 2. we have
an extended mapping ¢ : X" > (SPVS"V... . VS)V(B*V ... VP ),
where Pi*+ = E»*'(JS” (i=1,...,0), and also an extended mappingi s Pt
-Y of hi, so that 2:(S;"V...VSH)V(PMIV...VP"*")>Y can be de-
fined as an extension of k. Put f =Zp‘ﬁ. It is verified that m,.;((S,”V S:*

V... NSV (PIIV. . .VP,,:"“))=~le7r,,+,(S;")+ip27r,,+,(P,'") for #>2. There-
i= =1
fore C™2(f)(0;™?) = C™2(F)(80;7*?) = hg (90;,7%) = Sei(hin) + Se; (7;1).
T J

The later arguments are analogous as referred to in §§1. 2. and so omitted.
Now we have Theorem 3, which furnishes an essential tool to the classification
problem discussed in this paper.

THEOREM 3. In case where the n-th homotopy group of Y has an infinite
countable base, the analogous Theorem as Theorems 1. 2. holds true.

§4. The classification of mappings of X =X"*! into Y.

Because it is clear to classify mappings of X”*! into ¥ now that Theorem
3 has been established, we shall give only the summary of this problem. Two
mappings f, g: X~Y such that | X” is homotopic to g|X” (for r=n+1),
are said to be 7-homotopic each other. By the concept of 7-homotopy, all the
mappings of X into Y are divided into disjoint homotopy classes, which are re-
ferred to as 7-homotopy classes. Then all the n-homotopy classes are in one
to one correspondence with the z-th cohomblogy group H,(X) of X because,

* In this case E.” is considered to be a cocyle modulo 2, so that we have {1E/}u {1E}
n-2

={1Em+?), where 1, 1 are units of In (cyclic group of order m), I» respectively. Thus

such a group pairing is the same as discussed in §1.



72 NOBUO SHIMADA AND HIROSHI UEHARA

for any normal mapping f belonging to an #-homotopy class U* a cohomology
class represented by a cocycle Cs* is uniquely determined, and moreover for
any #n-cocycle C* there exists a mapping f: X—Y such that Cs”=C” Second-
ly, the squareing homomorphism Sgy-3 : Hp_1(X, 7x(Y))>Hy41(X, 72+:(Y)) can
be established (refer to Steenrod [2]). If we put A, (X)=Sqn-s(Hp-i(X,
72(Y))), we have

THEOREM 4. For two normal mappings f, g: X*"'>Y such that f|X"
=g| X" f is (n+1)-homotopic to g if and only if {d"'(f, &)} belongs to
Anni(X).

Proof. This theorem can be easily verified in an analogous way as Steenrod
shows. The proofs of Theorem 4 and of the squaring homomorphism referred
to above are accomplished essentially by the aid of Theorem 3.

THEOREM 5. All the (n+ 1)-homotopy classes involved in an n-homotopy

class are in one to ome correspondence with Hpy (X, (YY) /Sqn-sHu-1(X,
ﬂn(Y)).

§5. The (243)-extension cocycle,

Let X be a finite simplicial complex and let Y be an arcwise connected
topological space whose homotopy groups vanish in dimensions less than n. Let
f, & be two maps of X7#+?into Y such that f/X”=g/X". Denote the (n+3)-ex-
tension cocycles of f, g with coefficients in m,.(Y) by ¢*+3(f), ¢**3(g) re-
spectively. Then we have

THEOREM 6.

C””(f) - c”*"(g)v\d”“ udnr+! (ﬂ>2),
n-1
S(f)=c(g)w~a*Uai+cUa® (n=2),
1
where d"*'=d"*!(f, g) is the (»+1)-difference cocycle with coefficients in
7n1(Y), and *=cs’=c,’ is the characteristic cocycle. The pairing of coefficients
in the term d““Uld”“ is analogous as used in the previous sections, while the
Whitehead product is taken .as the pairing of coefficients in the term c¢*\Ud>
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