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ON A CERTAIN FUNCTION ANALOGOUS TO log\v(z)\

TETSUYA ASAI

The purpose of this paper is to give the limit formula of the Kronec-

ker's type for a non-holomorphic Eisenstein series with respect to a Hubert

modular group in the case of an arbitrary algebraic number field. Actually,

we shall generalize the following result which is well-known as the first

Kronecker's limit formula. From our view-point, this classical case is cor-

responding to the case of the rational number field Q.

Let 2 be a point of the complex-upper-half-plane, and by y(z) we

denote the imaginary part of z, i.e., y(z) = y > 0 for z = x + iy. L denotes

the group SL(2,Z) (Z: the ring of rational integers), and Lγ the subgroup

consisting of all σ = Γ? jjje L such that ϊ = 0. σ(z> stands for (az + β)

{ϊz + δ)'1 as usual. The non-holomorphic Eisenstein series with respect to

L is defined by

E*(z,s)= Σ y{σ(z»\
a<ELι\L

and this converges absolutely in the half plane Re s > 1. E*(z,s), as the

function of s, is essentially an Epstein zeta function of the positive definite

binary quadratic form. In fact, define another Dirichlet series by

1
E[Z, S) = r> 2

& m,n= -oo
(m,n)=|=(0,0)

then obviously, E{z,s) = ζ{2s)E*{z9s)9 where ζ(s) is the Riemann zeta function.

The series E(z9s) can be holomorphically continued to the whole s-plane,

and the continuation is regular except for one simple pole at s = 1 with the

residue π/2. The Kronecker's limit formula gives the constant term in the

Laurent expansion at s = 1 explicitly, i.e.,

lim(E(z9 s) - ~ ^ V ) = -f- (2C - Iog4 - \ogy(z) + h(z)),
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where C is the Euler constant and h(z) = —A\og\η{z)\\ η{z) being the Dedekind

^-function. It is well-known that the function η{z) is a holomorphic cusp

form of dimension — -=— with respect to L, but we here notice only the

following properties of the non-holomorphic function h(z) itself.

I. h(z) is a real-valued, real analytic function of two real variables

x,y(z = x + iy)9 and vanishes by the Laplace-Bel trami operator

y2( 2 + -4-2r) °f the complex-upper-half-plane.

II. h(z) is a modular form with the automorphic factor log\Tz + δ\2

with respect to L, i.e., h(z) = \og\rz + δ\2 + &(<J<Z» for any * = (" j ) e ^

Furthermore, as was recently remarked by Weil,

III . h(z) is associated with the Dirichlet series ζ{s)ζ(s + 1) in the usual

sense, i.e., essentially under Mellin transform.

Now, all the above result can be generalized to the case of any al-

gebraic number field. Let F be an arbitrary algebraic number field and o

be the ring of integers of F, whose class number, we assume for simplicity,

is equal to one. Let r19 r2 be the numbers of real and imaginary infinite

places of F, respectively. For the upper-half-space corresponding to F, we

need the product space J%f — H^xH^, where Hc and Hq are the complex-

upper-half-plane and the quaternion-upper-half-space, respectively. Hg con-

sists of all quaternion numbers z = (x ~^J such that y > 0 while x is any

complex number, and we also denote y{z) = y for such z. Take the Hubert

modular group Γ = SL{2, o) which operates on <%? discontinuously, and let

Γι be the group of all <r = (? f)^Γ s u c h that ϊ = 0. For a point % = (zj)

of β{? and a complex number s with Re s > 1, the non-holomorphic

Eisenstein series with respect to Γ is defined by

E*(z,s)= Σ Ny(σ<z»s,

here y{z) = (y(zj)) and Ny(z) = [lί^yizj)6'; e5 being 1 or 2, according as the
i=i

case of He or Hq. Similarly to the classical case, E(z9 s) = ζF(2s)E*(z, s) (where

ζF{s) being the Dedekind zeta function of F) can be regarded as a general-

ized Epstein zeta function, and it can be holomorphically continued to the

whole s-plane regularly except for a simple pole at s = 1. When we calcu-

late the explicit limit formula of the Kronecker's type for E(z,s), we are
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naturally led to a certain new function h(z) on J^. The function h{z) is

very analogous to \og\η(z)\, and really h(z) satisfies all the conditions cor-

responding to the above I, II and III. (For this reason, we may call the

function h(z) "the harmonic modular form" on <%*.)

The harmonic modular form h{z) is in general expressed by the modi-

fied Bessel function in the Fourier expansion form, and so we may find the

close relationship to the non-holomorphic automorphic functions defined by

Maass. Actually, it seems possible to construct the theory of Maass' type

in the case of Hubert modular groups, but we shall not make further dis-

cussion on this subject in this paper.

For the purpose of emphasizing that the concept of the harmonic

modular form is very naturally introduced, we would like to start our con-

sideration by calculating the inverse Mellin transform of ζF{s)ζF{s + 1) in the

case of F being the Gauss' number field (in §1). The Eisenstein series

E(z, s) in the general case will be defined in § 2, and there we shall mention

about the holomorphic continuation and the functional equation. In § 3

the main theorems about the Kronecker's limit formula will be proved,

containing the discussion on the Dirichlet series associated with the harmonic

modular form. Throughout this paper, we restrict our consideration only

in the case of the class number one, but this does not essentially lose the

generality. It, however, becomes some complicated in the general case; for

instance, we must deal with many numbers of Eisenstein series and harmonic

modular forms of a vector type.

In the case of totally real number fields our limit formula seems in

substance the same one of Konno ([6]), or Katayama ([5]) in the real

quadratic case. But it seems that they did not catch the harmonic modular

form explicitly, and really, Hecke who originally studied on these problems

did seek after "die zu \ogη(z) analogen Funktionen", though we choose the

simpler way to seek after "diezu log\rj{z)\ analogen Funktionen" by contrast.

The author got many hints especially from Kubota ([7]) and Siegel

([11]); from the former as to the quaternion-upper-half-space and the Eisen-

stein series corresponding to it, and from the latter as to the manner of

dealing with the limit formula itself.

§1. Inverse Mellin transform of ζF(s)ζF{s + l) in the Gauss5

number field case

Recently, Weil ([13]) gave a new proof of the classical formula: logη(z) =
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— log(— iz) + \ogη (— — ) , by using the functional equation of ζ{s)ζ(s + 1),

where ξ(s) is the Riemann zeta functoin. Really, he pointed out that the

"modular form" log η(z) is associated with the Dirichlet series ζ(s)ζ(s + 1) in

the usual sense, i.e., essentially under Mellin transform. We here consider

a simple analogy of this fact, that is, we shall treat the problem what

"modular form" is associated with the Dirichlet series Z(s)Z{s + 1), where

Z{s) is the Dedekind zeta function ζF{s) of the Gauss' number field F = Q(τ/—1 ).

This section will also play a role of introduction to the subsequent sections.

1-1. Let us consider the functions

φ{s) = Z{S)Z{S + 1), Φ(S) = π-Vs+1Ψ{s)Γ{s + l)φ(s).

From the functional equation of the zeta function Z(s), we can derive

Φ(S) = Φ{ - s).

Further, as is immediately observed from the properties of Z(s), the function

Φ{s) is holomorphic in the whole s-plane except one double pole at s = 0

and two simple poles at 5 = + 1, and bounded in σ-^Re s ^σf Im s^ε

for any σ9 σ
f, and ε > 0 . The residues of Φ(s) are Z(2)/4π2, —Z(2)/4τr2 at

5 = 1, — 1 respectively, and Φ(s) + l/(16s2) is holomorphic at s = 0. Of course,

for Re s > 1, <p{s) is expressed as the Dirichlet series:

16 β,vέz[f^i\ μ

Here wτe should recall the Mellin transform formula of the modified Bessel

function:

in Re s>0 and for any a > 0 ([10], p. 91, for example). Hence we have

the integral expression of Φ{s):

Φ(s) = )ύf(y)y2s-^-, Re s>h

where the function f(y) is defined by the absolutely convergent series:

'- Kί(2π\μv\y)y, y>0.
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At the same time we also have the inversion formula:

f(y) = - 4
πl

197

In this expression, we can change the path of integration Re s = σ to

Re s = — σ. Namely, from the properties of the meromorphic function Φ(s)

mentioned above, it follows that

Φ{s)y-2sds
πι

%rτ (y y ) + 4 s y + ( . ( ) y
Δ1Z 4 πl J—a-too

Further, from the functional equation Φ(s) = Φ(— s), we have

\-2s

)πl J-a-ι

These relations shows that

(1)

where we put

4
y

s
ds

=-£-logy

4 ^

Now in the classical case of Weil, the function corresponding to g(y) can

be holomorphically continued to be a modular form — 4 log^ z) on the

complex-upper-half-plane. In our case, how can we make the function to

be a modular form? This problem is not so obvious, for there are no

holomorphic solutions on the complex-upper-half-plane. We can, however,

give a natural solution of the above problem on the quaternion-upper-half-

space.

Before presenting this modular form, we must recall something about the

quaternion-upper-half-space. (It is described more precisely in Kubota [7].)

The quaternion-upper-half-space Hq is a three dimensional hyperbolic space

which is realized as the set of all quaternion numbers z = (f ~~ )̂ such

that x is any complex number and y is any positive real number. The

group SL{2,C) (C: the complex number field) naturally operates on Hq as

follows:
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SL(2, C) 3σ = ί" £J : * > σ<£> = {az + j8) (r* + δ)'\

where the complex numbers a, are identified with the quaternion

numbers (a _\ . The subgroup SL(29Z\J—l ]) operates discontinuous-

ly. Further, we know that the Laplace-Beltrami operator

do 32 \ ^

i^α = y~ 14 n n - + n 9 ) — 2/-dy2 J * dy

is essentially a unique SL(2,C)-invariant differential operator on Hq.

We are now ready to answer the above problem:

THEOREM 1. Define the function h{z) on Hq by

μ

for z = (x
 ~ " | ) G / 4 Then the following properties hold:

I. h{z) is a real-valued, real analytic function on Hq of variables x, x, y and

vanishes by the Laplace-Beltrami operator Dq of Hq.

I I . h{z) is a modular form with the automorphic factor 2\og{\Tx + δ\2 + \ΐ\2y2)

with respect to the group SL(2,zy-l ]), i.e., h{z) = 2 log (\ϊx + ^| 2 + \T\2y2) +

+ h{σ(z» for any σ = (^ J)eSL(2 f Z[^=Γ]).

We call the function h{z) the harmonic modular form on Hq. Obviously,

h{z)\x=0 = 16g(y). Thus we can say as follows:

THEOREM 2. The harmonic modular form h(z) is associated with the Dirichlet

series Z(s)Z{s + 1).

1-2. Proof of Theorem 1. We begin with a lemma.

LEMMA. For any s&C and any non-zero a^C the function of z =

defined by

e,{z,a) = K2s^(\a\

is an eigenfunction of Dq, i.e.,

Dqes{z, a) = 4s{s — l)es{z, a).
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Proof of Lemma. The function w = Ku{υ) satisfies the modified Bessel

differential equation ([10], p. 66):

dv2 dv

This implies the lemma.

Further, as is immediately checked,

DQy2s = 4s{s - l)y2s.

Combining this with the lemma for the case 5 = 1, we obtain

(2) Dgh(z) = 0.

It is easy to see that h{z) is real-valued. Thus the assertion I is proved.

To prove the assertion II, we have only to show the transformation for-

mulas for the generators of SL(2, Zt/^ΊΓ]): £ = ( " " * {), T = (X £), U = (X ()

and A = (-, ~~ ) . It is quite easy to see

h(z) = h(Uz» = h(T<z» = h(U<z».

For the transformation A we must show k{z) = 0, where

k(z) = h(z) - 21og(|a;|2 + y*) - h(A<z».

As is stated in the equation (1), we know

(3) fc(s) l,«o = O.

Since A(z> = (\x\2 4-

simple calculation,

3
dx

for z = (J " w e c a n o b t a ί n bY a

h{z)
dx

And so,

(4)

Further,

(5)

from (2)

d Jy.f^\

dx

we get also

- d Mz)
x=o dx

DJc{z) = 0.

= 0.

= 0.
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Since the function k(z) is real analytic with respect to variables x, x and y,

k(z) has a power series expansion:

(6) k(z) = Σ cmtn(y)xmxn,
m,n=0

From (3), (4) and (6), we can first get

(7) cOtO(y) = cίt0(y) = cOΛ(y) = 0.

From (5) and (6), we can derive

m'n{y) + 4y2{m + 1 ] ( n

for every m9 n^O. Combining (7) with (8), it follows inductively that

(9) cm,n(y) = 0 for every m,

This means that k(z) = 0, hence we obtain the assertion II . Thus the proof

of Theorem 1 is finished.

We shall later give another proof of Theorem 1 in the more general

form as a result of the Kronecker's limit formula for the non-holomorphic

Eisenstein series. But the direct proof given here may be interesting, because

it is related to the method by Maass in the problem between non-holomorphic

automorphic functions and determining the Dirichlet series by the functional

equations ([9]).

§ 2. The non-holomorphic Eisenstein series of the Hubert modular

group

I n this section we shall define a non-holomorphic Eisenstein series of a

simple type with respect to a Hubert modular group in the case of an arbit-

rary algebraic number field, and give the holomorphic continuation and the

functional equation for the Eisenstein series. Furthermore, we shall get the

explicit expression of the Eisenstein series, which can be essentially regarded

as the Fourier expansion formula. For the sake of simplicity we really treat

only the case that the class number of the field is one.

2-1. Let F be an arbitrary algebraic number field with the class num-

ber one, which has rx real conjugate fields and 2r2 imaginary conjugate

fields, and so the degree n of the field F over the rational number field Q

is equal to r1-\-2r2. We denote the conjugate maps a-^aω; real ones for

l ^ y ^ r j and imaginary ones aω = a(j+r*) for r1 + 1 ̂ j^rx + r2. Let
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denote the upper-half-space corresponding to the field F. Namely, ^ is

the product space Π Hs of rλ copies of the complex-upper-half-plane

Hc = Hj {l^j^L rx) and r2 copies of the quaternion-upper-half-space Hq = Hj

(rt + l^j^rx + r2). The product group G = SL(2,R)riχSL(2,C)r2 is natu-

rally operating on the space J%f as follows: for any σ = ( ^ ε G ; σs =

fa ^ΛeSL(2,Λ) or SL(2,C) according as l^j^r1 or r1 + l^>

and for any Z=(ZJ)^J^; Zj = Xj + iy5 or Zj = (%J

m ~ | J ' ) according as l ^ / ^ r j

or r1 + l^j^sr1 + r29 the operation is given by σ(z} = {σjζzj}); σj(z/> =

((XjZj + βj) (ΐjZj + d;)"1, where ajf being identified with y*3-\ for

ra + l ^ i ^ r j + r2. Let o be the ring of integers in F. Then Γ = SL{2,Ό)

is a discontinuous subgroup of G under the identification Γ^σ — (</J)), here

σa) = (%) s(i)) for σ = (? I) We shall also use the following notations:

for any zs = Xj + iyj or ί^j ~ | Λ e i/; , we denote y(^) = yj9 and for

2? = (zj)<=J?f, the vector #(z) = (y(zj)). And then, JV|f(z) denotes the "norm"

Π y{zj)eJ. Here the symbol ^ means equal to 1 or 2, according as the
i=i

case of l ^ ^ r j or ^ + 1 ̂ j^rx + r2. This symbol e5 will be frequently

used later for abbreviation. Further, for any μ,v^F with (μ9v) ψ (0,0) and

any % = {ZJ)<ΞJ^9 the vector y{μ,v; z) is defined by y(μ,ι>; z) = {y{μa\vφ; Zj))
and Ny(μ,v; z)=rπr2y(μa\vω; ZJYJ, where y(μ^§v

ω; z,) *
yi 2

for 2 i = ̂  + f3/i or Zj = ( ^ ~ " | ^ ) . Then, y{σ(z» = y{T,δ; z) for any

<7=(jί | W , in fact, we can check y{σa\zj» = y{ΐa\δω; zj) by a simple

calculation. Through this paper, all the above notations are fixed once and

for all.

Now we are going to define a non-holomorphic Eisenstein series with

respect to Γ = SL(2,o). Let Γx be the subgroup of Γ consisting of all
σ ~ \r δ) suc^ t ' i a t ^ = 0 The Eisenstein series, converging absolutely in

the half plane Re s > 1, is defined by

(10) £*(*,$)= Σ Ny(σ<z»s.
aeΞΓi\Γ

On the other hand, it is convenient for the later use to define another series

by

(11) E(z,s)= Σ Ny(μ,v,z) .
{ } * { 0 0 }
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where [μ,v] in the summation runs over all non-associated pairs (J«,V)£DXD

except {0,0}, and here two pairs (μ,v) and {μ^v^ are called associated if

both relations μx = εμ and vx = εv hold for a same unit ε of o. Between

these two series, the relation

(12) E(z,s) = ζF(2s)E*(z,s)

holds, in fact, this follows easily from the expression of the Dedekind zeta

function of F:

= Σ
olO)4=o

Σ \Nμ\-a, Re

Thus the series (10) is almost the same as the series (11), and so we shall

call the series (11) the non-holomorphic Eisenstein series, too. Actually, the

series (11) can be regarded as a type of the Epstein zeta function, and for

this advantage we hereafter deal with the Eisenstein series (11) mainly.

The Eisenstein series E(z, s) converges absolutely also in the half plane

Re s > l , and it can be holomorphically continued to the whole s-plane;

and it becomes regular except only a simple pole at s = 1. This can be

shown directly by using the binary Hecke's theta formula in the similar

manner of Tamagawa ([12]). It, however, is convenient for our purpose to

show it by the some different method, and this method is like one to

calculate the Fourier expansion formula of the Eisenstein series in the Q-case

by Maass.

2-2. Before the calculation, it should be recalled the assumption that the

class number of F is one. In particular, we can justly denote by o*=(α>) the

inverse different, and then iVo*"1 = \Nω\~x = Δ is nothing but the absolute

value of the discriminant of F.

We first decompose the summation in (11) as follows:

2-J 2-J

KOΦO O

Then, for Re s > 1, we have

E(z,s) = Σ Ny(0.v;z)s+ Σ Σ Ny(μ,v\
DiO)φ0 OKOΦO O

Σ i Π 2
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= Ny(z)sζF(2s)

+ ( π* y i ( ̂ 2s V2 2] Γ .. .f°°^~π?

\ Γ{s) / \ Γ(2s) / ol(Λ<)=i=oJo Jo

Here ^(ί) stands for the Hecke's theta function:

0(j) = Σe~^ΣjeJ~t]μ j XJ+V ' ]2\

hence by the transformation formula it becomes

θ(t) = Δ'^(Ny{z))τntΓ~^ Σ e~n*e^Vi

j O*3Vl

Since the summation can be changed over again as follows:

Σ Q Σ = Σ o + vJ±v o, *}

it follows that

, s) = Ny(z)sζF(2s) + Ny(z)ι-SΔ '

{Λ<,V}' J

Xtj

r1+r2

where we put S(μvωx) = Σ ejRe{{μvω)ωXj) for abbreviation. Further, one
y=i

should recall the integral expression of the modified Bessel function (see [10],

p. 85, for example):

2
Cl

for any non-zero real numbers a, b. Consequently, we obtain the explicit

expression of the Eisenstein series:

(13) E ( z s ) = N y ( z ) s ζ ( 2 s ) + N y ( z y s J Ί r [ f * ~ * ~ )~Ίr [

*) We should remark that the symbol { , }' has a slightly different meaning from { , },
i.e. {μ,v}' is a class of pairs (,«,v)60XD under the equivalence relation (μ, v)~(^ε, vS'1) for
a unit ε.
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Nμ

Now it is not difficult to see that the right-hand-side of the expression

(13) defines a holomorphic function on the whole s-plane. This shows that

the holomorphic continuation of E{z, s) is accomplished. Furthermore, from

two well-known functional equations:

G(s)ζF(s) = G(l - s)ζF(l - s)

where G(s) denotes the gamma-factor of the Dedekind zeta function, i.e.,

G(s) = J

and

KM = #-»(*),

we can easily derive the functional equation for the Eisenstein series E(z,s):

G{2s)E(z,s) = G(2(l - s))E(z,l- s),

where the gamma-factor G(s) is the same one defined above.

§ 3. The Kronecker's limit formula for the non-holomorphic

Eisenstein series

We are now ready to mention about the Kronecker's limit formula. As

explained in § 2, the Eisenstein series E(z, s) has a simple pole at 5 = 1.

We here want to give the explicit form of the residue and the constant

term in the Laurent expansion of the Eisenstein series at 5 = 1. The residue

can be immediately obtained from the residue of the Dedekind zeta func-

tion, and there appear the function which is quite analogous to log 117(2) |

in the constant term.

3-1. As we have already had the expression (13), there remains no difficulty

in the calculation in the sequel.

The first and the third terms of the right-hand-side of the formula (13)

are both regular at 5 = 1. Namely, in the neighbourhood of 5 = 1, we

have
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(14)

(15)

Ny(z)
s
ζ
F
(2s) = Ny(z)ζ

F
(2) + O( | s -

-lπ» y] |_
{μ,vγ\ Nμ

rί+r2 Kej(2eJπ\(μvω)ω\yj)yj

2 +O(\s-1\).

The second term in (13) has a simple pole at s = 1, and the following

formulas are well-known or easily to be checked:

Ny(zY-* = 1 - ϊogNy(z) (s - 1) + O(\s - 1|2),

- 2rIlog2 (s - 1)) + Of 15 - 11»),

where w is the number of roots of the unity in F and R denotes the re-

gulator of F. i , 1 is the constant which is
s-*i " " ' • wyj 5 — 1

not completely clarified yet in the general case. From these formulas the

second term becomes

+ O(\s-1\).

Combining these expansion formulas (14), (15) and (16) we obtain

- a .10,2 -
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_
Nμ

κ^τί2 Kej(2ejπ\(μvωYJ)\yj)yj"

For convenience5 sake, we formulate the result as follows:

THEOREM 3. For the non-holomorphic Eisenstein series of the Hilbert modular

group defined by (11), the following limit formula is valid:

wΔ

Here the constant a0 is given by

and the function h(z) on

wΔ s — 1

! - 2r2 - logNy{z)

is defined by

where z = = αjj + iy, for l^j^r, and z5 =

2rx + 1 ̂  ^ r! + r2, ^ ^ S{μvωx) stands for 2

/or

Now let us show that the function /fe(z) defined by (18) can be regarded

the generalization of log\η{z)\ of the classical case. For this purpose, we

first return back to the properties of the Eisenstein series itself. The Eisen-

stein series E(z,s) has the following properties:

(19) E(σ(z>,s) = E(z,s) for any σ^Γ = SL(2,o),

(20) A ^ ( ^ s) = ^?5(5 - l;£(z, 5) for 1 ^ y ^ r! + r2,

where D5 is the Laplace-Beltrami operator of the ^-th component space Hs
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r' and

D> = »' ( 4 " W + -w) - Vi^kr> ei = 2 for ri + 1-y-ri + r-
In fact, (19) follows immediately from the expressions (10) and (12), and the

property (20) follows from (10), (12) and the relations:

tyy'j = e)s{s - 1)2/5 for l^jt£rx + r2.

Combining these properties with the Laurent expansion of the Eisenstein

series:

E(z,s) = ^ ^ p + b(z) + O(\s- 1|),

we can derive

(21) b(σ(z» = biz) for any α e Γ ,

and

(22) Djb[z) = e)a for 1 ̂  ^ rx + r2.

If we use the relations

DjlogNy(z) = — e) for l^j^rx + r29

the formula (22) can be stated as

(23) Dj(b(z) + ΛogNyiz)) = 0 for l^j^rx + r2.

Since Theorem 3 gives the explicit expression of the constant a and the

function b{z), we can find the properties of the function h(z).

Thus we can conclude that

THEOREM 4. The function h{z) defined by (18) in Theorem 3 satisfies the

following properties:

I. h(z) is a real-valued^ real analytic function on J%f of 2r1 + 3r2 variables;

xj9yj ( l < y ^ r j ) and xj9 xj9 y5 {rx + 1 ̂ j^rx + r2). And h{z) vanishes by any

invariant differential operator on £ίf which is represented as a polynomial without

constant terms of the Laplace-Beltrami operators D/s of the component spaces of β^.

I I . h{z) is a modular form with the automorphic factor J{σ9z) = log Π

(\rωXj + δω\2 + \rU)\2y2j)e' with respect to the discontinuous group Γ = SL(2,o), i.e.,
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for any σ = (? £ W .

We call the function h(z) the harmonic modular form on ^ for the

reason of these two properties. It should be remarked that the harmonic

modular form h{z) can be expressed without the aid of the modified Bessel

function if the number field F is totally real. Really, we know that

K1(υ) = Λ — e~v, but K^v) is not an elementary function. Also it should

be noted that the defining expression (18) of h(z) can be essentially regarded

as the Fourier expansion of one. In fact, because of the propety II, h(z)

is invariant by translations Xj -> x} + μ(i) for all j«εo, hence h(z) has the

Fourier expansion of the series e2κiS^ωx\ as is readly derived from the very

expression (18).

3-2. We lastly consider the Dirichlet series associated with the harmo-

nic modular form h{z). In order to clarify the meaning of "associated" we

must start by recalling the Mellin transform in our case.

Let R+ be the multiplicative group of all positive real numbers, and Y

be the product group of rx + r2 copies of /?+, i.e.,

Let U denote the group generated only by the fundamental units ε19 ,e r

(r = r1 + r2 — 1) of the number field F. The groups JR+ and U operate on

Y in natural way, i.e.,

>ay =

>εy = (\εω\yj).

Then we can define the group A consisting of all J?+- and ^/-invariant

characters of Y. Namely, Λ^λ if and only if A is a continuous homomor-

phism of Y into {u^C; \u\ = 1} with the property:

(24) λ{ay) = λ{εy) = λ(y) for any atΞR+ and ee£7.

As is well-known (Hecke [2]), the group A is isomorphic to Zr \ the product

group of r copies of the additive group Z of all rational integers. More

precisely, any character λ in A is uniquely parametrized by an integral

vector m = (ml9 ,mr)^Zr as follows:
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(25)
2πi Σ

where e)k> is the element of the matrix

e\r>

log|ei r ι+r Ί Ίog\ε(;*+r*>.

Furthermore, for any y = (yj)^Y9 we denote by Ny the norm Π ye/. Of
7=1

course, the symbol es is 1 or 2, according as 1 ̂  ^ ^ or rx + 1 ̂  j ^ r2 + r2,
the ideal characteras before. In particular, for the property (24) of

λ(μ) is well-defined by λ(μ) = ^((|^(</)|)) for any ideal (μ) of F, and this is

nothing but the Grossen-character defined by Hecke ([2]). We should also

note that N{{\μω\)) = \Nμ\.

Now we can say about the Mellin transform of the harmonic modular form

h{z) of (18). Let ho(z) be the function excluding the constant term of h{z)

in the Fourier expansion, i.e.,

M = h(z) - wΔ
2n~ιπnR

ζF{2)Ny(z).

It should be remarked that we can let the point y = (y5) of J%f correspond

to any element y = {y5) of F, by jf̂  = iys or according as

or rj + l^j:^r1 + r2. Hence we can regard the function

Σ
{/*. Nμ

Π Kej(2ejπ\(μvω)ω\yj)yj"
7 17—1

as the function on Y. By a simple calculation we can derive the expression:

(26) hΰ(y) = -
Nμ

Π

Obviously, the function ho{y)λ{y)Nys is invariant under the operations of

C), and so the following integral will be well-defined:

(27)
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where the measure Π — — is denoted by dxy in short. Really, the integral
y=i yj

(27) is absolutely converging in Re s > 1. Thus the family of integrals

I(s,λ); λ^Λ and the harmonic modular form h{z) are reciprocally associated

with each other, essentially under Mellin transform and the inverse trans-

form. (See also Herrmann ([4]).)

In our case, there appears the Dirichlet series of the classical type, in

fact, by using the expression (26) it follows that for Re s > 1,

R Σ Nv
Nμ

/ ' I N r

ri+r2c°° ej(s+-z-)—2πiΣtnke<k> * ,

Π \ Kej(2ejπ\(μvωf)\yj)yj^ *J ^ j dy^,

Owing to the formula of the modified Bessel function ([10], p. 91, for

example):

s — u \ Γf s + u)Γ{

for any a > 0 and Re s > | Re u |, we can derive

here as stands for 2π^Σlmίce
<

j

k>. Namely,

(28) 7(5, λ) = 22r™l2-lR λ(ω)G(s9 λ)G(s + 1, «Ws, fl^s + 1, *),

where ζF{s, λ) is the zeta function with the Grόssen-character λ = λm:

?ί (5,A)= Σ ΛG")|ΛfaI" , Λ s > i ,

and G{s,λ) is its gamma-factor, i.e.,

/^/e T\ _ ( Λ . —-2Λ . O-2ro\ 2 TT Γ l ^ * " j \ TT rV *«j \
u-i5, λ; — (,z/ π Δ 2j i n i _ — ί _ i l i 1 ( 5 — — - ^ - 1.

From the relations (27) and (28), we may say that

THEOREM 5. The harmonic modular form h{z) is associated with the family

of Dirichlet series ζF(s, λ)ζF(s + 1, λ) λ^A.

If we use the the transformation formula (the property II of Theorem
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4) for h{z) in the case of σ = L \ then we can deduce the holomorphic

continuation of I{s, λ) or ζF(s,λ)ζF(s + l,λ), and the functional equation

(29) I{s,λ) = I{- sj).

On the other hand, the functional equation (29) follows also from one for

ξF(s,λ):

(30) G ( s , λ ) ζ F ( s , λ ) = λ ( ω ) G ( l - s 9 λ ) ζ F { l - s s λ ) .

Actually, if we start from the equations (30), we may obtain the property

II of Theorem 4, in principle, without any help of the Eisenstein series.

Moreover, the property I can be also proved directly by the method as in

§ 1, and consequently all the assertions of Theorem 4 can be directly

verified. This method is closely connected with Maass' theory of non-

holomorphic automorphic functions.
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