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1. Introduction

The purpose of this paper is to prove the following result.

THEOREM 1. Let K be a real algebraic number field of degree m = n + 1.
Let 1,8y, « « -, 8, be a basis of K. For a given constant C >0 set 2z=25(B, - * +,
Bns C) equal to the number of solutions in integers q, D1, »+ +,Dn 0f the inequalities

1

e 1<¢<B.

Then 25 = 0(1) or there is a C' >0 such that iz~C’log B (B — o),
There is a dual theorem.

THEOREM 2. With By, + - +, 8., C as in Theorem 1 set Ay equal to the number
of solutions in integers gy, » + +, qn, ® 0f the inequalities

0< g+ «+ + b —2<Clg"

1—<—(I1, i ',QnéB

where g =max (qy, * * *yqn). Lhen either Ap = O(1) or there is a C'’ >0 such that
Az~ C"log B (B— ).

These results generalize the results of [2,3]. However the work of [2,3]
had the advantage that the constant C’ was more precisely defined. For
related work see [1,4,5].

The author would like to thank W.M. Schmidt and S. Kuroda for not
believing that the results of [2] could not be generalized to higher dimen-
sions.
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The proof of the present result closely parallels the proof in [2]. Hence
this paper will sometimes be sketchy.

2. The reduction to counting units

Denote by Z, @, R, C the integers, rationals, reals and complexes.
Let 7, = identity, ;, - - -,z, denote the distinct embeddings of K into C.
Assume o, + - +, 7, are the real embeddings. For acK, set r,a= a® and
assume as usual z =7 4 2s and at*) = girts*d (1 < {<3).

LemMa 1. The dual basis cp, ey, » -+, an of K (with respect to the trace) has
the following properties

aP’ + e+ o FaPB =0 (1<i<mn) (1)
“0+a1181+ A +an‘8n=1 (2)
A= (aP) (1=<i,j<n) is nonsingular. (3)

For the proof see [2,5].

Let M be the free Z-module generated by e, -+ +,,. Let ¢ be the
associated order. Let U be the group of units of ¢7. Then by the Dirichlet
Unit Theorem there are units &, « « +,§,+, > 1in U such that U={+ &+ - - {2u].
For v = (v, «» s, v, )€EZ7* st £ = {220 e so U= {0} veZ™).

For ¢, &M write &, ~ &, if there i1s a {€U such that & =&, (this is
an equivalence relation). If Q<M is an equivalence class, then for all ¢e M,
|v¢] is the same and we denote this by NQ (iV denotes the norm of K/Q).

Now for &M we have unique ¢, py, * » -, p,€Z such that & = ga, + pe;
+ ¢+ + pua,. In this way we view éeM as being in 1-1 correspondence
with possible solutions to * and **. Moreover by (1) we see

— V= aP(gf—p) 4 - - +aP(gB—pn) 1=i=Zn). (4)
LemMA 2. There are only finitely many classes Q<M which yield solutions to *.

Proof. Combine * and (4) with the known fact that there are only
finitely many 2 with ~NQ below a given value.

It suffices to show the following: if for a fixed class Q < M there are
infinitely many solutions to * then there is a C,>0 such that the number of é=Q
satisfying * and ** is asymptotic to C,log B.

We now need some notation. Set 2 = {1 {4} (veZ"*") for any & >0
in . Let ' (27) denote the positive (negative) elements for 2. Let
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g, = L& (veZ ") denote a typical element of Q*. Set
& =qa+ Prai+ + ¢ 0+ Doy
Write
To=1qBi— 10y (1=i=n) (5)
and so (4) is

( ;1)9 R gn))t = - A(Tlv, . '7Tn»)z° <6)

RS
n

For ¢,>0 let 46;,=¢,"7;,. Then we wish to count 13(@*), the number of
g£,e0* such that

0<hpy s * tydn<C (7)
1=4q¢,<B (8)

(the corresponding 2;(2~) will be shown to be bounded). For ¢, + 0 set

v

K = oy + P a1+"'+~—*p"" (259
q qv

so that
& =qun’ (9)
£/ =1+¢&/q, (10)
where
8,, = alrl» + A + anrnu- (11)
For ¢, >0
EN
5y = (Eox, )L T, {12)
Set
77121: = §7Tiv (13)
1
K, = (Soﬁv,_l) ” (14)
so that

Biv = Eiue (15)
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LemMA 3. Let 25(2*) be the number of solutions, v, of

i) & s sufficiently large

1
i) 0<max (9, ** *,7a) <10§ "C = C,
lii) 0< Divs * * * 90y < C";-l

iv) 1<¢=<2B.
Then 25(2%) + 0(1) < 24(2%) << 2,5(2%) + 0(1).

Proof. By i) and ii) we see g, 0 since g, = 0 implies for »;, >0

1 1

Co>nu=C"(—pa)=L" =8 "6"
which violates i). Now by i) ¢ is large so by ii) and (13) 7, is small so
by (11) ¢, is small and so from (10) we may assume —é—sx/s%. From

this and (9) we have ¢, is large and positive. In this situation (7) and iii)
are equivalent (see (15)). Finally by iv) ¢, = és'~'<4B. Thus the right
hand inequality is true. Conversely assume (7) and (8). We may assume
g, is large. So from (7), (10), (11), (12) we see that x,/ is close to 1 and so
by (9) & is large. Again (7) and iii) are equivalent. Here iii) implies ii).
Finally by (8), & = ¢x/=<2B and so we are done.

It follows from the above argument that solutions of * are such that
&, and g, have the same mangitude; in particular & >0 and so 15(27)=0(1).

So now we know it suffices to show that if there are an infinite number
of solutions, 15(2*) ~ C;log B (with C,>0).

3. Counting the relevant units

We now essentially prove the theorem except that instead of counting
1<¢g <B we count 1<y, <<N. We then put B back.

For1=i<7r+s set

1 L
X; = (logl& Pl » « -+, log|L £+, arg £¢+, -« », arg £7*)°

where we assume for ZeC that the argument of Z satisfies 0<argZ < 2r.
So X,eR™*'. Further for r+s+1<i<mn set X;,=(0,+++,0,2r,0, « + +,0)"
with 2z in the " spot.

Now det(X, -+, %X, +++,X,) =0 for i=1,2, +++,7r+s violates the
known rank for the regulator matrix. So without loss of generality (rela-
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beling &, « + «&r4s) We may assume
det (X;, » + -, X;) 7= 0. (16)
LEMMA 4. Let 85 be the number of solutions of the inequalities
0<71y * + 370 < Cy (17)
1<y, <<N (or 1<<—yp,<N).
Then
v ~CN (N— o)

where C, >0 is some constant.
Proof.  Set

8(01)-1 0
A1 = - ) . A
0 . 5(()”)_1

with 4 as in (3). Also set p,;, = §7§<“" (1=<i=<mn). Then by (6) and (13)

Ay =+ ) = (Pr * + 25 000

NOW 0,i5400 = Pres,y 1=1=s) so we omit the last s coordinates in the
vector of p’s.
That is, define the linear transformation A4, by

Ay proj.
R"—> R"XC¥*— R"XC’= R" so
A2(ﬂlu9 M '77]1&-:)8 = (plv’ tt ety Pr+s.v)t-

We show A, is non singular. We know from (3) of Lemma 1 that A
is non singular and so also A, is non sigular (i.e., det A;+ 0). Now if the
row vectors of A, are A®, ..., A™ we see AT+ = AT++) (1<i<s) and
that the row vectors of A, are A®, ..., A7, Re(A"*), « .., Re(Ar+),

Im(ACD), « o o« Im(AT*),  So we see that det 4, = 2-°det 4, 0, as desired.
Now

plvp2v'°'pnu:plu.'.prvlpr+l,vl2'..lpr‘(’s,vlz
= (NGt » « (NE )
=+1

So the images of the points (7, + + +,7,,) under A, lie on the surface &:
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Uty » urlur-i-llz ct ]ur+312= +1in R"=R" xC° (SO (ulv ] ur) € RT’
(u'r+l9 ° e "u'r-!-s)ECS)' Define [ & = RV bY

(]5(1,{1, b '9ur+x) = (10g|742|, A ',IOglur+s‘9 arg Urpry * * *y arg ur+s)3-
Then on any part of & where the signs of u,, - - +,u, are fixed we see ¢

is 1-1 and has as image
D =@+, 2y )|0=Z 2, <2z fOr ¥ +5<i<n}.

Now our problem is to count the number of (y,, - - +,7,,) lying in an
open box in R". This then is equivalent to counting the number of
(@i * * *yPr45,,) lying in some open parallelepiped in R™ = R"xC°® which
meets & in a set open in &”. Then again restricting ourselves to a por-
tion of & with the signs of u,, - - -,u, fixed we see the image <# under
¢ of this subset of &7 is a bounded open set together with some of its
boundary. Moreover it is clear that the volume of the boundaries of all
the sets involved is zero. We wish to count the number of ¢(py, + + +, 0,45.)
lying in 2.

We see readily

¢(P1w C Yy pr+s.u) = Vle + e 4+ V’r+er+x (mOd 271')

where the congruence is read only in the last s coordinates. So when the
last s coordinates are reduced mod 2r we want to count which y X+ + - -+
vr+sXpss lies in 2. This is clearly the same as counting the number of
viXi+ o v XaE B (see the definition of X iy, » + +, X,).

Let 4 be the lattice in R*! spanned by X,, - - ., X, (a lattice by (16)).
Thus we now see that we wish to count the number of v, X, 1<y, <N)
lying in &2 mod 4. It is a well known theorem in uniform distribution
theory that if &2 is a set whose boundary has zero volume, then there is
a C,;=0 such that the number of v,X; in & mod 4, 1<y, <N (1 <—y,<N)
is asymptotic to C,N.

It should be recalled that the region % depended on the sign of the
coordinates @y, *++,p,. The sign of p, depends only on the sign of
EE, e o, 80 (1<i<yr) and so for a fixed parity of vy, + - +,v,., the
region 2 does not change. Then the argument should be repeated as
above for these 2"*° cases.

This concludes the proof of Lemma 4.

We now solve for &, in terms of y,.
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LemMAa 5. There is a constant C, < 0 such that for all v satisfying 1), ii),
iii) of Lemma 3 we have

log &, = v1C; + 0(1) (v1 = £ o). (18)

Proof. As in the proof of Lemma 3 we see i) and ii) imply &,/ is close
to 1 and so from (10) and (14)

L
»n

-1
Crt=C& "(L+¢&Jq)” = Cs+ 0(g:?).

So we are interested in the y such that
0<7ny * * * s < Co + 0(g-"). (19)

The C; will depend only on &, - - -,&,+, so it suffices to show (18) for all
v such that

0<771w A '10nv<cs-

Then as in Lemma 4 there is a bounded subset <Z<R™! such that
we want all v, X;+ - -+ +,X,€. This says that for 2<i<r+s

1 1 1
vlog |8 P + « « « + vraslogl8 4 521 = — vilog £ &1 + 0(1).

1 1
Set X{ = (log|¢" &P, « + +, logl& " E7*®]), (1<<i<r+s). Then det(X, - -+, X,)
#+ 0, (16), implies det (X}, « -+, X/4;) =0, Solving for y; 2<j<r+s) yields
with ¥ = — », X{ + 0(1)
v; = det( 59 * "X§—19 Y’X§+19 M) X;+s)
! det (X3, « « «, X746)

— (— 1)~ det(le"" ,',"'7X7/' s)
—( l)j 1141 dlet (Xév * ’J',X{-ﬂ) * +O(1).

Thus
logé, =log &+ vilog&i+ « «« + v,uslog &rus

_ oy e det( ;9"'925'9"'7)(: s)
=n B DT e (g, K les b+ 0

5’ °
= D1C7 + 0(1).
Now C; = 0 implies

r+4s N
(=1t det (X7, « « +, X+ + -, X7s) log &5 =0

=

Y
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and this is the regulator of 7. So C;#0.

LemmA 6. Let #y be the number of solutions of 1), ii), iii) of Lemma 3 such
that 1<y, <N (1<<— v, <<N). Then for some Cy >0, #y~ C,N.

Proof. We just observed that we must count the number of » such that
¢, and g, are large, (19) holds and 1<y, <N (1< —»,<N). Then examin-
ing the proof of Lemma 4 we see that we wish to count the number of
vy, 1=y, =<N (1< —y,<<N) such that

viXi+ o FuXe R + (g ).

Let Fy(e) be the number lying in &2, (all XeR*! no further from &
than €). Then Fy(e) ~ C(e)N (N-> ). Moreover from the uniform distri-
bution theroy lim C(e) = C(0) (¢ >0). Then given & there is an Ny(e) such
that [v;| > Ny(e) implies 2 + 0(¢s')c. .. Now clearly the g, yielding solu-
tions to * are such that g,—co so also & —c and so by Lemma 5, y,—co.
Hence there is a constant C,, independent of N and ¢ such that

#nv << Fy(e) + CiolNo(8).
Thus as N-—» oo
lim sup §x/N < lim sup (Fy(e) + C1oNy(€))/N = C(e).
Since this is true for all 6 >0 we see
lim sup #x/N < C(0).

Similarly for liminf and so lim#x/N = C(0).

We now prove the theorem. It follows from Lemma 5 that &, is large
if and only if v, is large and has the same sign as C;; we now restrict v,
to these values. Set N= |C;|"'log B. Then 1<¢, <2B implies by Lemma 5

0=<logé, = v;C; + 0(1) < log B + 0(1)
or
01) < |wi]l =N+ 0(1).
Thus
25(2%) =< Enro-

The lower bound is similar and so there are constants C;; and C,, such
that
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#N—Cu - l{;(Q*') < #N-rcm
N 7 |G| legB TN

and so letting N (hence B) tend to c we have the desired result.
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