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GAUSSIAN SAMPLE FUNCTIONS: UNIFORM DIMENSION

AND HOLDER CONDITIONS NOWHERE

SIMEON M. BERMAN

Introduction.

Let X(t), t^O, be a real Gaussian process with mean 0, stationary

increments, and σ2(t) = E\X(t) - X(0)\2. Here σ2(t) = J°° \em - l | 2 r 2 ( l + λ2)

dH(λ), for some bounded monotone H. We summarize the main results. If

the derivative H' of the absolutely continuous component of H satisfies

Hr{λ)>C\λ\-a-1 for all large \λ\, for some 0 < a < 2, then i) The local

time φ(x, t) of the sample function exists, is jointly continuous in (x, t),

and satisfies a uniform Holder condition in t of any order smaller than

1 — α/2, almost surely; ii) X{t), O^t^T, nowhere satisfies a Holder condi-

tion of order greater than a/2, almost surely. If, furthermore, the sample

functions are almost surely continuous, then {x : dim [t :0<t < 7 \ X{t)

= x~\ < 1 — or/2} is nowhere dense, almost surely. If, in addition, σ2(t) <

B\t\β

9 0<t ^T for some 0 < β < 2, then dim {t :0^t<T, X(t) = x] <,1 — β/2

for all x, almost surely. If X{t) is stationary and ergodic, and a = β in

the conditions above, then dim {t : tl>0, X(t) = α;} = 1 — a/2 for all x9

almost surely.

The theme of the preceding three papers [3], [4], and [5] is that the

smoothness of the local time of a Gaussian process implies the irregularity

of the sample functions. Here we continue to demonstrate this implication

in a quantitative way, and sharpen some of the earlier results.

The original calculations for the proof of the continuity of the local time of

a Gaussian process are in [3]. The conditions were simplified and weakened,

and joint continuity was proved in [5]. While not strictly comparable to

those in [5], the hypotheses here are more simply stated, and the conclusions

are stronger (Theorem 4.1).
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Theorem 5.1 states that the sample functions nowhere satisfy a Holder

condition of a certain order. Although the hypothesis is stronger than

that in [4], the conclusion is more precise.

The novelty of our results on the dimension of the x -values of the

sample functions is that they yield an upper bound on the dimension which

is uniform in x (Theorem 7.1), and an exact evaluation uniform in x for

stationary processes (Theorem 8.1). Our earlier result in [5] and Orey's in

[11] give the dimension for a fixed value of x. Our present hypothesis is

slightly stronger than that of Orey.

It also follows from our method that in the particular case of the

Brownian motion process, the exact dimension of the pre-image of every

point in the interior of the range is equal to 1/2, almost surely.

A major part of the analytics of Gaussian local times concerns the de-

terminant of the covariance matrix of the finite-dimensional distribution of

the process. An elementary inequality for such determinants (Lemma 2.1)

is used for the first time; the calculations are simpler than in [3] and [5],

1. Gaussian processes with stationary increments and their local

times.

Let X{t), t > 0, be a Gaussian process with mean 0 and stationary in-

crements. Put σ\t) = E(X{t) — X(0))2. If σ%t) is continuous (and we shall

assume this) then it has the spectral representation

(1.1) σ\t) = j~Jeu t - l | 2 r 2 ( l + λ*)dH(λ),

where H is bounded and nondecreasing. For s <t the difference X(t) — X(s)

has the stochastic integral representation

(1.2) X(t) - X(s) =

where ξ is Gaussian with orthogonal increments, and E\ξ{dλ)\2 = dH{λ).

Throughout this work we will assume that H satisfies the following con-

dition : There exist numbers a and C, 0 < a < 2, C> 0, such that the deri-

vative h(λ) of the absolutely continuous component of H satisfies

(1.3) Uh-Kl + ̂ W ^ C , for all sufficiently large \λ\.

This is equivalent to

(1.30 \λ\«^h(λ)>C, for all sufficiently large \λ\.
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We recall the definition of local time. Let f(t), t>0, be a real-valued

Borel function, and μ the linear Borel measure. For every pair of Borel

sets A c (—00, 00) and la [0, oo), define

which is the time spent by f(t), t <= I, in the set A. For fixed /, if χ>( , /)

is absolutely continuous, then its derivative φ(x, I) is called the local time

of / relative to /; we then say that the local time exists relative to /. We

define the function φ(x9 t) to be <p{x, [0, t]).

Now let X{t), t^O, be a process with Borel sample functions, for ex-

ample, continuous sample functions. If X is Gaussian then under certain

general conditions the local time exists for almost all sample functions [3].

We continue to use the symbol φ(x, t) as the local time, but it now depends

also on the sample function; therefore, φ(x, t) is a stochastic process of two

parameters x, t, where —oo < x < oo, t>Q.

Here is the outline of the analytic method used in [3] and [5] for the

calculation of the moments of φ{x, t). For a fixed sample function and

fixed t, the Fourier transform on x is the function of u,

[ eiux<p(x9 t)dx,

which is equal to

Jo

Express φ{x, t) as the inverse Fourier transform of this function:

(1.4) φ(x, t) = -J-Γ e-iu*([eiuX^ds)du.

The mth power of φ is

l \ exΌ\i^ΣUjX(si)Ίrfsi *dsmdux- dum.
Jo Jo L y=i Jx
Jo

Take the expected value under the sign of integration: the second exponen-

tial in the above integral is replaced by the joint characteristic function of

X{Si), , X(sm). Interchanging integration and applying the characteristic

function inversion formula, we get
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(1.5) Eωm(x, t) = [ [pmix, , x su , sjdsi dsm,
Jo Jo

where pm(#i, , xm; su , sm) is the joint density function of X(sι), ,

X(sm) at the point (xu , #m) In the Gaussian case the density is of the

form

where R is the covariance matrix of X(si), , X(sm), \R\ its determinant,

and Q a nonnegative quadratic form. Estimates of the moments of φ

depend on the rate of decrease to 0 of \R\ as Sj —• sj-i->0 for some j .

In this paper X(t) shall always be a Gaussian process with mean 0 and

stationary increments, and have the representations (1.1) and (1.2). In

Section 8 X(t) will be stationary.

2. Properties of the finite-dimensional distributions.

A preliminary result of much use to us is this property of determinants

of covariance matrices.

LEMMA 2.1 Let A and B be nonnegative definite symmetric matrices of the

same order; then \A\ ^ \A + B\.

Proof. If IAI = 0, the lemma is trivially true. Now assume \A\ > 0.

Let m be the rank of A. The well known formula (e.g. [7], p. 120) states

that

\A\ = (2π)m(\Rm- { exp [—^u'Au)du)'\

where u is an m-component column vector. From this relation—with A + B

in place of A — and from the linearity and positivity of the quadratic form,

we obtain:

\A + B\ = (arJ'Q^jβ 2" " 2" "du)

-λu'Aua rt — U SLU v _ 2

Ra. \e * du) =\A\.
In order to calculate the moments of the local time, we use the fol-

lowing property of the finite-dimensional distributions of the stochastic pro-

cess (cf. [3], p. 294; [5], p. 1268). We shall first state it, calling it Condition
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A, and then prove that it holds under the hypothesis (1.3). The interpre-

tation of this condition is that the successive infinitesimal increments of the

process are not too highly correlated.

Condition A. For every T > 0 and positive integer m, the determinant

of the covariance matrix of the normalized increments

(2.D X ( yfy
is bounded away from 0 on the m-dimensional set

(2.2) {(tu . , U : 0 = to<t1< <tm<T}.

First we verify Condition A for a special process.

LEMMA 2.2. Let X{t), t>0, have the particular spectral function

H(λ) = V y'-'il + yT'dy;
J-oo

here σ2 has the form

(2.3) σ2(t) = K\t\a,

where

K=\~ \eil-l\*\λ\-~ιdλ.
J —oo

Then Condition A holds.

Proof. For 0 < a < 1, the function (2.3) is concave in t, and the con-

clusion follows from the inequality in [31 p. 1269.

For 1 < a < 2, the proof is the same as that of [3], Lemma 5.2. While

the latter presumes the stationarity of the process, it is really only the

stationarity of the increments that is used in the proof.

In the following two lemmas, Condition A is shown to hold for the

more general process.

L E M M A 2 . 3 . Under ( 1 . 3 ) , f o r every T > 0 there exists a constant b > 0 such

that

(2.4) σ*{t)>b\t\a, for all t,O<

Proof For sufficiently large M, σ2{t) is, by (1.1) and (1.3), at least equal

to
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C J
\X\>M

This is asymptotic to CK\t\a for £->0, and vanishes only for t = 0.

LEMMA 2.4. Condition A holds under (1.3).

The covariance matrix of (2.1) is representable as the sum of

two covariance matrices A and B, corresponding to the absolutely continuous

and singular parts of H, respectively. In proving this lemma, it suffices, by

Lemma 2.1, to consider only the matrix A; hence, we shall assume that H

is absolutely continuous.

The covariance matrix of (2.1) has another decomposition into matrices

of the same type. The stochastic integral (1.2) may be broken up into an

integral over \λ\<LM and an integral over \λ\ > M, for arbritary M> 0.

The covariance matrix is the sum of the covariance matrices of these two

independent processes. By another application of Lemma 2.1, it suffices to

disregard the first matrix and suppose that the function h(λ) satisfies

(2.5) h(λ) = 0, for \λ\ r<M,

where M is arbitrary but fixed.

Under (1.3) h(λ) has another decomposition—into the sum of two non-

negative terms for sufficiently large \λ\:

By another application of Lemma 2.1, we may suppose in the proof that

the second term vanishes so that%

h(λ)= ^ 7 » for \λ\ >M.

For simplicity we put C = 1:

(2.6) A(j) = JAllIL. for U| >M.

As a result of the statements above, the proof of our lemma has now

been reduced to that of the case of the function h defined by (2.5) and

(2.6). This function differs from that considered in Lemma 2.2 only on the

interval [—M, Λf]. We shall complete the proof by showing that this part
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of h has no effect on the nonsingularity of the limiting covariance matrix.

Decompose the vector of normalized increments (2.1) into two indepen-

dent parts,

(2.7) j t.Q~_*7'~' Λl + W

and

(2.8) j ,C,~-*"'"!> ( 1 + λ t )

Let h be the function corresponding to the special process in Lemma 2.2.

The determinants of the covariance matrices of the two parts (2.7) and (2.8)

are strictly positive on the set (2.2), and the determinant of the sum of the

two matrices is bounded away from 0 (Lemma 2.2). This implies that the

determinants of (2.7) and (2.8) cannot both tend to 0 along a sequence of

points in (2.2) converging to the boundary. Any point on the boundary

has equality among at least two successive coordinates tj-x and tά\ therefore,

as a continuous function, positive on (2.2), each determinant is bounded

away from 0 if and only if it is so bounded along sequences in (2.2) for

which tj — tj-χ- +0 for some j = 1, , m. The variance of (2.7) is equal

to

and tends to 0 as tj —tj^-^O; therefore, the random variable (2.7) con-

verges in probability to 0 as the point in (2.2) approaches the boundary;

thus, the portion (2.7) of the process becomes singular at the boundary;

therefore, the portion (2.8) cannot become singular. Since the process cor-

responding to (2.8) has the function h defined by (2.5) and (2.6), the conclusion

of Lemma 2.2 holds also for this function; therefore Condition A holds.

We summarize certain results implicit in [3] and [5]:

LEMMA 2.5. The determinant of the covariance matrix of

(2.9) X{tj)-X(0)9 ; = l, , m

on the parameter set (2.2) is equal to that of (2.1) times

(2.10) j\σ*(tj -tj-J.
3—1
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Proof. By elementary row and column operations, the covariance matrix

of (2.9) can be transformed into that of X{tj) — X(t j ^ ) , j = 1, , m : sub-

tract row j — 1 from row j , and column j — 1 from column j , for j = 2, ,

m. (The determinant is unchanged.) Next, divide every element in the j ύϊ

row by σ(tj — /^-i), and the same for the j th column, j = 1, , m — 1.

The matrix has become the covariance matrix of (2.1). To preserve the

original value of the determinant, we multiply the transformed determinant

by (2.10).

L E M M A 2.6. Under (1.3), for every T>0 and positive integer m, there exists

B > 0 such that the multiple integral

... πκ r

.E\exp[i%Uj(X(tj)-X(O)) , . .

is at most equal to

(2.12) B\h\ K 2 J

for all δ such that

(2.13) 0^<JL--1-

and for all t and h such that t, t + h e [0, T].

Proof By Lemma 2.4, Condition A is satisfied; therefore, by the cal-

culations given in [3], p. 294-295 and [5], p. 1268-1269, the integral (2.11) is at

most equal to

where Br depends only on T and m. (Note that the display in [5], p. 1269,

line 9, has two minor errors, and should be corrected to conform to (2.14).)

By Lemma 2.3 and elementary integration, we find that (2.14) is at most

equal to (2.12), where B is a suitable constant. Note that the exponent in

(2.12) is positive because δ satisfies (2.13).
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3. One-way Holder condition for a stochastic process of two
parameters.

In [5, Theorem 5.1] we derived a sufficient condition for the joint con-

tinuity of a stochastic process of two parameters. By increasing the strength

of the hypothesis, we now get a condition sufficient for a uniform Holder

condition in one variable. As in [5], we shall then apply the result to the

local time process.

THEOREM 3.1. Let Y{s, t)9 O ^ s , t : < 1 , be a stochastic process of two para-

meters. Suppose there are positive constants r, b, c, d such that:

(3.1) E\Y(s + h, τ)-Y(s, τ ) | r

for s, s + h e [0, 1], τ = 0, 1;

(3.2) E\Y(s, t + h)-Y(s, t)\r<b\h\1+d,

for all t, t + h, s<= [0, 1];

(3.3) E\Y(s + k, t + h)-Y(s + k, t)-Y(s, t + h)+Y(s, t)\r

for all s, s + k, t, t + h <E [0, 1].

Then for every ΐ < d\r there exist a version of the process Y, and random variables

η and Δ which are almost surely positive and finite such that

(3.4) \Y(s, t + h)-Y(s, t)\

for all s, t, h satisfying

s, t, t + h (Ξ [0, 1], and \h\ < η.

Proof By [5, Theorem 5.1] there is a version of the process with jointly

continuous sample functions; indeed, the current hypothesis differs from that

of [5] only in that condition (3.2) is stronger. Let Y represent this version

of the process.

By (3.3) and a suitable form of the Chebyshev inequality, the series

Σ

-γ(-L k-i\ , γ(i-ι fc-n
\2mf 2" / V 2m ' 2" J

me nd

> 2

converges; hence, by BorePs Lemma, there exists (random) integers vι and

v2 such that
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(3.5) max
l^i^2» l

γ(4r.

me nd

γ( + r

for all m>vι and n ^ v 2 . If 7Ί < c\r and Γ2 < djr, then there exist a cons-

tant D < oo and random variables ?/ and η" which are almost surely positive

such that

(3.6) | 7 ( 5 + i , t + k)-Y(s+k, t)-Y(s, t + h)+Y(s9 t)\ ^ A I * M * I Γ «

whenever \k\ <ηf and \h\ <η"\ indeed, this follows from (3.5) by a direct

extension of the calculations used to establish the Holder condition for a

process of one parameter (cf. [8], p. 73-74).

The condition (3.2) implies that for each s e [0, 1] and 7Ί < c/r, there

exist a constant D2 and a positive random η such that

(3.7) |7(s, t + h)-Y(s, *) |<;AI*l r *

whenever |/z| <5y; this is the content of the theorem just mentioned above.

This does not yet complete the proof of (3.4) because the constant A and

the random variable η in (3.7) depend on the fixed value of 5.

We claim that A is actually independent of s. To verify this, note

that the condition (3.2) is uniform in 5, and then use the same proof as that

of the one-variable Holder-condition theorem.

Now we proceed to construct an η which is independent of 5. Let 5

be an arbitrary number in [0, 1], with the dyadic expansion

s = Ϋj2~paVi with a0 = 0, ap = 0 or 1.
p - 0

It follows from (3.5) and the continuity of Y that Y(s, t + h) —Y(s, t) may

be expressed as the absolutely convergent series

(3.8) F(0, t + h) - 7(0, t) + Il\γ(ll2-paP, t + k) - Y(Σ2'paP9 t)

2_ι z

p=0

(The absolute convergence follows from the fact that each summand in (3.8)

may be expanded in a similar telescoping series with the dyadic represen-

tations of t and t + h, and that, by (3.5), the double series converges
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absolutely.) Choose ηf and η" so that (3.6) holds, and then a positive in-

teger N so that 2~N <η'\ then, the tail of the series (3.8), summed over

n^N, is at most

A | / * Γ 2 Σ 2~riw,

which is not more than

(3.9)

whenever \h\ < if*.

Let 270 be such that (3.7) holds for s = 0 whenever \h\ <y]0; and let ηn

be such that the nth term of the series (3.8) is dominated by 2Dz\h\rz when-

ever \h\ < ηn, n = 1,2, . Such ηn exist because the nth. term of the series

is at most

h)-Y(Jb2-pap, t) + Y(j]2^apy t + h) - YC^2~^apt t)\.

As noted above, D2 does not depend on n. Put

V = m i n (?]", yjo, VU * * * > VN-I)

If IAI < 27, then the sum of the terms of (3.8) up to index N is, by the de-

finition of 7]0, Ύ]u , ηN-u at most equal to

(3.10) 2ND2\h\rκ

Combining (3.9) and (3.10) we find that the series (3.8) is dominated by

J|A| r2 for I A. I < 27, where

Δ = D/J1 , ") + 2ND2.

This completes the proof.

We remark that the conclusion (3.4) differs from the classical Holder

condition for stochastic processes because the bound Δ here depends on the

sample function.

4. Uniform Holder condition on the local time

By Lemma 2.3 the double integral

dsds'
0J0 <τ(s — s')



74 SIMEON M. BERMAN

is finite for every t > 0; therefore, the local time φ(xf t) exists for almost

every sample function [3], p. 284. Sufficient conditions on σ2(t) for the joint

continuity of co are given in [5]. The present condition (1.3) is also sufficient:

LEMMA 4.1 Under (1.3) there is a version of the local time which is jointly

continuous in (x, t), almost surely.

Proof. Condition A is exactly the hypothesis of [5, Lemma 6.1], which

asserts the joint continuity.

We now use (1.3) to get the Holder condition on φ as a function of /,

uniform in x:

THEOREM 4.1 Under (1.3) there is a jointly continuous version of φ{x, t) such

that for every pair of intervals [A, B] and [C, D\ C> 0, and every T < 1 — a/2,

there exist random variables η and Δ which are almost surely positive and finite such

that

(4.1) \φ(x, t + h)- φ(x, t)\ <

for all x e [A, B\ all t, t + h e [C, D\ and all \h\ <η.

Proof. For simplicity we choose A — C = 0 and B = D = 1. We identify

φ(x, t), 0 ^ a? < 1, 0 < ί ^ l , with the process Y in Theorem 3.1, and show

that the conditions of the theorem are satisfied.

For the purpose of the proof we may assume that X(0) = 0 almost

surely. Indeed, consider the process X(t) — X(0) instead of X(t). The local

time of X(t) — X(0) is φ[x + - (̂0), t). It is jointly continuous and satisfies the

uniform Holder condition (4.1) if and only if φ(x, t), the local time of X(t),

does.

For any δ, 0^δ<— \- and positive even integer m, the mth

moment,

(4.2) E\φ{X+k, t + h)-φ(x + k, t) - φ(x, t + h) + φ(x, t)\m

is, by the method sketched after (1.4) and given in [3], p. 294, at most

equal to

(4.3) \k\mSπ'Λ . . . ••• U\Uj\ι

<J t <J t <ϋ - c o J —ooj—1_

y=i
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Since X(0) = 0, we may apply Lemma 2.6: there is a constant B = Bm such

that (4.3) is at most

(4.4) * Bm\k\mδ\h\ v 2 J.

By Lemma 4.1 the local time <p{x, t) is jointly continuous; therefore, by

the definition of φ, we have

φ(x9 0) = 0, for all x.

Now replace t and t + h by 0 and ί, respectively, in (4.2) and (4.3); then

the relation between (4.2) and (4.4) implies

(4.5) E\φ(x+k, t)-φ(x, t)Γ<Bm\k\mδ.

From (1.4) and the subsequent discussion we find that E\φ{x, t + h) —

φ{x9 t)\m is a maximum at x = 0 for fixed ί and /z. Putting d = 0 in (4.3),

and using Lemma 2.6, we obtain

(4.6) £|9(a?f t + h)-φ(x,

for all 0 ^ a ? ^ l

In order to apply Theorem 3.1, we now fix the magnitudes of m and

o. For a given T < 1 — α/2, let δ be a positive number satisfying

d < — - 4 - and r < 1 - -£- - αδ.

Choose m (even) so large that each of these inequalities hold:

(4.7)

mδ>l

r < m

Put

b = Bm, r = m, c = mδ - 1, d = m(l - - | - - αδ) - 1;

these, by (4.7), are positive. With the following correspondence, the con-

ditions of Theorem 3.1 are satisfied: (4.4) represents the bound in (3.3), and

the inequalities (4.5) and (4.6) represent (3.1) and (3.2), respectively. The
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conclusion (3.4) follows.

5. Absence of points where a Holder condition is satisfied

For a large class of Gaussian processes the sample functions nowhere

satisfy Holder conditions of given orders [4], and are nowhere diίferentiable

[5], almost surely. Now we shall get sharper results on the lack of Holder

conditions under the hypothesis (1.3).

By extending the method in [5, Lemma 3.1], we obtain this general result

about continuous real valued functions and their local times:

LEMMA 5.1 Let f(t), t e / (/ a real interval), be a continuous function with a

jointly continuous local time φ(x, t) satisfying a uniform Holder condition of order

ϊ < 1 :

(5.1) \φ{x, t + h)-φ(x, t)\<D\h\r for all x, and t e /,

for sufficiently small h. Then, for any subinterval J of I:

max/(/) - min/(/) 2= l ^ f / l " .
j j constant '

in particular, f{t) nowhere satisfies a Holder condition of order greater than 1 — ΐ.

Proof Let / be the interval [c, d\ By the definition of the local time,

we have:

d -c = JJ>(», d) - φ(x, c)]dx.

Since / and φ are continuous functions, φ(x, d) — φ(x, c) vanishes for all x

outside the range of f(t)9 c^t^Ld; therefore, the equation above may be

written as

(5.2) d - c = \ ' [φ{x, d) - φ{x, c)]dx.
Jmin/

By the compactness of / we may assume that (5.1) holds for any h such

that t + h e /; then, from (5.2), we get

d — c< D{d — c)r(max / — min /) .

THEOREM 5.1. Under (1.3) the sample function nowhere satisfies a Holder

condition of order larger than a/2, almost surely.
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Proof. There are two cases to consider: when the sample functions are

continuous and when they are not.

Suppose first that they are continuous. By Theorem 3.1 the local time

satisfies a Holder condition of order 1 — a'\2 for any ar > a; therefore, by

Lemma 4.1, the sample functions nowhere satisfy a Holder condition of

order greater than α/2.

When not almost surely continuous, Gaussian sample functions are

almost surely "badly" discontinuous. Well known theorems describe this

property of Gaussian processes (cf. [1], [9]). We want to show that if the

sample functions are not almost surely continuous, then neither do they sa-

tisfy a Holder of order greater than α/2 at any point, almost surely. For

this purpose, we use the method in [2], p. 193-194. Let / be an arbitrary

interval on the positive real axis. According to the reasoning in [2], the

spectral representation (1.2) implies that if the sample functions are not

almost surely continuous on /, then there is a point τ in / and a positive

number ε such that

(5.3) lim sup X(t) - X(s) > ε,

almost surely. This must be true almost surely for every τ in / because

(5.3) depends on the increments, which are stationary. It follows that (5.3)

must also hold for all τ in a countable dense subset of /, almost surely.

Then X cannot satisfy a Holder condition at any point of /; indeed if

\X(t + h) - X(t)\ <D\h\r for all small A, then, by the triangle inequality,

\X(s) — X{s')\ <2D\s — s'\r for all 5 and s' near t; in particular, we would

have

sup \X(s)-X(s')\<ε/2
s,s'

on any interval of length (ε/4Z>)1/r and which contains t; therefore, (5.3)

would not hold for any τ in such an interval.

6. Lower bound on the dimension of {t : X(t) = x].

If the local time of a continuous function f{t) is jointly continuous, then

{x : f(t) = x for at most countably many t]

is nowhere dense in the range of / [5, Lemma 3.2]. Using a Holder con-

dition on the local time we now get a better estimate of the set {t : f(t) =
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x}. We first need the following relation between the smoothness of a dis-

tribution function and the maximum measure it can assign to small sets.

LEMMA 6.1. Let G{t) be a bounded nondecreasing function {distribution function)

on an interval I, and satisfying a uniform Holder condition of order ϊ < 1 at each

point. If B is a subset of I of Hausdorff dimension β, where β < Y, then

[ dG(t) = 0.
JB

Proof By the hypothesis and by the definition of HausdorίF dimension,

for every ϊf > β and every n, there is a covering of B by open sets Ink9 k =

1,2, such that

diameter Ink < 1/w, for all k, and

oo

lim Σ [diameter Ink \ΐf < oo.

If V < r, then

lim Σ I diameter Ink\
r = 0.

«-»oo&=l

For any β < 7, choose V so that β < ϊr < T; then, by the limit relation above

and by the uniform Holder condition on G, we have

fjί dG{t)

oo

< constant* lim Σ I diameter Ink \r — 0.
n->oo fc=l

The next lemma concerns the dimension of {t : f(t) = x] when / is con-

tinuous, with a jointly continuous local time satisfying a Holder condition.

LEMMA 6.2. If f(t), O^Lt^T, is continuous, and its local time is jointly

continuous and satisfies a Holder condition

\φ(x9 t + h)-φ{x, t)\

uniformly in {x, t) for all sufficiently small h, then the set

(6.1) {x :dim[ί : 0<if < T , f(t) = xl<β)

is included in the set of zeros of φ{x, T) whenever β^LΪ.

Proof When the local time φ{x, t) is jointly continuous, it is a distribu-
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tion function in t for every x; furthermore, when / is continuous, then for

each x the support of the distribution φ(x, t), O^t^T, is contained in {t :

0<t^T, f{t) — x] [5, Lemma 1.5]. If this set has dimension smaller than

βf then φ(x, T) = 0 because ω satisfies a Holder condition of order Γ, and, by

Lemma 6.1, cannot assign positive measure to a subset of dimension smaller

than T.

This is applied to the sample functions of the stochastic process:

THEOREM 6.1. If X(t) has continuous sample functions, and if (1.3) holds,

then the set

(6.2) \x : d i m [ * :0^t<T, X(t) = < c ] < l - -

is nowhere dense, almost surely.

Proof. The local time is jointly continuous (Lemma 4.1) and satisfies a

uniform Holder condition of any order ϊ < 1 — a/2 (Theorem 4.1). For any

β < 1 — a/2, choose T so that β < T < 1 — a/2. By Lemma 6.2, the set

{x :dim[t O^ct^T, X{t) = x]<β]

is included in the set of zeros of the local time. By [3, Lemma 2.6] this

set is nowhere dense in the range of X. Since (6.2) is a subset of the

range it is nowhere dense.

7. Upper bound on the dimension of {t: X{t) = x].

The condition (1.3) guarantees a significant contribution to the process

from the high-frequency components of the spectrum. These components

are very irregular: their "scattering" effect gives most points in the range

an inverse image of positive dimension. This is why (1.3) implies a lower

bound on the dimension.

In order to derive an upper bound on the dimension, we put an up-

per bound on the contribution of the high-frequency components. A con-

dition of the following kind is sufficinnt: H(λ) is absolutely continuous for

all large \λ\, and its derivative h[λ) satisfies a condition of the type (1.3)

with the inequality sign reversed:

(7.1) \λ\t-\l + λ*)h(λ)^B, for all sufficiently large \λ\,

for some β, 0 < β < 2.

LEMMA 7.1. Under (1.7), for every T > 0, there exists B > 0 such that
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(7.2) σ\t)^B\t\β, forO^

Proof. The integral (1.1) is the sum of a finite part—over \λ\^M— and

an infinite part—over \λ\ > M. The finite part is of the order t2 for t->0:

Γ \eut - l | 2 r 2 ( l + λ2)dH(λ) < t*[" (1 + λ2)dH(λ).

Using the proof of Lemma 2.3 with the inequality reversed, we find that

the infinite part is of the order \t\β for t -> 0.

According to [5, Theorem 2.1] the condition σ*(t)~C\t\β implies that

dim {t : O^t <T, X(t) = x} ̂ 1 — β/2, almost surely for each x. An exami-

nation of the proof shows that the weaker condition (7.2) is sufficient;

actually, σ2(t)~C\t\β was used to get an exact estimate of the dimension.

Now we show that the weaker hypothesis (7.2) furnishes a lower bound for

the dimension which holds for all x, almost surely.

We begin with a result on real valued functions:

LEMMA 7.2. Let f[t), 0 < t ̂  1, satisfy a uniform Holder condition of every

order smaller than φ, 0 < p < 1, and have a jointly continuous local time. If x is

not equal to any of the values

(7.3) f(Jc2-% f o r k = 0 , 1 , - . . , 2 \ n = 1 , 2 , ••-,

then

dim {t : 0 < * ̂  1, f(t) = x] < 1 - p.

Proof. Let Ink be the open interval ((k —1)2"n, k2~n). If x is not one

of the values (7.3), then, for every n>\^ the intervals Ink containing at least

one point of the set {t : f{t) = x] form an open covering of this set. For

any ϊ, 0 < ΐ < 1, the sum of the rth powers of the lengths of the intervals

in the covering is

(7.4) 2~nr. number of intervals Ink, l<k<2n, such that

f(t) = x for some t in Ink.

By hypothesis, for every δ < p, there exists D > 0 such that

\f{t)-f(s)\<LD\t-s\; for s, t^Ink9k=l,...,2\

for all sufficiently large n; thus, for all large n, (7.4) is not more than

(7.5) 2"nr number of intervals Ink such that \f(t) — x\

for all t in Ink,
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We claim that (7.5) tends to 0 if ϊ > 1 — 3. Assume the contrary. For

ε > 0, let (7.5) exceed ε for infinitely many n. Then the time spent by

f{s), 0 ^ 5 < l , in the interval x ± D2~nδ exceeds ε2~(1~r) for infinitely many

n; thus, by the definition of the local time, the inequality

2^-rλX+D2nδφ{yf 1) dy>ε
Jx-D2~nδ

holds for infinitely many n. But this contradicts the continuity of φ:

2tt(i-m φ(y, l)dy < 2Ό max φ(y, l)2~w(r+δ"1)-> 0.
όx-D2'nδ Oζyζl

Since 3 is an arbitrary number smaller than p, the conclusion of the lemma

holds.

In the proof of the dimension theorem for the stochastic process, we do

not need the full strength of the condition (7.1) but only its implication

(7.2).

THEOREM 7.1. If (1.3) and (7.2) hold, then

(7.6) dim{t :0<t^T, X(t) = x} ̂ 1 - β/2

for all x, almost surely. {The particular value of a in (1.3) is unimportant as long

as 0 < a < 2.)

Proof For simplicity, take T = 1. Under (7.2) X(t) satisfies a uniform

Holder condition of order δ, for any 3 < β/2, almost surely [8], p. 172.

The hypothesis of Lemma 7.2 is fulfilled; thus, (7.6) holds for all x not of

the form X{k2~n)f k = 0,1, , 2n n = 1,2, , almost surely.

Next, we have to prove that (7.6) is satisfied whenever x = X{k2~n) for

some k and n. It suffices to show that

dim {t : X(t) = X{τ)9 0<t<l}<l-β/2

almost surely for each τ. The proof of this is similar to that of [5, Theorem

2.1, first part]: Substitute X{τ) for x, and use the estimates

fcl

and (from (2.4))
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(σ(τ -

8. Uniform Hausdorff dimension for all real values for sta-
tionary Gaussian processes

Now let X be stationary, not just have stationary increments. For

simplicity the mean is assumed to be 0 and the variance 1. Let the covari-

ance function r(t) be continuous, with the spectral representation

r(t) = Γ emdF(λ),
J-oo

where F is the spectral distribution function; then

(8.1) σ*(t) = 2(1 - r{t)).

F is related to H through the equation

(8.2) dF(λ) = λ-*(l + λ*)dH{λ).

The condition (1.3) on H is equivalent to the condition on F:

(8.3) \λ\a+Ψr(λ)>.C, for all sufficiently large U|,

where F' is the derivative of the absolutely continuous part of F. Recall

that X is ergodic if and only if F is continuous [8], p. 157.

We now consider the cc-values of X(t) for 0 < t < oo, not just for t on

a finite interval. The lower uniform estimate of the dimension is based on

LEMMA 8.1. If X is ergodic, and (8.3) holds, then

(8.4) l i m S u p r V K t)>0
t

for all x, almost surely.

Proof. Let φ(x) be the standard Gaussian density. The idea of the

proof is that the family of processes {t~ιφ(x, t) : — oo < x < oo} "converges",

for ί-*oo, to the nonrandom process φ{x). Since φ{x) > 0 for all x, we con-

clude that (8.4) holds for all x. Our program is to show that the conver-

gence

(8.5) t~ιφ(X9 t)-+φ(x), for *->oo,

is sufficiently uniform in x. For this purpose we shall show that (8.5) holds
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in the sense of weak convergence of measures over the space of continuous

functions of x.

For fixed x, the stochastic process φ{x, t), t>0, has stationary incre-

ments because X is stationary; therefore, by the ergodic theorem,

lim t~ιφ{x, t)
t->oo

exists almost surely. The limit is constant because X is ergodic. By the

formula (1.5) with m — 1, we have

(8.6) E[t-i<p(x, *)] = φ(x), for t > 0;

therefore, (8.5) holds almost surely, for each x. It follows immediately that

the convergence (8.5) also holds in the sense of finite-dimensional distribu-

tions: the process {/~V(̂ » t)> — °° < x < °°} converges in distribution to the

(nonrandom) process {φ(x)9 — oo < x < oo}.

Next we show: For every closed bounded interval / on the real line,

the convergence (8.5) for x e / is weak convergence of the induced proba-

bility measures on C(J). There are two conditions to verify. (See [6], p.

95). Since (S.β) has already been demonstrated, it suffices to prove: there

exists constants D > 0 and c > 0, and integer m > 0 such that

(8.7) E\t"ιφ[xf t)-t~^(xf, t)\m

for all xf xr and t. From (1.4) and the calculations used to derive (4.3),

we find that the left hand side of (8.7) is at most

(8.8) * - m | 3 - a / Γ ' / - m Γ - - [ T • • • [ " U\uj\δ

y=i

where δ< — =-. Change variables of integration from ts to tt jf j = 1,

• , m, and estimate the integral as in [3], p. 294: (8.8) is bounded above

by a constant (which is independent of x, xf, and /) multiple of

(8.9) \x-x'Γ* ••- \]\σ{t{tj-tj^))\ Udtj.
v J 1—7 = 1 _1 7 = 1

{0=t9< <tmgl}J J

(This is a slight variant of the computation leading to (2.14).) Under (8.3),

σ2(t) vanishes only for t = 0, and is bounded away from 0 on every closed

subinterval of the positive /-axis; hence, by Lemma 2.3, the coefficient of
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\χ __ x'\mδ j n (gg) j s bounded for ί->oo. For any δ < — =-, choose m
(X ό

so that mδ > 1; then (8.7) holds with c = mδ — 1.

From the weak convergence relation (8.5) and the linearity of such

convergence it follows that the process

(8.10) {t-iφfr, t)-φ{x), X e /}

converges weakly, for t -> oo, to the process identically equal to 0 on / ;

therefore, the distribution of

max \t~ιφ{x9 t) — φ(x)\
as/

converges to the distribution of the maximum of the process identically

equal to 0; hence,

max \t"1φ(x9 t) — φ(x)\ ->0, in probability,
as/

for t->oof and so there exists a sequence tn-+oo such that max \tnιφ{x, tn)

— φ(x)\-+09 almost surely.

Since φ(x) > 0 for all x, it follows that (8.4) holds for every x e /, al-

most surely. It then holds for all xf almost surely, because / is arbitrary.

Now we combine the result of Lemma 8.1 with the upper uniform

dimension estimate of Theorem 7.1:

THEOREM 8.1. Let X{t) be stationary and ergodic, and satisfying (7.2) and

(8.3) with a = β. (The former is assumed to hold for some T > 0.) Then

(8.11) dim {t : t >: 0, X(t) = x] = 1 - α/2

for all x, almost surely.

Proof Suppose, for some x and some sample function X,

dim {t : t^O, X(t) = x] < 1 - a/2;

then, for every T > 0,

d i m { / : 0 ^ ? ^ T , X(t) = x] < 1 — a/2.

Under (7.2), X is continuous almost surely; and, under (8.3), the local time

is jointly continuous and satisfies a uniform Holder condition of every order

smaller than 1 — α/2, on the interval [0, T], By Lemma 6.2, this particular

value of x satisfies φ(x, T) = 0. Since T is arbitrary, it follows that t~xφ{x9

t) = 0 for all t > 0. By Lemma 8.1, this occurs for some x with at most
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probability 0; therefore

(8.12) dim{t : *>0, X(t) = x}^l-a/2

for all xy almost surely.

If (7.2) holds for some T > 0, and (8.3) holds with a = β, then, by

Theorem, 7.1,

dim {t : 0 :< ί < T, Jφ) = #} ̂  1 - α/2

for all x, almost surely. By stationarity this holds when the ί-set [0, T]

is arbitrarily translated along the ί-axis; therefore, this continues to hold

for T= oo;

dim {t : t > 0, J5f(/) = a;} <£ 1 - α/2

for all a?, almost surely. Combining this with (8.12), we obtain (8.11).

We remark that the conditions of the theorem are satisfied if F is

absolutely continuous and Fr satisfies B1^\λ\a+1F'(λ)^B2 < oo for all suf-

ficiently large \λ\, for some Bx and B2.

9. The special case of Brownian Motion

The methods of Sections 7 and 8 give an exact uniform dimension of

ίc-values in the particular case of the Brownian motion process. Here (1.3)

and (7.2) hold with a = β = — . According to the proof of Theorem 6.1,

φ{x9 T) vanishes whenever x belongs to the set (6.2). It is shown in [12]

that the local time of Brownian motion is positive on the interior of the

range of X; thus, no point in (6.2) belongs to the interior of range. Com-

bining this with Theorem 7.1, we obtain:

dim {t : 0 < t <ς T, X{t) = x} = \

for every x in the interior of the range of X{t), 0 < / < T , almost surely.

The only previous results on exact dimension for α -values of Brownian mo-

tion appear to hold only for a fixed value of x (See [10] and [13].)
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