H. Ono

Nagoya Math. J.
Vol. 38 (1970), 63-69

SOME REMARKS ON EVALUATIONS OF THE PRIMITIVE LOGIC

HIROAKIRA ONO

Dedicated to Prof. K. Ono on his 60th birthday

In [4], K. Ono introduced the notion of evaluations of the primitive $\operatorname{logic} \boldsymbol{L O}$ and proved that any semi-evaluation \boldsymbol{E} is an evaluation of $\boldsymbol{L O}$ if \boldsymbol{E} satisfies the following conditions:
(E1) $p^{*} \longrightarrow 0=0$,
(E2) $p^{*} \longrightarrow p^{*}=0$,
(E3) $0 \longrightarrow p^{*}=p^{*}$,
(E4) $\quad p^{*} \longrightarrow\left(p^{*} \longrightarrow q^{*}\right)=p^{*} \longrightarrow q^{*}$,
(E5) $\quad p^{*} \longrightarrow\left(q^{*} \longrightarrow r^{*}\right)=q^{*} \longrightarrow\left(p^{*} \longrightarrow r^{*}\right)$,
(E6) $\quad p^{*} \longrightarrow q^{*}=0$ implies

$$
\left(r^{*} \longrightarrow p^{*}\right) \longrightarrow\left(r^{*} \longrightarrow q^{*}\right)=0
$$

(E7) $\quad(x) p^{*}(x) \longrightarrow p^{*}(t)=0$ for any t, and
(E8) if $u^{*} \longrightarrow p^{*}(t)=0$ for any t, then

$$
u^{*} \longrightarrow(x) p^{*}(x)=0
$$

That is, if \boldsymbol{A} is provable in $\boldsymbol{L O}$, then for any semi-evaluation \boldsymbol{E} satisfying the above conditions, $\boldsymbol{E}(\boldsymbol{A})=0$ holds identically. In this paper, we will show that in §1, the condition (E8) is so weak that we can not prove the above result and hence ($E 8$) must be replaced by the following condition ($E 8^{*}$);
$\left(E 8^{*}\right)$ if $u^{*} \longrightarrow\left(v^{*} \longrightarrow p^{*}(t)\right)=0$ for any t, then

$$
u^{*} \longrightarrow\left(v^{*} \longrightarrow(x) p^{*}(x)\right)=0,
$$

and that in $\S 2$, converse of his result can be proved if $(E 8)$ is replaced by $\left(E 8^{*}\right)$.
§1. We first define a model \boldsymbol{D} of $\boldsymbol{L O}$, after the definition of evaluations. Let \boldsymbol{D} be an algebraic structure $\langle D, 0, \longrightarrow, V\rangle$, where D and V are sets,
$0 \in D$ and \longrightarrow is a function from D^{2} to D. If \boldsymbol{D} satisfies the following conditions, we say that \boldsymbol{D} is a model of $\boldsymbol{L O}$.

For each p, q and $r \in D$,
($D 1$) $p \longrightarrow 0=0$,
(D2) $p \longrightarrow p=0$,
(D3) $0 \longrightarrow p=p$,
(D4) $\quad p \longrightarrow(p \longrightarrow q)=p \longrightarrow q$,
(D5) $\quad p \longrightarrow(q \longrightarrow r)=q \longrightarrow(p \longrightarrow r)$,
$(D 6)$ if $p \longrightarrow q=0$ then $(r \longrightarrow p) \longrightarrow(r \longrightarrow q)=0$.
Suppose that $a_{t} \in D$ for any $t \in V$. Then there exists an element $t o p\left[a_{t} \mid t \in V\right]$ in D which satisfies the following conditions ${ }^{11}$.
(D7) \quad top $\left[a_{t} \mid t \in V\right] \longrightarrow a_{t}=0$ for any $t \in V$,
(D8) if $p \longrightarrow\left(q \longrightarrow a_{t}\right)=0$ for any $t \in V$, then $p \longrightarrow\left(q \longrightarrow t o p\left[a_{t} \mid t \in V\right]=0\right.$.

Let \boldsymbol{D} be a model of $\boldsymbol{L O}$ and φ be a mapping from the class of primitive symbols of $\boldsymbol{L O}$ such that $\varphi(v) \in V$ for each variable or constant v and if p is an n-ary function symbol then $\varphi(p)$ is a mapping from V^{n} to D. Then we say that this φ is an assignment over \boldsymbol{D}. Although φ is defined only for primitive symbols, we can extend the domain of the mapping φ to the class of formulas in a natural way. That is,
$\varphi\left(p\left(t_{1}, \cdots, t_{m}\right)\right)=\varphi(p)\left[\varphi\left(t_{1}\right), \cdots, \varphi\left(t_{m}\right)\right]$ where right side of the equality means the value of $\varphi(p)$ for the m-tuple $\left[\varphi\left(t_{1}\right), \cdots, \varphi\left(t_{m}\right)\right]$,

$$
\begin{gathered}
\varphi(P \longrightarrow Q)=\varphi(P) \longrightarrow \varphi(Q) \text { and } \\
\varphi((x) P(x))=\operatorname{top}[\varphi(P(x)) \mid x \in V] .
\end{gathered}
$$

\boldsymbol{A} is valid in a model \boldsymbol{D} if $\varphi(\boldsymbol{A})=0$ for any assignment φ over \boldsymbol{D}. Now we can prove the following lemma easily.

Lemma 1. For any semi-evaluation \boldsymbol{E} satisfying from ($E 1$) to ($E 7$) and ($E 8^{*}$), there exists a model of $\boldsymbol{L O}$ and an assignment φ over \boldsymbol{D} such that $\varphi(p)=\boldsymbol{E}(p)$ for any function symbol p. Conversely, for each model \boldsymbol{D} of $\boldsymbol{L O}$ and each assignment φ over \boldsymbol{D}, there exists a semi-evaluation \boldsymbol{E} such that $\varphi(p)=\boldsymbol{E}(p)$.

1) The word "top" is due to Henkin. See Henkin [2].

Notice that we can also prove Lemma 1 when we replace ($E 8^{*}$) by $(E 8)$ and ($D 8$) by ($D 8^{\prime}$) defined as follows, in Lemma 1.
($D 8^{\prime}$) If $p \longrightarrow a_{t}=0$ for any $t \in V$, then

$$
p \longrightarrow t o p\left[a_{t} \mid t \in V\right]=0
$$

In the proof of Theorem 2 in [4], K. Ono asserted that it can be proved by using (E8) that

$$
\begin{array}{r}
\text { if } p_{1} \longrightarrow\left(p_{2} \longrightarrow\left(\cdots\left(p_{n} \longrightarrow q(t)\right) \cdots\right)\right)=0 \text { for any } t \text {, } \\
\text { then } p_{1} \longrightarrow\left(p_{2} \longrightarrow\left(\cdots\left(p_{n} \longrightarrow(x) q(x)\right) \cdots\right)\right)=0 \tag{1}
\end{array}
$$

However we can prove this is not the case, by constructing a structure which satisfies the conditions from ($D 1$) to ($D 7$) and ($D 8^{\prime}$), but in which (1) does not hold. We construct a structure $\boldsymbol{B}=\langle B, 0, \longrightarrow, V\rangle$ as follows. B is a Boolean lattice whose cardinality is 4 (see Fig. 1) and $V=\left\{v_{1}, v_{2}\right\}$. 0 is a minimal element of B. Define the value of $p \longrightarrow q$ and of $t o p\left[p_{t} \mid t \in V\right]$ as follows.

$$
\begin{aligned}
& p \longrightarrow q= \begin{cases}0 & \text { if } p \geqq q \\
q & \text { otherwise }\end{cases} \\
& \text { top }\left[p_{t} \mid t \in V\right]=p_{v_{1}} \cup p_{v_{2}} \text { i.e., union of } p_{v_{1}} \text { and } p_{v_{2}}
\end{aligned}
$$

Figure 1
We can see easily that \boldsymbol{B} satisfies the conditions from $(D 1)$ to ($D 7$) and $\left(D 8^{\prime}\right)$. Now suppose that an assignment φ over \boldsymbol{B} is defined as follows.
$\varphi\left(x_{1}\right)=v_{1}, \varphi\left(x_{i}\right)=v_{2}$ if $x_{i} \neq x_{1}, \varphi\left(p_{1}\right)=a, \varphi\left(p_{2}\right)=a^{\prime}$, and $\varphi(q)=f$ where $f\left(v_{1}\right)=a$ and $f\left(v_{2}\right)=a^{\prime}$. Then we can prove the following lemma.

Lemma 2. $\quad \varphi\left(p_{1} \longrightarrow\left(p_{2} \longrightarrow q(x)\right)\right)=0$ for any x, but $\varphi\left(p_{1} \longrightarrow\left(p_{2} \longrightarrow\right.\right.$ $(x) q(x))) \neq 0$. Therefore (1) can not be deduced from the conditions from (E1) to (E8).

Now we will show that the condition $\left(E 8^{*}\right)$ is sufficient to prove (1).

Lemma 3. (1) is deducible from the conditions from (E1) to (E7) and (E8*).
Proof. We use $\left[p_{1}, \cdots, p_{n}\right]-* \rightarrow q$ as an abbreviation for $p_{1} \longrightarrow\left(p_{2} \longrightarrow\right.$ $\left.\left(\cdots\left(\underline{p}_{n} \longrightarrow q\right) \cdots\right)\right)$. More precisely, we define $\left[p_{1}, \cdots, p_{n}\right]-* \rightarrow q$ inductively as follows. For $n=0$, $\left(\left[p_{1}, \cdots, p_{n}\right]-* \rightarrow q\right)=q$ and for $n>0$, $\left(\left[p_{1}, \cdots, p_{n}\right]\right.$ $-* \rightarrow q)=\left(p_{1} \longrightarrow\left(\left[p_{2}, \cdots, p_{n}\right]{ }^{*} \rightarrow q\right)\right)$.

We shall first show that

$$
\begin{equation*}
(x)\left(\left[p_{1}, \cdots, p_{m}\right]-* \rightarrow q(x)\right) \longrightarrow\left(\left[p_{1}, \cdots, p_{m}\right]-* \rightarrow(x) q(x)\right)=0 \tag{2}
\end{equation*}
$$

by using induction on m.
For $m=0$, the left side of (2) is equal to $(x) q(x) \longrightarrow(x) q(x)$. Then (2) is deducible from ($E 2$).
Suppose that $m>0$. By ($E 7$),

$$
\begin{gathered}
(x)\left(p_{1} \longrightarrow\left(\left[p_{2}, \cdots, p_{m}\right]-* \rightarrow q(x)\right)\right) \longrightarrow\left(p_{1} \longrightarrow\left(\left[p_{2}, \cdots, p_{m}\right]-* \rightarrow q(t)\right)\right)=0 \\
\text { for any } t .
\end{gathered}
$$

Taking $(x)\left(p_{1} \longrightarrow\left(\left[p_{2}, \cdots, p_{m}\right]-* \rightarrow q(x)\right)\right)$ as u^{*}, p_{1} as v^{*} and $\left[p_{2}, \cdots, p_{m}\right]$ $-^{*} \rightarrow q(t)$ as $p^{*}(t)$, and using ($\left.E 8^{*}\right)$, we have
$(x)\left(p_{1} \longrightarrow\left(\left[p_{2}, \cdots, p_{m}\right]{ }^{-} \rightarrow q(x)\right)\right) \longrightarrow\left(p_{1} \longrightarrow(x)\left(\left[p_{2}, \cdots, p_{m}\right]{ }^{*} \rightarrow q(x)\right)\right)=0$
By induction hypothesis,

$$
(x)\left(\left[p_{2}, \cdots, p_{m}\right] \longrightarrow * \rightarrow q(x)\right) \longrightarrow\left(\left[p_{2}, \cdots, p_{m}\right] \longrightarrow * \rightarrow(x) q(x)\right)=0
$$

From ($E 3$), ($E 6$) and (3), we get

$$
(x)\left(\left[p_{1}, \cdots, p_{m}\right] \rightarrow * \rightarrow q(x)\right) \longrightarrow\left(\left[p_{1}, \cdots, p_{m}\right] \rightarrow * \rightarrow(x) q(x)\right)=0 .
$$

Now, since $\left[p_{1}, \cdots, p_{n}\right] \rightarrow * \rightarrow q(t)=0$ for any $t, p_{1} \longrightarrow(x)\left(\left[p_{2}, \cdots, p_{n}\right]-* \rightarrow\right.$ $q(x))=0$ from ($E 8^{*}$). For, $\left(E 8^{*}\right)$ implies ($E 8$). Using (2) and (E6),

$$
\begin{aligned}
& \left(p_{1} \longrightarrow(x)\left(\left[p_{2}, \cdots, p_{n}\right]-* \rightarrow q(x)\right)\right) \longrightarrow\left(\left[p_{1}, \cdots, p_{n}\right]-* \rightarrow(x) q(x)\right) \\
& =0 \longrightarrow\left(\left[p_{1}, \cdots, p_{n}\right]-* \rightarrow(x) q(x)\right)=0 .
\end{aligned}
$$

Thus we have $\left[p_{1}, \cdots, p_{n}\right] \rightarrow *(x) q(x)=0$.
Now, we get the following theorem after K. Ono's proof of Theorem 2 in [4].

Theorem 1. If \boldsymbol{A} is provable in LO, then \boldsymbol{A} is valid in any model of LO.
§2. We will prove the converse of Theorem 1. Suppose that \boldsymbol{A} is valid in any model of $\boldsymbol{L O}$. Since any Brouwerian algebra satisfies the conditions from ($D 1$) to ($D 8$), \boldsymbol{A} is valid in any Brouwerian algebra ${ }^{2}$. Rasiowa proved in [6] that for any formula \boldsymbol{B} in the intuitionistic $\operatorname{logic} \boldsymbol{L J}$, if \boldsymbol{B} is valid in any Brouwerian algebra then \boldsymbol{B} is provable in $\boldsymbol{L J}$. Thus \boldsymbol{A} is provable in $\boldsymbol{L J}$. Moreover \boldsymbol{A} is a formula of $\boldsymbol{L O}$, and hence \boldsymbol{A} is provable in $\boldsymbol{L O}$ by using Gentzen's Hauptsatz ${ }^{3}$.

Theorem 2. If \boldsymbol{A} is valid in any model of $\boldsymbol{L O}$, then \boldsymbol{A} is provable in LO ${ }^{4}$.
K. Ono gave me a preprint of his new paper [5], in which he defines the set-theoretical (or topological) interpretation of LO. Also in this paper, the condition (E8) should be replaced by ($E 8^{*}$). We will discuss the matter in §3.
§3. We must revise the conditions which make any pair of topologies (\{T\}, [T]) logical as follows.

Definition. Any pair of topologies (\{T\}, [T]) is logical if and only if $" \longrightarrow "$ and " (x) " defined in [5] satisfy (E5) and ($E 8^{*}$) for every closed set p, q, r and a_{t} for any t with respect to the topology $\{\boldsymbol{T}\}$.

Lemma 4. Suppose that p, q and r are closed sets with respect to $\{\boldsymbol{T}\}$. Then $\left[[r-q]^{r} \cap(r-p)\right]^{r}=0$ if and only if $[r-q] \cap(r-p)=0$.

Proof. For any set $a, a \subset[a]$. Hence if $\left[[r-q]^{r} \cap(r-p)\right]^{r}=0$, then $[r-q] \cap r \cap(r-p) \cap r=[r-q] \cap(r-p)=0$. Conversely, if $[r-q] \cap(r-p)=$ $[r-q]^{r} \cap(r-p)=0$ then $\left[[r-q]^{r} \cap(r-p)\right]^{r}=[0]^{r}=0$.

Corollary ${ }^{5}$. Any pair of topologies $(\{\boldsymbol{T}\},[\boldsymbol{T}])$ is logical if
(T5) $[[r-p] \cap(r-q)]=[(r-p) \cap[r-q]]$
and
(T7) if $\left[a_{t}-q\right] \cap\left(a_{t}-p\right)=0$ for any t, then

$$
\left[\left\{\cup a_{x}\right\}-q\right] \cap\left(\left\{\cup a_{x}\right\}-p\right)=0
$$

[^0]holds for p, q, r and a_{t} with respect to $\{\boldsymbol{T}\}$.
We can prove each example of pair of topologies given in (2.1) and (2.2) of [5] to be logical by the above corollary. In particular, the following lemma holds.

Lemma 5^{6}) Any pair ([$\left.\boldsymbol{T}\right],[\boldsymbol{T}]$) of identical topology [$\left.\boldsymbol{T}\right]$ is logical (in our sense) if $[\boldsymbol{T}]$ satisfies the condition (T6).

From this, we shall prove the following theorem.
Theorem 3. If \boldsymbol{A} is identically equal to 0 for any topological interpretation of $\boldsymbol{L O}$, then \boldsymbol{A} is provable in $\mathbf{L O}$.

Proof. McKinsey and Tarski showed that for any Brouwerian algebra \boldsymbol{B} there exists a topological space \boldsymbol{X} such that \boldsymbol{B} is isomorphic to $\mathscr{C}(\boldsymbol{X})$ where $\mathscr{C}(\boldsymbol{X})$ is the class of closed subsets of \boldsymbol{X}^{7}. On the other hand, in Rasiowa's proof, she used the fact that if \boldsymbol{B} is valid in the Lindenbaum algebra \boldsymbol{B}_{h} then \boldsymbol{B} is provable in $\boldsymbol{L J} \boldsymbol{J}^{8)}$. Of course, \boldsymbol{B}_{h} is a Brouwerian algebra. Hence there exists a topological space \boldsymbol{X}_{0} such that \boldsymbol{B}_{h} is isomorphic to $\mathscr{C}\left(\boldsymbol{X}_{0}\right)$. Clearly, the pair ($\left[\boldsymbol{T}_{0}\right],\left[\boldsymbol{T}_{0}\right]$) of topology $\left[\boldsymbol{T}_{0}\right]$ whose class of all closed sets is $\mathscr{C}\left(\boldsymbol{X}_{0}\right)$ determines a topological interpretation \boldsymbol{L} of $\boldsymbol{L O}$ by Lemma 5^{9}. It follows that \boldsymbol{A} is identically equal to 0 for the interpretation \boldsymbol{L} and hence \boldsymbol{A} is valid in \boldsymbol{B}_{h}. Thus \boldsymbol{A} is provable in $\boldsymbol{L} \boldsymbol{O}$.

Corollary. Following propositions are equivalent. For any formula \boldsymbol{A} of LO,
1). \boldsymbol{A} is provable in $\boldsymbol{L O}$,
2) \boldsymbol{A} is valid in any model of $\boldsymbol{L O}$,
3) \boldsymbol{A} is valid in the model \boldsymbol{B}_{h},
4) \boldsymbol{A} is identically equal to 0 for any topological interpretation of $\boldsymbol{L O}$.

Although we know certain relations hold between the logic $\boldsymbol{L O}$ and the model which satisfies from $(E 1)$ to ($E 7$) and $\left(E 8^{*}\right)$, by the above corollary, another point of view is possible. What can be said about the relations between $\boldsymbol{L O}$ and the formal system whose axioms are propositions

[^1]from (E1) to (E7) and $\left(E 8^{*}\right)$? It seems that answers of this problem imply some meaningful results about the relations between logics.

References

[1] H. Curry, A note on the reduction of Gentzen's calculus LJ, Bull. Amer. Math. Soc., 45 (1939) 288-293.
[2] L. Henkin, An algebraic characterization of quantifiers, Fund. Math., 37 (1950) 63-74.
[3] J.C.C. McKinsey and A. Tarski, On closed elements in closure algebras, Ann. of Math., 47 (1946) 122-162.
[4] K. Ono, On a class of truth-value evaluations of the primitive logic, Nagoya Math. J., 31 (1968) 71-80.
[5] - On a class of set-theoretical interpretations of the primitive logic, (to appear).
[6] H. Rasiowa, Algebraic treatment of the functional calculi of Heyting and Lewis, Fund. Math., 38 (1951) 99-126.
[7] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Warszawa, 1963, Monografie Matematyczne tom 41.

Research institute for mathematical sciences,
Kyoto University

[^0]: ${ }^{2)}$ For the definition of Brouwerian algebras, see, e.g., Rasiowa [6].
 ${ }^{3)}$ See, Curry [1].
 4) We can prove this theorem directly, by using Henkin's method in his [2]. See Also [7].
 5) Cf. Theorem 8 of [5]. In this corollary, $\cup a_{x}$ denotes the union of a class of sets a_{t} where t runs over a set V.

[^1]: 6) Cf. Theorem 12 of $[5] . \quad(T 6)[a] \cup[b]=[a \cup b$?.
 7) See [3].
 8) See [6].
 9) See [5].
