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SOME HOMOGENEOUS EINSTEIN MANIFOLDS

ARTHUR A. SAGLE*

1. Introduction. Let G be a connected Lie group and H a closed

subgroup with Lie algebra ϊ) such that in the Lie algebra g of G there

exists a subspace m with g = m + § (subspace direct sum) and [mϊflcnt. In

this case the corresponding manifold M = G/H is called a reductive homo-

geneous space and (g,ϊj) (or {G,H)) a reductive pair. In this paper we shall

show how to construct invariant pseudo-Riemannian connections on suitable

reductive homogeneous spaces M which make M into an Einstein manifold.

Thus from the formula for the connection at the point H^M we compute

the Ricci tensor, Ric (X,Y) for X,Fem, and show -4Ric(X,Y) = rjC{X,Y)

where C(X,Y) is the pseudo-Riemannian metric inducing the connection and

η is a suitable real number.

In the second section we shall review the algebra necessary to compute

various formulas concerning ΈAc(X,Y). Also we shall note that up to a

scalar multiple the pseudo-Riemannian connections are in one-to-one cor-

respondence with elements of a certain symmetric space 91 which is a subset

of a Jordan algebra, and a connection of the first kind is obtained from

the identity of the Jordan algebra (which is in 91).

In the third section we consider reductive pairs (<s,ϊj) with g simple and

ί) semi-simple and develop a new decomposition of the subspace m into ad

^-invariant subspace by a process of ί£taking centralizers". Using this

decomposition we construct pseudo-Riemannian connections on M = G\H

which are holonomy irreducible provided the connection of the first kind is

holonomy irreducible on M (which is the case). Thus we have found a

solution to the following type of deformation problem in the symmetric

space 9?: Let M = G\H be a suitable reductive homogeneous space such that

the connection of the first kind is a holonomy irreducible pseudo-Rieman-

nian connection given by the identity 7e9l. Then how can / be deformed
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in a continuous manner to an element Seϋft such that the corresponding

pseudo-Riemannian connection is irreducible? We also give a construction

of the corresponding simply connected reductive homogeneous space with

this connection.

Next in section three we develop the general equations for the above

reductive homogeneous space to be Einstein. Then in section four we give

general examples e.g. SO{n)ISO(k) with k<n— 1 which are irreducible

Einstein manifolds. Also we give a general test to see if the connection is

of the first kind—usually it is not. These and other examples lead to the

following conjecture: Let G/H be a simply connected reductive homogene-

ous space with G simple and H semi-simple. Then there exists an invariant

pseudo-Riemannian connection on G/H which makes it into a holonomy

irreducible Einstein manifold.

2. Algebraic preliminaries.

Let M = GIH be a reductive homogeneous space with the corresponding

reductive pair (g,ϊ)). In the decomposition q = m + § the subspace m is

related to invariant connections on GjH by the following result of Nomizu

[5].

THEOREM. Let GIH be a reductive homogeneous space with a fixed Lie algebra

decomposition g = m + ΐ) such that [§ m]cm. Then there exists a one-to-one cor-

respondence between the set of all G-invariant connections V on GjH and the set of

all bilinear functions a : mxm-ϊm such that for X, Fern {Ad h)a(X,Y) = a((Λd h)X,

{Ad h)Y) for all h^H.

Thus if we let (m, a) denote the algebra with vector space m and

multiplication a{X, Y) for X, F G m, then for every h e ί) the mappings

D{h) : nt-^m : Z-*[h Z] are derivations of the algebra (m, a). Using the

notation in [3,8] let a{X) :m->m : Y-* a(X,Y) and b{X) :m-+m : F-> a{Y,X)

and L(X) :m-+m :Y->XY where XY = [X F]m is the projection of [X Y] in

Q into m. Then from [5] we have the curvature and torsion formulas for

the corresponding connection V given by

(2. 1) R(X, Y) = la(X), a{Y)] - a{XY) - D{h{X, Y))

(2. 2) Tor {X, Y) = [a{X) - b{X) - L{X)]Y

where h{X,Y) - \X,Y\ is the projection of [X,Y] in g into ί).

Let (m,XY) denote the algebra with vector space m and multiplication
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XY = [X Y]m as above. This algebra is related to connections on GjH as

follows [5].

T H E O R E M . Let GjH be a reductive homogeneous space with corresponding de-

composition g = m + ϊj, then there exists one and only one G-invariant connection

which has zero torsion and such that a one-parameter subgroup x{t) generated by

l ε m projects by π : G-+G/H: x{t)-±x*{t) into a geodesic a*{t) in GjH. In this

case a(X9Y) = 1/2X Y and the connection is called the canonical connection of the

first kind on GIH.

In [3,8] general pseudo-Riemannian connections given by the algebras

(m, a) are compared with pseudo-Riemannian connections of the first kind.

Thus let C(X,Y) be a nondegenerate symmetric bilinear form on tn which

satisfies

(2. 3) C{D(h)X9Y) = -C(X,D{h)Y) and

(2. 4) C(a(Z,X), Y) = ~ C{X, a(Z, Y))

for all X, Y, Zem and A G | . Then the algebra (m, a) induces pseudo-

Riemannian connection on GjH and from [4] we have

where U(X,Y) is a commutative multiplication on m. In the case of

pseudo-Riemannian connections we summarize the results on holonomy

[3, 7, 8, 9].

T H E O R E M 1. Let GIH be a simply connected reductive homogeneous space with

fixed decomposition g = t n - j - | . Let B{X, Y) (resp. C{X, Y)) be a nondegenerate form

which induces an invariant pseudo-Riemannian connection of the first kind (resp.

arbitrary kind) and let (m,XY) (resp. (m, a)) denote the corresponding algebras. Then

(1) the holonomy algebra ( = Lie algebra of the holonomy group) of the connec-

tion determined by C{X9Y) is generated by all the maps a(X) and D(h). Denote

this holonomy algebra by hoi (C).

(2) If GIH is not a symmetric space and is holonomy irreducible, then (πt, a) is

a simple algebra and hoi (C) is contained in the Lie algebra generated by all the

maps a(X) and b(Y) for all X, F e r n . Furthermore (tn, α) has no left ideals which

are D(§)-invariant (i.e. m is hoi (C)-irreducible).

(3) Suppose GIH is not a symmetric space and suppose the algebra (m9XY)
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together with the form B(X9 Y) determine a pseudo-Riemannian connection of the first

kind. If G\H is holonomy irreducible relative to this connection, then (m,XY) is a

simple algebra. The converse holds if G\H is simply connected. In this case hoi (B)

equals the Lie algebra generated by all the maps L(X) for l e n t .

(4) If GjH is not a symmetric space and the corresponding reductive pair (g,ϊj)

is such that g is simple and 5 is semi-simple, then g = m 4- ϊj where m = f)J- relative

to the Killing form of g. Furthermore (m,XY) is a simple algebra which has

nondegenerate invariant form B{X9Y) equal to the Killing form of g restricted to

mxm.

Thus Theorem 1(4) indicates it is natural to start with a pseudo-

Riemannian connection of the first kind on GjH and try to compare other

pseudo-Riemannian connections to this one. Some results of this nature are

obtained in [3,8} and we need the following. From [4] the algebra (m9XY)

and the form C{X,Y) determine the algebra (m,a) by

(2. 5) 2C(Z, a(X, Y)) = C(Z, XY) + C(ZX, Y) + C(X, ZY)

= -2C(a(X,Z),Y).

Next suppose B(X,Y) induces a connection of the first kind and C(X,Y)

induces another connection, then since these forms are nondegenerate there

exists SeGL(m) such that

(2. 6) C(X, Y) = B{SX9 Y).

Since C and B are J9(ή)-invariant symmetric forms S also satisfies

(2. 7) ίS9D{h)] = 0 all Λeϊ) and

(2. 8) sb = S(=Sc).

where b and c denote adjoints relative to B and C. Conversely if S=Sb^GL(m)

satisfies (2. 7), then we can define a pseudo-Riemannian metric and con-

nection by the formulas (2. 5) and (2. 6). Note that from (2. 5) and (2. 6)

we obtain an exact formula for (nt,α) in terms of {vx,XY) and S[3,8]:

(2. 9) 2a(X, Y) = XY + S'^XiSY) - {SX)Y] or

(2. 10) 2a(X) = L(X) + S'1ίL(X)S - L(SX)l

Also note that the set of S's in Horn (m, m) satisfying (2. 7) and (2. 8) form a

Jordan algebra (21, •) relative to the usual multiplication 2Si S2= SiS2 + S2Si.
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Thus the set 91 = ̂ CΠGL(m) which yield connections is a manifold which is

actually a symmetric space [4] and the connection of the first kind is given

by S = M<=W.

We now compute the various formulas needed. For X, Y, Zem let

(2. 11) σ(X, Y)Z = D{Z, Y)X

where D{U,V) = D{h{U,V)), then from [6,9] we have for

B(X,Y) = Killing form (mxm^Kil l (X,Y) that

(2. 12) Kill {X, Y) = tr L{X)L{Y) + 2 tr σ{X, Y).

Also from [6,7] other identities for the algebra (m,XY) are

(2. 13) XY = -YX (bilinear)

(2. 14) D(X,Y) = -D(Y,X) (bilinear)

(2. 15) D{X, Y)Z + D{Y,Z)X + D{Z,X)Y = X(YZ) + Y(ZX) + Z(XY)

(2. 16) D{XY, Z) + Z>(FZ, X) + D(ZX, F) = 0

(2. 17) [J5(A), D(X, F)] = D(D(h)X, Y) + Z)(X, D(A)F)

(2. 18) D{h) {XY) = {D(h)X)Y + X(D(h)Y).

We use some of these to compute Ric (X, Y). Thus if we set

(2. 19) Σ(tΛ t W = ̂ (W, ^ ί /

we have from (2. 1), that

) = b(a(V,U)) - a(V)b(U) + b{U)L(V) - σ(U,V).

In particular when Tor(X,F) = 0 we have from (2. 2) that b(X) = a(X)-L{X)

and from (2. 4) we have α(X)c = -β(X) and L(X)δ = - L(X). Thus trα(X) =

tr L{X) = 0 so that tr b{X) = 0. Consequently the Ricci tensor is given by

= tr 6(α(7, U)) - tr 6(ί/)α(F) + tr b{U)L{V) - tr <7(I7, V)

- - tr b(U)[a(V) - L(V)] - tr σ{U, V)

-tr<j([/,7).

Next, using ft(Λ') = α(X) — L(X) and (2. 10) we recompute Ric (U, V) in terms

of S as follows. First we note
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2b(X) = - L(X) + S-1[L(X)S - L(SX)]

so that

(2. 20) -4

+ 4trσ{U,V)

= 2tr L{U)L(V) + tr S~ιL{SU)S-ιL{SV)

- tr LilDS^UVlS - tr LWS^LiWS + 4tr *(£/, F)

= 2 Kill (ί/, V) - 2tr

+ tr S

using (2. 12) and

tr

= trS L(U)S~ιL(V)

= trL{U)S'1L(V)S.

3. Equations for an Einstein manifold.

If we want G\H to be an Einstein manifold relative to the connection

induced by some nondegenerate form C{X,Y), we want a real number η

so that —4Ric (X,Y) = ηC{X,Y). So we consider the form symmetric and

bilinear in X, Fern given by

(3. 1) f(X, Y, S, η) = ηC(X, Y) + 4 Ric (X, 7)

and attempt to solve the following equation for S and η for all X, Fern:

(3.2) 0 = /CY,r,S,?)

= 7]B(SX, Y) + 4 Ric (X, F).

In particular if B(X, Y) = Kill (X, F) is an admissible nondegenerate form

on m, we must solve the equation

(3. 3) f{X, F, S, η) = Kill {{ηS - 2I)X, Y) + 2 tr L(X)S'1L{Y)S

- tr L{SX)S'1L{SY)S'1 = 0

In theory these equations can be expressed by equations in the Jordan algebra

$1 as follows. We note that the three symmetric bilinear forms
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,F), g2(X,Y) = tr L(X)S'1L(YS)

and gz(X,Y) = tr L(SX)S'1L{SY)S'1

are related to £(X,F) by

where 7^ = T ί(S)eHom (tn,nt). But since

[S,D[h)l = 0 and L{D{h)X) = [D(h)9 L{X)]

(using (2. 18)), we obtain

gi(D(h)X,Y) = -gi(X,D(h)Y).

This yields [Tί9D{h)] = 0 as follows:

B(DTiX9Y) = -BiTt

= -9i(X,DY)

= B{TiDX,Y).

Also Tib = Ti so that T ^ ΐ . Thus equation (3.2) is equivalent to the

following equation in $t:

ηS - 27\(S) + 2T2(S) - T3(S) - 0

Unfortunately the functions Tt are difficult to find so we now proceed

using equation (3. 3) directly. We are starting with a nonsymmetric pair

(g,f)) with g simple and ϊj semi-simple. This yields that the representation

adgO) in g is faithful so that by [2, p. 69-70] the trace form Kill |f)XΪ) is

nondegenerate on ί). Thus we may decompose

g = tn _j_ ϊj (subspace direct sum)

where nt = 5 X relative to the Killing form. From this we see [ί) m]cm so

relative to this decomposition (cj,ϊj) is a reductive pair and Kill |mxm is a

nondegenerate form with Kill {XY, Z) = Kill (X, FZ) and Kill {D{h)X,Y) =

- Kill(Z,Z)WF). Now let K"= ( l e t n : D(h)X = 0 for all /ze I)}, then using

(2. 18) and (2. 15) we see that K is a Lie subalgebra of (m,IF). Next we

note

(3.4) h{K,m) = 0,
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for if WΪΞK, z e m we have [W Z] = WZ+h{W9Z) and for

A WIZ)

=rKillg(h,[W Z])

= Killg(h, h(W,Z))9 using m = ϊμ.

Thus since Kill ]f)Xϊj is nondegenerate, h(W,Z) = 0. This yields [K m] =

K mam so that m is X-module relative to adgK and also relative to multipli-

cation in {m,XY). To see this let V,W(ΞK, Z<Em then from (3. 4) and (2. 15)

we have

(VW)Z + (WZ)V + (ZV)W = 0

so that L(K) = {L(V) : 7eX} is a Lie algebra of linear transformations on

m. Thus m is an L(K)-module and admV = L{V) for F G K

Next we recall some facts on centralizers [2, p. 102]. Let T be a

subset of a Lie algebra L of linear transformations on a finite dimensional

vector space V over the reals. Then the centralizer CL{T) — {W^L : [W,K\—0

for all h^T}. We have the following result.

THEOREM. Let L be a completely reducible Lie algebra of linear transforma-

tions in the finite dimensional vector space V and let L1 be a completely reducible

sub algebra of L, then the centralizer CL(L^ is completely reducible subalgebra of L

acting on V.

For our applications, let V = 3, L = ad g and Lx = ad §. Then since

Q and ί) are semi-simple, L and Lλ are completely reducible on g and

therefore C^L^ is completely reducible on g. But

CL{LX) = {ad W^ad Q : [ad 5, ad W~\ = 0}

= {ad WtΞad g : ad[§ W] = 0}.

But since g is simple, and βrf[Ij W] = 0 yields [fj W]=0. Next let W = W

where WΊetπ, T72eϊ), then 0 = [ΐ) WΊ] + β T72] which implies by the direct

sum g = m + 5 that [ίj W<] = 0. But since ϊ) is semi-simple β W21 = 0 implies

PΓ2 = 0; thus W = WΊem. This gives

is completely reducible in g and consequently completely reducible on

αdgif-submodules. Thus, writing g = ή + tn we have for T^e/Γ the matrix
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ro o
Lo w 2 2

using [K m]cm. From this we see that the action of adQK and L{K) on

m are the same (given by W22). Thus since αJgjfί is completely reducible

on m, so is L{K). Thus from [2, p. 47] we may write L(K) = L{c)@ L{K')

where the center L{c) = {L{A)*ΞL{K) :[L{A),L{K)] = 0} and L(Kf) = {L(F) e

L(/0 : 7 G F } is a semi-simple ideal or zero. Thus since K->L{K) is an

isomorphism (because L(K) = adQ(K) and #dgX = 0 implies X = 0) we may

conclude

X - c ® K!

where K' is zero or semi-simple and c is the center of K.

Next we show that Kill \KxK is nondegenerate. Since ί) is semi-simple

and ϊj -> D(§) : /z -> Z)(/&) is a homomorphism (actually an isomorphism using

(2. 17) and the simplicity of g, we have Z)(ί)) is semi-simple. Thus Z)(ή) is

completely reducible on m and since if is Z?(ϊj)-invariant we may write

nt = 7ί 4- ̂  where b is i)(ί))-invariant complement. Now D(ί))b = b as follows:

if 2? = Z>(ί))& is properly contained in b then p is a porper D{§)-invariant

submodule of Z? (because φczb yields D(§)pc:D(fyb = p). But D{fy is completely

reducible on b therefore there exists a D(h)-invariant complement pr with

Z? = 2? + v' ^ u t -DffiJp'ciίJ'nDίδ)* = p'Πp = 0; thus we must have pfaK.

This contradiction shows Z)(ή)δ = b and m = K + D(§)b.

Using this result we assume there is U&K with Kill (U, K) = 0 then

) - 0 .

Thus since Kill]mxm is nondegenerate we have U = 0. In particular

Kill Icxc and Kill \KrxKr are nondegenerate forms and Kill (c,/CO = 0. For

this we just note

Kill (<;,#') = Kill(c,ίC/ίC/)

= Kill (cKr, #') = 0 .

We can now decompose m = K -\- b where we can now assume b = K1-

relative to the Killing form and b is D{§)-invariant (using Kill (DX, Y) =

— Kill (X,DY)) and Kill 16x6 is nondegenerate. Next let
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K, = [Y^b : L{U)Y = 0 for all UeK}.

Then noting from (2. 15) that for W^K and X,Y(=m,

W(XY) = (WX)Y + X(WY)

we see that L(K) is a Lie subalgebra of the derivation algebra of (m,XY).

In particular this gives Kλ is a subalgebra of (m,XY) which is L{K) and

Z)(ί))-invariant (using (2. 18)).

We shall now show Kill 1 if2 x ifj is nondegenerate. Since m is L{K)-

completely reducible the L(if)-submodule b is Z, (if)-completely reducible.

Thus we decompose b = Kx + K2 into L(if)-submodules. Now in a manner

similar to the proof of b = D(fyb we can show K2 = L(K)K2. Consequently

if we assume for P<=KX that Kill (P, if J = 0 then

Kill (P, K2) = Kill (P, L{K)K2) = Kill (L(if)P, if2) = 0.

Thus Kill(P,δ) = 0 so that P=0 since Kill |6xδ is nondegenerate.

Thus we can decompose b = Kj + K2 where if2 = î -L relative to the

Killing form and if2 is L{K) and Z>(ί))-invariant and Kill |if2xif2 is non-

degenerate. Due to the lack of more identities, which lead to Lie modules,

this process of taking centralizers appears to stop at this point; we sum-

marize some of the results.

PROPOSITION 2. (a) Let q be a simple Lie algebra and § a semi-simple

Lie subalgebra, then q can be decomposed q = m + % where m = Ϊj-L relative to the

Killing form and (<j,ϊj) is a reductive pair.

(b) If (£, ϊ)) is not a symmetric pair then the algebra (m,XY) is simple [9]

and m has the orthogonal decomposition (relative to the Killing form) m = c 4- Kr +KX+ K2

where the subspaces are all D(§)-invariant and satisfy the multiplicative relations

cc = cKr = cifj = 0, cK2aK2

KrKf = Kf, K'K, = 0, K'K2czK2

K2K2cm

(c) Furthermore K= c®Kr is a Lie subalgebra of (m,XY) such that D(§)K=0

and Kr is semi-simple or zero.

(d) § + K is a Lie subalgebra of q such that m is an ad{§ + K)-module and

ad§ + K) are derivations of (m,XY). Also D^K, = Kt for i = 1,2 and L{K)K2 = K2

and K2 is ad(§ + K •+• KJ-invariant.
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We have shown all but the last part of (d) and this follows from

h(K19 K2) = 0. To see this note

0 = Kill (0) K,l K2), using K2 = K^

= Kill (§, \KX K21)

= Kill (ή, h{K19K2)), using πt = ϊμ.

We now use this decomposition to make a guess for a matrix of the linear

transformation S which determines a connection via an algebra (nt, α). If

in practice some of the above spaces are zero, then the corresponding

elements of the matrix are just omitted. When K' is semi-simple, let

K! - Kλ

r ® ® Kt

r and let S have matrix given by:

Sic - sj9 S\K/ = s2jl

SIKi = s3l9 S\K2 = sj

where / denotes the identity matrix of appropriate size and sί9 s2j ψ 0.

Now recall that if Kr - K/ ® Kt

f is a semi-simple Lie algebra with

K/ = K/K/ a simple ideal, then for a derivation D of K! we have DK/ =

D{K/K/) = (DK/)K/ + K/{DK/)czK/. Thus since the above spaces in the

decomposition are all Z)(f))-invariant we have

[£>(!)), S] = 0 and Sb = S

where b denotes the adjoint relative to B(X9 Y) = Kill (X, Y). Thus by (2. 9)

we can define an algebra (nt, a) which gives a pseudo-Riemannian connec-

tion relative to C(X, Y) = Kill (SX, Y). We compute the multiplication for

(nt, a) relative to the above decomposition for nt.

Let A9 BΪΞC, Pj, QjeK/9 U^V^K,, X9Y<ΞK2, then

a(A9B) = 0 a{A,Pj) = 0

a{A, U) = 0 2a(A, X) = 2

a(Pj,A) = 0 2a{Pj,Qi) =

a{Pj, U) = 0 2a{Pj, X) = -^AZL?^

a(U9A) = 0 a{U,Pj) = 0

2a(U, V) - UV*ΞKX 2a{U, X) = J^LZJ
5
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2a{X, A) = - -A_ Λ l G i ί 2 2a{X, Pj) = - JlL PJXEΞK/

2<x(X, U) = --^- UX<EΞK2 2a(X, Y) = XY^m.
SA

PROPOSITION 3. Let (g,f)) be a nonsymmetric reductive pair with g simple, fy

semi-simple and g = nt 4- ΐ) with nt = fy1- relative to the Killing form. Let

tn = c + Kf 4- Kx + K2 be the decomposition previously discussed and let S : m -> πt

be as above where 2s4 — Sj ψ 0, 2s4 — 52j f= 0 ^ 254 — 53 Ψ 0. Γ t o ^ algebra

(m, α) determined by S has no proper D(§)-invariant left ideals. Thus by [8] if the

corresponding space G/H is simple connected, then G\H is holonomy irreducible relative

to the pseudo-Riemannian connection induced by C(X, Y) = Kill (SX, Y) and the

algebra {m,a).

Proof. Let n be a proper Z)(ί))-invariant left ideal of (nt, a) and let

n{c), nf(j)> tt(l) and n(2) be the projection of tt into c, K/, Kγ and K2

respectively. Thus, for example, xx{c) is the set of B^c such that there

exist Qj&K/, V^K19 Y^K2 with B + ΣOy + V + Fen. We shall show that

all the subspaces (of tn) n(c), , n(2) are in n and use this to show {n,XY)

is a proper ideal of (m,XY) which contradicts the results in Proposition 2

(b).

First we note that the subspaces n{c), n'ϋ), n(l), n(2) are all Z)(f))-invariant

since n is Z)(f))-invariant. Next we shall show

Z)(ίj)tt(ί) = n(ί) for i = 1,2 and n(2) = L(ϋΓ) n(2)cn.

For suppose D(Ij) n(l)cn(l) properly, then ^ = D(f)) n(l) is a proper Z>(ϊ))-

submodule. Since D(fy) is completely reducible in n(l) we have n(l) = p + p'

where pf is a D(ί))-invariant complement. Thus D{fypfap'Γ\D{§) n{l) = p'Γ)p = 0;

that is, pfczK which is a contradicition unless p' = 0. This gives n(l) = ̂  =

£)(§) tt(l) and similarly for n(2). Next from Proposition 2 (d) we see that

L{K) = ad{K) maps K2 onto K2 and is completely reducible in K2. From

the preceding let N2 = JlDiNi2^n(2) = /)(§) u(2) where the JVί2en(2), then we

can find elements JVoίen(c), Nj^xx'ϋ) and iVπenίl) such that qt = Noί +

JINU + Nu + N^&x. But then # = ΣAί* = ΣA#<i + Σ A ^ 2 = Nt + JV2en
i _

where iV1ejt(l). Thus for any A&c and Pj^Kj we have

2 and
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2a(Pj, q) = 2$i ~ 5"' PjN^nΠ K2.

Using the hypothesis, these imply L(K) tt(2) c.nΓ)K2an{2) and of course

L{K) n(2)cn. Thus we shall now show n(2) - L{K) n(2). For it(2) f= 0

implies p = L(ϋΓ) n(2) is a nonzero L(X)-submodule of n(2) and if 3? is a

proper submodule, then since L{K) is completely reducible in n(2) we can

write u(2) = p + p' where pr is L(iΓ)-invariant. Thus L{K)pfczp/nL(K)n{2) =

p'Πp = 0 so that p'ctt(l) i.e. p ' = 0 and n(2) = L(#) tt(2).

Next let JVi = ΣAA^eitU) = Z>(*) n(l) where Λ^enU) and let JV^enM,

and 7Vί2eu(2) be such that pi = Noi + Σ ^ i i + Nu+Ni2&x. Then

t = ΣAΛ^i + ΊlDtNi2 = iVi + iV2eu where iV2ett(2). But n(2)ctt yields

Ni = p — N2^n i.e. n(l)cπ. Note if A"=0, 7Γ2 = 0 so just use the above

argument.

Finally let Nj^nf(j) Φ 0, then since n(l) and n(2) are in it, we can find

A/"OGU(C) and Λ^en'U') with ί =̂ y so that r = No + Nj + ΣA^ en. Then

2α(Py, r) = Pj A^^enΠKj cn^y), which shows itr(y) is a nonzero ideal of the

simple Lie algebra K], Thus K'3 — \x'(j) and using the preceding compu-

tation we obtain since K/ = K/K/

xx'U) = Kj'ϊi'ificnnK/cLn.

Therefore since \xf{j)y n(l) and n(2) are in it so is tt(c). We use this to

obtain it = n(c) + Σ^r(i) + tt(l) + n(2) as a subspace decomposition, the multi-

plicative relations preceding Proposition 3, and the hypothesis to obtain

mucα(nt,n)cn. Thus it is proper ideal of (m,XY), a contradiction.

Remark. Starting with the pair (G,H) where G is a connected Lie

group and H is a closed Lie subgroup, we obtain the reductive pair of Lie

algebras (g,ί)) so that conditions on the algebras give algebraic results on

connections. But to easily translate these conditions—in particular, holonomy

irreducibility—back to M = G\H we need that M is simple connected. If

this is not the case, we shall construct a connected Lie group G with Lie

algebra £ and a closed connected subgroup H with Lie algebra § so that

M — GjH is simple connected. Furthermore, since the pair (G, H) yields the

corresponding reductive pair of Lie algebras (g,f)), M is a reductive homo-

geneous space to which the algebraic conditions can be applied. Thus let

G be the connected simply connected universal covering Lie group of G and
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let φ : G-+G be the corresponding covering epimorphism. Then G has Lie

algebra g and K = φ'^H) is a closed Lie subgroup of G and the Lie algebra

of if is f), using φ as a local isomorphism. Now let H~ (K)Q=the connected

component of K in K. Then H is closed in K and since j? is closed in

G, H is closed in G. Thus since the Lie algebra of H is % the pair (G, #)

has the corresponding reductive pair of Lie algebras (g,f)) so that M= G\H

is a reductive homogeneous space.

Next M is simply connected. First, M is connected since it is the image

of the continuous map π : G ->• G/β" of the connected space (5. Thus since

M is a connected manifold, it is also path-connected. Now regard GjH as

a fiber bundle where the total space is E = G, the base space is

B = GjH, the fiber is F - H, and the projection is π : G -> G/H. Then from

the last few terms of the homotopy exact sequence of a fiber map extended

to π0 [1, p. 8; 9, p. 377] we have for the identity e of G,

But since G is simply connected, π1(G,e) = 0 and since H is connected,

πo(H, e) = 0. Thus by the exactness of the sequences,

0 = Im 7r* = Ker d =

Thus since M is path-connected, it is simply connected.

Next using (3. 3) we shall derive the equations so that the connection

discussed in Proposition 3 makes G/H into an Einstein manifold; that is, we

have an Einstein connection. First we compute the matrices for the left

multiplications L(Z) for Zetn. From Proposition 2 (b) we have for

(3. 5)

and [Kill (A, B)

(3.6)

= tr L(A)L(B).

L(Pj) =

< 0

0

0

v 0

ί °
0

0

, 0

0

0

0

0

F o r Pj9

0

P22

0

0

0

0

0

0

0

0

0

0

0

0

0

A,

0

0

0

Pu
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and Kill

(3.7)

and Kill

(3.8)

(Pi,Qj)

{U,V) =

= tr L{P,)L{Qj).

L(U) =

ί 0

0

0

v 0

-- tr L(U)L(V) + 2

' 0

0

0

V X

For

0

0

0

0

U,Ve

0

0

u33

0

trσ(U,V).

0

0

0

0

0

0

- Ύζ

0 N

0

0

Uu >

For X,YΪΞK2

Xu >|

X24

Xu

Xu '

and Kill (X, Y) = tr L{X)L{Y) + 2 tr <j(Z, Y). Note that the matrices P22, Z24

and Z4 2 can be put into block form according to the decomposition

K' = K\ Θ Θ /ί'e.

Now we note that the orthogonality of c, Kr, Kλ and K2 relative to the

Killing form give corresponding solutions to (3. 3) as follows.

f{A,Pj,S,y) - (ηsι-

-s1s2jtrL(A)S-ίL(Pj)S-1

= 0

using the block matrices for L(A) and L(Pj) and 0 = Kill (A, Pj) = tr AUPU.

Similarly f(A, U, S, η) = f(A, X, S, η) = 0. Also for / ψ j , f{Pj9 Qif S, η) =

f{Pj,U,S,η) = f{Pj,X,S9η) = f(U,X,S,η) = 0. For the last equation we must

also use

tr σ{K19 K2) = 0

which yields 0 = Kill (U, X) = tr L(U)L(X) + 2 tr σ(U, X) - tr L{U)L{X) = tr U4AXiA.

To see trσ(K19K2) = 0 we note from Proposition 2 (d) that D{K19K2) = 0.

Thus σ(Kί,K2)c = D(c,K2)K1 = 0; σ{K19K2)K' = D{Kr

9Kt)Kx = 0; σiK^KJK^

D(K19K2)K1 = 0; σ{K19K2)K2 = D{K29K2)K1czK1 which yields t r c ^ / Q = 0.

Next we consider the nonorthogonal equations. For A, B^c we have

f{A9 B, S, 7) - ( ^ - 2) Kill (A9 B) + 2 tr
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= (ηs, - 2) tr AUBU + 2 tr AUBH

= sί{η-s1 sA-
2)trAuBu

and since Kill (A, B) = tr AUBU is nondegenerate on c we must have

(3. 9) η = Sl S4-
2

For Pj, Qj(=K/ we have

f(Pj, Qj, S, η) = {ηs2j - 2) Kill (Pj, Qj)

+ 2 tr

ϊ ( o

pίiSi-

Q22S2J

(ηs2j - 2) tr

( 0

2tr

-(s2j)
2tr

/44S4

- 1) tr tr P44Q41

= {ηs2j - 1) KiU/F,, Q,-) + safe - s2;s4-
2) tr P(PJ)P(QJ)

where Killy denotes the Killing form of the simple Lie algebra K/ and

P : Kj -> Horn (iζ, K2) : P/ ->• ^(Py) denotes the representation of K/ given by

P{PJ)X=PJX. But since tr p{Pj)p(Qj) is an invariant form i.e. B{XY,Z) =

B{X,YZ), there exists a self-adjoint linear transformation T=Tj^Hom(K/,K/)

with tr p(Pj)p{Qj) = Kill/TP,-, Qy) and T is in the centroid Γ(K/), see [2, p.

290; 7]. To see this we note

Kill/TL(P,)Q;,i?;) = tr

= tr p{P1)p{QjRj)

= KϊΆj(TPi,QjRs)
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so that TL(Pj) = L{TPj). This yields [7\ L(P, )] = 0 and therefore TEΞΓ(K/).

But Γ{K/) is a field which is at worst isomorphic to the complex numbers

[2]. Thus T = djl + bjj where /* + / = 0 and a, b are real. Combining

this with the equation involving S we must have

which yields

(3. 10)

ill/fos2, - 1)7 + s2j(η - s2jsf2)T]Pj, Qj) = 0

{ηs2j - 1) + ajS2J(η - s2jsA-
2) = 0 and

bjS2j{η - S2jsr2) = 0 .

In particular if Killj{Pj9Qj) or ¥AWg{Pj9Qj) or tr p{Pj)p{Qj) are definite (posi-

tive or negative), then Tj has a real eigenvalue which implies bj = 0. For

i we must have

f(U, V, S, η) = {ηsz - 2) Kill (U, V) +

2tr
ί/3353-1 v33s3

( 0

- ( 5 3 ) 2 t r
F3353' 1

(3. 11)

- 2(ηs, - 2) tr σ(U, V) + (ηs3 - 1) tr ̂ 3

+ ^ 5 3 - 53

25Γ2) tr UuVu

= 0.

Finally for X, Y(=K2 we first note that in the matrix (3.8) for L(X) the

blocks X42 and X2i are block matrices since K! — K/ © © Kt

f. Thus

write X42 = [Xi2{ϊ) X12U)] and similarly for X2i. Now we must have

f(X, Y, S, η) = {ηs4 - 2) Kill {X, Y) + 2 tr

- (s4)
2tr L^JS-LίF)^- 1

s4 - 2) tr <τ(X, F)

(ηSA - 2 + 2515Γ1 - ^SΓ 1 ) t Γ ^14^41
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(3. 12) + (ηs4 - 2 + 2szsrί - s^-1) tr X 3 4F 4 3

+ (rjsr2 + s.sr1) t rX 4 3 7 3 4 + (rjsA - 1) tr X 4 4F 4

Σ

Σ

= 0 .

Remarks. (1) In the next section we shall make various irreducibility

assumptions on the spaces Kx and K2 which makes the computation of the

"trace forms" in (3. 11) and (3. 12) more reasonable.

(2) The classification of holonomy irreducible Einstein manifolds relative

to the connection of the first kind (i.e. S = λl) appears to be an open

problem. Some progress has been made for low dimensions by G. Hensen

in his thesis at the University of California at Berkely. Also if Ij acts

irreducibly on m, then one obtains an Einstein connection [11], For in

this case let B{X9Y) be a metric inducing the connection, then there exists

Se^C with Ric {X, Y) = B{SXi Y) where % is the Jordan algebra previously

discussed. But since B{X,Y) is positive definite, S is symmetric and has a

real eigenvalue λ. Thus if Ric(Z,F)^0, then {X^m: SX= λX} is a

nonzero ί)-invariant subspace of m which therefore must equal m. Thus

S = λl so B{X, Y) = \ Ric (X, Y).

In the next section we shall give an easy test to see if a given reductive

pair (g,ί)) induces an Einstein connection of the first kind.

4. Some examples.

We now compute some general examples which yield holonomy irreducible

Einstein manifolds as previously discussed. Thus using the decomposition

at = c 4- K! + Ki 4- K2 we shall show that the corresponding S : tn ->- nt exists

i.e. the equations (3. 9)-(3. 12) have solutions. Then we shall note that 5

can be chosen to satisfy Proposition 3 i.e. the algebra (tn, a) has no f)-

invariant left ideals.

For the first example let <j be the nxn real skew-symmetric matrices

$o(n) and let ^ be the kxk real skew-symmetric matrices where 3^k<n—2;

thus we are essentially considering the algebra of the non-symmetric Stiefel
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manifold SO(n)/SO{k) which is simply connected [1, p. 83]. We let g be

represented by the skew-symmetric matrices

where the h22 is kxk skew-symmetric. We identify f) with the set

0 0

0 h22

and note that m = ϊ)-1- equals the set

-FJ 0

Next let n — kΛ-r so that K is identified with the rxr skew-symmetric

matrices where r >. 3. Thus K = Kr is simple except when r = A. In this

case K' = ϋC/ © ϋQ7 and we let 521 = s22 = s2. Thus ϋC equals the set

Γ"
o o

Furthermore, Kx = 0 so that 6 = if-L = K2 which equals the set

Now by Proposition 2 (d), adQ(fy + ^) acts on b and this action is ir-

reducible. This can be seen by noting ad(§ + K) is isomorphic to ^o(^)+^o(r)

where k + r > 4 and the symmetric pair (£o(n), ô(A ) + ^o(r)) is irreducible.

This means that in the decomposition q = § + K + b ad§ + K) acts irredu-

cibly on 6; this can also be shown by straight forward matrix computations.

We now determine 5 relative to the decomposition m = K' + K2 and

use the various irreducibility conditions to help solve equations (3. 10) and

(3. 12).

A straight forward computation shows that we always have for P^Kf

tr P(P)P(P) = i

so a = k\r — 2 and (3. 10) becomes



100 ARTHUR A. SAGLE

(4. 1) (r - 2) (ηs2 - 1) + ks2{η - s2s4~
2) = 0

where k + r = n. Next equation (3. 12) becomes

2(rjs4 - 2) tr σ{X, Y) + (>?s4 - 1) tr XUYU

+ (rjSi - 2 + 257^2 - 54571) trX2 4F4 2 + fos4 - 2 + s.V1) tr JY42F24

= 0

noting Xu = Xu — 0 in (3. 8). We can further simplify as follows. First

note that [K2,K2]c.K +§ so that K2K2czK which gives Xu = 0. Next note

that L(X) is skew-symmetric so that X2i = — Xi2; thus we obtain tr L(X)L{Y)

= — 2 tr X2iY2/ and consequently

(4. 2) 2{ηs4 - 2) tr <τ(X, Y) + (^s4 - 2 + 525,-1) tr L{X)L(Y) = 0.

Next we use the ad$ + iO-irreducibility of K2 = b as follows. Since

Z)(ϋΓ,τπ) = 0, we see that ad(§ + K) acts like derivations on the algebra

(m,XY) by Proposition 2 (d). Thus for D<=ad{§ + K) we have

which yields tr L{DX)L(Y) = - tr L{X)L(DY). Thus the form tr L(X)L(F) is

βrf(ϊ) + if)-invariant. Since Kill {X, Y) is also ad (f) 4- iθ-invariant and

Kill [X, Y) = tr L(X)L(F) + 2 tr σ(X, Y) we have tr σ{X, Y) is βd(ή + X)-invariant.

Using this we can write

tr L(X)L(Y) = Kill (T^Y)

tr σ(X,Y) = Kill (T2X,Y)

where T, are self-adjoint relative to Kill (X, Y) and [Ti9 ad{§ + K)] = 0. Thus

since Kill(X,Y) is positive definite the Tt have eigenvalues. But since K2

is ad{§ 4- iO-irreducible this gives Tt = bj. Thus from (4. 2) we obtain

(4. 3) ^ 4 ~ 2 + s^C1) + 2^2fes4 - 2) = 0

where a straightforward calculation shows

bx = {r - l)/(w - 2) and b2 = {k- 1)/2(Λ - 2).

Thus after simplification we must solve the two equations

(4. 4) (r - 2)u2 + kv2 - {n - 2)u2v = 0

(4. 5) (w - 2)^2 - 2(w - 2)M + (r - l)v = 0



HOMOGENEOUS EINSTEIN MANIFOLDS 101

where k + r = n, u = ηs49 υ = ηs2. From (4. 5) we obtain

which substituted into (4. 4) gives

(n - 2)2{n - l)u2 - 2{n - 2)2{n + k-ί)u

+ 4k(n - 2)2 + (r - 2) (r - I)2 = 0

and a solution exists. Thus a mapping S exists which yields an Einstein

space which is furthermore irreducible. For this last we must only show

2s4 ψ s2. Thus assume 2u = υ, then substituting into (4. 4) we obtain

" ~ 2(n - 2) '

But substituting 2u = υ into (4. 5) we obtain

u = n-2

which leads to the contradiction r = — 2.

Remarks. (1) For the case ϊj = %o(n — 1) we obtain a symmetric pair

(8,ί>) which is irreducible and Einstein. This follows from XY = 0 and

therefore - 2 Ric (X, Y) = 2 tr σ(X, Y) = Kill (Z, Y)

For the case ϊj = $o{n — 2) we obtain an irreducible reductive pair (g,ή)

but in this case K = c is abelian. Thus in the notation of [6, p. 122] we

have c is spanned by the element nεm. Using the explicit computations

in [6], one can easily see that an S exists which yields an irreducible

Einstein connection.

(2) We shall now give a general test which shows that the above con-

nection cannot be a connection of the first kind. Thus let (g,ϊj) be a re-

ductive pair with m = ίj-1- relative to the Killing form where Kill |mxtπ is

nondegenerate. The Ricci curvature for a connection of the first kind (i.e.

S = λl) is given by

- 4 Ric^X, Y) = 2 Kill (X, Y) - tr L{X)L{Y)

= tr L(X)L{Y) + 4 tr σ(X, Y).

for X, Fern. Thus - 4 Ric^X, Y) = η Kill (X, Y) yields

(4. 6) (1 - η) tr L{X)L{Y) = 2{η - 2) tr σ(X, Y).



102 ARTHER A. SAGLE

Now in the above example we have for all P,Q^K that trσ{P,Q) = 0 while

trL{P)L{Q)φO for some P,QΪΞK; e.g. P= Q f= 0. Thus from (4. 6) we must

have η = 1. But this gives trσ(X,Y) = 0 for all X, Fern which is impossible.

This process generalizes when one considers linear combinations of tr L{X)L{Y)

and trσ(X,Y) for an admissible pseudo-Riemannian metric i.e. by demanding

λ tr L{X)L(Y) + μ tr σ{X, Y) = y Kill (X, y ) .

(3) In the preceding example if we let ί̂  = ί) + KCIQ, then (g,fh) is a

symmetric pair. Thus [ i ζ / ζ j c ^ so that Xu = 0 so that one of the "trace

forms" is zero. However more important for computing the trace forms is

that (g,^) is an irreducible pair i.e. ad ^ acts irreducibly on K2. Thus in

an attempt to classify the reductive pairs (g,ϊ|) one could start with those

pairs for which (g,^) is an irreducible symmetric pair.

(4) More complicated computations show that the pair (g,§) with

g = $o(n) and ϊj = 2o{p) ®§o{q) yields an irreducible Einstein space ( 3 ^ p <

— 2). We consider g as the set of skew-symmetric matrices

1*19 ">9.

and ί) as the set of matrices

r 0 0 0

0 h22 0

I 0 0 hu )

where h22 is φxp and /z33 is qXq. In m = ϊ)-*- we note that

Fn 0 0

i ί is the set

ζx is the set

0

Is 0

0

k 0

0 0

0 0

0 0 ϊ

0 F23

-FJ 0 I
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and K2 is the set

0 F12 F,12 L 13

- F 1 2

C o o

-FJ 0 0

But note in this case (g, ή2) is not irreducible or even a symmetric pair.

However, if we let p + q + r = n and let ϊ)2 = ϊ) + ^i 4- K = $ΰ(p + q) + $o{r),

then (g,52) i s irreducible symmetric which simplifies computations and yields

another possibility for a general classification process of reductive pairs (g,ϊj).

Finally we give an example where the restricition of the Killing form is

only nondegenerate and the algebra K is not simple—actually K = c is

abelian. Thus let g be the n + lxn + 1 matrices of trace zero i.e. type An

and let ί) be the nxn matrices of trace zero imbedded as follows [6, p. 121].

Let βij denote the usual matrix basis where i,j = 1, , n + 1 and let

hk = f̂cfc -" ^Λ+I n+i9 k = I, , n which is a basis of a Cartan subalgebra.

Let ί) have basis

£ i y for i,j = 2, , M + 1 and

hk for jfc = 2, , n .

Then noting that since KillQ(X,Y) = 2(n + 1) tτ XY for all X,YZΞQ we see that

Kill |Ijxϊj is nondegenerate so we let m = f)-1. Thus m has a basis

elj9 esi for = 2, , n + 1 and

u — ~ nhι -{• h2-\- + &n

and we have the multiplication relations [6]

uelk = — (n + l)elfc, ^^fcl = (w + l)^fcl

Ύl

We note that K = Ru i.e. Kr = 0, ^ = 0 and iζ> - L : + L2 where Lj (resp.

L2) is spanned by the eu (resp. βyi) and the Li are #d i)i~irreducible where

^ = f) 4_ K— ί)2. Thus (g,ί)2) is a reducible symmetric space but we can

still compute the various trace forms.

Next we compute the equations (3. 9)-(3. 12). Thus since K! — Kx = 0,

we have

(4. 7) η = slSi~
2
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which uses tr L{u)L{u) ψ 0, (see (4.9)).

Next note for X G X 2 that in (3. 8) we have X24 = X34 = 0 = X42 = X43 = Xu

Thus from (3. 12) we have

(4. 8) 2(τ]sr2) tr σ(X, Y) + fosΓ2 + SΓ'SA) tr X4ιYu

= 0

But a straight forward computation shows that for

0 in + 1)2 - in + l)z'

- -i- V - (n + l)«0/ 0
n

- ^ - ^ 0

where 2 = (z12 zln+1), zf = (s^

for U,V^m we obtain

and ^ denotes transpose. Thus

tr L(U)L(V) = -

(4.9)

+ 2n{n + l)2Mô o.

In particular for X, Y^K2 we have since Xu = (w + 1) (a;, — #') and Z41 =

-λ-\—x'9 x) that

trL(X)L(Y).

, F) = Kill (X, Y) = 2(n + 1) tr XF = -2n trXuYnNext using tr L(X)L(F) + 2

= - n tr L(X)L(F) we obtain

(, Y) = - - | - (n + 1) tr L(X)L(Y).

Thus equation (4. 8) becomes
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0 = [ - (n + 1) fos4 - 2) + - | - ( ŝ4 - 2 +

+ - | - fts4 - 2 + 2s1sr1 ~ stfΓ1)

which yields

nηsA

2 — 2n 54 — s1 = 0.

Using this and (4. 7) we obtain the solution

From this 2s4 = sλ is impossible so we obtain irreducibility.

Remarks. (1) Using the previous remark and (4. 6) we see the above

connection cannot be of the first kind since tr σ(u9u) = 0 while tr L(u)L(u)φO.

(2) If ή is of type Ar with r^n — 2 and imbedded in g similar to the

above example, then we also obtain an irreducible Einstein connection. In

this case K = c ® Kr where c = Ru is one dimensional and Kr is simple of

type iV r_. 1 #

These and other examples led to the conjecture in the Introduction. I t

appears that the solution to (3. 3) will have to be done by other methods

than used above but that irreduciblity can be done algebraically.
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