
ON THE GALOIS COHOMOLOGY GROUP OF THE

RING OF INTEGERS IN A GLOBAL FIELD

AND ITS ADELE RING

YOSHIOMI FURUTA and YASUAKI SAWADA

By a global field we mean a field which is either an algebraic number

field, or an algebraic function field in one variable over a finite constant field.

The purpose of the present note is to show that the Galois cohomology group

of the ring of integers of a global field is isomorphic to that of the ring of

integers of its adele ring and is reduced to asking for that of the ring of

local integers.

1. Throughout this note, the following notations will be used.

F a global field

R the rational subfield of F, i.e. the rational number field Q

or the rational function field k(x) according as F is an

algebraic number field or an algebraic function field in one

variable over a finite constant field k.

p a finite or an infinite prime of F

M(F) the set of all prime divisors of F

MQ{F) the set of all finite prime divisors of F

Moo(F) the set of all infinite prime divisors of F

s a finite subset of M{F), including all of AL(F)

Fp the p-completion of F, where p e M(F)

Op the ring of integers of Fp, where p e M0(F)

FM= Σι FP+ H Op (direct)

F the adele ring of F9 i.e., F = U Fs

Fs = F Π Fs

E a Galois extension field over a global field F

Received May 18, 1967.

247



2 4 8 YOSHIOMI FURUTA AND YASUAKI SAWADA

$β a prime of E which divids p

φ a prime of R divided by p

G the Galois group of E/F

Hr(G,A) the r-dimensional Galois cohomology group of G-module A

DEJF the different of E/F

SE->F the trace function from E to F

[A:B] the index of a subgroup B in a group A or the degree of

an extension field A over B

We will say F β resp. Fs the ring of s-integers of F resp. the ring of

5-integers of F. Especially when F is an algebraic number field and

s = MββCF), then Fs is the ring of usual integers. For the sake of simplicity

the all of extensions to E of the prime divisors belonging to s will be

denoted again by s. From now let s satisfy the condition that $ e s then

σ<$ e 5 for every σ e G, so that J5?s and J£5 are G-modules.

2. Similarly to a direct product decomposition of the Galois cohomology

group of the idele group, we have the following theorem.

THEOREM 1.

Hr(G,E.) = Σ Hr(GψEJ + Σ Hr{Gκ,Ov) [direct)
pes * * p$s *

for every integer r, where $ is an arbitrary extension of p e M(F) ίo £

is the decomposition group of ?β.

Let φi, fφff(5βi = $) be prime divisors over p and G = U

G(E%/FP) and Σ ^ = Σ r*Kp,

semilocal theory of cohomology we have

then Gφ = G(E%/FP) and Σ ^ = Σ r*Kp, Σ3 O$< = Σ *&$ therefore, by the

Now

then
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Hr(G,E.) = Σ Hr(G, Σ E9) + Σ Hr(G, Σ O«)

= Σ Hr{G%,E%) + Σ ffr(Gβ,O,).

Concerning the factors of theorem 1 we have the following proposition.

PROPOSITION 1.

^) is trivial for every integer r.

Proof. Since E% has the normal basis, it is G-regular, and the proposi-

tion follows from the well known theorem of cohomology.

In the same way on the algebraic number field of Yokoi [2], the

following lemma and proposition are proved also on algebraic function

fields in one variable over a finite constant field and their local fields.

LEMMA.

Let Ey/Fp be Galoisian and e be the ramification order of E%/Fp. If

DE^Fp = $rφ (e>s>:0, r ^ O ) , then SE^FpO% = pr.

PROPOSITION 2.

If Ey/Fp is tamely ramified then Hr(G%,0%) is trivial for every integer r.

It follows from this proposition and the Dedekind's theorem on OAF1)

that the number of factors in theorem 1 is finite.

3. On the Galois cohomology group of the adele ring we have the

following theorem.

THEOREM 2.

Hr(G,E) is trivial for every integer r.

Proof Let g be the family which consists of all finite subsets s of

M(£), where s satisfies the condition MJJE) c 5 as stated first. We make

% be an ordered set by means of the ordinary inclusion relation. Then

Hr{G,E) is the inductive limit of {Hr{G9Es)}s^ :

χ) cf. Weiss [1], p. 157. The term OAF (ordinary arithmetic field) means the quotient
field of the Dedekind domain and its finite extension field.
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On the other hand it follows from theorem 1 and proposition 2 that

Hr{G,Es) is trivial for all sufficiantly large s. Hence the theorem is

proved.

Now we have the following main theorem.

THEOREM 3.

Hr{G,Es) = Hr{G9Es) for every integer r.

Proof. From the exact sequence

0—>E—>E—>E/E—>0

we obtain the exact sequence

>Hr\E)—>Hr(E) —>Hr(E/E) — > Hr+ί(E)—•

By the same way as proposition 1 and by theorem 2 we have Hr{E) = 0

and Hr(E) = 0 for every integer r. Hence Hr(E/E) = 0 for every integer

r. On the other hand, from the exact sequence

0—>ES—>ES —>Et/Et — > 0

we obtain the exact sequence

. -^Hr(Es)—>Hr(Es)—+Hr(EslEs)—>Hr+1(Es)—+ .

We have easily that E = E 4- E9

2\ Hence

EJEg = ES/(E* ΓiE)^ (Es + E)/E = E/E

and Hr(Es/Es) = Hr(E/E) = 0. Now the above exact sequence implies

Hr{Et) = Hr{Es) for every integer r.

4. By this theorem we know that the structure of the Galois cohomology

group of E8 or Eg with respect to a global field is determined by the local

Galois cohomology groups appeared in the decomposition in theorem 1.

On the local parts using the procedure in Yokoi [3] and [4], we have the

following theorems according to the above way.

THEOREM 4.

If G is a cyclic group, then Hr{G,Es) and hence Hr(G,Es) have ihe same

order for every integer r.

2) cf. Weiss [1], p. 197.
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Proof. By theorem 1 and 3 it is sufficient to consider Hr(G%,0%). Let

rl9 , r n be a normal basis for E^/Fp. Put O* = Fpϊ1 + . . . ' + FPTn and

O = O%/O*. Then JT(O*) = 0 and the order of Ό is finite. This implies

that the Herbrand quotient A0/i(O) = 1. Moreover it follows from the exact

sequence:

0 — • O* — > 0% — > O — > 0

that /*o/i(0$) = l. Since G is cyclic, the theorem is obtained from the well

known theorem of cohomology.

Remark. When E is an algebraic number field and s = Mβa(F)9 the

assertion on Hr(G,Es) of the theorem was given by Yokoi [4].

Now, there is an integer r for which the r-th ramification group:

Vr = {a €= G% I (σ - 1)0* c ψ+1}

is trivial, and in this note the ramification number of *β with respect to E/F

means the integer υ smaller than the minimum of r by 1.

THEOREM 5.

Let E be a cyclic extension field of prime degree I over a global field F, and

R be its rational sub field. Let p19 , p m be prime divisors of F, which are

ramified in E but do not belong to s, and ^ resp. Pi be one of the extensions to E

resp. one of the restrictions to R of pi (i = 1, ,m). Let v%{ be the ramification

order of pt for F/R. Put n^ = [Fpt : RPi~\, u^ = υ%i — [%.//], where [x] stand for
a m

the Gaussian symbol, I $* = [OPi : pJ3> and v = Σ a^n^u^Je^. Then Hr(G,Es)

and hence Hr(G9Es) are isomorphic to the v-ple direct sum of the cyclic group of

order I for every integer r.

Proof. In order to prove the theorem it is sufficient to count the order

of Hr{G9Es) because the order of each element of the cohomology group of

a finite group G is divided by the order of G. Since G is cyclic, it

follows from theorem 4 that Hr{G,Es) and H°(G9ES) have the same order

and they are equal to Π [Op : SE ^F O^\ by theorem 1. Now we fix one
p$S * P

3) When E^jFp is wildly ramified, the characteristic of the residue class field of Rp must
be the prime /, hence the order of the residue class field of Rp is a power of /. Especially E
is an algebraic number field then a^ = 1.



2 5 2 YOSHIOMI FURUTA AND YASUAKI SAWADA

of divisor % and denote it by $5. Let DE iF = pr<$s [0^.s<e$)9 then

SE%->FpO% = pr by lemma. We have [Op : pi = /α*^* where / φ is the residue

class degree of Fp/Rp. Therefore the order of Hr(G,Es) is equal to

Π la%rn%le%. It is easy that r = % by Hubert's formula.
P$s *

Remark. When is is an algebraic number field and s = M^F), the

assertion on Hr{G,Es) of the theorem was given by Yokoi [3], but the

consequence was simple for the reason of assuming that E and F are

Galoisian over R = Q.
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