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ON HOLOMORPHIC MAPS INTO A TAUT

COMPLEX SPACE

HIROTAKA FUJIMOTO

Introduction. The purpose of this paper is to study the extension pro-

blem of holomorphic maps of a complex manifold into a taut complex

space, which is defined by analogy with a taut complex manifold given by

H. Wu ([11]).

Let D be a domain in a complex manifold M and / be a holomorphic

map of D into a taut complex space. We can construct the existence

domain of / as in the case of holomorphic functions. We shall first prove

the following theorem, which is essentially due to the Docquier-Grauert's

theorem ([2]).

THEOREM A. If D is an (unramiβed) Riemann domain over a Stein manifold

M, the existence domain of f is a Stein manifold.

Using Theorem A, we can easily prove that, for domains D and Dr

(D c D') in a Stein manifold, if every holomorphic function on D has a

holomorphic extension to Dr, then every holomorphic map of D into a taut

complex space X can be extended to a holomorphic map of D' into X.

For holomorphic maps defined on a complex manifold minus an analytic

set of codimension one, we have the following improvement of Theorem 5

in [91 p. 18.

THEOREM B. Let S be an irreducible analytic subset of codimension one in a

domain D in Cn and f be a holomorphic map of D — S into a taut complex space

X. If f has a cluster value in X at some regular point of S, then f can be extended

to a holomorphic map of D into X.

In connection with Theorem B, we give the following generalization of

the big Picard theorem, whose proof is essentially due to [3].
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THEOREM C. If S is a regular thin analytic subset of a domain D in Cn,

then every holomorphic map of D — S into the N-dimensional complex protective space

PN{C) minus 2N + 1 hyperplanes in general position can be extended to a holomorphic

map of D into PN{C).

In case of holomorphic maps defined on a complex space, the analogous

extension theorem is not valid in general. We shall construct a normal

complex space Y of dimension ^ 2 such that there exists a holomorphic

map of Y minus one point into a taut complex space which has no holo-

morphic extension to Γ.

§ 1. Local extension of holomorphic maps. In this paper, a com-

plex space means a reduced complex space and all complex spaces and

manifolds are assumed to be <7-compact and connected unless stated to the

contrary.

For complex spaces M and X, we denote the space of all holomorphic

maps of M into X endowed with the compact-open topology by Hoi (M, X).

A sequence [fv] in Hoi (Λf, X) is said to be compactly divergent if, for any

compact sets K in M and L in X, there is some v0 such that fv(K) Π L = φ

for any v ̂  v0.

DEFINITION 1.1. A complex space X is said to be taut if Hoi (M, X) is

normal for any complex manifold M9 i.e., any sequence in Hoi (M, X) has a

subsequence which is convergent in Hoi (M, X) or compactly divergent.

For example, a complete hyperbolic complex manifold in the sense of

S. Kobayashi [8] is taut. In particular, a Riemann surface which is hyper-

bolic in the classical sense is a taut complex manifold. Moreover, if a

relatively compact subdomain D of a Stein space X can be written D =

{x^X; u{x) < c] with a plurisubharmonic function u(x) on X and a constant

c, then D is a taut complex space (W. Kaup [6], Satz 1.2, p. 306 and Satz

4.5, p. 318).

Now, we give the following definition for the convenience of descrip-

tion.

DEFINITION 1.2. Let D be a domain in a complex manifold M and x0

be a boundary point of D. We shall say that D saitisfies the condition (C) at

x0 if there is a sequence of maps {<pv; v = 1,2, } of B : = {ζ e C; \ζ\ < 1}

into M such that (1) {<pv} converges to ψ in Hol(£, M)9 (2) φv(ζ) e Z> for any
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v and ζfΞB, (3) φ(0) = x0 and φ(ζ) e D for any ζ with 0 < \ζ\ < 1.

LEMMA 1.3. Assume that a domain D in a complex manifold M satisfies the

condition (C) at a boundary point x0. Then, every holomorphic map f of D into a

taut complex space X has a possibly many-valued holomorphic extension to a neighbor-

hood U of xOt i.e., a holomorphic map g : U -> X such that f{x) = g{x) in some

non-empty open subset of U n D.

Proof. Let φ{ζ) and φv[ζ) be holomorphic maps with the properties (1),

(2) and (3) in Definition 1.2. Then {/• φv] is a sequence in Hoi (B, X). And,

since Hm/ φv{ζ0) — f φ{ζo) ̂  X for an arbitrarily fixed ζ0 with 0 < \ζo\ < 1,
V->oo

{f'ψv} cannot have a compactly divergent subsequence and so has a con-

vergent subsequence by Definition 1.1. There is no harm in assuming

that ί/ pΛ itself has a limit h in Hoi (5, X). Obviously, h{ζ) = f*φ{ζ) if

0 < \ζ\ < 1. Put q0 = *(0) and take a Stein neighborhood V of #>• Then,

for a sufficiently small /o > 0 and a sufficiently large vθ9 we see (f φ»){ζ) e F

and /z(ξ') ε F if y ^ y0 and |? | ^ ^. Consider the open set Df : = D Π /"H^).

Obviously, 9(?) e= 2)' if 0 < \ζ\ ^ ^ and o,(Ώ e D' if v ^ v0 and |f | ^ ^. So,

the set

\ζ\ =p}l) u:=vo{φv(ζ); \ζ\ = P})

is compact in Z)'. As is easily seen, by the maximum principle, the set

i t : = {x & D'; \h(x)\ ^ sup \h(K)\ for any holomorphic function h on Df]

includes U~-vo{φv(ζ)', \ζ\ ^ p], whose closure contains x0. In this situation,

by the well-known argument, we can find a neighborhood U of x0 such

that every holomorphic function on D' has a possibly many-valued holomor-

phic extension to U. We consider the restriction f\Df of / to D! which

has the image in a Stein space V. Then, as is well-known, f\Ώ' has a pos-

sibly many-valued holomorphic extension g : U-+V, which is also considered

as an extension of /. This concludes the proof of Lemma 1.3.

LEMMA 1.4. Let D be a domain in the (zl9 z2, , zn)-space and x0 : = (aί9

• , an) be a boundary point of it. Consider hyperspheres B with the center (al9

a2) and S whose boundary contains {au a2) in the {zu z2)-space. If D includes the

set of all points (zu z2, az, , an) such that (zu z2) is contained in the interior of

B and in the exterior of S9 then D satisfies the condition (C) at x0.

Proof Let {blt b2) be the center of S. We may assume that a1 ψ bx and
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write

5 : \zx - « i | 2 + \z2-a2\
2 + 2 x R e ((zx -aι){άι -bx) + (z2-a2){a2- b2)) ^ 0.

For our purpose, it suffices to take the maps defined as follows;

φv(ζ) : zί=a1 + — r-(~Z—~~p' ^a* "^2)), z2=a2 + p ζ, Zi=at (3 ^ i ^ n),
ax — bi \ v + vo /

and

φ{ζ) Zί = a! — p- ζ-^r f~, z2 = a2 + ρ-ζy zt = at (3 ^ i ^n)
&ι — 01

for a sufficiently large v0 and a sufficiently small p > 0, which have the

properties (1), (2) and (3) in Definition 1.2.

The following proposition on local extensions of holomorphic maps is

used later to give a general global extension theorem.

P R O P O S I T I O N 1.5. In Cn, consider the domains

D: = {5 < \Zi\ < pu \z2\ < p2, - , \zn\ \< pn}

U ί l ^ l <Pu \z2\ <p'2f , \zn\ <pί]

and

Df : = { |^ | < p l t - , \zn\ <Pn}>

where 0 < 0 < pl9 0 < p't ^ pt (2 ^ i ^ n) . Then, every holomorphic map f of D

into a taut complex space X can be extended to a holomorphic map of Df into X.

Proof By virtue of Lemma 1.4, Proposition 1.5 can be proved by the

argument as in the proof of the equivalence of two different types of defini-

tions for pseudoconcave sets in Tadokoro [10]. On account of the pos-

siblility of multivalence of the extended function, we need some careful

checks. To prove Proposition 1.5, we may assume that Pι = p\ (3 ^ i ^ n).

Indeed, if it is proved in this case, the proof for the general case is easily

given by mathematical induction. Take an arbitrary point zr : = (z{, a'2, ,

a'n) with \z[\ = δ \ p \ \aί\ < p2, , K l < pn and consider the straight
Δ

line L : zx = t z[, z2 = af

2, , zn = an (0 ^ t ^ 1). If / is analytically con-

tinuable along L just before a' = (a'l9 , aί) G L and not continuable to a'

itself, then we call the point a! an α-point with respect to zf.

Let E be the set of all α-points in Df. For our purpose, it suffices to

show E — φ. Assume the contrary. Then, by the same manner as in [10],
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pp. 284—285, it can be proved that, for a suitable a0 in E and local co-

ordinates wu , wn in a neighborhood of a0 (let a0 = (au , an)), in

the (wl9 ^2)-space we can find a sufficiently small hypersphere B with the

center {al9 a2) and a hypersphere S whose boundary contains (al9 a2) such

that the set of all points (wu w2y er3, , an) with the property that (wu w2)

is contained in the interior of B and in the exterior of 5 does not intersect

E. By the definition of E, f can be extended to a single-valued holomor-

phic map of a neighborhood of E into X. In this situation, / has a possibly

many-valued extension g to a neighborhood of £ Π U. This contradicts the

definition of α-points.

§ 2. Existence domains of holomorphic maps. Let M be an (un-

ramified) Riemann domain over a complex manifold N with projection map

π : M-> N and X be an arbitrary complex space. By £?x we denote the

sheaf of germs of holomorphic maps defined on open subsets of N into X.

The set &x has a canonically defined structure of complex manifold and

the projection ft : d?x -> TV is locally biholomorphic. Then, by putting v{fx) =

f(x) for each fx e <^(cc e JV), we can define a continuous map υ : <^z -> X.

Now, let / be a holomorphic map of M into X We consider the map

σ : M - > ^ x which assigns the germ of f-(π\U)~1 at π(α) to each point x in

M, where ί/is a neighborhood of x such that π|f/ : U-+π{U) is biholomorphic.

Obviously, t; σ = f, πσ = π and σ is continuous. So, σ(M) is connected. By

Hf{M) we denote the connected component of &x which includes σ(M).

Then, the map π\Hf{M) : Hf{M) -> N may be considered to define a Riemann

domain over N which includes M as a Riemann domain. Moreover, the

map f : = v\Hf{M) : Hf{M)-^X is a holomorphic extension of / to Hf{M)

because f σ = / . As is easily seen, Hf(M) is the largest one among Riemann

domains over N which includes M as a Riemann domain and to which /

can be holomorphically extended. Modeling after the case of functions, we

give

DEFINITION 2.1. For a holomorphic map f:M-+X, we call the Rie-

mann domain Hf{M) over N constructed as the above the existence domain of

THEOREM 2.2. Let M be a Riemann domain over a Stein manifold and f be

a holomorphic map of M into a taut complex space. Then, the existence domain of

f is a Stein manifold.
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For the proof we use the Docquier-Grauert's result on the Levi pro-

blem for Riemann domains over a Stein manifold. In their paper [2], many

equivalent definitions of convexity for a Riemann domain were given. Among

them, we shall use here particularly the notion of "#7-convexity". For a

Riemann domain M over N with the projection map π : M-> N, we denote

the set of all (accessible) boundary points of M by dM and put M= Ml)

ΘM. The set M has a canonically defined Hausdorίf topology and π has a

continuous extension π : M-+ N. The definition of p7-convexity is given as

follows:

L e t & : = {{zu , zn); \zx\ ^ 1, \zk\ < 1, 2£k£n}9 δ^r : = { z e . g r ;

l*il = 1 } , & : = {z^^f; \zt\ < 1 } a n d & : = {\zk\ ^ 1, l^k^n} in C \

A Riemann domain M of dimension n over a Stein manifold N with pro-

jection map JΓ : M-+N is said to be #7-convex if and only if there is no
^ 0

continuous map φ : £gr -> M with the property that 1) φ(δ££?) ^ M, <p(&) c

M, 2) ^ ( ^ ) Π δ M ^ Φ and 3) πp is the restriction to £gf of a biholomorphic

map of a neighborhood of ϋ r onto an open subset of N.
The Docquier-Grauert's result which we need here is the following

THEOREM ([2], Satz 10, p . 113). Any pΊ-convex Riemann domain over a Stein

manifold is Stein.

Proof of Theorem 2.2. Without loss of generality, we may assume Hf{M)

= M. It suffices to show that M is p7-convex. Assume that there is a

continuous map ω : gjp -• M satisfying the above conditions 1), 2) and 3).

By the condition 3), πφ is extended to a biholomorphic map ψ of a neigh-

borhood U of u ? onto an open set W in N. If we put G : = φ'^M) Π £7,

the map g : = f> φ\G : G-+X is holomorphic because ^IG is a biholo-
0

morphic map onto an open set in M. Moreover, since δ£gί c G and ££? a G

by the condition 1), we can find real numbers δ, pu Pi and pt (2 ^ ί ^ n)

with 0 < δ < 1 < Pi, 0 < i θ < < l < ^̂ (2 <i^n) such that

£>: = { « < l ^ i K i ^ i , I»* 1 <Pι (2^i<n)}ϋί\z1\<pu M < p't{2£i ^n)}

is included in G. In this situation, Proposition 1.5 implies that the map

g\D : D-> X has a holomorphic extension /z : Df : = {|Zi| < pt (1 ̂  f ^ n)} ->

X Here, we may assume U — D. On the other hand, by the condition

2), there exists a point z e j ^ such that 93(2) e 5M If we take connected

neighborhoods U'(^ U) of z and W(<^ W) of π φ(z)f then a suitable con-

nected component W't of π~ι{Wf) Π M gives a neighborhood of φ{z) in M
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by the definition of the topology of M and π\W'i is a biholomorphic map

onto an open subset Wr of W. The holomorphic m a p / ί r " 1 !^ ' : Wf-> X

has a holomorphic extension h*φ~ι\Wf\ W-+X. It follows from Definition

2.1 that JΓ|W{ : W/

i->W/ is a biholomorphic map. This contradicts the fact

<ρ{z) e 3M and completes the proof.

As a result of Theorem 2.2, we have the following global extension

theorem.

THEOREM 2.3. Let M be a Riemann domain over a Stein manifold and H(M)

be its envelope of holomorphy. Then, for any taut complex space X, every holomorphic

map f : M-> X can be extended to a holomorphic map f : H(M) -> X.

Proof By the definition of the envelope of holomorphy, we have a

holomorphic map τ : M-» H(M) with π = πτ, where π and ft are projection

maps of Riemann domains M and H(M) respectively. On the other hand,

the existence domain Hf{M) is Stein by Theorem 2.1. By the well-known

argument the map σ : M-+ Hf{M) can be extended to a holomorphic map

a : H{M) -» Hf{M) with στ = σ. The map f'-d: H(M) -> X is a holomorphic

extension of / to H(M), where f is a holomorphic extension of / to Hf{M).

COROLLARY 2.4 (c.f. H. Wu, [11], p. 211). If a Riemann domain M over

a Stein manifold is taut, then M is Stein.

Proof The identity map iάM : M-» M has a holomorphic extension h :

H{M) -> M with /zτ = id^, where τ : M-ϊH(M) is a canonical holomorphic

map with πτ = jr. Obviously, τh is the identity map of H(M). This shows

that M is biholomorphic with H(M), whence M is Stein.

§ 3. A counter example. Theorem 2.2 shows that the simultaneous

continuability of holomorphic functions leads to the simultaneous continua-

bility of holomorphic maps defined on subdomains in a Stein manifold into

a taut complex space. On the contrary, the analogous extension theorem

for holomorphic maps defined on a complex space is not valid in general.

In this section, we shall give a counter example.

Let P be a projective algebraic manifold of dimension ^ 1. Moreover,

assume that P is hyperbolic in the sense of S. Kobayashi ([8], p. 465 and [9],

p. 10). For example, a closed Riemann surface of genus at least two satis-

fies these conditions. According to H. Grauert [4], taking a suitable line
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bundle F over P, we can find a relatively compact strongly pseudoconvex

neighborhood X of the zero section Z of F. Then, there are a normal

complex space M and a holomorphic map τ : X-> M such that, for a special

point x0 in M, τ " 1 ^ ) = Z and τ\X — Z : X — Z->M — {x0} is a biholomor-

phic map (c.f. [4], Satz 5, p. 340). Shrinking a neighborhood X of Z we

may assume that Λf is complete hyperbolic. Then we want to prove that

the space X is taut.

By dp, dM and dx we denote the so-called Kobayashi pseudo-distance

on P, M and X respectively (c.f. [8], p. 462 and [9], Definition, p. 10). We

shall first show that X is hyperbolic. Assume the contrary. Then, there

are two points x, y^X(xψy) such that dx(x, y) = 0. By the distance-

decreasing property of holomorphic maps with respect to the Kobayashi

pseudo-distance, we have dM(τ(%), τ(y)) ^ dx(xf y) = 0. This implies that τ(x)

= τ{y) from the hyperbolicity of M. So, τ{x) = τ{y) = x0, i.e., x, y e Z, be-

cause τ is injective on X — Z. On the other hand, since F is a line bundle

over P, the canonical projection map π:F-^P gives a biholomorphic map

τ r | Z : Z - > P . Again using the distance-decreasing property, we see dP(π{x),

π{y)) ̂  </*(#, 2/) = 0. By the hyperbolicity of P, we have π(x) = π{y) and hence

x = y, which is a contradiction. Therefore, X is hyperbolic. Now, it is

easily proved that X is complete with respect to the distance dx because

M is complete and τ : X-+M is proper. Accordingly, we come to the con-

clusion that X is taut.

Consider the map / : = (τ\X— Z)"1. It is a holomorphic map of M — {x0}

into a taut complex space X which obviously cannot be extended to a holo-

morphic map of M into X. This gives a desired counter example.

§ 4. Extensions across an analytic subset of codimension one.

Let S be a thin analytic subset of a domain D in Cn and / be a holomor-

phic map of D — S into a taut complex space X. If dim S ̂  w — 2, / i s

continuable to a holomorphic map of Z> into X by virtue of Theorem 2.3.

In case of dim S = n — 1, we can prove

THEOREM 4.1. Assume that, for each irreducible component St of S, there is

a sequence {av} in D — S which converges to some regular point of Si such that

{f(av)} has a limit point in X. Then f can be extended to a holomorphic map of

D into X.

For the proof, we need the following result of M. H. Kwack in [9].
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T H E O R E M . Let X be a hyperbolic complex space and f be a holomorphic map

of the domain B* : = {z e C; 0 < \z\ < 1} into X. If for a suitable sequence {av}

in B* with \\mav — 0, {/(«„)} converges to a point in X, then f can be extended to

a holomorphic map of B : = {\z\ < 1} into X.

Remark. Though the above theorem is slightly modified from the

original, we can prove it by the same argument as in the proof of Theorem

3 in [9], p. 14

Proof of Theorem 4.1. Without loss of generality, we may assume that

S is irreducible. As is well-known, the set of all singularities of S is an

analytic set of dimension ^ n — 2 in D. There is no harm in assuming

that S is regular. Moreover, it may be assumed that D : = {\zί\ < 1, ,

\zn\ < 1} and S : = {z = (zl9 •• ) Z J G D ; 2 B = 0}, Indeed, if Theorem 4.1

is proved in this case, the set of all x ε S such that / is continuable to a

neighborhood of x is an open and closed subset of 5 and hence coincides

with the whole set S.

Put av = (a\v\ , d£lu a^) and \\mav = (alf , an-u 0). The condition
V—»oo

av^D — S implies 0 < |α£°| < 1. For each v, we take an integer kv such

that 2"(Λv+2) ^ |«nv)l < 2"(fcv+1). Choosing a subsequence and changing indices

if necessary, we may assume that 1 ^ kλ < k2 < . Moreover, {2kva^} may

be assumed to converge to a point b with — Γ ^ | b \ ^ -i-. Now, we define
4 Δ

the holomorphic maps fv(zu , zn.u zn) : = f(zu , zn-u -Ijg-) of D — S

into X Then, for av = (a\v\ , a%2lf 2
kva^), {fv(av)} converges to a point

in X and \im av = (al9 , an-i, b)^D—S. The sequence {/,} in Hoi (D—5, X)

cannot have a compactly divergent subsequence and hence it has a con-

vergent subsequence because Hoi (D — S, X) is normal. We may assume

that \\mfv = g exists in Hoi (D — S, X). Take an arbitrary point z' in Dr

• = (hiI <!,•••» l^n-il < 1} and put h(zn) : = /(g', zn), which is considered

as a map of B* : = {0 < |z n | < 1} into X. Then for av : = }v+ι (v = 1,2,

• )limαv = 0 and lim h(av) = \imfJz', -7Γ) = g(zf, -=-) G I exists. On the

other hand, it was shown by P. Kiernan ([7]) that a taut complex manifold

is always hyperbolic and this assertion can be easily generalized to the case

of complex spaces. So, X is hyperbolic. According to the above M.

H. Kwack's result, h is extended to a map of B : = {\zn\ < 1} into X.
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Thus, we obtain a map f(zl9 , zn) : D—>X, which is an extension of /

and holomorphic in zn for each fixed z' — {zlf , zn-i) in Df. To complete

the proof of Theorem 4.1, it suffices to show that / is continuous on D.

To this end, take an arbitrary sequence z[ = (z\v\ , zc

n-i) in D' with

HmZv = ZQ = : (z\°\ , zc

n-i) e /)' and consider the maps Av(z») : = /(si, zn)
V ->oo

in Hoi (B, X). Since lim Av(2n) = /(sίi z J ^ X for any fixed zn with 0< |z n | <1,

{/zv} has no compactly divergent subsequence. By the normality of

Hoi (B, X), {hv} has a sequence which converges in Hoi (B, X) and whose

limit is necessarily equal to ho(zn) : = f{z\Q\ , z^i, zn) Accordingly,

{hv} itself converges to /z0. This shows that / is continuous and completes

the proof of Theorem 4.1.

Remark. In Theorem 4.1, we cannot omit the assumption that the limit

of {av} is a regular point of St. For example, consider the taut complex

space X defined as the Riemann sphere minus {0, 1, oo} and the analytic

subset S : = {zx = 0} U {z2 = 0} U {zx = z2] in C2. Putting f(zu z2) = ^ - o n C 2

Z\

—S, we have the holomorphic map of C2 — S into X which cannot be ex-

tended to a holomorphic map of C2 into X but has an arbitrary point in

X as a cluster value at the origin.
As direct consequences of Theorem 4.1, we have

COROLLARY 4.2 (M.H. Kwack). Let S be a thin analytic subset of a do-

main D in Cn. Then every holomorphic map of D — S into a compact taut complex

space X can be extended to a holomorphic map of D into X.

COROLLARY 4.3. Under the same assumption as in Corollary 4.2, if a holo-

morphic map of D — S into a taut complex space X can be extended to an open subset

of D which intersects with each irneducible component of S9 it can be extended to the

whole set D.

Remark. Corollary 4.3 is also a consequence of Theorem 2.3. Because,

as is well-known, if a domain Dr with D — S c Dr c D intersects with each

irreducible component of S, then the envelope of holomorphy of Df in-

cludes D.

COROLLARY 4.4. Let X be a taut complex space and assume that there exists

a negative real-valued continuous function u{x) on X such that u{x) is plurisubharmonic

on X — K for a suitable compact subset K of X and {x^X; u(x) < c] is relatively

compact in X for any c{< 0). If S is a thin analytic subset of a domain D in Cn,
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then every holomorphic map f of D — S into X has a holomorphic extension to D.

Proof We may assume that S is regular connected and of dimension

n — 1. - Suppose that / cannot be extended to S. By virtue of Theorem

4.1, {/(#„)} has no accumulation point in X for any sequence {av} converg-

ing to a point in S. Therefore, an arbitrary point a0 in S has a neigh-

borhood U such that f(U—S) Π K= φ. Then, υ : = u / is a non-positive

plurisubharmonic function on U — S Π U. Moreover, Km υ(z) = 0. Putting
z->a0

v(z) — 0 for any z e S Π U, we have a plurisubharmonic function v on U

(c.f. Grauert-Remmert [5]). This contradicts the maximum principle for

plurisubharmonic functions. Thus we have Corollary 4.4.

§ 5. A generalization of the big Picard theorem. The extension
problem of holomorphic maps into a taut complex space is closely related to

the classical big Picard theorem. Here, we shall study holomorphic maps

into the iV-dimensional complex projective space PN(C) minus some hyper-

planes.

In [3], J . Dufresnoy gave the following profound theorem.

THEOREM ([3], p. 18). Let D be a domain in the complex plane and J^~ be a

family of holomorphic maps of D into the complement of arbitrarily given 2N + 1

hyper planes in-general position in PN{C). Then J^~ is relatively compact in

As a consequence of this result, we have the following theorem, which

gives an answer to the conjecture of H. Wu (e.g., [13], p. 216).

THEOREM 5.1. For arbitrarily given 2N + 1 hyperplanes Hu H2, , H2N+1

in general position in PN{C), the space X : = PN{C) — (U l=ΐιHk) is a taut complex

space.

Proof Owing to the result of T J . Barth [1], we have only to show

that Hoi (5, X) is normal for the special domain B: = {\z\<l} in C.

Take a sequence {/„} in Hoi (B, X). By the above theorem a suitable sub-

sequence {fVk} converges to a map g in Hoi {B, PN(C)). For our purpose,

it suffices to ascertain that g{B) c X if g(B) n XΨ φ. For each i(l <i^2N

+ 1) we consider the set Et : = {z&B; g(z) £//*}• Obviously, Et is closed in

B. O n the other hand, for any z0 ^ Eif we can choose neighborhoods U

of z0 and V of g(z0) such that g(U) c V and f,k{U) c V for almost all k and
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Hi Π V is the set of all zeros of a non-zero linear form / on V. Since / fVk

^ 0 on F and / g(z0) = 0, lim / fVk- I g vanishes identically on V. This

shows that Et is open in B. Eventually, Eι = D if Etψ φ. Therefore, we

see g(D) Π X = φ if Et = D for some i and g(D) c X if Et = φ for any i.

This completes the proof.

Now, we shall prove the following generalization of the big Picard

theorem.

THEOREM 5.2. Let S be a regular thin analytic subset of a domain D in Cn.

Then every holomorphic map of D — S into the complement X of 2N + 1 hyperplanes

Hu H2, , H2N+i in general position in PN(C) can be extended to a holomorphic

map of D into PN(C).

Proof Without loss of generality, we may assume that S is of dimension

n — 1. Furthermore, it may be assumed that D = {|zi| < 1, , \zn\ < 1}

and S : = {(zl9 •• , 2 n ) ε D ; z n = 0}. As in the proof of Theorem 4.1, con-

sider the holomorphic maps fv{zu , zn-u zn) ; = f(zu , zn_ l f -^f) (z : =

(zu , zn-u zn) e D — S and v ^ 1) in Hoi {D — S, X). By the above result

of Dufresnoy, a suitable subsequence [fVk] converges to g in Hoi {D—S, PN(C)).

By the same argument as in the proof of Theorem 5,1, it holds either

g(D -S)dHt or g(D - S) Π Ht = φ for each ι(l £ i £ 2N + 1). Since

Ht(l ^ i S 2N+ 1) are located in general position, we can choose some i0

such that g{D — S) Π Hio = φ. Let w0 : Wi : : wN be a system of homo-

geneous coordinates on P^(C) such that {w0 = 0} = Z/^. The space PJV(C) —

Hi may be considered as the space CN and w(1) = ^ - , , w;(iV) = - ^ - give

the global coordinate system on CN. Put fψ = w(o fVk, / C i ) = w;(ί) / and

£(ί> _ w<v. g(i <L i <. N). Since lim/^" = # α ) uniformly on the compact set

i | ^ - ^ - , , |2n-il ^ - r p |2»l = ^ - | in Z ) - 5 , we can find a real

constant M such that \f"\z)\ ^ M(l ^ i ^ N) for any z ^ E and &. There-

fore, if \Zi\ ^ ~ό-> * * •» l^n-ll ^ ~o~> I 2* I = ?Vk+1 y Wθ have l/^^^l, , Zn)\

= l/fcθ(zi, •» «n-i, 2υ*2n)| ^ M. Then, considering the holomorphic func-

tions h^iZn) : = fH\zl9 , 2n_i, zn) in 2;n for arbitrarily fixed zl9 , zn_i

with \zt\ ^ -«-(l ^ i ^ w — 1) and applying the maximum principle, we obtain

I/Cί)(3i, »«n)| ^ M if + 1 ^ \zn\ ^ 1 for any fc. Eventually, |/C i )(2i,

^ M on {|2i| ^-y-, , |ίδn-il ^ - 7 p 0 < | 2 n | ^ - | - } . In this sit-zn
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uation, Theorem 5.2 is an immediate consequence of the classical Riemann's

theorem on removable singularities of bounded holomorphic functions.
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