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ON HOLOMORPHIC MAPS INTO A TAUT
COMPLEX SPACE

HIROTAKA FUJIMOTO

Introduction. The purpose of this paper is to study the extension pro-
blem of holomorphic maps of a complex manifold into a taut complex
space, which is defined by analogy with a taut complex manifold given by
H. Wu (11]).

Let D be a domain in a complex manifold M and f be a holomorphic
map of D into a taut complex space. We can construct the existence
domain of f as in the case of holomorphic functions. We shall first prove
the following theorem, which is essentially due to the Docquier-Grauert’s
theorem ([2]).

Tueorem A. If D is an (unramified) Riemann domain over a Stein manifold
M, the existence domain of f is a Stein manifold.

Using Theorem A, we can easily prove that, for domains D and D’
(Dc D') in a Stein manifold, if every holomorphic function on D has a
holomorphic extension to D', then every holomorphic map of D into a taut
complex space X can be extended to a holomorphic map of D’ into X.

For holomorphic maps defined on a complex manifold minus an analytic
set of codimension one, we have the following improvement of Theorem 5
in [9], p. 18.

THEOREM B. Let S be an irreducible analytic subset of codimension one in a
domain D in C* and f be a holomorphic map of D — S into a taut complex space
X. If f has a cluster valuein X at some regular point of S, then f can be extended
to a holomorphic map of D into X.

In connection with Theorem B, we give the following generalization of
the big Picard theorem, whose proof is essentially due to [3].
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TreorEM C. If S is a regular thin analytic subset of a domain D in C™,
then every holomorphic map of D — S into the N-dimensional complex projective space
Py(C) minus 2N + 1 hyperplanes in general position can be extended to a holomorphic
map of D into Py(C).

In case of holomorphic maps defined on a complex space, the analogous
extension theorem is not valid in general. We shall construct a normal
complex space ¥ of dimension =2 such that there exists a holomorphic
map of Y minus one point into a taut complex space which has no holo-
morphic extension to Y.

§1. Local extension of holomorphic maps. In this paper, a com-
plex space means a reduced complex space and all complex spaces and
manifolds are assumed to be s-compact and connected unless stated to the
contrary.

For complex spaces M and X, we denote the space of all holomorphic
maps of M into X endowed with the compact-open topology by Hol (M, X).
A sequence {f,} in Hol (M, X) is said to be compactly divergent if, for any
compact sets K in M and L in X, there is some y, such that f(K)N L =¢
for any v = v,.

DerFINITION 1.1. A complex space X is said to be faut if Hol (M, X) is
normal for any complex manifold J i.e., any sequence in Hol (M, X) has a
subsequence which is convergent in Hol (M, X) or compactly divergent.

For example, a complete hyperbolic complex manifold in the sense of
S. Kobayashi [8] is taut. In particular, a Riemann surface which is hyper-
bolic in the classical sense is a taut complex manifold. Moreover, if a
relatively compact subdomain D of a Stein space X can be written D=
{reX; u(x) < ¢} with a plurisubharmonic function #(x) on X and a constant
¢, then D is a taut complex space (W. Kaup [6], Satz 1.2, p.306 and Satz
4.5, p. 318).

Now, we give the following definition for the convenience of descrip-
tion.

DerFiNiTION 1.2, Let D be a domain in a complex manifold M and z,
be a boundary point of D. We shall say that D saitisfies the condition (C) at
%, if there is a sequence of maps {¢,; v=1,2,--:} of B:={{<C; || <1}
into M such that (1) {¢,} converges to ¢ in Hol (B, M), (2) ¢,(¢) € D for any
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v and £ B, (3) ¢(0) =%, and ¢() € D for any ¢ with 0 < [{] < 1.

LemmA 1.3. Assume that a domain D in a complex manifold M satisfies the
condition (C) at a boundary point x,. Then, every holomorphic map f of D into a
taut complex space X has a possibly many-valued holomorphic extension to a neighbor-
hood U of w,, t.e., a holomorphic map g:U—X such that f(x)=g(x) in some
non-empty open subset of U N D.

Proof. Let ¢() and ¢,(&) be holomorphic maps with the properties (1),
(2) and (3) in Definition 1.2. Then {f- ¢,} is a sequence in Hol (B, X). And,
since lim f- ¢,(8) = f-¢(f,) € X for an arbitrarily fixed & with 0 < |§]| <1,
{rf -goi}—m((‘iannot have a compactly divergent subsequence and so has a con-
vergent subsequence by Definition 1.1. There is no harm in assuming
that {f-o,} itself has a limit 2 in Hol (B, X). Obviously, A() = f: o) if
0<]¢] <1. Put g = h(0) and take a Stein neighborhood V of ¢. Then,
for a sufficiently small p > 0 and a sufficiently large v,, we see (f:9,){) eV
and r(&) eV if vy =y, and [{] = p. Consider the open set D' : =D n f(V).
Obviously, o) e D' if 0< || = p and o) € D’ if v =y, and [{] = p. So,
the set

K:={o(); IZ] = p} U U {0.0); 1E] = p})
is compact in D’. As is easily seen, by the maximum principle, the set
K:={x e D'; |h(z)| = sup |h(K)| for any holomorphic function % on D'}

includes US., {9.(&); 1¢] = p}, whose closure contains #,. In this situation,
by the well-known argument, we can find a neighborhood U of #, such
that every holomorphic function on D’ has a possibly many-valued holomor-
phic extension to U. We consider the restriction f|D’ of f to D’ which
has the image in a Stein space V. Then, as is well-known, f|D’ has a pos-
sibly many-valued holomorphic extension g : U— V, which is also considered
as an extension of f. This concludes the proof of Lemma 1.3.

LemMA 1.4, Let D be a domain in the (21, 2s, + + +, 2a)-space and %, : = (ai,
<+, a,) be a boundary point of it. Consider hyperspheres B with the center (ay,
a:) and S whose boundary contains (ai, as) in the (2i, 2s)-space. If D includes the
set of all points (21, 22, a3, « + +, @n) Such that (2, z,) is contained in the interior of
B and in the exterior of S, then D satisfies the condition (C) at ,.

Proof. Let (b, by) be the center of S. We may assume that e, # b, and
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write
S:iler—a?+ |22 —ae|* + 2 X Re (21 — ay)(@; — by) + (22 — a5)(@, — b)) < 0.

For our purpose, it suffices to take the maps defined as follows;

cmma—r (L it —5)), 2= = ;
o)t =a + 7 — 7, <u+vo p-&la, bz>), B=a,+ -8, 2i=a; 3= i=n),

and

o) tti=a,—pF 5 ta=a+p-8 2i=a 35i=n)

|
4| S

Nl

1 —

for a sufficiently large », and a sufficiently small p >0, which have the
properties (1), (2) and (3) in Definition 1.2.

The following proposition on local extensions of holomorphic maps is
used later to give a general global extension theorem.

ProrosiTioN 1.5. In C", consider the domains
D:=1{6< |zl <py 2] <oz -+, |2.] < pa}
U {lz1] <oy, l22] < o35, 000, [2a] < o2}
and
D= {l|z] <py, e, |24l <pal,

where 0 <6< py, 0< p} = p; (2=i=mn). Then, every holomorphic map f of D
into a taut complex space X can be extended to a holomorphic map of D’ into X.

Proof. By virtue of Lemma 1.4, Proposition 1.5 can be proved by the
argument as in the proof of the equivalence of two different types of defini-
tions for pseudoconcave sets in Tadokoro [10]. On account of the pos-
siblility of multivalence of the extended function, we need some careful
checks. To prove Proposition 1.5, we may assume that p; = p; (3 =i = n).
Indeed, if it is proved in this case, the proof for the general case is easily
given by mathematical induction. Take an arbitrary point 2z’ :=(2{, a3, - - -,

ab) with |z{] = —5-;‘0‘

, lajl < pg + ¢+, lar] < pn and consider the straight
line L:z =t¢t-2{,2,=aj},-++,2,=a, (0=t =1). If f is analytically con-
tinuable along L just before ¢’ = (af, - - +, a1) € L and not continuable to a’
itself, then we call the point ¢’ an a-point with respect to z’.

Let E be the set of all a-points in D’. For our purpose, it suffices to

show E = ¢. Assume the contrary. Then, by the same manner as in [10],
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Pp. 284~285, it can be proved that, for a suitable g, in E and local co-
ordinates w, - - -, w, in a neighborhood of a, (let a, = (a;, « - -, @), in
the (w;, w»)-space we can find a sufficiently small hypersphere B with the
center (a;, @) and a hypersphere S whose boundary contains (e, a,) such
that the set of all points (i, w,, a3, + + -, @,) with the property that (i, w,)
is contained in the interior of B and in the exterior of S does not intersect
E. By the definition of E, f can be extended to a single-valued holomor-
phic map of a neighborhood of E into X. In this situation, f has a possibly
many-valued extension g to a neighborhood of £ n U. This contradicts the
definition of «-points.

§ 2. Existence domains of holomorphic maps. Let M be an (un-
ramified) Riemann domain over a complex manifold N with projection map
7#:M— N and X be an arbitrary complex space. By ¥ we denote the
sheaf of germs of holomorphic maps defined on open subsets of N into X.
The set 7% has a canonically defined structure of complex manifold and
the projection #: 7% — N is locally biholomorphic. Then, by putting v(f.)=
f(») for each f, e 7%« € N), we can define a continuous map v : 7% - X,

Now, let f be a holomorphic map of M into X. We consider the map
o : M— &% which assigns the germ of f:(z|U)™ at =(¢) to each point 2 in
M, where U is a neighborhood of « such that z|U : U— z(U) is biholomorphic.
Obviously, v+-6 = f, #o =z and ¢ is continuous. So, ¢(M) is connected. By
H'(M) we denote the connected component of 7% which includes o(M).
Then, the map #|H/(M) : H' (M) — N may be considered to define a Riemann
domain over N which includes M as a Riemann domain. Moreover, the
map f':=v|H/(M): H(M)— X is a holomorphic extension of f to H'(M)
because f’-o = f. Asis easily seen, H/(M) is the largest one among Riemann
domains over N which includes M as a Riemann domain and to which f

can be holomorphically extended. Modeling after the case of functions, we
give

DEerFiniTION 2.1. For a holomorphic map f: M— X, we call the Rie-
mann domain H’(M) over N constructed as the above the existence domain of

f.

THEOREM 2.2. Let M be a Riemann domain over a Stein manifold and f be
a holomorphic map of M into a taut complex space. Then, the existence domain of
f is a Stein manifold.
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For the proof we use the Docquier-Grauert’s result on the Levi pro-
blem for Riemann domains over a Stein manifold. In their paper [2], many
equivalent definitions of convexity for a Riemann domain were given. Among
them, we shall use here particularly the notion of “p,-convexity”. For a
Riemann domain M over N with the projection map = : M— N, we denote
the set of all (accessible) boundary points of M by aM and put M= MU
oM. The set M has a canonically defined Hausdorff topology and z has a
continuous extension # ;: M— N. The definition of p.~convexity is given as
follows:

Let & i={(z, + + +, 25 el 21, 2] <1, 252k =0}, 07 :=2€ 9;
] =1}, D :i=lteD; |al <1} and T :={|z| =1, 1=k=<n} in C
A Riemann domain M of dimension # over a Stein manifold N with pro-
jection map z:M— N is said to be p;-convex if and only if there is no
continuous map ¢ : & — M with the property that 1) ¢(62) € M, o ;gg) c
M, 2) &) N M+ ¢ and 3) #¢ is the restriction to & of a biholomorphic
map of a neighborhood of &7 onto an open subset of N,

The Docquier-Grauert’s result which we need here is the folldwing

Tueorem ([2], Satz 10, p. 113). Any p;-convex Riemann domain over a Stein
manifold is Stein.

Proof of Theorem 2.2. Without loss of generality, we may assume H’(M)
= M. It suffices to show that M is p;-convex. Assume that there is a
continuous map ¢ : & — M satisfying the above conditions 1), 2) and 3).
By the condition 3), #¢ is extended to a biholomorphic map ¢ of a neigh-
borhood U of & onto an open set W in N. If we put G:=9¢(M)NT,
the map g¢:= f:¢|G:G—X is holomorphic because ¢|G is a biholo-
morphic map onto an open set in M. Moreover, since §<& € G and é cG
by the condition 1), we can find real numbers 4, o5, p{ and p; 2= i = n)
with 0< <1< p;, 0<p} <1< p(2=<i=<mn) such that

D:={< ]zl <py, Izl <ps =i =Zm)}U{lei]l <oy, |l <pi2=Zi = n)}
is included in G. In this situation, Proposition 1.5 implies that the map
g!D:D— X has a holomorphic extension % :D':={|z;| <p; 1<i=n)}—
X. Here, we may assume U = D. On the other hand, by the condition
2), there exists a point z € & such that ¢(z) € dM. If we take connected
neighborhoods U’(e U) of z and W'(e W) of #-¢(z), then a suitable con-
nected component Wi of #'(W’) N M gives a neighborhood of ¢(z) in M
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by the definition of the topology of M and z|W/ is a biholomorphic map
onto an open subset W’ of W’. The holomorphic map f-z7!|W’': W' — X
has a holomorphic extension k-¢~'|W’: W — X. It follows from Definition
2.1 that #|W/}:W,— W’ is a biholomorphic map. This contradicts the fact
¢(z) € dM and completes the proof.

As a result of Theorem 2.2, we have the following global extension
theorem.

TurOREM 2.3. Let M be a Riemann domain over a Stein manifold and H(M)
be its envelope of holomorphy. Then, for any taut complex space X, every holomorphic
map f: M—X can be extended to a holomorphic map f: HM)— X.

Proof. By the definition of the envelope of holomorphy, we have a
holomorphic map : M— H(M) with = = #z, where = and # are projection
maps of Riemann domains M and H(M) respectively. On the other hand,
the existence domain H’(M) is Stein by Theorem 2.1. By the well-known
argument the map ¢ : M— H’(M) can be extended to a holomorphic map
é: HM)— H (M) with 6r =¢. The map f'-6: HM)— X is a holomorphic
extension of f to H(M), where f’ is a holomorphic extension of f to H/(M).

CororrarY 2.4 (c.f. H. Wu, [11], p. 211). If a Riemann domain M over
a Stein manifold is taut, then M is Stein.

Proof. The identity map id, : M— M has a holomorphic extension # :
H(M)— M with ht =idy, where «: M—H(M) is a canonical holomorphic
map with #r =z, Obviously, ¢k is the identity map of H(M). This shows
that M is biholomorphic with H(M), whence M is Stein.

§3. A counter example. Theorem 2.2 shows that the simultaneous
continuability of holomorphic functions leads to the simultaneous continua-
bility of holomorphic maps defined on subdomains in a Stein manifold into
a taut complex space. On the contrary, the analogous extension theorem
for holomorphic maps defined on a complex space is not valid in general.
In this section, we shall give a counter example.

Let P be a projective algebraic manifold of dimension=1. Moreover,
assume that P is hyperbolic in the sense of S. Kobayashi (8], p. 465 and [9],
p- 10). For example, a closed Riemann surface of genus at least two satis-
fies these conditions. According to H. Grauert [4], taking a suitable line
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bundle F over P, we can find a relatively compact strongly pseudoconvex
neighborhood X of the zero section Z of F. Then, there are a normal
complex space M and a holomorphic map 7 : X - M such that, for a special
point %, in M, z™Y(%)=Z and | X —Z:X —Z—> M— {x,} is a biholomor-
phic map (c.f. [4], Satz 5, p. 340). Shrinking a neighborhood X of Z we
may assume that M is complete hyperbolic. Then we want to prove that
the space X is taut.

By dp, dy and dy we denote the so-called Kobayashi pseudo-distance
on P, M and X respectively (c.f. [8], p. 462 and [9], Definition, p.10). We
shall first show that X is hyperbolic. Assume the contrary. Then, there
are two points 2, y € X (¥ #y) such that dy(x, y) =0. By the distance-
decreasing property of holomorphic maps with respect to the Kobayashi
pseudo-distance, we have dy(c(2), 7(y)) < dx(x, y) =0. This implies that =(x)
= ¢(y) from the hyperbolicity of M. So, z(z) = z(y) = ®,, i.e., #, y € Z, be-
cause r is injective on X — Z. On the other hand, since F is a line bundle
over P, the canonical projection map = : F— P gives a biholomorphic map
n|Z : Z— P. Again using the distance-decreasing property, we see dp(z(%),
7(y)) < dx(x, y) = 0. By the hyperbolicity of P, we have z(x) = z(y) and hence
x =y, which is a contradiction. Therefore, X is hyperbolic. Now, it is
easily proved that X is complete with respect to the distance dy because
M is complete and ¢ : X— M is proper. Accordingly, we come to the con-
clusion that X is taut.

Consider the map f :=(c|X—2Z)"'. It is a holomorphic map of M —{z,}
into a taut complex space X which obviously cannot be extended to a holo-
morphic map of M into X. This gives a desired counter example.

§4. Extensions across an analytic subset of codimension one.
Let S be a thin analytic subset of a domain D in C* and f be a holomor-
phic map of D—S into a taut complex space X. If dimS=<n»n—2, fis
continuable to a holomorphic map of D into X by virtue of Theorem 2.3.
In case of dimS =#» —1, we can prove

THEOREM 4.1. Assume that, for each irreductble component S; of S, there is
a sequence {a,} in D — S which converges to some regular point of S; such that
{f(a,)} has a limit point in X. Then f can be extended to a holomorphic map of
D nto X.

For the proof, we need the following result of M. H. Kwack in [9].
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THEOREM. Let X be a hyperbolic complex space and f be a holomorphic map
of the domain B* : = {2z C; 0< |z| <1} into X. If, for a suitable sequence {a,}
in B%* with liﬁm a, =0, {f(e,)} converges to a point in X, then f can be extended to
a holomorp/zicy gap of B:=1{|z| <1} into X.

Remark. Though the above theorem is slightly modified from the
original, we can prove it by the same argument as in the proof of Theorem
3 in [9], p. 14.

Proof of Theorem 4.1. Without loss of generality, we may assume that
S is irreducible. As is well-known, the set of all singularities of S is an
analytic set of dimension <=7 —2 in D. There is no harm in assuming
that S is regular. Moreover, it may be assumed that D: = {|z]|<1, - . -,
l2,]<1} and S:={z2= (2, -, 22) € D; 2, =0}. Indeed, if Theorem 4.1
is proved in this case, the set of all # € S such that f is continuable to a
neighborhood of # is an open and closed subset of S and hence coincides
with the whole set S.

Put a, = (@, - - -, a2, a?’) and lirg a,=(ay, +*+, aGn-1, 0). The condition
a,€ D—S implies 0 < [a3’] <1. Fz)r each y, we take an integer k, such
that 2-®+2 < ¢’ < 2®*D, Choosing a subsequence and changing indices
if necessary, we may assume that 1<k <k, < -.-.. Moreover, {2*%a’} may

%g |5] §%. Now, we define

the holomorphic maps f,(21, * * *, Zn-1, 2s) ¢ = f(z,, « oo, Zno, —5%) of D—S

be assumed to converge to a point & with

into X. Then, for a,=(a, .-, a2, 2*a”), {f.(a,)} converges to a point
in X and lima,=(a, * * +, @u-1, b)D—S. The sequence {f,} in Hol (D-S, X)

V=00

cannot have a compactly divergent subsequence and hence it has a con-
vergent subsequence because Hol (D — S, X) is normal. We may assume
that lim f, = ¢ exists in Hol (D — S, X). Take an arbitrary point 2z’ in D’

y—00

i={|21] <1, -+, |2aq] <1} and put k(z.) : = f(2/, 2,), which is considered

as a map of B*:={0< ]2,/ <1} into X. Then for «a,:= W(” =1,2,
o« o o 1 = 1 = | / _l.. = 4 L 1
)}‘ﬂay =0 and lvlglmh(a,,) vll)rgf,,(Z '3 ) g(z v ) eX exists. On the

other hand, it was shown by P. Kiernan ([7]) that a taut complex manifold
is always hyperbolic and this assertion can be easily generalized to the case
of complex spaces. So, X is hyperbolic. According to the above M.
H. Kwack’s result, 2 is extended to a map of B: = {|z,] <1} into X.
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Thus, we obtain a map f(z;, « -+, 2,) : D> X, which is an extension of f
and holomorphic in z, for each fixed 2’ = (z,, - - -, 2,) in D’. To complete
the proof of Theorem 4.1, it suffices to show that f is continuous on D.
To this end, take an arbitrary sequence =z, = (2%, -- ., 2%?,) in D’ with
limz, = 2§ =: (=, ---,2%) e D and consider the maps h,(2,) : = f(z}, 2.)
iyr:ooHol (B, X). Since lijn h,(2.) = f(z}, 2,)€X for any fixed 2z, with 0< |z, ] <1,
{rn,} has no compacv:tlo; divergent subsequence. = By the normality of
Hol (B, X), {k,} has a sequence which converges in Hol (B, X) and whose
limit is necessarily equal to ho(z,) : = f(z(", « -, 22, 2,).  Accordingly,
{h,} itself converges to k,. This shows that f is continuous and completes
the proof of Theorem 4.1.

Remark. In Theorem 4.1, we cannot omit the assumption that the limit
of {a,)} is a regular point of S;. For example, consider the taut complex
space X defined as the Riemann sphere minus {0, 1, o} and the analytic
subset S:={z; =0} U {2, =0} U {2, = 2.} in C2 Putting f(zy, 25) = Z—j on C?
—S, we have the holomorphic map of €?—S into X which cannot be ex-
tended to a holomorphic map of C? into X but has an arbitrary point in
X as a cluster value at the origin.

As direct consequences of Theorem 4.1, we have

Cororrary 4.2 (ML.H. Kwack). Let S be a thin analytic subset of a do-
main D in C™.  Then every holomorphic map of D — S into a compact taut complex
space X can be extended to a holomorphic map of D into X.

CoroLLARY 4.3. Under the same assumption as in Corollary 4.2, if a holo-
morphic map of D — S into a taut complex space X can be extended to an open subset
of D which intersects with each irrreducible component of S, it can be extended to the
whole set D.

Remark. Corollary 4.3 is also a consequence of Theorem 2.3. Because,
as is well-known, if a domain D’ with D — S c D’ < D intersects with each
irreducible component of S, then the envelope of holomorphy of D’ in-
cludes D.

COROLLARY 4.4. Let X be a taut complex space and assume that there exists
a negative real-valued continuous function u(x) on X such that u(x) is plurisub/zar.monic
on X — K for a suitable compact subset K of X and {xeX; u(x) < c} is relatively
compact in X for any ¢(<0). If S is a thin analytic subset of a domain D in C™,
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then every holomorphic map f of D — S into X has a holomorphic extension to D.

Progf. We may assume that S is regular connected and of dimension
n — 1. - Suppose that f cannot be extended to S. By virtue of Theorem
4.1, {f(a,)} has no accumulation point in X for any sequence {a,} converg-
ing to a point in S. Therefore, an arbitrary point 4, in S has a neigh-
borhood U such that f(U—S)N K=¢. Then, v:=u-f is a non-positive
plurisubharmonic function on U —S N U. Moreover, limv(z) =0. Putting
v(z) =0 for any 2 S NU, we have a plurisubharmozr;’itzé function v on U
(c.f. Grauert-Remmert [5]). This contradicts the maximum principle for

plurisubharmonic functions. Thus we have Corollary 4.4.

§5. A generalization of the big Picard theorem. The extension
problem of holomorphic maps into a taut complex space is closely related to
the classical big Picard theorem. Here, we shall study holomorphic maps
into the N-dimensional complex projective space Py(C) minus some hyper-
planes.

In [3], J. Dufresnoy gave the following profound theorem.

THEOREM ([3], p. 18). Let D be a domain in the complex plane and F be a
Samily of holomorphic maps of D into the complement of arbitrarily given 2N + 1
hyperplanes in. general position in Py(C). Then 7 is relatively compact in
Hol (D, Py(C)).

As a consequence of this result, we have the following theorem, which
gives an answer to the conjecture of H. Wu (e.g., [13], p. 216).

THEOREM 5.1. For arbitrarily given 2N+ 1 hyperplanes H,, H,, « + +, Hyyi
in general position in Py(C), the space X : = Py(C) — (U iN{1H,) 1is ataut complex
Space.

Progf. Owing to the result of T.J. Barth [1], we have only to show
that Hol (B, X) is normal for the special domain B:={|z] <1} in C.
Take a sequence {f,} in Hol (B, X). By the above theorem a suitable sub-
sequence {f,,} converges to a map ¢ in Hol (B, Py(C)). For our purpose,
it suffices to ascertain that g(B)c X if g(B) N X+ ¢. For each i(1£i = 2N
+ 1) we consider the set E; :={z€B; ¢(2) € H;}. Obviously, E; is closed in
B. On the other hand, for any z, € E;, we can choose neighborhoods U
of zp and V of g(z,) such that g(U)c V and f, (U)c V for almost all ¥ and
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H; NV is the set of all zeros of a non-zero linear form /on V. Since [-f,,
#0 on V and [-g(z,) =0, Ilcl_l)l;lo l- f, = l+g vanishes identically on V. This
shows that E; is open in B. Eventually, E; =D if E;# ¢. Therefore, we
see glD)NX=¢ if E;=D for some { and g¢gD)c X if E; =¢ for any i.
This completes the proof.

Now, we shall prove the following generalization of the big Picard
theorem.

THEOREM 5.2. Let S be a regular thin analytic subset of a domain D in C™.
Then every holomorphic map of D — S into the complement X of 2N + 1 hyperplanes
H,, H, -+ -, Hyyi1 tn general position in Py(C) can be extended to a holomorphic
map of D into Py(C).

Progf. Without loss of generality, we may assume that S is of dimension
n — 1. Furthermore, it may be assumed that D= {[|z]| <1, .-, [2,] <1}
and S:={(#, -+, 2.) €D;2,=0}. As in the proof of Theorem 4.1, con-
sider the holomorphic maps f,(21, * * *, Zn-1, 2n) :=f(zl, c ey Znot, %) (z 1=
(#1, * * +, #n-1, 22) €ED—S and v = 1) in Hol (D — S, X). By the above result
of Dufresnoy, a suitable subsequence {f,,} converges to g in Hol(D—S, Px(C)).
By the same argument as in the proof of Theorem 5,1, it holds either
gD —S)cH, or gD —S)NH =¢ for each i1=i=<2N-+1). Since
Hi(1 £i=2N+1) are located in general position, we can choose some i,
such that g(D—S)N H;,=¢. Let wo:w,: -+ 1wy be a system of homo-
geneous coordinates on Py(C) such that {w, = 0} = H;,. The space Py(C)—
H;, may be considered as the space C¥ and w® = Wi L g = Wy give

Wo Wo
the global coordinate system on C¥. Put f¥=w?®.f,, f®=w?.f and

0°*

9P =wP. g1l <i=<N). Since %im [P = ¢“ uniformly on the compact set

E:= [|z1| é_%_, N P g%, |2,] =—%—] in D—S, we can find a real
constant M such that |fP(z)] £ M(1<i = N) for any 2 € E and k. There-
|

fore, if |z,] é%, T L2 é%, len] = o we have [f®(zy, « -+, 24)]

= |fP@y,  + o, Zn-1y 2%2,)] = M. Then, considering the holomorphic func-

tions A®(z,) 1 = Oy, * * *, Zn-1, 2a) In 2, for arbitrarily fixed 2y, ¢+« +,2,

with |z;] = —é—(l < i = n —1) and applying the maximum principle, we obtain

[ f Py, » v o, 20) ] = M if 2"’1:}1'1’1_ = |za] = 2.,1“ for any k. Eventually, if(i)(zl’
1

Y J2n] S 5 0< |2l g—-]. In this sit-

ezl =Mon {1zl =1 .

==
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uation, Theorem 5.2 is an immediate consequence of the classical Riemann’s

theorem on removable singularities of bounded holomorphic functions.
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