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§ 1. Introduction.
Let us consider a finite closed interval [— α, a] which will be thought

of as being a medium capable of transporting particles. These particles

may move only to the right or to the left with the constant speed c, and

each particle changes the moving-direction during the time Δ with

probability kΔ + o(Δ). If a right- (left-) moving particle hits the boundary

point a (— a), then either it turns to the left (right) with probability

1 — qx{l — q-i) or dies with probability #i(#-i) The particle, changed the

moving-direction, starts afresh from that position. Now, let x(t) be the

coordinate of the particle at time t and let θ{t) be 1 or — 1 according as

the moving-direction at time t is right or left. Then X(t) = {x(t), θ{t))

can be considered as a Markov process over the state space S — {_{x9θ)

— a^x < #, θ = ± 1}. For short, we shall call it a uniform transport process

over the interval [— a, a], we shall give the precise definition in § 2.

Let Tt be the semigroup corresponding to the Markov process X(t)

= {%(*), θ(t)). Then u{t,x,θ) = Ttf(x,θ) will be the solution of the following

differential equation:

1 d u(t,x,ΐ) = c-J-u{t,x,l)
dt

m ' dt -u{t, x, — 1) = — c-^—u{t, x, — ϊ) — ku{t, x, — 1) + ku(t, x, \

u(t9a,l) = (1- qι)u(t,a9-l)

u{t, - a, - 1) = (1 - q-Juit, a, 1)

u(t,x,θ)-*f{x,θ) as

At this stage, choose constants c9k,quq-x so that

(CJ cVk = 1

Received August 31, 1967.

297



298

and
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Qι = cσj(k + cσj, q^ = cσ.Jk

hold. Under these conditions it is not hard to show that (T) turns out to

be

-4-u{t, a, 1) + σiu(t, a, 1) - ——ίL-u{t9 β, 1) = 0
dx c at

u(t,x,ϊ) -*f(x,ϊ) as

(T)

Here let us consider the limit of (Tr) formally when the speed c grows

indefinitely. Then we have

(B)

dt 2 dx2

a, 1) - σ-Mt, - fl, 1) = 0

as

This suggests us that the solution ίί(ί,aj,l) of (I7) converges to the solution

uB{t,x,l) of (B) as c->oo, that is, u(t,x9l) approximates to uB(t,x,l). We

can therefore propose also the convergence of the uniform transport process

to Brownian motion on a finite interval, as is shown by Ikeda and Nomoto

[4] in the case of the uniform transport process on the real line.

The purpose of this paper is to investigate the uniform transport

process on a finite interval. Although the boundary condition must be

present in our case, we shall show that the similar interpretations as in [4]

can be given for weak convergence of the process with the boundary

conditions.

In Section 2, we shall construct the uniform transport process on a

finite interval by the similar way to the one in [3]. In Section. 3, we

shall find the weak infinitesimal operator for the transport process (Proposi-

tion 3. 3) and we shall further determine the explicit form of the resolvent

(Theorem 3. 1). In Section 4, by using the result of § 3, we shall show
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that the resolvent converges to that of Brownian motion as c -> oo under

the conditions (d) and (C2) and prove that the corresponding semigroup

also approximates to the semigroup of Brownian motion. In Section 5,

we shall prove that the semigroup of our transport process can approach

to that of the Brownian motion with absorbing barries by changing the

condition (C2). Finally we shall show that our method can be applied to

the case where the state space of the transport process is the entire line.

Appendix is devoted to the statement of some properties of the

infinitesimal operator for the transport process regarding as an operator on

the Hubert space ZΛ

The author would like to express his hearty thanks to Prof. T. Shirao,

H. Nomoto and M. Kanda who have given many valuable advices and

constant encouragement.

§ 2. Preliminaries.

Let £4, S^-i be the product spaces [— a, a) x {1} and (— a, a] x {— 1}

respectively. Let S be the topological sum of ^ , &Lγ and d, where d is

an extra point. Let xθ = {x\t)9ζ\Ωβ

9PlXtθyR
ι x {θ}) (0 = ± 1) be the

uniform motion on R1 x {#} with the velocity cθ and the killing time ζ°

subjecting to the exponential distribution:

(2. 1) PCx, θ)(ζθ >t) = exp (- kt), k> 0.

Let us denote by xθ = (xθ(t)9ζ
θ

9Ω
θ

9P
θ

Cxθ)9S^β) the part-process of xθ on 6

Let Xd = (ίc9(ί),ζ9,^9,P^,{a» be the Markov process on a single point

i.e.

(2.2)

Pd

d(xd(t)=:d for all

Now we define a process XQ = {XQ{t)9ζ\Ω\P^,S) as follows :

(2. 3) β ° = ώ 1 U Ω~ι U ώ 9

ζ9(ώ9) if ω° = ώ9

ά t f(ί,ώ t f) if ωQ = ώθ e i2^ and t< ζθ(ώθ)
X°(t,ω») = \

χd(t,ώd) if ω° =
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where P%\A denotes the restriction of P% to A.

Then we easily have

LEMMA 2. 1. The process J ° is a strong Markov process on S.

Now, let S = [— β,α]x{l}U[—α,β,]x{— l}U{d} and B(S) be the collec-

tion of all of Borel subsets of S.

Let us define a kernel π(x, Γ) on S x 2?(S) by

XΓ{{x9-θ)) if s = {x,θ)^{aθ9θ)9-a^x^a9θ = ± 1

- qβ)XΓ{(a0, - Θ)) + flfβχΓ0) if » = (αί,

if α = 3,

(2.4) τr(ά,Γ) =

where 0 < q19 q-x ^ 1.

If we put for ω* e β°, f e

(2. 5) Ai(ω°, Γ) = 7r(^β(f (ωβ) -,«•), Γ Π 5 )

where X°(f°(iw0) — ,ω°) = lim Z°(5,ω°), then we have

LEMMA 2.2. The kernel μ on Ω° x B(S)9 with B{S) = B(S)\S, satisfies

the following conditions :

( i ) for almost all <y°(P|), μ{ω°9 ) is a probability measure.

(ii) /or any Markov time T(ω°) of X° and any Γ ^ B(S)9 it holds that

PHf(ω',Γ) = μ(θTCω,y,Γ)9T(ω*) < ζ°(ω°)] = P,(Γ(α)β) < £»(ω )).

Proof is evident and is omitted.

Remark. Lemma 2. 2 means that the kernel μ is an instantaneous

distribution in the sense of [3].

Now, we shall construct the uniform transport process from the process

1 ° and by the kernel μ. Let X°n= {Xo

n{t)9ζ°n9Ω
o

n9P°^9S)9 n = 1,2, •••,

be copies of the process X° and these processes X°n9 n = 1,2, are

assumed to be mutually independent.

Define X = {X{t)9ζ9Ω9P^9S) as follows:
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(2.6)

/

2 = ΐί Ω%

X(t,ω)=l
,«ϊ) if

if Σ3
yi

= \A

= Π Aj x Π flj e
7=1 n+1

Then we have

THEOREM 2. 1. The process X is a strong Markov process on S. Further-

more, it holds that , for any Γ e B(S),

where τ is the first jumping time, i.e.

τ(ω) = inf{t > O : X(t, ω) ψ X{t - , <w)P

(ii) the subprocess of X9 killed at time τ9 is stochastically equivalent to X°.

Proof It can be proved by the similar way to that of [3] and hence
we omit the proof.

DEFINITION 2. 1. The process X is called the uniform transport process
on [— a9 d\.

§ 3. Semigroup, Infinitesimal operator and Resolvent,

We first introduce various spaces of functions /(#,#) 2 ) on S. Let
C*(S) be the totality of bounded functions f{x9θ) each of which is right or

!) inf φ — oo, where φ denotes the empty set.
2) In the following, we always assume that f(d) = 0
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left continuous in x(— a^Lx^La) according as θ = 1 or — 1. Then C*(S)

is a Banach space with the uniform norm | | / | | = sup \f(x9θ)\.
O,0)eS?

Let C(S) be the subspace of C*(5) of bounded continuous functions

and Ck{S) be its subspace of continuous functions with support in

(-a,a)x{l} U {-a,a)x{-ϊ}. Denote by C?(5) and C^S) the toality of

functions in C{S) such that -^-f(x,θ) exist and belong to C*(S) and C{S)

respectively, where —*—f{x9θ) denotes the right or left derivatives of f(x9θ)
dx

in x according as θ = 1 or — 1.

Let Tt be the semigroup corresponding to the uniform transport process.

i.e.

(3. Ttf(x,θ) =

where f(os9θ) is a bounded Borel measurable function on S.

have

Then we

PROPOSITION 3. 1.

Ttf{x9θ) = f(x + cθt9θ)e'ktx(t aθ — x 3)

(ϋ)

(ίii)

(iv)

\imTtf{x9θ) = f(χ,θ)

TJ(ΞC*(S)

9 -θ) exp ( - k\{aθ - x)/c\)

(x,θ) e S

Proof. From the method of constructing the process X, it follows that

(3.2)

= Xp((x + cθs9θ))χί0tlCaθ_x)/cD(s)ke~ksds

+ XΓ((aθ9θ))δ aθ_x Λds)e-*>

3) χ ^ < — | ) = Z A ( * , M ) where A = {(t,x,θ); , t > 0, (χt θ) e s |.

4) s - lim fn = f means that (| fn - f || -> 0 as « -> oo.
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Therefore, by (3. 2) and the strong Markov property, we have

(3. 3) Ttf(x,θ) = E(x>θϊf(X(t)); t<τ]

+ ECx>θ)lEx(τ^f(X(t - τ)) t >r ,X(τ - ) e S]

+ ECx>βJίE<τ)f(X(t -τ));t^>τ, X(τ - ) = (aθ, θ)]

= the right hand side of ( i ) .

Thus ( i ) has been proved.

The expression of Ttf in ( i ) clearly implies (ii).

Let us show that Ttf{x,θ) is right-continuous on [— a,a) X {1}. Since

f(ΞC*(S) and χ(t < \{aθ — x)/c\),X(t >\(aθ — x)\/c) are both right-continuous,

the first and the third term in the right hand side of ( i ) are bounded and

right-continuous in {x,0). So we need to consider only the second term

in ( i ) . Let # 0 < xx.

Then we have

(3. 4) j ^-^'V.-./ί*. + cs, - ϊ)ke-»ds -j;ΛCβ" ϊ tVV t-./(*. + cs, - l)ke-*°ds

+ c(s + (*, - xt)/c), - \)ke-kίds

tΛ(a-x.ye

o

Λ X° C

cs, — l)xk[exp-k(s — (xί — xQ)/c)-exp(-ks)]ds

+ cs, - l)]ke-**ds

Now (ii) and Lebesgue's convergence theorem show that the last term in

the right hand side of (3. 4) converges to zero as xi-*xfi. Clearly, the

other terms are of order of 0(1) X Xχ ~ XQ- . Therefore, the second term
c

in ( i ) is also right-continuous. Thus (iii) has been proved.

Since / e Ck{S), there exist x{ and x2 such that f(x,θ) is zero on

S — ([— a, x2] X {1} U [x^ά] X {— 1», and hence we can prove (iv) by use of

the expression ( i ) .

Thus we have proved the proposition.
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Let C*(S)0 = if e C*{S) : w - lim Γ,/ = /}5). Then we have
no

COROLLARY.

On account of Proposition 3. 1 (iii), Tt may be considered to be a

semigroup on C*(S)f and accordingly we can define the resolvent and the

infinitesimal operator of Tt as follows.

(3.5) Rλf(x,θ)=\"e-λtTtf(x,θ)dt / E C m * >0

(3.6) Af = w - lim T t f ~ f f e C*(S),

ί I 0 ί

if the right-hand side exists and belongs to C*(S). Consider the set

(3. 7) D{A) = {/ e C%S) : 4 / exists}

Then, from the general theory on Markov process 6\ we have

PROPOSITION 3. 2 The operator II — A(λ > 0) is one-to-one transformation

from D{A) onto C*(5)o and (λl — A)Rχ = / , where I denotes an identity operator.

PROPOSITION 3. 3.

( i ) If f e D(A), then both f(a - 0,1) = lim /(a?, 1) and / ( - Λ + 0, - 1)

= lim f{x, — 1) exist and they satisfy
x\,—a

f f(a - 0, 1) = (1 - ^)/(α, - 1)
(3. 8)

( / ( - a + 0, - 1) = (1 - q-Jft- a, 1)

(ii) If a function f in C*(S) satisfies the boundary conditions (3. 8), then f

belongs to D{A) and it holds that

(3. 9) Af(x, 6) = cV—^fix, 0) - kf(x, θ) + kf(x, - d)

|^-/(M) if o = i
where -BΣ-f{x θ) = '

ax
dx

5 ) w — l im fn = f means that lim fn{x,θ) = f{x,θ) for any (x,θ) a n d sup | | / n — / | | < + oo.
fl -» oo w -» oo y?

6) cf. [1], Theorem 1.7.
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Proof. According to Proposition 3. 2., it is enough to prove that ( i )

holds for Rλf(x,θ), where /eC*OS0 0 . First assume that 0 = 1 . If

/ <Ξ C*(S)9 then Proposition 3. 1 implies that

(3. 10) Rλf(x,l) =\™e~λtTtf(x9l)dt

ct,l)e~ktdt

+ (1 - qx) ^a_χyce-λtTt-ca-x,,cf(a, 1) exp ( - k(a - x)/c)dt.

The first and the second terms in the above expression tend to zero as x -> a

and the third term converges to (1 — q1)Y°e~λtTtf(a, — l)dt as x-+a. So,

RJ{a - 0, 1) exists and is equal to (1 - qx)Rχf{a9 - 1) for / e C*(#)o

 c C*(S).

When 0 = — 1, we can similarly show that Rλf{—a + 0, — 1) exists and

R*A- a + 0, - 1) = (1 - q-jRxfi- a, 1), / e C*(S).

Noting the expression of Ttf in Proposition 3. 1 ( i ) , we can show (ii)

by the similar way to Prop 3. 1 (ii) and (iii).

Thus the proposition is proved.

For any given f e. C*(S)Q, it follows from Proposition 3. 2 that u{x,θ,λ)

= Rλf{x,θ) is the unique solution of

\(λl -A)u = f
(3. 11)

[u e D{Λ)

So, by use of Proposition 3. 3., we can see under the assumption Rλf

e Ci{S) that the equation (3. 11) can be expressed as follows :

(3. 12)

λu(x, 1,2) - c-jjru(χ> 1> Λ) + ku(x, 1, λ) - ku{x, -l,λ) = f(x, 1)

λu(x, - 1 , λ) + c ~4— u{x, - 1 , λ) + ku{x, - 1 , λ) - ku(x, 1, λ) = f{x, -1)
ax

\ u(— a, — 1 , 2) = (1 — q-Jui— a, 1,2)

Moreover, if we assume that the conditions (CΊ) and (C2) in § 1 are satisfied

7 ) Hereafter we shall denote u(a — 0,1,^) a n d «(— α + 0, — 1,^) by u(at\tλ) a n d

(— α, — 1, λ) respectively.
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and f(x,θ) is in C^S), then it is not hard to show that u(x9l9λ) in (3. 12)

is the solution of the following boundary value problem :

d2

u{x,l,λ) - {2λ + λ2/c2)u{x,l,λ)

(3. 13)

dx

{- a, 1,X) -

λ--

u{- a,l,λ) = - ~-f{a,\)

Therefore, we have the following Theorem.

THEOREM 3. 1. Assume that the conditions (Cx) and (C2) in § 1 hold.

Then for f e C(S) we have

(3. 14) RJ(x, 1) = AM)e&x +

Av, - , D + -jt-Av,

Av, -1) - J-Av,D ,i)

AU)» AU) are determined by

(3. 15) (a, + β - -jry^W +(σι-β- -A.)«-"«A(i)

a, 1) - ^ α / ( - a, ί)) /c] + \ (l - -&.

/3 + -^_y AW = — /(β, 1).

fix

(3. 16)
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Proof. Assume that /eCΊ(S) . Let us denote by uo{x,l,λ) the solution

of (3. 13). Then we can show by elementary calculations that uo(x9l9λ) is

given by the right hand side of (3. 14). Put uo(x,—l,X) = -V((Λ + c*)uo(x,l,λ)
c

Then u0 e Ct{S) and is the solution of (3. 12). Therefore, it follows from

Prop. 3. 3. (ii) that uQ e D[A) and (λ — A)u0 = /. Hence Rλf{x,θ) = uQ{x,λ,θ).

For / e C(S), we choose a sequence {fn} in CΊOSO such that

5 — lim fn = /. Denote by un the solution of (3. 12) for fn9 then the
«->oo

expression (3. 14) of un shows that u = s-lim un exists and u can be expressed
n->oo

as the same form. On the other hand, since Rλ is a bounded operator,

Rxf = 5 — lim Rλfn Therefore Rλf — s — lim un. This completes the
n —> oo w-*oo

proof.

§ 4. Approximation.

Let X* = (XB(t)9 ζB, ΩB

9 P% S) be a Markov process on S9 whose

semigroup T*f{x9θ) = u{t,x9θ) is determined by the following equation:

(4. 1)

3< ^ ' ' " ' • " 2 3a;2

A - M(/, a,θ) σ-Mt,

u{t,x,θ)->f{x9θ) as

In the sequel, we call XB the Brownian motion on S. Let RB be the

resolvent of the semigroup TB. Then, by the similar computation as

Theorem 3. 1., we have

PROPOSITION 4. 1. It holds, for f e C(S),

(4. 2) Rλf(x, θ) =

ΛB

2,β{λ) are the solutions of
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1 ^ ( ^ ) ^ \ \ ^ , l)}dy

{λ) = 0

Let T\ and R\ denote the semigroup and the resolvent operator

corresponding to the uniform transport process with speed c which satisfies

the conditions (CΊ) and (e^). Then we have

MAIN THEOREM. Assume that the conditions (Ci) and (C2) hold. Then we

have

s-\imTcJ=TB

tf
C —> oo

for all f in C{S) such that f(x, θ) = f{x, - θ).

We prepare a few lemmas to prove the main theorem.

LEMMA 4. 1. It holds that

for all f in C{S) such that f{x9θ) = f{x,-θ).

Proof Since f(x,l) + f(x, - 1) - 2f{x,θ) and β = [2λ + λ2/c2yi2 tends to

)l2λ as c->oo, therefore the coefficients and the constant terms in the right

handside of the equation (3. 15) converge to the coefficients and the constant

terms of the equation (4.3), respectively, as c-*oo. Moreover, by using

(3. 14), (3. 16) and (4. 2), Rc

λf{x,θ) converges uniformly to RB

λf{x9θ) as c-»oo.

This proves the lemma.

LEMMA 4.2. {Trotter) Let T{t) be a strongly continuous^ contraction

semigroups on a Banach space L and R{λ) {λ > 0) be its resolvent. Let also &

be the strong infinitesimal operator of T(t) i.e. g^= λ — {R{λ))~ι, Λ > 0 (/>( gf)

= R(X){L)) 9»°\ Then we have, for f = R{λ)2g {g e L),

8 ) A strong continuity of T{t) on L means that

II TJ ~ f || -> 0 as t -v 0 for all / € L.
9) ^ a n d D{ g f ) are independent of λ.
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(ii) II &2f\\^±\\g\\

(iii) || (rR{r)JrtΊf -T(t)f || ̂  — (|| & f\\ + t\\ 5f2 / | | ) . n>
Y

Proof is found in [5, Theorem 4. 1. and 5. 1.].

LEMMA 4. 3. Let T{t), Tn{t) {n = 1,2, •) be semigroups on a Banach

space L and R{λ), Rn{λ) be the resolvents of T[t) and Tn(t) respectively. Assume

that there exists a subspace M such that

( i ) s-limTn(t)f=f for f^M
t i o

(ii) s - lim T{t)f = / forf&M
t i o

(iii) 5 - lim Rn(λ)f = Rtt)f for f <Ξ M U R(λ){M) U R2{λ){M)
n —> oo

Then it holds that

s - lim Tn(t)f = T(t)f for f e R(λY(M) 12>
n -> oo

P™<?/. Set

(4. 4) Z,o = {/ <Ξ L : s - lim T{t)f = /}
ί 1 o

and

(4. 5) Ln = { / G Z : 5 - lim Tn(t)f=f} n = 1, . . . .
ί 4 o

It is clear from ( i ) and (ii) that

(4. 6) Ma LQ and Ma Ln, n = 1,2, .

Also, let gj and ^ (n = 1,2, ) be the strong infinitesimal

operators of T(t) and Tn(t) (n = 1,2, •) respectively. More precisely, let

and

(λ Q\ Gέ? 5 (r% (")\\—l JV Q^ \ T> ί "i\ (T \
\f± o) <£? — / — \**n\Λ)) 9 * Λ & ) — KnKA) K L'nJ

X1) [ ] is the Gauss symbol.

12) R(λ)2(M) is a closure of a set {/ : / = /*M20, 9 e Jf}.
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Now, we put / = R(λ)*g and /„ = Rn(λfg for an arbitrary but fixed

g e M. Then we have by Lemma 4. 2.,

(4.9) \\T(t)f-Tn(t)f\\

< II T{t)f - rMffrtf || + || (rR(r))Wf - (rRJr)fr^f ||

+ || (rRJrψnf- (rRn{r)ynfn || + || (rRn{r))Wfn - Tn(t)/n \\

+ \\Tn(t)fn-Tn(t)f\\

<~~(il SO/II + t II 5foz/H) + II (rR{rψnf- (rRn{r))Wf\\

+ II/-ΛII + -f-(

p - ( - | - II ff II + 4ί II fif ll) + II (rΛ(r))["]/ - (rΛB

+ IIΛ-/II

By the condition (iii), the second, the third and the last terms go to the

zero as n -> oo. Hence

(4. 10) litn - sup || T(t)f - Tn(t)f || < M \ + At) \\ g ||.
n -> oo T \ A '

so that, letting r->oo, we get

(4.11) nt)f=s-limTn(t)f.
n -> oo

Since T(/) and Tn(ί) are both continuous operators, we can now easily

conclude that (4. 11) holds for any / in (R(W(M).

Thus the lemma has been proved.

Proof of Main Theorem. Denote by P the operaor :

(4. 12) Pf(x, θ) = -γ-U(x, θ) + f(x, - θ)}.

Take P(C*(S)), P(Ck{S)), T\ and Γf for L,M9Tn{t) and T{t) in Lemma

4. 3. respectively. Noting the fact that {RB

λ)
2{Ck{S)) is dense in Q{S), we

can see by Proposition 3. 1. (iv), Proposition 4. 1. and the well-known

properties of Brownian motion that the hypotheses ( i ) , (ii) and (iii) in

Lemma 4. 3. hold. So Lemma 4. 3. implies Main Theorem.
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§ 5. Supplements.

We now replace the condition (C2) by

(CD qx = 1 q.x = 1

After an analogous consideration, we have

THEOREM 5. 1. Assume the conditions (d) and (CJ).

Then it holds that, for / <Ξ C(S) such that f{x,θ) = f{x9-θ)9

s - lίm T\f = T? f
C —> oo

iΛrtf Γf w the semigroup of the Brownian motion on S with absorbing barriers at

a and — a.

Let us consider transport process on the real line Rι = (— oo, oo).

which has been studied in [4]. By the similar considerations as in § 4, we

can obtain, for / e Ck{S) Π C^S),

(5. 1) mf{x,l) =-ψ\[Όo e-H*-*{f(V,l) + f(y, - 1) +iΛvΛ)-j-j

where S = (—oo, oo) x {1> u (—oo9 oo) x {— 1}

and β= (2λ + λ2/c2Y'2

On the other hand, the resolvent of Brownian motion on S is represented

by

(5.2)

Therefore we can get a new proof of Theorem 4. 1. in [4],

THEOREM 5. 2. Assume that c2/k = 1. Then it holds that

s - lim T\f = TBJ
C —> oo

/or *// / m Cfc(S) such that f(x,θ) = f(x,-θ).

APPENDIX

I. Semigroup.

Let 5 be the space S = [- a, a] x {1} U [- β, α] x {- 1} and let L2(S)
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)e the Hubert space consisting of all complex-valued functions on S with

he inner product :

(f,g) =

Denote by D(A) the set of all functions u{x,θ) with the following properties:

( i ) we L2(S) Π C(S) υ

(ii) -j—u{x,θ)V exists and belongs to L2{S)

(iii) u(a, 1) = (1 - qjuia, - 1), u{- a, - 1) = (1 - q^)u{- a, 1), 0 ̂  q19 q.x < 1

Define the operator A with the domain D{A) by the formula :

(I. 1) Au{x,θ) = cθ-^-uiXtθ) - ku(x,θ) + ku{x, -- θ), u ZΞ D(A),

where k and c are positive constants.

Then we have (cf. [6] chap. 8)

( i ) The set D(A) is dense in L2{S)

(ii) The operator A is closed.

(iii) There exists a solution u e D(A) of (λ — -A)M = / for any / e L2(S).

(iv) || U ~ 4)κ II ̂  II ̂ ^ II for any u e D(^), Λ > 0.

Therefore, following the Hille-Yosida's theorem, we obtain

THEOREM A. 1. The operator A generates a strongly continuous semigroup

Tt such that Af=s- Km Tt^Γ ^ for f e D(A).
t i o t

II. Spectrum and Resolvent set

Assume that both the conditions (d) and (C2) hold (cf. § 1). Then

the method used in the proof of Theorem 3. 1. can be applied to the

eigenvalue problem :

(II. 1) ( i - i ) w = 0, MG D(A)

and to the equation:

!) C(S) is the set of all continuous function on S.
2) —=—u{x,θ) denotes the Radon-Nikodym derivative of u(x,θ).

ύX
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(II. 2) U - Λ)u = /, w e Z)(^) for / e Z,2(S).

Thus we can determine the point spectrum Pa{A) and the resolvent set p{A)

as follows.

1° Point spectrum Pa{A) (Eigenvalue)

Case (a). 2λ + —z- Ψ 0 :

Eigenvalue λi λ is the solution of

= fa - J3 - J/c)(*-i - 0

where j3 = (2Λ + λ2lc2)112.

Eingenfunction φλ for λ : /?>^α,l) = Λ U ) ^ +

\φλ(x, - 1) = -1- U +

Case (b). 2λ + ^2/c2 = 0 and ^ = <τ̂  = 0 :

Eigenvalue λ : Λ = 0

Eigenfunction φλ : ^(α,0) = Λ(^)

Case (c). 2λ + λ2/c2 = 0 and

(— 2c + σ-x){2ca + α ^ + 1) = (2c + <7!)(2cα — ασ_j + 1)

Eigenvalue λ : λ— —2k

Eigenfunction φλ : /<pλ{x,l) = A{λ)x + Λ2{λ)

\φλ(χ,i) = -{A(λ)χ + ΛU) + ~Ai(

The coefficients Ax{λ) and 4̂2(̂ ) are uniquely determined by the

boundary condition and the normalizing condition in each case.

2° Resolvent set p{A)

The equation (II, 2) can be solved for any λ $ Pa{A) and its solution

is given by the form (3. 14) in Theorem 3. 1.

Thus we have
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THEOREM A. 2. A spectral plane of A consists of two sets the point

spectrum Pa{A) and the resolvent set p[A).

III. Adjoint of A and Eigenfunction expansion of Tt

Let A* be the adjoint operator of A. Then

A*u(x9 θ) = - c θ -j^uix, θ) - ku(x9 θ) + ku(x, - θ).

Setting u*(x,θ) = u(x, — 0) and observing the expression of φλ in II. 1°, we

have

PROPOSITION A. 3. If λ is the eigenvalue of A, then φλ is the eigenfunction

of A* for eigenvalue λ.

Moreover,

(<Px, K) = 0 if λ Ψ μ

=£0 if λ = μ

We normalize φλ so that {<pχ, φ*) = 1 holds and again we denote it by

the same symbol φλ. Then we have

PROPOSITION A. 4. If f'= 2 Cλφλ in L2{S), Cλ being constants, then

TJ= Σ Cλe
λtφλ.

*ePtf(Λ)

Finally, it is desirable to express it in the form

TJ= Σ (f,rt)eλtφjL

for all / in L2{S), but it remains unsolved.
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