THE SINGULAR MEASURE OF A DIRICHLET SPACE

MASAYUKI ITÔ

1. Introduction

We [4], [5] examined some properties of balayaged measures in the theory of a Dirichlet space. In those papers, we showed that the singular measure of a Dirichlet space plays some important roles. In this paper, we shall precisely examine some properties of the singular measure of a Dirichlet space. Let X be a locally compact Hausdorff space in which there exists a positive Radon measure ξ which is everywhere dense in X. First we obtain the following

(1) Let D be a Dirichlet space with respect to X and ξ , and let σ be the singular measure of D. For any couple u and v in D such that $S_u \cap S_v = \phi$, the function $u^*(x)v^*(y)$ in the product space $X \times X$ is σ -integrable and

$$(u,v) = -2 \iint u^*(x)v^*(y)d\sigma(x,y),$$

where u^* and v^* are the refinements of u and v, respectively.

By using this result, we shall obtain more precise results than those in [4]. Moreover we have the following

(2) Let D be the same as the above (1), and let u_{μ} be a pure potential in D. For an open set ω in X, let μ' be the balayaged measure of μ to ω , and let ν' be the restriction of μ' to ω . For any pure potential u_{μ} in D and any open set ω contained in the complement CS_{μ} of the support of μ , ν' is absolutely continuous for ξ if and only if the projection of the singular measure of D to X is absolutely continuous for ξ .

Next we shall examine total masses of balayaged measures. The result in this paper is better than the one in [5].

Finally we shall obtain more precise results in the case of a special Dirichlet space. Especially the following result is important.

Received February 17, 1967.

¹⁾ For a ξ -measurable function f, S_f means the complement of the largest open set ω such that f(x) = 0 in ω .

For any special Dirichlet space D, ν' is always absolutely continuous for ε .

2. Preliminaries on Dirichlet spaces

Let X be a locally compact Hausdorff space in which there exists a positive Radon measure ξ which is everywhere dense in X (i.e., $\xi(\omega) > 0$ for any non-empty open set ω in X). Let C_K be the space of finite continuous functions with compact support provided with the topology usual. According to Beurling & Deny [2], we define a ξ -Dirichlet space on X.

DEFINITION 1. A Hilbert space $D = D(X; \xi)$ is called ξ -Dirichlet space (simply, Dirichlet space) on X if each element u in D is locally ξ -summable (simply, summable) real-valued function²⁾ in X and the following three conditions are satisfied:

(D. 1) For any compact subset K of X, there exists a positive constant A(K) such that

$$\int_{K} |u(x)| d\xi(x) \leq A(K) \parallel u \parallel$$

for any u in D.

- (D. 2) $C_K \cap D$ is dense both in C_K and in D.
- (D. 3) For any u in D and any normal contraction T on the real line R, $T \cdot u$ is contained in D and $||T \cdot u|| \le ||u||$.

In the above (D. 3), A transformation T on R into itself is called a normal contraction if it satisfies the following:

$$T(0) = 0$$
 and $|Ta_1 - Ta_2| \le |a_1 - a_2|$

for any couple a_1 and a_2 in R. Two functions which are equal locally almost everywhere (simply, a.e.) for ξ represents the same element in D. The norm of D is denoted by $\|u\|$, the associated scalar product by (u,v). Similarly as Beurling and Deny [2], we define potentials in D.

Beurling & Deny [2] first assumed that each element u in D is a complex-valued function in X. Put $D_r = \{Re \ u \ ; \ u \in D\}$. Then D_r is a Dirichlet space in our sense. Conversely, let D be a Dirichlet space in our sense. Put $D' = \{u + iv \ ; \ u, v \in D\}$. Then D' is a Dirichlet space in Beurling & Deny's sense. In potential theory, it is sufficient to assume that each u in D is real-valued, because important potentials, i.e., balayaged potentials, equilibrium potentials, \cdots are all real-valued.

DEFINITION 2. An element u in D is called a potential in D if there exists a real Radon measure μ in X such that

$$(f, u) = \int f(x) d\mu(x)$$

for any f in $C_K \cap D$. Such an element u is denoted by u_μ . Especially if μ is positive, u_μ is called a pure potential in D. By Definition 1, (D. 1), for each bounded measurable function f with compact support, there exists a unique element u_f in D such that

$$(v, u_f) = \int v(x) f(x) d\xi(x)$$

for any v in D.

Beurling and Deny [2] showed the following important representation theorem.

PROPOSITION 1. For a Dirichlet space D on X, there exist a positive measure ν in X, a positive Hermitian form N(f,g) on $C_K \cap D$ and a positive symmetric measure σ in $X \times X - \delta$ (δ is the diagonal set of $X \times X$) such that

$$(f,g)=\int fgd
u+N(f,g)+\int\int (f(x)-f(y))\left(g(x)-g(y)
ight)d\sigma(x,y)$$

for any couple f and g in $C_K \cap D$. Here N(f,g) has the following local character: if g is constant in some neighborhood of the support S_f of f, then N(f,g) vanishes.

PROPOSITION 2. For a Dirichlet space D on X, the above representation is unique.

Proof. Suppose that there exist another positive measure ν' in X, another positive Hermitian form N'(f,g) on $C_K \cap D$ with the above local character and another positive symmetric measure σ' in $X \times X - \delta$ such that

$$(f,g)=\int fgd
u+N'(f,g)+\int\int (f(x)-f(y))\left(g(x)-g(y)
ight)d\sigma'(x,y)$$

for any couple f and g in $C_K \cap D$. Since $C_K \cap D$ is dense in C_K , the set

$$\{f(x)g(y); f,g \in C_K \cap D, S_f \cap S_g = \phi\}$$

is dense in $C_K(X\times X-\delta).^3$ For any couple f and g in $C_K\cap D$ with $S_f\cap S_g=\phi$,

³⁾ $C_K(X \times X - \delta)$ is the space of finite continuous functions in $X \times X - \delta$ with compact support provided with the topology of uniform convergence.

$$(f,g) = -2\int f(x)g(y)d\sigma(x,y) = -2\int f(x)g(y)d\sigma'(x,y).$$

Hence the equality $\sigma = \sigma'$ holds. Next we shall show the equality $\nu = \nu'$. It is sufficient to prove the equality

$$\int f \ d\nu = \int f \ d\nu'$$

for any f in $C_K \cap D$. Similarly as in the proof of Theorem 1 in [4], there exists a function g in $C_K \cap D$ such that g(x) = 1 in some neighborhood of S_f . The Hermitian forms N(f,g) and N'(f,g) having the local character,

$$\begin{split} &(f,g) = \int f \ d\nu + \iint (f(x) - f(y)) \, (g(x) - g(y)) d\sigma(x,y) \\ \\ &= \int f \ d\nu' + \iint (f(x) - f(y)) \, (g(x) - g(y)) d\sigma'(x,y) \, . \end{split}$$

Therefore the equality $\nu = \nu'$ holds, and hence

$$N(f,g) = N'(f,g)$$

on $C_K \cap D$. This completes the proof.

DEFINITION 3. The above measure ν in X is called the equilibrium measure of X (with respect to D),⁴⁾ N(f,g) is called the local form of D and the positive measure σ is called the singular measure of D.

3. Some lemmas

In order to obtain our first main theorem, we need the following lemmas.

LEMMA 1. Let D be a Dirichlet space on X. For a compact set F_1 and a closed set F_0 in X with $F_1 \cap F_0 = \phi$, let $u_{\mu_1 - \mu_0}$ be the condensor potential with respect to F_1 and $F_0.5$ Then $u_{\mu_1 - \mu_0}$ is contained in the closure of the following subset $E_{1,0}$ of D:

$$E_{1,0} = \{ f \in C_K \cap D; f(x) = 1 \text{ on } F_1 \text{ and } f(x) = 0 \text{ on } F_0 \}.$$

⁴⁾ Beurling and Deny [2] remarked that for any non-decreasing net $(\omega_{\alpha})_{\alpha \in I}$ of relatively compact open sets tending to X, the equilibrium measure of ω_{α} tends vaguely to ν . Hence we say that ν is the equilibrium measure of X.

⁵⁾ Beurling and Deny [2] showed that for any couple of open sets ω_1 and ω_0 in X, ω_1 being relatively compact, there exists a potential $u_{\mu_1-\mu_0}$ in D satisfying the following: $0 \le u_{\mu_1-\mu_0} \le 1$, $u_{\mu_1-\mu_0}(x) = i$ a.e. in ω_i and μ_i is a positive measure in X supported by $\overline{\omega_i}$. We [6] formed a similar potential in D for a compact set F_1 and a closed set F_0 . This potential is called the condensor potential with respect to ω_1 and ω_0 (or E_1 and E_0).

Proof. We put

$$\widetilde{E}_{1,0} = \{ \overline{f \in C_K \cap D}; f(x) \ge 1 \text{ on } F_1 \text{ and } f(x) \le 0 \text{ on } F_0 \}$$
.

Then $\tilde{E}_{1,0}$ is a closed convex set and non-empty, because $C_K \cap D$ is dense in C_K . Let $u_{1,0}$ be a unique element in $\tilde{E}_{1,0}$ whose norm is minimal in $\tilde{E}_{1,0}$. Similarly as Beurling and Deny's Condensor Theorem, we obtain that $u_{1,0}$ is equal to a potential u_{μ} in D and μ^+ (resp. μ^-) is supported by F_1 (resp. F_0). By the condition (D. 3) in Definition 1, $0 \le u_{1,0} \le 1$ and $u_{1,0}^*(x) = i$ ppp on F_i for i = 1,0,6 where $u_{1,0}^*$ is the refinement of $u_{1,0}^{-7}$. Next we shall show that $u_{\mu_1-\mu_0} = u_{1,0}$. By Beurling and Deny's theorem,8 there exists a sequence (u_{μ_n}) of linear combinations of pure potentials in D such that (u_{μ_n}) converges strongly to $u_{1,0}$ as $n \longrightarrow +\infty$ and

$$S_{\mu_n} \subset F_1 \cup F_0$$
.

Then we have

$$\| u_{1,0} \|^2 = \lim_{n \to \infty} (u_{1,0}, u_{\mu_n}) = \lim_{n \to \infty} (u_{\mu_1 - \mu_0}, u_{\mu_n})$$

$$= (u_{\mu_1 - \mu_0}, u_{1,0}) \le \| u_{\mu_1 - \mu_0} \| \cdot \| u_{1,0} \|,$$

because

$$u_{\mu_1-\mu_0}^*(x)=1$$
 ppp on F_1 and $u_{\mu_1-\mu_0}^*(x)=0$ ppp on F_0 .

That is,

$$||u_{1,0}|| \leq ||u_{\mu_1-\mu_0}||$$
.

By the definition of the condensor potential, we obtain that $u_{1,0} = u_{\mu_1 - \mu_0}$. Finally we shall prove that $u_{1,0} \in \overline{E_{1,0}}$. By the above assertion, there exists a sequence (f'_n) in $E_{1,0} \cap C_K$ such that (f'_n) converges strongly to $u_{1,0}$ in D. Let T be the unit contraction on R, 9) and put

$$f_n(x) = T \cdot f'_n(x)$$
.

⁶⁾ A property is said to hold ppp on a subset E in X if the property holds μ -a.e. on E for any pure potential u_{μ} in D such that $S_{\mu} \subset E$.

⁷⁾ Cf. [2], pp. 209-210.

⁸⁾ Cf. [2], p. 214.

⁹⁾ We say that the projection on R to the closed interval [0, 1] is the unit contraction on R. Cf. [6].

Then f_n is contained in $E_{1,0}$ and (f_n) converges strongly to $u_{1,0}$ in D as $n \longrightarrow +\infty$, because $(\|f_n\|)$ is bounded and

$$||u_{1,0}|| = \lim_{n\to\infty} ||f'_n|| \ge \overline{\lim_{n\to\infty}} ||f_n||.$$

This completes the proof.

Similarly as in the case of a special Dirichlet space, we obtain the following

Lemma 2. Let D be a Dirichlet space on X and σ be the singular measure of D. For any compact set K in X and any open neighborhood ω of K,

$$\iint_{K\times C\omega} d\sigma(x,y) < +\infty.$$

Proof. We take another open neighborhood ω' of K such that $\overline{\omega'} \subset \omega$. Let u_{μ} be the condensor potential with respect to K and $C\omega'$ and let (f_n) be a sequence in $C_K \cap D$ such that (f_n) converges strongly to u_{μ} in D as $n \longrightarrow +\infty$ and

$$0 \le f_n(x) \le 1$$
, $f_n(x) = 1$ on K and $f_n(x) = 0$ on $C\omega'$.

Let $(K'_{\alpha})_{\alpha \in I}$ be a non-decreasing net of compact subsets in X tending to X and put

$$K_{\alpha} = K'_{\alpha} \cap C\omega$$
.

Similarly as above, we can take a non-decreasing net (g_a) in $C_K \cap D$ such that

$$S_{g_{\alpha}} \subset C\overline{\omega'}$$
, $0 \le g_{\alpha} \le 1$ and $g_{\alpha}(x) = 1$ on K_{α} .

Then for any n,

Consequently we have

$$\iint_{K \times K_{\alpha}} d\sigma(x, y) \leq -\frac{1}{2} (u_{\mu}, g_{\alpha}) = \frac{1}{2} \int g_{\alpha}(x) d\mu^{-}(x).$$

The total mass of the positive measure μ^- being finite, we obtain that

$$\iint_{R\times C\omega} d\sigma(x,y) \leq \frac{1}{2} \int d\mu^- < +\infty.$$

This completes the proof.

3. First main theorem

Now we define the projection of a singular measure of a Dirichlet space.

DEFINITION 4. Let σ be the singular measure of a Dirichlet space D. For a compact set K in X, the projection σ_K of σ to CK is the positive measure in CK defined as follows:

$$\int f d\sigma_K = \int_K \int f(y) d\sigma(x, y)$$

for any f in $C_K(CK)$.

LEMMA 3. Let σ be the singular measure of a Dirichlet space D. For a compact set K in X and an element u in D such that $K \cap S_u = \phi$, the refinement u^* of u is σ_K -integrable.

Proof. It is sufficient to prove that there exists a pure potential u_{μ} in D such that the inequality $\sigma_{K} \leq \mu$ holds in an open set ω contained with its closure in CK. We take a couple of open sets ω_{1} and ω_{0} with disjoint closures, ω_{1} being relatively compact and holding the following inclusions:

$$\omega_1 \supset K$$
 and $\omega_0 \supset \bar{\omega}$.

Let $u_{\mu_1-\mu_0}$ be the condensor potential with respect to ω_1 and ω_0 . Then by the results in the preceding paper, u_{μ_1} and u_{μ_0} are elements in D. Similarly as the above lemmas, there exists a sequence (f_n) in $C_K \cap D$ such that (f_n) converges strongly to $u_{\mu_1-\mu_0}$ as $n \longrightarrow +\infty$,

$$0 \le f_n \le 1$$
, $f_n(x) = 1$ on K and $f_n(x) = 0$ on $\bar{\omega}$.

For any f in $C_K^+ \cap D^{(1)}$ with support in ω , we have

¹⁰⁾ Cf. Levy-Khinchine's theorem in [2] and [3].

¹¹⁾ Cf. Lemma 1 and Lemma 3 in [5].

$$\int_{K} \int f(y) d\sigma(x, y) \leq \iint f_{n}(x) f(y) d\sigma(x, y) = -\frac{1}{2} (f, f_{n})$$

for any n. Making n tend to infinity, we obtain that

$$\int_{K} \int f(y) \, d\sigma(x,y) \leq -\, \frac{1}{2} \, (\, f, \, \, u_{\mu_{1} - \, \mu_{0}}) = \frac{1}{2} \int f \, \, d\, \mu_{0} \, .$$

 $C_K \cap D$ being dense in C_K , we obtain that $\sigma_K \leq \frac{1}{2} \mu_0$ in ω . This completes the proof.

By the above lemma, we obtain the following

Theorem 1. Let D be a Dirichlet space on X and σ be the singular measure of D. For any potential u_{μ} in D, let $\mu^{(1)}$ be the restriction of μ to $CS_{u_{\mu}}$. Then

$$d\mu^{(1)}(x) = -\frac{1}{2} \int u_{\mu}^{*}(y) d\sigma(x,y)$$

in $CS_{u_{\mu}}$. Furthermore for any couple of elements u_1 and u_2 in D such that $S_{u_1} \cap S_{u_2} = \phi$, we obtain

$$(u_1, u_2) = -2 \iint u_1^*(x) u_2^*(y) d\sigma(x, y).$$

Proof. First we suppose that u_{μ} is bounded in X. By the conditions (D. 2) and (D. 3) in Definition 1, there exists a sequence (f_n) such that (f_n) converges strongly to u_{μ} in D as $n \longrightarrow +\infty$, (f_n) is uniformly bounded and S_{f_n} is contained in a fixed neighborhood N of $S_{u_{\mu}}$. We take any fixed element f in $C_K \cap D$ such that $S_f \subset CS_{u_{\mu}}$. We may assume that the above function f_n has the support in CS_f . Then

$$(f, f_n) = -2 \iint f_n(x) f(y) d\sigma(x, y).$$

By Lemma 2 and Lebesgue's bounded convergence theorem, making n tend to infinity, we obtain

$$(f, u_{\mu}) = -2 \iint u_{\mu}^{*}(x) f(y) d\sigma(x, y).$$

That is,

$$\int f \ d\mu^{(1)} = -2 \iint f(x) u_{\mu}^{*}(y) d\sigma(x, y) .$$

Next we shall prove the general case. We may assume that u_{μ} is non-negative, because in the general case, u_{μ}^{+} and u_{μ}^{-} are potentials in D. Put

$$u_{\mu,n}(x) = \inf(u_{\mu}(x), n)$$
.

Then $u_{\mu,n}$ is contained in D and by the above assertion, we have

$$(u_{\mu,n},f) = -2 \iint f(x) u_{\mu,n}^*(y) d\sigma(x,y) .$$
¹²⁾

Since the sequence $(u_{\mu,n})$ converges strongly to u_{μ} in $D^{13)}$ and the sequence $(u_{\mu,n}(x))$ is non-decreasing, making n tend to infinity, we have

$$\int f \ d\mu^{(1)} = (u_{\mu}, f) = -2 \, \iint f(x) u_{\mu}^{*}(y) d\sigma(x, y) .$$

Let's show the second part of our theorem. First we assume that S_{u_1} is compact and $u_2(x)$ is non-negative. Then we can take a relatively compact open set ω_1 and an open set ω_2 such that

$$\overline{\omega_1} \cap \overline{\omega_2} = \phi$$
, $S_{u_1} \subset \omega_1$ and $S_{u_2} \subset \omega_2$.

By Lemma 3, we can define a positive measure $\sigma_{u_2,1}$ in ω_1 such that

$$\int f \ d\sigma_{u_2,1} = \int \int f(x) u_2^*(y) d\sigma(x,y)$$

for any f in C_K with support in ω_1 . Let's show that the function u_1^* is $\sigma_{u_2,1}$ -measurable. By the properties of the refinement, there exists a non-increasing sequence (ω_n) of open sets contained in ω_1 such that u_1^* is continuous on $C\omega_n$ for any n and

$$\lim_{n\to\infty} \operatorname{cap}(\omega_n) = 0.14$$

We take an open set ω_3 such that

$$\overline{\omega_2} \subset \omega_3$$
 and $\overline{\omega_1} \cap \overline{\omega_3} = \phi$.

Let u_{μ_n} be the condensor potential with respect to ω_n and ω_3 . Then

$$\int_{\omega_n} d\sigma_{u_2,1} \leq -\frac{1}{2} (u_{\mu_n}, u_2) \leq \frac{1}{2} \| u_{\mu_n} \| \cdot \| u_2 \|.$$

¹²⁾ Cf. Proposition 1.

¹³⁾ Cf. Lemma 4 in [5].

¹⁴⁾ For an open set ω , the capacity $cap(\omega)$ of ω is defined as follows: $cap(\omega) = \inf\{ ||u||^2 ; u(x) \ge 1 \text{ a.e. in } \omega \}$, $cap(\omega) = +\infty$ if such elements don't exist.

Since the sequence $(||u_{\mu_n}||)$ converges to 0 as $n \longrightarrow +\infty$, u_1^* is $\sigma_{u_2,1}$ -measurable. If u_1^* is bounded, our conclusion is evident. Put

$$u_{1,n}^+ = \inf(u_1^+, n), \ u_{1,n}^- = \inf(u_1^-, n).$$

Then the sequences $(u_{1,n}^+)$ and $(u_{1,n}^-)$ are non-decreasing and contained in D. By the above assertion,

$$(u_{1,n}^+, u_2) = -2 \iint u_{1,n}^{+*}(x) u_2^*(y) d\sigma(x, y)$$

and

$$(u_{1,n}^-, u_2) = -2 \iint u_{1,n}^{-*}(x) u_2^*(y) d\sigma(x, y).$$

Making n tend to infinity, we obtain

$$(u_1^+, u_2) = -2 \iint u_1^{+*}(x) u_2^*(y) d\sigma(x, y) \text{ and } (u_1^-, u_2) = -2 \iint u_1^{-*}(x) u_2^*(y) d\sigma(x, y).$$

That is, we have

$$(u_1, u_2) = -2 \iint u_1^*(x) u_2^*(y) d\sigma(x, y).$$

In the case that u_2 is general, by the above assertion, we have

$$\begin{split} &(u_1,u_2) = (u_1,u_2^+) - (u_1,u_2^-) \\ &= -2 \iint u_1^*(x) u_2^+(y) d\sigma(x,y) + 2 \iint u_1^*(x) u_2^-(y) d\sigma(x,y) \\ &= -2 \iint u_1^*(x) u_2^*(y) d\sigma(x,y) \; . \end{split}$$

Thus we prove the case that S_{u_1} is compact. We shall prove the case that S_{u_1} is general. Similarly as the above, we may assume that u_1 and u_2 are non-negative. We take a non-decreasing net $(\omega_{\alpha})_{\alpha \in I}$ of relatively compact open sets tending to CS_{u_2} . We put $F_{\alpha} = C\omega_{\alpha}$. Let $u'_{1,\alpha}$ be the projection of u_1 to $D_{F_{\alpha}}^{(1)}$, where

$$D_{F_{\alpha}}^{(1)} = \{ u_{\mu} : \text{ a potential in } D, S_{\mu} \subset F_{\alpha} \}.$$

Then $u'_{1,a}$ is non-negative. Furthermore we put

¹⁵⁾ Similarly as in [2], p. 214, we obtain the following result: $u^*(x) \ge 0$ ppp on the spectrum of u implies $u \ge 0$. Cf. [5].

$$u_{1,\alpha} = u_1 - u'_{1,\alpha}$$
.

By the above assertion,

$$(u_{1,\alpha}, u_{2}) = -2 \iint u_{1,\alpha}^{*}(x) u_{2}^{*}(y) d\sigma(x, y).$$

The net $(u'_{1,\alpha})$ tends to 0, and hence the net $(u_{1,\alpha})$ tends strongly to u_1 in D. Hence we can choose a subsequence (u_{1,α_n}) of $(u_{1,\alpha})$ such that (u_{1,α_n}) converges strongly to u_1 . By Fatou's lemma, we have

$$\begin{split} & \iint u_1^*(x)u_2^*(y)d\sigma(x,y) \leq \lim_{n \to \infty} \iint u_{1,\alpha_n}^*(x)u_2^*(y)d\sigma(x,y) \\ & = \lim_{n \to \infty} -\frac{1}{2} \left(u_{1,\alpha_n},u_2\right) = -\frac{1}{2} \left(u_1,u_2\right). \end{split}$$

On the other hand, since $u_1^*(x) - u_{1,\alpha}^*(x) \ge 0$ ppp in X for any $\alpha \in I$,

$$\iint u_1^*(x)u_2^*(y)d\sigma(x,y) \geq \iint u_{1,\alpha}^*(x)u_2^*(y)d\sigma(x,y).$$

Consequently we obtain

$$(u_1, u_2) = -2 \iint u_1^*(x) u_2^*(y) d\sigma(x, y)$$

This completes the proof.

Applying this theorem, we obtain the following corollary.

Let F be a closed set in the product space $X \times X$. The x-section F_x of F means the projection $\{x\} \times X \cap F$ to X, and for an arbitrary subset A of X, the A-section F_A means the union $\bigcup_{x \in A} F_x$.

COROLLARY 1. Let D be a Dirichlet space on X, and let σ be the singular measure of D. Given a symmetric closed set F in $X \times X$ containing the diagonal set δ of $X \times X$, the following two conditions are equivalent.

(1. 1) For any pure potential u_{μ} in D and any open set ω contained in CS_{μ} , let $u_{\mu'}$, be the balayaged potential of u_{μ} to ω . Then

$$S_{\mu'} \subset F_{C\omega} \cap \overline{\omega}$$
.

$$(1. 2) S_{\sigma} \subset F.$$

In the preceding paper [4], we proved this result in the case that F is regular, i.e., F_x is compact for any $x \in X$ and the point-to-set map: $x \longrightarrow F_x$

is continuous. Let's prove this corollary. First we shall prove the implication (1,1)
ightharpoonup (1,2). Suppose that $S_{\sigma} \not\subset F$. Then there exist two functions f_1 and f_2 in $C_K^+ \cap D$ such that

$$S_{f_1} \cap F_{S_{f_0}} = \phi, S_{f_2} \cap F_{S_{f_1}} = \phi$$

and

$$\iint f_1(x) f_2(y) d\sigma(x, y) > 0.16)$$

Hence there exists a pure potential u_{μ} in D such that $S_{\mu} \subset S_{f_1}$ and

$$\iint (u_{\mu}^{*}(x)-u_{\mu'}^{*}(x))f_{2}(y)d\sigma(x,y)>0 ,$$

where $u_{\mu'}$ is the balayaged potential of u_{μ} to CS_{f_1} . On the other hand, since

$$S_{(u_{\mu}-u_{\mu'})}\cap S_{f_2}=\phi,$$

we have

$$2\iint (u_{\mu}^*(x)-u_{\mu'}^*(x)) f_2(y) d\sigma(x,y) = \int f_2(x) d\mu'(x) = 0$$
,

because

$$S_{\mu'} \subset F_{S_{f_1}}$$

by our assumption. This is a contradiction. The proof of the implication $(1, 2) \Rightarrow (1, 1)$ is evident by the fact that $u_{\mu}(x) - u_{\mu'}(x) = 0$ a.e. in ω and Theorem 1. This completes the proof.

In order to characterize the absolute continuity of balayaged measures, first we give the following definition.

DEFINITION 5. Let σ be the singular measure of a Dirichlet space D. We say that the projection of σ to X is absolutely continuous for ξ if for any compact set K in X, the positive measure σ_K in CK is absolutely continuous for ξ .

Remark. If σ is absolutely continuous for $\xi \times \xi$, the projection of σ to

¹⁶⁾ Cf. [4], Lemma 6.

X is absolutely continuous for ξ . But the converse is not valid. We can easily construct a counter example.

Another corollary of Theorem 1 is the following

COROLLARY 2. Let D be a Dirichlet space on X and σ be the singular measure of D. The following two conditions are equivalent.

- (2. 1) For any pure potential u_{μ} in D and any open set ω contained in CS_{μ} , let $u_{\mu'}$ be the balayaged potential of u_{μ} to ω . Then the restriction of μ' to ω is absolutely continuous for ξ .
 - (2. 2) The projection of σ to X is absolutely continuous for ξ .

Proof. First we shall prove the implication $(2.1) \Rightarrow (2.2)$. For a compact set K in X, it is sufficient to prove that the positive measure σ_K is absolutely continuous for ξ in any open set ω such that $\overline{\omega} \subset CK$. We take another open set ω_1 in X such that

$$K \subset \omega_1, \ \overline{\omega_1} \cap \overline{\omega} = \phi$$
.

Let $u_{\mu_1-\mu_0}$ be the condensor potential with respect to ω_1 and ω . By Theorem 1, for any f in C_K^+ with support in ω , we have

$$\int f \ d\sigma_K \leq \iint f(x) u_{\mu_1 - \mu_0}^* (y) d\sigma(x, y) = \frac{1}{2} \int f \ d\mu_0.$$

That is, the inequality $\sigma_K \leq \frac{1}{2} \mu_0$ holds in ω . Since u_{μ_1} is contained in D and μ_0 is the balayaged measure of μ_1 to ω , we obtain that σ_K is absolutely continuous for ξ in ω .

Next we shall prove the converse. First suppose that $C\omega$ is compact in X. By Theorem 1, the restriction $\mu'^{(1)}$ of μ' to ω satisfies the following:

$$\int f \ d\mu'^{(1)} = 2 \iint f(x) \left(u_{\mu}^{*}(y) - u_{\mu'}^{*}(y) \right) d\sigma(x, y)$$

for any f in C_K with support in ω . Hence it is evident that the condition (2. 1) is satisfied if $u^*_{\mu}(x) - u^*_{\mu'}(x)$ is bounded. In the general case, we put

$$u_n(x) = \inf (u_n(x) - u_{\mu'}(x), n).$$

Then u_n is in D. By our assumption, for any compact set K in X such that $\xi(K) = 0$ and $K \subset \omega$,

$$\int_{K} u_{n}^{*}(x) d\sigma(x, y) = 0.$$

Making n tend to infinity, we obtain

$$\int_{K} (u_{\mu}^{*}(x) - \mu_{\mu'}^{*}(x)) d\sigma(x, y) = 0,$$

and hence $\mu'(K) = 0$. That is, $\mu'^{(1)}$ is absolutely continuous for ξ . Next we shall prove the case that ω is general. We take a decreasing net $(\omega_{\alpha})_{\alpha \in I}$ of open sets such that $C\omega_{\alpha}$ is compact in X for any $\alpha \in I$ and it tend to ω . Let $u_{\mu'_{\alpha}}$ be the balayaged potential of u_{μ} to ω_{α} . Then the positive measure $\mu'^{(1)}_{\alpha}$ is absolutely continuous for ξ . Since the net $(u_{\mu'_{\alpha}})$ is non-decreasing and converges strongly to $u_{\mu'}$, there exists a subsequence $(u_{\mu'_{\alpha}})$ of $(u_{\mu'_{\alpha}})$ which is non-decreasing and converges strongly to $u_{\mu'}$ as $n \longrightarrow +\infty$. Similarly as the above calculation, we obtain that $\mu'^{(1)}$ is absolutely continuous for ξ .

This completes the proof.

4. Second main theorems

In this section, first we shall examine some properties of equilibrium measures and equilibrium potentials in a Dirichlet space.¹⁷⁾ We shall prove the following lemmas.

Lemma 4. Let D be a Dirichlet space on X. For an open set ω in X, the equilibrium potential u_{ν} of ω exists in D if $cap(\omega) < +\infty$.

Proof. By the definition of the capacity, the set

$$E_{\omega} = \{u \in D; \ u(x) \ge 1 \text{ a.e. in } \omega\}$$

is non-empty and closed convex subset of D. Similarly as Beurling & Deny [2], a unique element whose norm is minimum in E is the equilibrium potential of ω .

LEMMA 5. Let D be a Dirichlet space on X. For two open sets ω_1 and ω_2

Let D be a Dirichlet space on X. Beurling and Deny [2] showed that for any relatively compact open set ω , there exists a pure potential u_{ν} in D such that $0 \le u_{\nu} \le 1$, $u_{\nu} = 1$ a.e. in ω and $S_{\nu} \subset \overline{\omega}$. This potential u_{ν} is called the equilibrium potential of ω and this positive measure ν is called the equilibrium measure of ω .

in X such that $\omega_1 \subset \omega_2$ and $cap(\omega_2) < +\infty$, let u_{ν_1} and u_{ν_2} be the equilibrium potentials of ω_1 and ω_2 , respectively. Then, for any Borel set A contained in ω_1 ,

$$\nu_1(A) \ge \nu_2(A)$$
.

Proof. It is sufficient to prove that for any f in $C_{\kappa}^+ \cap D$ with support in ω_1 ,

$$\int f \ d\nu_1 \ge \int f \ d\nu_2,$$

because $C_{\kappa}^{+}(\omega_{1}) \cap D$ is dense in $C_{\kappa}^{+}(\omega_{1})$. Using the domination theorem, we obtain that

$$u_{\mu_2} \ge u_{\mu_1}$$
 and $S_{(u_{\mu_2} - u_{\mu_1})} \subset C_{\omega_1}$.

Then by Theorem 1, we have

$$\int f \ d\mu_1 - \int f \ d\mu_2 = 2 \iint f(x) (u_{\mu_2}^*(y) - u_{\mu_1}^*(y)) d\sigma(x,y) \geq 0 \ .$$

This completes the proof.

By Lemma 4, for any open set ω in X, there exists a positive measure ν supported by $\overline{\omega}$ such that for any net (ω_{α}) of relatively compact open sets contained in ω tending to ω , the equilibrium measure ν_{α} of ω_{α} converges vaguely to ν . We say that this positive measure ν is the equilibrium measure of ω . Similarly as the above, we obtain the following

LEMMA 5'. Let D be a Dirichlet space on X. For two open sets ω_1 and ω_2 such that $\omega_1 \subset \omega_2$ (cap (ω_2) is finite or not), let ν_i be the equilibrium measure of ω_i for i = 1, 2. Then for any Borel set A contained in ω_1 ,

$$\nu_1(A) \geq \nu_2(A)$$
.

This follows immediately from the above lemma. By the above two lemmas, we obtain the following corollary.

COROLLARY 3. Let D be a Dirichlet space on X. Suppose that for any relatively compact open set ω in X, the equilibrium measure ν of ω is absolutely continuous for ξ . Then, for any open set ω in X, the equilibrium measure ν of ω

¹⁸⁾ Because the closure of $C_K(\omega_1) \cap D$ by the norm of D is a Dirichlet space on ω_1 . Cf. [5].

is absolutely continuous for ξ . Especially the equilibrium measure of X is absolutely continuous for ξ .

Similarly as in Theorem 1, we obtain the following theorem.

THEOREM 2. Let D be a Dirichlet space on X, and let ν , σ be the equilibrium measure of X, the singular measure of D, respectively. For an open set ω in X with $cap(\omega) < +\infty$, let μ be the equilibrium measure of ω and $\mu^{(1)}$ be the restriction of μ to ω . Then

$$\int f \ d\mu^{(1)} = 2 \int \int f(x) (u_{\mu}^{*}(x) - u_{\mu}^{*}(y)) d\sigma(x, y) + \int f \ d\nu$$

for any f in C_K with support in ω . Furthermore, for any couple u_1 and u_2 in D such that $u_2(x) = c$ a.e. in some neighborhood of S_{u_1} ,

$$(u_1,u_2)=c\int u_1^*(x)d\nu(x)\,+2\int\!\!\int u_1^*(x)(u_2^*(x)-u_2^*(y))d\sigma(x,y)\;,$$

where c is constant.

In order to prove this theorem, we need the following lemma.

LEMMA 6. Let D be a Dirichlet space on X. Given a relatively compact open set ω in X, let u_{μ} be the equilibrium potential of ω . Then there exist unrefinement u_{μ}^* of u_{μ} such that the equality $u_{\mu}^*(x) = 1$ holds everywhere in ω .

Proof. It is sufficient to prove that for any open set ω_1 such that $\overline{\omega_1} \subset \omega$, the equality $u_{\mu}^*(x) = 1$ holds everywhere in ω_1 . By Lemma 1, there exists a sequence (f_n) in $C_K \cap D$ such that (f_n) converges strongly to u_{μ} as $n \longrightarrow +\infty$, $0 \le f_n \le 1$ and $f_n(x) = 1$ in ω_1 for any n. We may assume that

$$\sum_{n=1}^{\infty} 4^n \| f_{n+1} - f_n \|^2 < + \infty.$$

By the definition of the refinement, the sequence (f_n) is uniformly convergent to u^*_{μ} in CE_k , where

$$E_k = \bigcup_{n=k}^{\infty} E'_n = \bigcup_{n=k}^{\infty} \{x \in X; |f_{n+1}(x) - f_n(x)| > 1/2^n\}$$

for any integer n. The inclusion $\omega_1 \subset CE_k$ exists for any integer n, and hence we obtain that u^*_{μ} is continuous in ω_1 and the equality $u^*_{\mu}(x) = 1$ holds everywhere in ω_1 . This completes the proof.

Remark. The above lemma is valid for any open set ω with finite capacity.

Proof of Theorem 2. Let ω be the open set in our theorem. For any f in C_K^+ supported in ω , let σ_f be a positive measure in CS_f similarly as in the proof of Theorem 1. By Lemma 1 and Theorem 1, the function $1-u_\mu^*(x)$ is σ_f -integrable. Let (f_n) be a sequence in $C_K \cap D$ such that (f_n) converges strongly to u_μ in D as $n \longrightarrow +\infty$, $0 \le f_n(x) \le 1$ and $f_n(x) = 1$ in some neighborhood of S_f for any n. Then by Beurling-Deny's representation theorem, we have

$$\begin{split} &(f_{n},f)=\int f(x)d\nu(x)+\int \int (f(x)-f(y))(f_{n}(x)-f_{n}(y))d\sigma(x,y)\\ \\ &=\int f(x)\,d\nu(x)+2\int f(x)(1-f_{n}(y))d\sigma(x,y)\;. \end{split}$$

By Lebesgue's bounded convergence theorem, we obtain that

$$\begin{split} &\int f(x)d\mu(x) = (u_{\mu}, f) \\ &= \int f(x)d\nu(x) + 2 \iint f(x)(1 - u_{\mu}^{*}(y))d\sigma(x, y) \\ &= \int f(x)d\nu(x) + 2 \iint f(x)(u_{\mu}^{*}(x) - u_{\mu}^{*}(y))d\sigma(x, y) \; . \end{split}$$

From this equality, we obtain the first required equality. Let's prove the second part of our theorem. We may assume that u_2^* is equal to c everywhere in some neighborhood ω of S_{u_1} . Similarly as the proof of Theorem 1 and the proof of the first part of our theorem, we obtain

$$(u_1, u_2) = c \int u_1^*(x) d\nu(x) + 2 \iint u_1^*(x) (u_2^*(x) - u_2^*(y)) d\sigma(x, y)$$
.

In the above equality, the ν -measurablity of u_1^* is followed from Lemma 5. This completes the proof.

As an application of the above theorem, we obtain the following theorem. This result is more precise than in [5].

Theorem 3. Let D be a Dirichlet space on X and ν be the equilibrium measure of X. For a pure potential u_{μ} in D such that $\int d\mu < +\infty$ and an open set ω in X such that $\operatorname{cap}(C\omega) < +\infty$, let $u_{\mu'}$ be the balayaged potential of u_{μ} to ω . Then

$$\int (u_{\mu}^{*}(x) - u_{\mu'}^{*}(x)) d\nu(x) = \int d\mu - \int d\mu'.$$

Furthermore, for a non-decreasing net $(K_{\sigma})_{\sigma \in I}$ of compact sets in X tending to X, let $u_{\mu'_{\sigma}}$ be the balayaged potential of u_{μ} to $\omega_{\sigma} = CK_{\sigma}$. Then the net $\left(\int d\mu'_{\sigma}\right)_{\sigma \in I}$ is non-increasing and

$$\int u_{\mu}^{*}(x) d\nu(x) = \int d\mu - a_{\mu},$$

where

$$a_{\mu} = \lim_{\alpha \in I} \int d\mu'_{\alpha}.$$

Before we give the proof of this theorem, we remark the following

COROLLARY 3. Let the notations be the same as in the above theorem. For any pure potential u_{μ} in D with $\int d\mu < +\infty$ and any open set ω in X such that $cap(C\omega) < +\infty$, $\int d\mu = \int d\mu' (resp. \int d\mu > \int d\mu')$ if and only if $\nu = 0$ (resp. ν is everywhere dense in X).

The proof of this corollary is immediate from the above theorem. This corollary was partially proved in [5].

Proof of Theorem 3. First we shall prove the case that C_{ω} is compact in X. We take a non-decreasing net $(\omega_{\alpha})_{\alpha \in I}$ of relatively compact open sets in X such that $\omega_{\alpha} \supset C_{\omega}$ for any $\alpha \in I$ and the net (ω_{α}) tends to X. Then, for any $\alpha \in I$, we have

$$\begin{split} &(u_{\mu}-u_{\mu'},\,u_{\mu_{\alpha}}) = \int (u_{\mu}^{*}(x)-u_{\mu'}^{*}(x))d\,\mu_{\alpha}(x) \\ &= \int (u_{\mu}^{*}(x)-u_{\mu'}^{*}(x))\,d\nu\,(x) + 2\int\!\!\int (u_{\mu}^{*}(x)-u_{\mu'}^{*}(x))(u_{\mu_{\alpha}}^{*}(x)-u_{\mu_{\alpha}}^{*}(y))d\sigma(x,y) \\ &= \int (u_{\mu}^{*}(x)-u_{\mu'}^{*}(x))d\nu\,(x) + 2\int\!\!\int (u_{\mu}^{*}(x)-u_{\mu'}^{*}(x))(1-u_{\mu_{\alpha}}^{*}(y))d\sigma(x,y) \;. \end{split}$$

Since the net $(1 - u_{\mu_a}^*)_{a \in I}$ is non-increasing and tends to 0 in X, the second part of the last hand converges non-increasingly to 0. Hence we have

$$\lim_{\alpha \in I} (u_{\mu} - u_{\mu'}, u_{\mu_{\alpha}}) = \int (u_{\mu}^{*}(x) - u_{\mu'}^{*}(x)) d\nu(x).$$

On the other hand, the net $(u_{\mu_a})_{a \in I}$ tending non-decreasingly to 1 in X, we obtain that

$$\lim_{\alpha\in I}(u_{\mu},u_{\mu_{\alpha}})=\int d\mu,\quad \lim_{\alpha\in I}(u_{\mu'},u_{\mu_{\alpha}})=\int d\mu'.$$

That is,

$$\int (u_{\mu}^{*}(x) - u_{\mu'}^{*}(x))d\nu(x) = \int d\mu - \int d\mu'.$$

Next we shall show the case that C_{ω} is general. We take a decreasing net $(\omega_{\alpha})_{\alpha\in I}$ of open sets such that $C_{\omega_{\alpha}}$ is compact and $\omega_{\alpha}\supset \omega$ for any $\alpha\in I$, and that the net tends to ω . Let ν' be the restriction of ν to some fixed open set containing C_{ω} with finite capacity. By Lemma 5, a potential $u_{\nu'}$ exists in D. Hence

$$\int (u_{\mu}^{*}(x) - u_{\mu_{\alpha}^{'}}^{*}(x))d\nu(x) = \int (u_{\mu}^{*}(x) - u_{\mu_{\alpha}^{'}}^{*}(x))d\nu'(x)$$

$$= (u_{\mu} - u_{\mu_{\alpha}^{'}}, u_{\nu'}) \longrightarrow (u_{\mu} - u_{\mu'}, u_{\nu'})$$

$$= (u_{\mu}^{*}(x) - u_{\mu'}^{*}(x))d\nu(x),$$

because the net $(u_{\mu} - u_{\mu'_{\alpha}})_{\alpha \in I}$ converges strongly to $u_{\mu} - u_{\mu'}$, in D, where μ'_{α} is the balayaged measure of μ to ω_{α} . On the other hand, similarly as the proof of theorem 1 in [5],

$$\lim_{\alpha\in I}\int d\mu'_{\alpha}=\int d\mu'.$$

Thus the first part of our theorem is proved and the second part can be obtained by the usual limiting process. This completes the proof.

Evidently we know that a_{μ} vanishes for any pure potential u_{μ} in D when X is of finite capacity. But we don't know the condition which a_{μ} vanishes. Finally we remark that similar theorems as Theorem 1 and Theorem 3 hold for a condensor measure.

6. Special Dirichlet spaces

First, according to Beurling and Deny [2], we define a special Dirichlet space.

Definition 4. A Dirichlet space $D = D(X; \xi)$ is said to be special if X

is a locally compact abelian group, ξ is the Haar measure of X and the following condition is satisfied:

(D. 4) For any u in D and any x in X, the function $U_x u$ is in D and $||U_x u|| = ||u||$, where $U_x u$ is the function obtained from u by the translation x (i.e., $U_x u(y) = u(y - x)$).

In the case that D is a special Dirichlet space on X, Proposition 1 reads as follows:

PROPOSITION 3. Let D be a special Dirichlet space on X. Then there exists a positive constant c, a local form $N(\cdot,\cdot)$ on $C_K \cap D$ and a positive symmetric measure σ' in $X - \{0\}$ such that

$$(f,g)=c\int fg\ d\xi+N(f,g)+\int\int (f(x+y)-f(x))(g(x+y)-g(x))d\sigma'(y)d\xi(x)$$

for any pair f and g in $C_K \cap D$. The above representation is unique.

Proof. By Proposition 1, there exist a positive measure ν in X and a positive symmetric measure σ in $X \times X - \delta$ such that

$$(f,g)=\int fg\ d
u+N(f,g)+\int\int (f(x)-f(y))(g(x)-g(y))d\sigma(x,y)$$

for any pair f and g in $C_{\kappa} \cap D$. We take an increasing net (K_{α}) of compact sets in X which tends to X and an increasing net (g_{α}) of $C_{\kappa} \cap D$ such that $0 \leq g_{\alpha}(x) \leq 1$, $g_{\alpha}(x) = 1$ on K_{α} for any $\alpha \in I$ and the net (g_{α}) tends to 1 in X. We know the existence of this function g_{α} by the condition (D. 2) and (D. 3). For any f in $C_{\kappa} \cap D$ and any x in X,

$$\lim_{\alpha \in I} (f, g_{\alpha}) = \int f \ d\nu, \quad \lim_{\alpha \in I} (U_x f, U_x g_{\alpha}) = \int U_x f \ d\nu$$
,

and hence

$$\int f \ d\nu = \int U_x f \ d\nu .$$

Consequently $d\nu = cd\xi$, where c is a non-negative constant. Next we shall examine the singular measure σ of D. For any f and g in C_K^+ such that the support S_{f*g} of the convolution f*g doesn't contain the origin 0 of X, the transformation

$$f*g \longrightarrow \iint f(x)g(y)d\sigma(x,y)$$

is positive linear. In fact, suppose that $f_1*g_1 \le f_2*g_2$. For any h in C_K^+ such that $S_h \cap S_{f_2*g_2} = \phi$,

$$\iint f_1(x)g_1*h(y)d\sigma(x,y) = \iint f_1*g_1(x)h(y)d\sigma(x,y)$$

$$\leq \iint f_2*g_2(x)h(y)d\sigma(x,y) = \iint f_2(x)g_2*h(y)d\sigma(x,y).$$

Making h vaguely tend to the unit measure ε at 0, we obtain

$$\iint f_1(x)g_1(y)d\sigma(x,y) \leq \iint f_2(x)g_2(y)d\sigma(x,y).$$

The well-definedness of the above transformation is evidently followed by our assumption, i.e.,

$$\iint f(x)g(y)d\sigma(x,y) = \iint f(x+x_0)g(y+x_0)d\sigma(x,y)$$

for any x_0 in X. Since the totality of such functions f*g is dense in $C^+_K(X-\{0\})$, there exists a positive measure σ' in $X-\{0\}$ such that

$$\int f *g(x) d\sigma'(x) = \iint f(x)g(y) d\sigma(x,y)$$

for any pair f and g in C_K^+ such that $S_f \cap S_g = \phi$. The symmetricity of σ' follows from the simmetricity of σ . Consequently

$$\iint f(x+y)g(x)d\sigma'(y)d\xi(x) = \iint f(x)g(y)d\sigma(x,y).$$

The uniqueness of the singular measure of D follows from the equality

$$\iint (f(x+y) - f(x))(g(x+y) - g(x))d\sigma'(y)d\xi(x)$$

$$= \iint (f(x) - f(y))(g(x) - g(y))d\sigma(x, y)$$

for any pair f and g in $C_{\kappa} \cap D$, and hence the proof is completed.

In this case, we call the above positive measure σ' the singular measure of D. Furthermore the local form $N(\cdot, \cdot)$ satisfies the following condition: $N(f,g) = N(U_x f, U_x g)$ for any pair f, g in $C_K \cap D$ and any x in X. Hence the above proof is one of Levy-Khinchine's theorem. Then we obtain the following corollary.

¹⁹⁾ Cf. [2], [3], and [4].

COROLLARY 4. Let D be a special Dirichlet space on X. The above positive constant c doesn't vanish if and only if $D \subset L^2$ and the mapping: $f \longrightarrow f$ on D into L^2 is continuous.

The proof is evident by the above proposition. As another application of the above proposition, we obtain the following

THEOREM 4. Let D be a special Dirichlet space on X, and let σ be the singular measure of D. For any pure potential u_{μ} in D and any open set ω contained in CS_{μ} , let u_{μ} , be the balayaged potential of u_{μ} to ω , and let $\mu'^{(1)}$ be the restriction of μ' to ω . Then $\mu'^{(1)}$ is absolutely continuous for ξ .

Proof. By Theorem 1,

$$\begin{split} &\int f \ d\,\mu' = - \,(u_{\mu} - u_{\mu'}, \ f) \\ \\ &= 2 \!\! \int \!\! \int (u_{\mu}^*\!(x+y) - u_{\mu'}^*\!(x+y)) f(x) d\sigma(y) d\xi(x) \end{split}$$

for any f in $C_K \cap D$ with support in ω . Now the function

$$f_{\mu, \omega}(x) = 2 \int (u_{\mu}^*(x+y) - u_{\mu'}^*(x+y)) d\sigma(y)$$

is a locally summable function in ω , and hence $\mu'^{(1)}$ is absolutely continuous for ξ . This completes the proof.

Similarly as in Theorem 4, we obtain that $\mu'^{(1)}$ is a function of class C^{∞} in ω if and only if σ is a function of class C^{∞} in $R^n - \{0\}$, where D is a special Dirichlet space on the n-dimensional Euclidean space $R^n(n \ge 1)$. (Cf. [7])

REFERENCES

- [1] A. Beurling & J. Deny: Espaces de Dirichlet I, Le case élémentaire, Acta Math., 99 (1958), 103-124.
- [2] ---: Dirichlet spaces, Proc. Nat. Acad. Sc. U.S.A., 45 (1959), 208-215.
- [3] J. Deny: Sur les espaces de Dirichlet, Sém, théorie du potentiel, Paris, 1957.
- [4] M. Itô: Characterizations of supports of balayaged measures, Nagoya Math. J., 28 (1966), 203-230.
- [5] ——: On total masses of balayaged measures, Nagoya Math. J., 30 (1967), 263-278.
- [6] ——: Condensor principle and the unit contraction, Nagoya Math. J., 30 (1967), 9-28.

[7] H. Wallin: Regularity properties of the equilibrium distribution, Ann. Inst. Fourier, 15 (1965), 71-90.

Mathematical Institute
Nagoya University