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SIMULTANEOUS ASYMPTOTIC DIOPHANTINE

APPROXIMATIONS TO A BASIS OF A

REAL NUMBER FIELD

WILLIAM W. ADAMS

1. Introduction

The purpose of this paper is to prove the following result.

THEOREM 1. Let K be a real algebraic number field of degree m— n + 1.

Let l,βl9 ,βn be a basis of K. For a given constant C > 0 set λB~λB{βί9 ,

βm C) equal to the number of solutions in integers q, φί9 , pn of the inequalities

1

* O<qβi-Vi< Clq n (1 < i < n)

Then λB = 0(1) or there is a C > 0 such that λB^C log B (£-*oo).

There is a dual theorem.

THEOREM 2. With βί9 , βn9 C as in Theorem 1 set ΛB equal to the number

of solutions in integers ql9 , qn9 p of the inequalities

where q — m a x ( ^ , , # J . Then either ΛB = 0(1) or there is a C" > 0 such that

Λβ-^C'ΊogB CB-»oo).

These results generalize the results of [2,3]. However the work of [2,3]

had the advantage that the constant C was more precisely defined. For

related work see [1,4,5],
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The proof of the present result closely parallels the proof in [2]. Hence

this paper will sometimes be sketchy.

2. The reduction to counting units

Denote by Z, Q, R, C the integers, rationals, reals and complexes.

Let τ0 = identity, τί9 , τn denote the distinct embeddings of K into C.

Assume r0, ,τr are the real embeddings. For a<=K, set na = «(ί) and

assume as usual n — r + 2s and a(r+i) — a(r+s+i) (1 < i ̂  5).

LEMMA 1. The dual basis aQ, au ,an of K (with respect to the trace) has

the following properties

aψ + a«% + + a^βn = 0 (1 < i < n) (1)

«0 + «lj8l + + Cίnβn = 1 (2)

A — [aψ) (1 ̂  i, j < n) is nonsingular. (3)

For the proof see [2,5].

Let M be the free Z-module generated by aQ, , an. Let £? be the

associated order. Let U be the group of units of £?. Then by the Dirichlet

Unit Theorem there are units ζl9 , ζr+s > 1 in U such that U= {±ζv

1

1- ζv

rγ<}.

For v = (vί9 ,vr+s)<ΞZr+s set Γ = £T •?;« so C/= { + Π (v^Zr+s).

For $!, f 2 eM write f 1 — f2 if there is a fe?7 such that ξι = ff2 (this is

an equivalence relation). If Ω^M is an equivalence class, then for all ?εM,

|7Vf| is the same and we denote this by NΩ (TV denotes the norm of KjQ).

Now for ζ<=M we have unique q,pl9 , ^ ε Z such that f = ̂ α0 + ί?i«i

+ + Pn^ri. In this way we view f eAf as being in 1-1 correspondence

with possible solutions to * and **. Moreover by (1) we see

- ξ& = aΠqβi - Pύ + + a«\qβu - pn) (1 < f ̂  w). (4)

LEMMA 2. 27?̂ r̂  are only finitely many classes ΩQM which yield solutions to *.

Proof Combine * and (4) with the known fact that there are only

finitely many Ω with NΩ below a given value.

It suffices to show the following: if for a fixed class Ω c M there are

infinitely many solutions to * then there is a C1>0 such that the number of ξ^Ω

satisfying * and ** is asymptotic to Cx log B.

We now need some notation. Set Ω = {±ζvξ0} (vGZr+ί) for any f o >O

in Ω. Let Ω+ [Ω~) denote the positive (negative) elements for Ω. Let
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fy = Γfo (vGZ r + s ) denote a typical element of Ω+. Set

Write

rίv = qA-PiV ( l^/^n) (5)

and so (4) is

•• ,r»,) t. (6)

1

For qv > 0 let 3 ί v = #y

n / i v. Then we wish to count λB{Ω+), the number of

such that

0<δlv, , 5 n y < C (7)

l^qv^B (8)

(the corresponding λB{Ω~) will be shown to be bounded). For qv¥=0 set

so that

€v = g^v7 (9)

*/ = l + ευ/gυ (10)

where

ευ = «irly + + αnr f t v. (ii)

For qv > 0

δ i ^ d o * / - 1 ) ^ " ^ . (12)

Set

9*. = rn, (13)

i

Λ y = (f o i C /-i ) - (14)

so that

<5ίυ = ic v3y ί v. ( 1 5 )
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L E M M A 3. Let λ'B(Ω+) be the number of solutions, v, of

i) ξv is sufficiently large

i_

ii) 0 < max {ηlv9 ,η n v ) < 10f0

 nC = C2

iii) 0 < ηlv9 -,ηnv< Cύ1

iv) 1 < ξv ̂  2B.

Then λB(Ω+) + 0(1) -£ jί£(β+) ̂  ^ 4 β(β+) + 0(1).

Proof By i) and ii) we see qv ψ 0 since #„ = 0 implies for ηiv > 0

which violates i). Now by i) f is large so by ii) and (13) Yt, is small so
-I Q

by (11) εv is small and so from (10) we may assume - ^ - ^ Λ / < - ~ . From

this and (9) we have qv is large and positive. In this situation (7) and iii)

are equivalent (see. (15)). Finally by iv) qv = ξvtcj~ι ^ AB, Thus the right

hand inequality is true. Conversely assume (7) and (8). We may assume

qv is large. So from (7), (10), (11), (12) we see that κv

f is close to 1 and so

by (9) $v is large. Again (7) and iii) are equivalent. Here iii) implies ii).

Finally by (8), ξv = qvκj :< 2B and so we are done.

It follows from the above argument that solutions of * are such that

ξv and qv have the same mangitude; in particular ξυ>0 and so λB{Ω~) = 0{l).

So now we know it suffices to show that if there are an infinite number

of solutions, λ'B{Ω+) ~ C1 log B (with d > 0).

3. Counting the relevant units

We now essentially prove the theorem except that instead of counting

l^qv^B we count l^v1^K We then put B back.

For 1 ̂  i ^ r + s set

Xi = (iog\ζ7ζr\, , iogιr7rc*r+ 'i, ̂ gζγ+i\ , argrr r

where we assume for Z G C that the argument of Z satisfies 0 ^ a r g Z < 2 ^ .

So ^ e β " " 1 . Further for r + s + 1 ̂  i ^ n set Xt = (0, • •, 0,2π, 0, . , 0)'

with 2π in the ith spot.

Now det (Xl9 , Xi9 , Xn) = 0 for i — 1,2, , r + s violates the

known rank for the regulator matrix. So without loss of generality (rela-
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beling ζl9 ξr+8) we may assume

det(X2, ,Xn)^0. (16)

L E M M A 4. Let $'N be the number of solutions of the inequalities

0<yίv, • , ^ v < C 3 (17)

l^vi^N (or l^-v^N).

Then

ψN-C,N (iV^oo)

where Ct > 0 is some constant.

Proof. Set

/ί'o1 5"1 0\

\ o ίi*"1 /

with A as in (3). Also set piv = ζ~^ζ(ί)v {l^i ^n). Then by (6) and (13)

AAV!,,, -,ynvy = {pίv, -,pnvY.

Now iθ r + 5 + l t υ = pr+itV (l^Li^Ls) so we omit the last 5 coordinates in the

vector of p's.

That is, define the linear transformation A2 by

At proj.

Rn >RrxC2s >RrxCs = Rn so

A2{ηίv9 -,r}nvY = (Pi,, , P r + . . v ) ί

We show 4̂2 is non singular. We know from (3) of Lemma 1 that A

is non singular and so also Ax is non sigular (i.e., d e t ^ i ^ O ) . Now if the

row vectors of Ax are A™, ,A(n) we see A(r+i) = A(r+s+i) (l^i^s) and

that the row vectors of A2 are Aw, , A(r\ Re (A<r+1)), , Re {A(r+S)),

*), ,/m(A(r+s)). So we see that detA2 = 2"sdet Ax ψ 0, as desired.

Now

= ± 1

So the images of the points (ηlv, ,ηnv) under A2 lie on the surface
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u1u2 ur\ur+1\
2 - \ur+s\

2 = ± 1 i n Rn = Rr x Cs (so (ul9 , ur)tΞRr,

{ur+1, ,wr+s)GCs). Define φ: S^-^Rn~ι by

»«r+ι) = (logl«2|> * >loglwr+s|, arg« r + 1, , argwr+t)
e.

Then on any part of Sf where the signs of ul9 *,ur are fixed we see φ

is 1-1 and has as image

& = {(αi, ,α; u_ 1) |0<α; i<2π for r + s^i< n}.

Now our problem is to count the number of (ηlv, ,ηnv) lying in an

open box in Rn, This then is equivalent to counting the number of

{Pw> >/°r+β.v) lying in some open parallelepiped in Rn = RrxCs which

meets ^ in a set open in £f. Then again restricting ourselves to a por-

tion of £^ with the signs of ul9 9ur fixed we see the image & under

φ of this subset of S^ is a bounded open set together with some of its

boundary. Moreover it is clear that the volume of the boundaries of all

the sets involved is zero. We wish to count the number of φ(pίv9 -,pr+sJ

lying in ^ .

We see readily

Φ(Piv, ' , Pr+sJ Ξ viXi + + vr+sXr+8 (mod 2π)

where the congruence is read only in the last s coordinates. So when the

last 5 coordinates are reduced mod 2π we want to count which i>1Jϊ1+ +

vr+sXr+§ lies in ^ . This is clearly the same as counting the number of

viXi + + vΛX»&& (see the definition of Xr+Λ+l9 9Xn).

Let A be the lattice in Rnl spanned by X2f -,Xn (a lattice by (16)).

Thus we now see that we wish to count the number of vxXx (l^vi^N)

lying in & mod A. It is a well known theorem in uniform distribution

theory that if & is a set whose boundary has zero volume, then there is

a C4 ̂  0 such that the number of vxXι in & mod A, 1 < vx ̂  N (1 ^—v^N)

is asymptotic to C4iV.

It should be recalled that the region & depended on the sign of the

coordinates pίv9 , prv. The sign of piv depends only on the sign of

ζψ\ * * '9frVί"*' ( l ^ i ^ r ) and so for a fixed parity of vlf •• ,vy+, the

region & does not change. Then the argument should be repeated as

above for these 2r+s cases.

This concludes the proof of Lemma 4.

We now solve for ξv in terms of vx.



APPROXIMATIONS TO A BASIS OF A REAL NUMBER FIELD 85

LEMMA 5. There is a constant C7 ψ 0 such that for all v satisfying i), ii),

iii) of Lemma 3 we have

log ξv = v,C7 + 0(1) (v, -> ± oo). (18)

Proof As in the proof of Lemma 3 we see i) and ii) imply κv

r is close

to 1 and so from (10) and (14)

__L J_

CKZ1 =Cξ0

 n (1 + εjqv)
 n = C6 + Oiqϊ1).

So we are interested in the v such that

0<ηlv, ,7»v<C β + 0(^"1). (19)

The C7 will depend only on ζl9 ,fr+, so it suffices to show (18) for all

v such that

Then as in Lemma 4 there is a bounded subset ^QR4""1 such that

we want all v\Xx + + v A e ^ . This says that for 2^Li<r + s

JL J J

Set X't = (loglζΓζTU , log|^wΓΓs)l), (l^i^r+s). Then det(X2, . . ,Xn)
=^0, (16), implies det(Xί, ,Jfί+,)^O, Solving for Vj (2^j^r+s) yields
with Y = - yiXί + 0(1)

,, — det (Xg> ' * * 9 Xj-i9 YfXj+u * *> ^ r + J

— f_iv-i,. det(Xί, *, Xj, ' • ' l ί+i) i Λ/-J\
αet (A 2, , A r + S ;

Thus

log £„ = log ζ0 + vi log ζi + + v r + slog ξ*r+s

= y i C 7 + 0(1).

Now C7 = 0 implies

i f (-I) '" 1 det (Xί, , X'j, , X;+s) log fy = 0
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and this is the regulator of 0. So C7 ψ 0.

LEMMA 6. Let $N be the number of solutions of i), ii), iii) of Lemma 3 such

that 1 < vi < N (1 < - ^ < AT). Γfe/z /or *MW* C9 > 0, #^ — C9N.

We just observed that we must count the number of v such that

ξv and qv are large, (19) holds and 1 -<,vx-<.N (1<: — vι<N). Then examin-

ing the proof of Lemma 4 we see that we wish to count the number of

vl9 l^Vί^N ( 1 ^ - V!<N) such that

Let FN{e) be the number lying in &ε (all XejR71"1 no further from &

than ε). Then FN{ε) — C(ε)N (N-+oo). Moreover from the uniform distri-

bution theroy HmC(ε) = C(0) (e-^ O). Then given ε there is an N0{ε) such

that \vA >N0{ε) implies & + 0{q7ί)Q&Λ. Now clearly the qv yielding solu-

tions to * are such that qv-*co so also ξv-^°° and so by Lemma 5, ι>i->oo.

Hence there is a constant C10 independent of N and ε such that

Thus as

lim sup %NIN^ lim sup (FN{ε) + CίONo(ε))IN= C(ε).

Since this is true for all ε > 0 we see

Similarly for liminf and so lim#W^V'=

We now prove the theorem. It follows from Lemma 5 that ξv is large

if and only if vx is large and has the same sign as C7; we now restrict vι

to these values. Set A^= \Ct\~1 log B. Then l^ζv^2B implies by Lemma 5

0 ^ log ξv = v1CΊ + 0(1) ^ log B + 0(1)

or

Thus

The lower bound is similar and so there are constants Cn and C12 such

that
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AT - |C 7 |- ι logS
#N+C12

and so letting AT (hence 5) tend to co we have the desired result.
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