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§ 1. Introduction. Many authors have considered branching Markov

processes for the probabilistic treatment of semi-linear equations. Recently

J.E. Moyal [11], [12] gave a formulation for a wide class of branching

processes. A similar idea was used in A.V. Skorohod [18] and N. Ikeda-M.

Nagasawa-S. Watanabe [4]-[7]. Applying their method, we shall consider in

this paper the following problems (A) and (B).

(A): Let E be a compact Hausdorff space with the second axiom of

countability and assume the following are given: (1) Ht: a strongly

continuous semi-group on C(E) = {/; continuous function on E}, (2) & :

the infinitesimal operator of Ht, (3) k(x), qn{x), w = 0,1, 2, , are con-
oo oo

tinuous functions on E such that k(x) = Σ qn(%) a n d Σ I#»(E)I < °° How
w=0 n=0

can we interprete probabilistically the following equation ?

(1. i) du{t,x) = ^ U(U χ) + k{x)F{x. u { u χ))f X^E9 t^>Of

ot

where

(1. 2) F(x ξ) = η^y ^qn(x)ξn, x e E, f e ί 1 .

(B): How can we interprete probabilistcally the following equation ?

( l β 3 ) du(t,x) = \_ Ju{t9 χ) + G{u{u χ))f χ(ΞRa9 t>Q91)

where Δ denotes the Laplacian in x and G{ζ) satisfies

(1. 4) G(0) = G(l) = 0, G{ξ) > 0 and G'(0) >G'(£), 0 < ξ < 1.
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χ) Rd denotes the ί/-dimensional Euclidian space.
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The equation (1. 3) for more general G was discussed by A. Kolmogoroff-

I. Petrovsky-N. Piscounoff [9].

We first consider the problem {A). Among others, Ikeda-Nagasawa-

Watanabe [4]-[7] have shown that (1. 1) can be interpreted probabilistically

by means of branching Markov processes when the qn{x) are non-negative,

q^x) = 0 and

(1.5) F̂  fl^ίΣ^Γ-?},2) x^E, ξtΞRK

Hence, problem (A) becomes a question of eliminating the restrictions con-

cerning positivity of qn{x)9 q^x) = 0 and the term — ξ in the right hand side

of (1. 5).

Let us next consider the following special case of (1. 1): (1) E=RdU-[oo'}

be the spaoe obtained by the one-point compactification of Rd, (2) q^-q^O
oo I

and the other q*ns are non-negative constants, (3) 2Qn = h (4) S^ = ~2~Δ

and

Έqnξζ
nψl

Then (1. 1) becomes a special case considered by Ikeda-Nagasawa-Watanabe

[6], and is written as follows:

= -L. jju(t, x) + *F(u{t, x))9 X<ΞR\ t^0.8)L =
01 Δ

where F(0) = F(l) = 0. If we put u(t, x) = 1 — v(t, x) and G(ξ) = - F ( l ~

then the above equation turns out to be the following equation

where G satisfies (1. 4). This means that problem (B) can be solved by

means of a branching Markov process in the special case stated above.

Now, we shall sketch here the contents of §§ 2-8. In § 2, we shall give

the notations which are used in the later discussions and give also the

definitions of a branching Markov process with age and a signed branching

2) We can not regard here qi(x) = — l because k(x) = 2 qn{x).
nψl

3) The one-point compactification of Rd was used to apply the general theory and hence
we omitted the point oo because we are interested in the equation whose variable domain

d
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Markov process with age after introducing extended state spaces £ and §-

In §3, we shall consider a branching Markov process with age Yt on

£ satisfying Condition 1 stated there. Then, for a given system

{.QnW'y n = 0,2,3, •} of non-negative functions, k{x) = Σ^qn(x) and F(x ζ)
nψl

defined by (1. 2) where qx(x) = 0, we can discuss an integral equation which

corresponds to the one called "S-equation" in [7]. Under certain condi-

tions, the integral equation can be transformed into the equation of type

(1.1). In this case, u(t, x) = TJ-2{x, 0)4) is a solution of (1.1) with

u{0,x) = f(x) if u{t,x) is finite. This shows that we can eliminate the term

—ξ in the right hand side of (1. 4) by introducing of the notion of age.

Moreover, for G(ξ) = ξn, the notion of branching Markov processes with

age will serve to answer the question as to the existence of a non-trivial

solution of (1. 3) which does not blow up in [0, oo). (See § 6 and M.

Nagasawa-T. Sirao [14].)

In §4, we shall consider a signed branching Markov process with age

Zt on § satisfying Condition 2 which is essentially identical to Condition 1

except for the difference of branching (splitting) law caused by the differ-

ence of the state spaces § and §. After making the similar considerations

as in §3, we can interpret (1. 1) probabilistically. That is to say u(t,x) =

Utf 2(#,0,0)5) is a solution of (1.1) with u{0,x)=f(x) if u(t,x) is finite*

This means that we can solve the problem (Λ) by means of signed branch-

ing Markov processes with age. (The existence of such (signed) branching

Markov processes with age discussed in §§3-4 will be shown in §§7-8.)

In §5, we shall give a sufficient condition called Condition 3 in this

paper which includes Condition 2 and makes a given Markov process Zt

become a signed branching Markov process with age on §. This part of

the present paper, Ikeda-Nagasawa-Watanabe [7] and Nagasawa [13] overlap

in some respects, because the proof of Theorem 5. 1 is essentially the same

as one given in [7].

In §6, we shall consider a Markov process Zt satisfying Condition 3.

whose existence is shown in §§7-8. According to the discussions in §5, Zt

is a signed branching Markov process with age. Let / be a positive con-

4) Tt denotes the semi-group induced by Yt, / 2 is a function of special type defined

by (2. 1) and(z,0)eS.
5) Ut denotes the semi-group induced by Zt, f 2 is a function of special type defined by

(2.2) and (»,0,0) e S.
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tinuous function on Rd with || / || = sup{\f(x)\; x e Rd}< 1 and a e Rι.

When we consider u{a; t,x) = Utaf-2{x,0,0), where Ut denotes the semi-

group induced by Zt and x e Rd, u{a\ t,x) can be expressed in the power

series of a if u{a; t,x) is finite. But the solution of (1. 3) with initial value

af, in general, can not be expressed in the power series of a. Accordingly,

if G(ξ) is not an analytic function of f, then we can not obtain the solution

of (1. 5) with initial value / directly by means of signed branching Markov

processes with age as in the case of analytic G. However, if G is con-

tinuously differentiate on [0,1] and satisfies the condition (1. 4), then we

can express the solution u(t,x) of (1. 3) with initial value / as the uniform

limit of un{t,x) in the wide sense where un(t,x) is of the type considered in

§4, i.e. there exists a sequence of signed branching Markov processes with

age Z°t

Ό on § and corresponding semi-groups Uf3 such that

u{t, x) = lim un{t, x) 9 x e Rd ,
W—>oo

where

In § 7, we shall construct a certain Markov process Yt which will be

used in § 8 in the constructions of branching Markov processes with age and

signed branching Markov processes with age. We can regard this Markov

process Yt as corresponding to the creation of mass in the following sense.

Let k(x) be a bounded continuous function on E and consider the equation

(1. 6 ) JMl±xL = g f u(t, x) + k(x)u(t, x)9 x e E, t ^

where gf is a infinitesimal operator of a semi-group Ht corresponding to a

Markov process Xt on E. If k(x) is non-positive, we can treat (1. 6) by

killing Xt. So we may consider (1. 6) as the equation corresponding to the

killing when k(x) is non-positive. On the other hand, we may consider

(1. 6) as the equation corresponding to the creation of mass when k(x) is

non-negative. In the theory of Markov processes, there are, as far as I

know, two methods of interpreting (1. 6) when k(x) is non-negative. One of

them has been indicated by G.A. Hunt [3]. The other method is based

on the theory of a branching Markov process, where (1. 6) appears as the

mean number of particles, (cf. K.Ito - H.P.McKean [8] and Ikeda-

Nagasawa-Watanabe [6] or [7]. ) Our method of describing the creation of
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mass uses age as an auxiliary variable. Let N be all the non-negative

integers. We shall construct a strong Markov process [Xt9Nt] on the state

space Ex N and consider the corresponding semi-group Vt Then, for a

given bounded continuous function / on E, u(t, x) = F f / 2(α?,0) is the

solution of (1. 6) with the initial value /.

In § 8, we shall construct a Markov process Zt satisfying Condition

3. Then, by the discussions in §5, Zt is a signed branching Markov

process and the existence of the processes in §§ 3-4 is proved. We here

note that the method of J.E. Moyal [10] will play an essential role in the

construction of the processes dealt with in §§ 7-8.

The author wishes to express his hearty thanks to Professors N. Ikeda,

M. Nagasawa and S. Watanabe who sent him preprints of their papers [4]-[7]

and gave him various advice. The author also expresses his deep gratitude

to Professor K. Ito who gave him valuable advice, too.

§2. Notations and Definitions. A branching process is one of the

typical mathematical models used to describe the growth of the number of

particles of a population in which each particle either produces new particles

of the same character or dies out, and there is no interference among them.

In order to describe the state of n particles, it seems to be natural to use

the ^-fold symmetric direct product space of the state space of each

particle. Following [4], we here introduce some notations along this line.

Let E be a compact Hausdorff space satisfying the second axiom of

countability. We denote the n-ϊolά product space of E with itself by E(n)

and say that (x'ι9x'29 , xή) e E(n) is equivalent to (xί9x29 , »J e E(n) if

and only if {x[9x29 •> xί) is obtainable from a permutation of

(x19 x29 , xn). The En is defined as the quotient space of E(n) by the

above equivalence relation. By the quotient topology, En is compact. A

point x in En is also denoted by [xί9 x2, , xn] as a collection of n-points

Xi e E disregarding order. EQ is considered as the set of the single point d,

where d denotes an extra point.

Let N = {0,1,2, > and N(n) be the n-fold product space of N with

itself. A point {p[9p'29 ' > pΉ) of N(n) is said to be equivalent to

(Pif Pz> * > Pn) e N(n) if Σ p\ = £j Pi .6) The quotient space of N(n) by the
i l iι

6 ) I n t h e f u t u r e d i s c u s s i o n s , 2 V% i s e s s e n t i a l i n t h e r o l e o f ( p l t p2>
 #φ > Vn) a n d h e n c e

i = l

we used here this equivalence relation.
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above equivalence relation is denoted by Nn. A point p in Nn, n ^ 1, is

a collection of equivalent points in N(n) and is denoted by [Pi,p2> •> Pn]

if it contains {p19p29 -,φn)^Nin). \p\ denotes Σ j>< for J p = [ p 1 , ^ ,ί>J

Let S = E x N be the topological sum of E x {p}9 p e JV. Then S is a

locally compact Hausdorίf space satisfying the second axiom of countability.

S(n) is defined as the n-fold product space of 5 with itself and {{x[9p[)9

(&2>3>2)» •> (&£>3>ί)) is said to be equivalent to ((tfj,^), (tf2,p2), , (xn9pn))

if [2cί,fl52> •> ff'ίl is identical to [#!,#«>, , a? J as a point of En and if

[pί>#2> •> Pw] is identical to [pi9p29 * > P J as a point of iV71. Sn is

defined as the quotient space by the above equivalence relation. Then Sn

is locally compact with respect to the quotient topology. A point z in Sn

is denoted by [[x19x29 •••,»»]> [Pi>Pz> , ?>J] or5 for short, [χ,p] when

x = [a?!, α2, , x J e E71 and p = [p19 p2, , pΛ] e ΛΓ71.
oo

Let us consider the topological sum U Sn where S° denotes {3} X N9 d
n=Q

being an extra point. This topological sum is denoted by S. Then 5 is

a locally compact and non-compact Hausdorff space satisfying the second
oo

axiom of countability. If we consider the mapping g from 5 to ( U En)xN

defined by

9([x,p]) = [x,\p\],

CO OO

then & is isomorphic to ( U En) x N9 where U En denotes the topolorical
n=0 n=0 X °

sum of En. § = S U {/Q is defined as the space obtained by the one-point

compactification of S. When A and B are subsets of E and En respect-

ively, the sets i x { p } and B X {p} are denoted by [A, p] and [Bf p ]

respectively.

Let / be the set {0,1,2,3} and § be the topological sum of S X {;} >

7 e /. A point in 8 is denoted by [x, p, ], [x9 p] e $ , but {J} X / is

considered as one point and is denoted simply by Δ. Then we may

consider S is the space obtained by the one-point compactification of SxJ.

For a subset [B9p] of §9 the set [B9p] x {;} is denoted by [B9p,j].

Now let ^ ^ be a compact or locally compact Hausdorff space. We

shall introduce the following function spaces which are supposed to be real.

= the set of all bounded continuous functions on ^f,

= the set of all bounded Borel measurable functions on
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C*gT)={/; / e C U T ) and | | / | | = sup \f{x)\< 1},

B*{-J?f)=U;f^B{^) and H/||<1>.

When ^ is a locally compact Hausdorff space, let X = £ ϋ i * u {>°} be the

space obtained by the one-point compactiίication of J2f and set

), lim /(*) = 0},
oo

ll/IKi}.

and C J ( ^ ) are denoted by Co(-̂ ) and C%(X) occasionally. The

subclass of each function space introduced above formed of all non-negative

elements is denoted by " + " , e.g. C{£fY, &(£?)*,---, etc. We shall

denote by " — " the closure with respect to the norm || ||, so

= {/; / e C(MT) and \\f\\< 1},

= {/; / e B ( ^ ) and || / || < 1},

and so on.

The set of all Borel subsets of £f is denoted by

Now we shall define several operations on functions which will play an

important role in the future discussions. First of all let us define a mapping

from B(E) into the space of all measurable functions on § by

(λp, if z = [d,p] e 5°
^ " \ n

/O 1\ f. j (J\ — / j | * | . TT ft™ \ f w _ Γ v Λ 1 cz <?n α n r l -v — Γ/v /»• . . . /y 1
V^ 1 ; y -Λ V^/ — S -Λ 1 1 / l«^ίJ> I I Z — [ J L , / i j cz o d l l t l X — L*^l> *^2> > *^wJ 9

1 - 1

10 , if z = J ,

where ^ ^ 0 . If / e C*(i?) and 0 ^ ^ < 1, then f λ&Ci($)9 while f λ

is unbounded for ̂  > 1.

Next we shall define a mapping ~ from B(E) into the space of all

measurable functions on § by

where ^ ̂  0 and [ ] denotes Gauss' symbol.

For any function g on $, we define a function flf|£ on E by

(2.3) fl1*(aO=0(l>,O]), X<EE.
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We define also h\E for any function on S by

(2.4) h\E(x) = h(x,0,0), X<ΞE.

oo

Remark 1. Let ( U En) U {/} be the space obtained by the one-point
oo

compactification of U En. Ikeda-Nagasawa-Watanabe [4]-[7], used a map-

ping - ^ \ from 2?(£) into the space of all Borel measurable functions on

( U En)
n=0

(2.5)

u-Oί} defined

( 1

Π j

\τJ

by

f(Xi),

if

if

if

X

X

X

= 3,

= [«,

= Δ.

,9 #2> , xn] e= £ Λ ,

Then the linear hull of the set {/; / e C%E)+} is dense in Co( U £n) (cf.
n=l

Lemma 1. 4 in [7]). Accordingly, the linear hull of the set {/ Λ; f^C*(E)+,

O<Λ<1} is dense in Co{&) because the linear hull of {λ;λ{p)=λp, 0 < ^ < l ,

p e iV} is also dense in C0(A^).

Comparing the two mappings - ^ \ defined by (2. 1) and (2. 5), we have

So we need not distinguish between / 1 and / if there arises no danger of

confusion.

Now we shall consider a Markov process X = {Xt,ζ, &t> Px\x ^ <%f}

on <§??• Let ^ o be the smallest <;-algebra which contains all elements of

J&t for any t ^ 0. A non-negative random variable τ is said to be a

Markov time if

for any t ^ 0. For each Markov time r, we set

. f ^ ^ ^ e Λ and Λ Π {w; τ{w) ^ / } E J ; for any t ^ 0>.

Then it is easy to see that &τ is a <τ-algebra. A measurable Markov pro-

cess X is called a strong Markov process if for any Markov time τ and for

any t ^ 0, x e ^ , / e ^C^7) and A ^ ^ τ

Ex[f(Xt+τ) ;ΛΠ{τ<ζ}] = Ex[EXτ[f(Xt)] ;ΛΠ{τ<ζ}]9
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where Ex denotes the integral by Px.

In this paper, with the exception of §§7-8, we shall assume that each

sample- function of a Markov process is right continuous in t and has its

left limit at any t > 0. We also use the same letter ζ for the terminal

times of different Markov processes X and Y and the same letter &t for

the corresponding <r-algebras which make Xt or Yt measurable if there arises

no danger of confusion.

Let Y={Yt = [Xt9Nt], ξ, &, Pίχp]; [x,p] e 8} be a strong Markov pro-

cess on 8, where [Xt{w)9 Nt{w)] = [x,p] means Xt{w) = x and Nt{w) = p*

We shall define the functionals of Y by

n, if [XtW, Nt(w)] G S " , n ^ 0

oo, if [Xt{w), Nt(w)] = Δ,

τ(w) = infO > 0 ; ξt{w) Ψ £oM or sup \Ns{w)\ =oo}Ό ,

(2.6)

σ(w)=m{{t<τ(w); \Nt(w)\ ψ \Nύ(w)\},

τϋ{w) = 0, raw) = τ(u ), τn+1(w) = rn(w) + θrnτ{w), (n ̂  1) ,

= 0, ^(w) = <y(w;) a n d tftt+itw) = <;„(«;) + θana(w), {n ^ 1 ) ,

where 0 denotes the shift operator (cf. E.B. Dynkin [1]).

Further let Z = {Ze = [Xt,Nt,Jt], ζ, &, P[x,pJr I ^ Λ i l e ,§> be a strong

Markov process on §, where [Xt(w)9 Nt{w), Jt{w)] = [x, p,j] means Xt{w) = x>

Nt{w) = p and Jt(w) = 7 . Then we define the functionals of Z by

V(w) = inϊ{t > 0 ; Jt(w) ψ JQ{w) or sup |

σ(w)=mΐ{t<v(w); \Nt(w)\ ψ \NQ(w)\},
(2.7)

M = 0, ^(w) = 37(w), Vn+iM = yn(w) + θVnV(uή9 (n

<τo(w) = 0, ίTi(^) = ίτ(w) a n d σn+1{w) = <rΛ(t(;) + θΰna{w), {n ^

Evidently τn, yn and erw are Markov times.

7) In this paper, we regard that inf φ = 00 where 0 denotes the empty set.
8 ) Two functional σ's defined for Y and Z are denoted by the same letter because the

definitions are identical except for the conditions t<τ and t<η, and this notation is con-
venient for the later use. Also, Y and Z are different Markov processes on the different state
space S and S, and accordingly there arises no danger of confusion when we use the same
letter σ.
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Now we shall give here the definitions of a branching Markov process

with age on S and a signed branching Markov process with age on §.

DEFINITION 2.1. A strong Markov process Y = {Yt = [Xt9Nt], ζ, J&t,

P ^ [x, p] G J§y is said to be a branching Markov process with age, if the semi-

group {Tt t ^ 0} on B{£) induced by Y satisfies

(2. 8) TJ>λ = {Ttf^\B-λ, f e C*(E),

where t^O and

DEFINITION 2. 2. A strong Markov process Z = {Zt = [̂ t> ATt, / { ] , ?, ^ ,

Pr . [JC, p, i] e >§} is said to be a signed branching Markov process with age, if

the semi-group {Ut; t^O} on B(8) induced by Z satisfies

(2. 9) Utf^λ = (Utf^Xtts-λ, f e C*(E),

where t ^ 0 and 0 < λ < 1.

In both processes Y and Z, |JVt| is considered as the total age of the

particles and hence an is called the nth jumping time of agê ΛΓf. τn and

3?Λ are called the nth. branching times of Y and Z respectively.

Remark 2. As was mentioned already, the linear hull of {/ Λ;

/ e C*{E), §<Lλ< 1} is dense in Co{§). Hence the process on J§ is uniquely

determined by the values of TJ λ considered in (2. 8). But, unfortunately,

the same unique insistence does not hold for the case of Ut (cf. Remark 2

in §4).

Remark 3. When Yt — [Xt, Nt] is a branching Markov process with

j [d> p]> P e ΛΓ, and Δ are traps because

, p) = (T,/^) U ^0, P) = ̂  , ί? e AT,

and

for any / e C W and

9) cf. [6], Theorem 2.1.
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Remark 4. For any bounded continuous function / on E9 af e C*(E)

if \a\< 1 / II / II. So, if (2. 8) holds then we have for / e C{E) - C*(£)

(2. 10)

On the other hand, both sides of the above equation can be expressed in

the power series of a. So, if we put

, p]) - Σ Eϊχ , [ίφλ(Yt) ; 7 t e S n ] = Σ an([x, p])«w

n—Q LΛ.PJ n_Q

and

, p]) = Σ bn([x9 P])*n ,

then (2. 10) shows that

(2. 11) «„([*, />]) = bn([x, p])9 n = 0,1,2, -

Since the finiteness of TJ-λ1^ and (7V ;O|W implies that

and

w=0

we have from (2. 11)

if both sides of the above equation are finite. By the same way, we may

consider that if Ut satisfies (2. 9) and both sides of the following equation

are finite then we have

10) For any semi-group T t on B{^f) induced by a Markov process Xt on ^f9 we
denote Ex[f(Xt)] by T tf(x) in this paper even if/ is unbounded but Ex[\f(Xt) |] is finite. (Ex

denotes the integral by the probability measure Px of Xt.)
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Similarly, we can see that

(2.12) Ttf^λ = (τrf>λ)\E-λ, f<ΞC(E), 0<

and

(2.13) UJ?λ = (UJ?λ)\E-λ, feC(E), 0<λ,

if each member of (2. 12) and (2. 13) is finite.

§ 3. Branching Markov process with age. In this section, we

restrict our attention to a branching Markov process with age F={F ί = [Xί,iVt],

ζ> J^t, P[x pγ> [χ> P] G &y satisfying the following condition (Condition 1),

because it is sufficient to consider such a process for the probabilistic inter-

pretation of equations of type (1. 1).

Let {qn(x)\ n = 0,2,3, •} be a given system of bounded continuous

and non-negative functions on E, let k(x) = Σ qn{x) also be a non-negative

bounded continuous function on E, and set

(3. 1) π([x, φ] [B, q]) = Σ $M δn([x, A IB, q]),
nψl k{X)

where δn is defined by

( 1 , if x = [x,x, , a ] e B Π £ Λ , |g | = p, n ^ l

[ 0, otherwise.

Now we shall state the following

Condition 1. (i)

(3.2) P ^ j f f i e Λ Nt = p + q, t < τ) = P[x0] (Xt e Λ iVf = ̂  ί<τ) ,

[α?,ί>] e S, q£Ξ N, At

(ii) There exists a conservative Feller process11) Xr ={X't,&'t9Px\

on E such that

ii) A right continuous strong Markov process on Jg^ is said to be a Feller process if
the corresponding semi-group T t maps C{(^

p) into itself.
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P[*,o] &*- e A, τ&dt, σn<t< σΛ+1)

= £,[* J° & Ak___Z_A ;(χ/)/v l(Z ί)J/]

and

- 2 [ * *(-X7 )<te

(3.4) Plχ01(Xσ_ (Ξ A, σ^dt) = Ex[e ° ' k{X't)IA(X't)dt],

[x9θ] e S, a: e £, A e ^ ( J E ) ,

where Ex denotes the integral by Px and IA denotes the indicator function

of A.

(iii) For any a > 0,

(3.5) = Eί9^[e-rπ([XT-, Nr-];[1

and

[x,0] e S , i (

where E- , denotes the integral by P. ,, π is given in (3. 1) and

1, if x (Ξ A, p = q,

0, otherwise.

For the process Xf considered in (ii), we give the following

DEFINITION 3. 1. The process X' is called the basic Markov process of Y.

In the following, we consider the process Y°t = [X°t,N°t] defined in the

following way:

Yt{w), if t<τ{w)

Δ , if t ^ τ{w).

The probability measure for Y°t is denoted by P[x ^ and the integral by
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P° . is denoted by E?χ . . The semi-group on B(S) induced by Y\ is

denoted by T°t. Accordingly, we have for any g e B(§) with g{Δ) — 0

T°tg([x, p]) = EltΛ [g(Y°t)] = E[χp} [g(Yt) ;t<τ],

DEFINITION 3. 2. When we restrict the starting points of Y°t on S, Y°t

is called the non-branching part of Y.

Now we shall return to the discussion of Condition 1. (i) of the

condition states that if we consider the process [X°t, N°t — p] for the non-

branching part Y°t=[Xo

t,N°t] started from [x,p]eS, then [X*t,N
o

t—p] is

stochastically equivalent to the one started from [ # , 0 ] e S . (ii) of the

condition states the relation between the first branching time τ and the nth

jumping time σn of Nt. This condition holds if we consider a process such

that {a) if we set, for Yt = [Xt9Nt] starting from [#,0] e S,

Xt, if t < σ{w) Λ

Δ, if t ^ σ{w) Λ τ{w) ,

then X°t is stochastically equivalent to the exp f—2\ kiX^ds) sub-process of

Xr as a process on E, [b) each path of Yt jumps from [^ ( w ) Λ τ ( w )., 0] to

either one of [ t̂f(M,)Λr(M;>)_> 1] or some point in § — S at the time σί\τ with

probability 1/2. On the other hand (iii) states the branching law at the

first branching time τ and the jumping law at the first jumping time σ of

Nt. (We shall show in § 8 that there exists a branching Markov process

with age on S which satisfies Condition 1.) Moreover, if we combine (iii)

with the stochastic equivalence of [X°t,N°t— p] where N% = p and the non-

branching part where N% = 0, then the strong Markov property of Y yields

that for any n > 1

or for any n ̂  1 and C e &an,

( 3 7 ) P[,iP](C,iVtf,=iVtf|l-1 + l, σn<τ)=Pίχpl(C,σn<τ), [ ϊ , p ] e S ,

«N> a > 0 > [x>

12) σ{w)/\τ(w) denotes the minimum of σ{w) and
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and

(3. 9) Pίx p] ([Xτ, NT] e [B, p + g]) = P [ ϊ 0 ] ([Xτ, Nr] e [B, q}),

[x,p]eS, B U

where p + q denotes [p + qu q2, , qn] for q = [QΊ, q2, , qn].

We have also from (ii) and the stochastic equivalence of [X°t,N1 — N°o]

stated above

PlχΛ (Xτ_ <ΞA, τedt, σn^t< σn+ι)

= Ea[e h ^ ^ Ϊ J~k(X's)IΛ(X't)dt]

and

PlXtΛ(X;.ι-GA, σn+ί<=dt)

( 3 n ) 2{'κw

Now we shall consider a family of measures K{[x,0]; , •) on

denned as follows: let Y°t be the non-branching part of Yt and set

(3. 12) K([x,0] dt, [A,p]) = P\xΰ](τ e rfί, FT°.e [Λp]),

[x,0]eS, Ae^(E), peN.

Evidently K([x,0]; , •) is a measure on J&HQ,<χ>) x S). Moreover, by (3. 7)

and (3. 10), K([x,0]; , •) can be expressed in the following form:

-2[[κx's)ds (['k(X's)ds)P

(3.13) K([x,0];dt, [A,p]) = Ex[e J o V J ί , J—k(X't)IA(X't)dt],

peN, Ae j^(E).

Further let T°t be the semi-group on B(S) induced by Y\ and F be a func-

tion defined by

(3.14) iΓ(χ;ί) = Σ -^ή-ξn, x<=E,ς<BRι,

where qn(x) and k{x) are functions considered in Condition 1 (or in (3. 1)).
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For a given system {T°t,K,F)9 consider the following equation:

(3.15) u(t,x) = Tif?λ([x,0]) + \t\ K([x,0];ds9 [dy,p])λpF(y; u(t - s,y)),

f<EC{E), 0^2, 0<t<T, x^E,

where T is a positive constant.

Then we have

LEMMA 3. 1. Let Tt be the semi-group on B{§) induced by a branching

Markov process with age Yt on § satisfying Condition 1 and let T°t be the semi-

group on B{S) induced by the non-branching part Y°t of Yt . Let also f be a

bounded continuous function on E. If u{t,x) = {Ttf'λ)\E{x) is finite for any X<EE

and O^t ^.T, then u(t,x) satisfies (3. 15).

REMARK 1. With the exception of §6, "{Ttf -λ)\E{x) is finite" means

in this paper that

(cf. Foot-note 10)). Let us set for any Borel measurable function g on

[x,p]), if \g{[x,p])\ <n9

gn{[x, p]) = , 1

0 , otherwise.

If it holds that

(3.16) £ f e p ]

then, by the strong Markov property of Yt, we have for any Markov time

a

EUp][\g(Yt)\;σ<t]

[\gn(Yt)\;σ<t]

Hence, if (3. 16) holds, then we have

EbeιΛ[\g(Yt)\;σ<t]<oo

13J T^giX,) or EγJLg(Yt-β)ϊ denote Eγ<χg(Yt.s)} at s = σ.
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and

(3. 17) E[χ^ [g(Ύt) ;*<t] = E[χ^ [E^ ^ [g(Yt.a)] ; , < * ] .

Proof of Lemma 3. 1. By the strong Markov property of Yt and (3. 17),

it holds that

u ( t , x) = E ί x > 0 ] [ f ^ λ { Y t ) ; t < τ ] + E ί x 0 ] ( f ^ λ ( Y t ) ; τ < t ]
(3. 18) ^ ^ ' ^^

t.τ)];τ ^ t].

If we apply the branching property (2. 12) to the second term of the right

hand side of (3. 18), then we can see

Combining (3. 1), (3. 5), (3. 12) with the above equation, we have

fja^o] S, ) (if)
(3 19)

= f'[ K([x,0];ds, [dy,p])λp Σ 4 ^ # - u(t-s,y)n

JoJs nφl k(X)

= Γ( K([x,O]; ds, [dy,j>]U'F(y;u(t-s,y)).

Now (3. 18) and (3. 19) prove the lemma. Q.E.D.

Next, we shall prove

LEMMA 3. 2. Let T\ be the semi-group on B(S) induced by the non-branching

part Y°t of a branching Markov process with age Yt satisfying Condition 1 and let

Ht be the semi-group on B{E) induced by the basic Markov process X[ of Yt. Then

we have

(3. 20) Tίf^2([x, 0]) = HJ(x), f e C(E), x e E.

Proof Using (3. 7) and (3. 11), we can see that

14) cf. (2. 5).
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{XI e A, N1 = j>) = P [ β > 0 ] (Xe e A <r, =S ί < <rP+1 Λ r)

for any A e Sff{E). Consequently, we have

TaSλ{[x,ϋ\) = Σ E . ϋΛλpf(Xt);N1 = Ϊ>]
p = 0 L ' J

~2[
tκx^ds(λ\t k{X's)ds

(3. 21) = Σ Ex[e ° s -±-** Ϊ—

e h f(X't)],

If we put λ = 2, then (3. 20) follows from (3. 21) immediately. Q.E.D.

Now let Ht be the semi-group on B{E) and F be the function given

in (3. 14). For a given system (Ht,k,F), consider the following equation:

(3. 22) u(t, x) = HJ(x) + Γ HM • )F( u(t - s, )))(x)ds ,
Jo

where Γ is a positive constant.

Then we have

THEOREM 3. 1. Let Tt be the semi-group on B{&) induced by a branching

Markov process with age Yt on § satisfying Condition 1 and let Ht be the semi-group

on B{E) induced by the basic Markov process X't of Yt. Further for, f&C{E), set

u(t,x) = (TJ^2)\E(x), X<ΞE.

If u{t, x) is finite for any x e E and O^t ^ T , then it satisfies (3. 22).

Proof. It follows from (3. 13) that

K([x,0];ds, [dy,p])2vF(y;u(t-s,y))

k(X'υ)dv)
o -, J—k{X'.)F(XUu(t-s,X',))]ds

pl
= f E,WX'.)F{X'.; u(t - s,X'.))]ds

Jo

= \>HM )F{' ,u{t-s,')))(x)ds.
JO
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Then the theorem follows from Lemma 3. 1, Lemma 3. 2 and the above

equation. Q.E.D.

Remark 2. For any / e C*(E), there exists ε > 0 depending on || / 1 |

such that (Ttf'2)\E(x) is finite for *e[0,β) (cf. Nagasawa [13], Proposition

5. 16 and also, for special cases, see Lemma 6. 1).

§4. Signed branching Markov process with age. We have con-

sidered the case where qn(x)^z0 and qx(x) = 0 in the last section. In this

section, we shall remove such restrictions.

Let -C(#ί(αO, Qn(x))l w = 0,1,2, •} be a system of pairs of non-negative

bounded continuous functions on E such that

Qn(x)qZ(x) = 0, n = 0,1,2, .

Further let k(x) defined by

be a non-negative bounded continuous function on E. Then we shall

define the system {π( , )} by

], [B,q,0])

= π([x,p,2], [B,q,3]) = π([x,j>,3], [B,q,2])

(4. 1) π([x, j), 0], [B, q, 3]) = π([a;, p, 3], [B, q, 0])

= π([x,p,l], [B,q,2]) = π([x,p,2], [B,q,l])

π{[x,p,j], [B,q,j']) = 0 for the other pairs of {j,j'),

[x,p] e S, j,j' e J, [B,q]

where δn is defined by

1, if x = [x,x, , !»]e B Π En, \q\ = p, M ^
.J»I» [B,q])= ,

0, otherwise.
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oo .

For a given system {{ql{x),(£λx))\ n = 0,l,2, . . •> and k(x) ^Ίl{q+

n{x)+qZ{x)),

let us consider a signed branching Markov process with age Z = {Zt = \Xt9

NtJtl ζ, M, P[S,P,JV 1*»AΛ
 e #> o n S satisfying the following condition.

Condition 2. (i) For any fixed j e /, the process {Yψ ** [Xt,Nt]9 ζ, &,

p [χ9 iή e §} is a strong Markov process on § and it satisfies (i) and

(ii) of Condition 1 for given k(x), but where σ and τ for F7 } are replaced

by ^ and v for Z. Also Yψ, j e /, are stochastically equivalent to each

other.

(ii) I t holds that for any a >0

( 4 β 2 ) %P,i]^α" 5 IXvNvJ,] e [β^.iΊ]

= £[βiΛΛ[β-V([^-,Λ?,.,/?j, [£,?,;'])],

atid

^r. Λ Λ I*- ' ' ; t ^ » ^ . /.I e [A, q, j}]

i, i ' e /, [a?, pi e Sf [J5,«l

where £ [ x p β denotes the integral by P^p>jv π is given in (4. 1) and a[a.p](')

denotes the ^-measure assigned to [a?,ί>].

The existence of a signed branching Markov process with age satisfying

condition 2 will be shown in §8.

(i) of the condition states that two processes satisfying Condition 1

and 2 have the same character until their first branching, while (ii) gives

the new branching law attached to the new space S.

Similarly as in the case of a branching Markov process with age, we

shall give the following

DEFINITION 4. 1; The process Xr considered in (i) of Condition 2 (or

(ii) of Condition 1) is called the basic Markov process of Z.

Let us set

Zlw), i£Ί<V(w)
Z°t{w) =

Δ , if t



ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE 175

Then the probability measure for Z? is denoted by P[xp^
 a*id the integral

by P° -. is denoted by E* .,. The semi-group induced by Z? is denoted

by U J. - Then we have

(4. 4) -U'M ^fi

[x,p,j] €= Si A s

DEFINITION 4. 2. When we restrict the starting point of Z\ on S x / ,

ZJ is called the non-branching part of Z.

Now we shall define ZΓ and F as follows:

(4. 5) K([x,pJ]; ds, [A,q,j]) = PixvJ](v<=ds9Zv_e [A,q,j])9

[x, p]^S, j G /,

and

(4. 6) F(α; ί) = jto—
X\q{X

Then K([x9p,j]; , ) is a measure1 on ^([0^oo) x (5 x/)) and it follows

from (i) of Condition 2 and (3. 13) that

(4.7) K([x,0,j];ds,

where E^ denotes the integral by / the probability measure Px of thê  .basic

Markov process X'. Also, we can see that (3. 7)-(3. 11) hold if we ibdplace

T by η. Then we have

LEMMA 4. 1. Let U°t be the semi-group on B{S x /) induced by the non-

branching part Z°t of a signed branching Markov process toith age Zt satisfying

Condition 2 and let Ht be the semi-group on B(E)~ induced by ' the basic Markov

process X't of Zt. Then we have

(4. 8) ί/?/

Now, forca given system {U°t9K,F)f consider the following equation:

(4. 9) u(t, x) = tf?/^{[a,0,Q]) rKf( K([x,q,Q];dsddV,PχO]WFiiffr(t^s,y))f

/ e C{E), 0<λ, O^t<T, x<=Et
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where T is a positive constant.

Then we have

LEMMA 4. 2. Let Ut be the semi-group on B(S) induced by a signed

branching Markov process with age Zt on S satisfying Condition 2 and let U°t be

the semi-group on B(S X /) induced by the non-branching part Z\ of Zt. Let also

f be a bounded continuous function on E. If u(t,x) = (Utf'λ)\E{x) is finite1^ for

any x <Ξ E and 0<t<T, then u(t,x) satisfies (4. 9).

Proof Let us assume that u(t,x) is finite for x e E and 0^t<T. By

the strong Markov property of Zt, it holds that

(4. 10) {Ujϊλ)\s[x) = EίxM (f^λ{Zt) ;t<v] + EM0] [Ut^

On the other hand, we have from the signed branching property (2. 13) of

Zt

) (M),

and hence, by (4. 2), (4. 5) and (4. 6), we have

sK([x,0,0}; ds, [dy,v

= Γ( K([x, 0,0] ds, [dy, p, 0])λpF(y ;u(t-s,y)).

Thus the lemma is obtained from (4. 10) and the above equation. Q.E.D.

Now let Ht be the semi-group on B(E) and F be the function given

in (4. 6). For a given system (Ht9k,F), we consider the following equation

(4. 11) u{t, x) = HJ(x) + Γ HM )F( -;u(t-s, ))) (x)ds,
Jo

t
Λ

0

feC(E),

15> "(Utf'λ)\E(x) is finite" means that S[,,ί.,f|/ i|(.Z,)] < oo .
16> cf. Remark 1 in § 3.
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where T is a positive constant. Then we have

THEOREM 4. 1. Let Ut be the semi-group on B(S) induced by a signed

branching Markov process with age Zt on S satisfying Condition 2 and let Ht be

the semi-group on B(E) induced by the basic Markov process X't of Zt. Further,

for f<=C(E), set

u(t,x)={Ut7^2)\B{x), x<=E.

If u{t, x) is finite for any x e E and 0 ^ / < T, then it satisfies (4. 11).

Proof By the same method as in the proof of Theorem 3 1, we have

from (4. 7)

J ^ K([x, 0,0] ds, [dy, p, 0])2pF(y u(t - s, y))

F(.;u(t-s, ))){x)ds.

Then the theorem follows from Lemma 4. 1 and Lemma 4. 2. Q.E.D.

Now let E = Rd U {oo} be the space obtained by the one-point com-

pactification of Rd and consider the standard Brownian motion Xr on

Rd. Considering the point oo is the trap of X'9 the process Xr can be

regarded as the process on E. Then we can consider a signed branching

Markov process with age Zt on S corresponding to the basic Markov pro-

cess Xr. But when we take a starting point of Zt in Rd a branching law

at oo is not needed because almost all sample paths do not reach oo.

Hence it is sufficient in the present case that qt{x)9 qZ{x) and k{x) are

bounded and continuous in Rd, and we may consider qϊ(oo) = q~(oo) = k{oo) = Q9

Remark 1. For the case stated above, Theorem 4. 1 holds for f^C(Rd)

with /(oo) = 0 . The proof is given as follows: let pn{x), n^l, be bounded

continuous functions such that

' P»(»)

0<P

> Pn(x)

= i

= 0

1,

9

if

if

if

1*

1*1

11*11
| > n + 1

+ 1,

or x = oo .

Then ρnf^C{E). On the other hand, if Utf λ is finite17) we have by

Lebesgue's convergence theorem

cf. Foot-note 10).
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UJ^λ{[x, p, j]) = lim UtPj^λ[[x, p, j]), [x, p, j] e §.
n->oo

Hence it follows from (2. 13)

provided each side is finite, because it holds for ρnf. Then we can see,

as in the proof of Lemma 4. 2, that Lemma 4. 2 holds for / e C(Rd) with

/(oo) = o. Evidently Lemma 4. 1 holds for our / and accordingly we can

see that Theorem 4. 1 holds for our / .

COROLLARY 4. 1. Let Zt be a signed branching Markov process with age

satisfying Condition 2 whose basic Markov process is a standard Brownian motion

on Rd and let Ut be the semi-group on B{S) induced by Zt. Let us assume that

k(x)F{x;ξ) satisfies Lipschitz's condition:

ξ,) - k(x2)F(x2; f2)| ^ K{\\ *ι - x* II + lίi - ?2I>,

where K is a positive constant and \\ xx — x2 II denotes the Euclidian distance between

#! and x2. If, for / e C(E)9 u{t,x) = (Utf' 2)\E[x) is bounded for any x e Rd

and 0<t<T, then u{t,x) is the bounded solution of parabolic equation

Mdtx) = T M t > x ) + k{x)F{x;u{t>x))' χζΞRd> 0 < t < τ >

with the initial condition u{0+, x) = f(x).

Now we shall give a simple remark on a signed branching Markov

process with age.

Remark 2. Let Zt be a signed branching Markov process with age

on S> satisfying Condition 2 and let Ut be the semi-group induced by Zt.

If, for instance, we replace π in (4. 2) by πx defined by

,lL [B,q,0])

fP,2], [fi,ff,3])=φ,j),3], [B9q,2])

= πι(,[x,p,2], [B,q,0])
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= πx([x9p9 1], [B, q, 3]) = πx{[x9 p, 3], [B, q91])

^ « » ( [ » , PL [ftg]) ( = *([*, p,o], [£,<*, 3]), .

./], [#> 0S iΊ) = 0 for the other pairs of (/,/),

[x, p] e S, , / e / , [5, q] e £

then we have a new process Z't and the corresponding semi-group Ό't .

Evidently ZJ is not stochastically equivalent to Zt, but it holds that

Utf λ=U'tf'λ for any f e C(E) provided each side exist. Therefore

Utf λ = U'tf λ does not imply the stochastic equivalence of the processes

Zt and Z't.

§ 5. A sufficient condition. Let Z = {Zt = [Xt, Nt, Jt], ζ, & ,

Pίχ [x9p,j] e §} be a strong Markov process on § which is not assumed

a priori to be a signed branching Markov process with age. In this section,

we shall give a sufficient condition which makes the process Zt on § a

signed branching Markov process with age on S.

Now let us define U°t and Ψ by

(5. 1) U°th([x, p , j]) = E ί χ p J ] [h(Zt) ;t<η],

(5. 2) Ψ([x, p, ] ds, [B, p', j']) = P[xtpJ10? e rfί, Zf e [5, p', / ] ) ,

where h is a Borel measurable function on §, η(w) = inf{ί.>0; Jt(w) Ψ JQ[w)

or sup \Ns{w)\ = oo} and E, ., denotes the integral by P.. „. ?Γ([JC, p, / ] ;

•, ) is a measure on ^ ( [ 0 , oo) x §). Then we consider the following

Condition 3. (i) Condition 2 holds,

(ϋ)

(5. 3) Uif^λ&x, p, j]) = (Ui7a) I K λ([x; p, j]), f e C*(E), [x,

(iii) / For /efi*([0,oo) x E), set
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where f(t, •) denotes the function on E for fixed t*£0. Then it holds

that for any J ̂  0, m ^ n — 1

(5 4) U ίs-x{*> Ψ{lX' Pf j]; d$

Vi, j] ds, [dy, p>9 n)P^λ([y, p', j']).Σ

^Π U«f^λ([xl9 plf 0]), m ^ n - 1,

where * = [«„ a?2, , xn] and p = [j?i,P2» , Ί>Δ

(ίv) J and [d, φ, j], φ e N and y e /, are traps.

(v) Let

η* = lim yn, eA = inf {t > 0 ; Zc = J } ,

where vn is given in (2. 7). Then it holds that

piχ,p,nto- = ^J» ^ < Ώ = p

ίx,pJ](7-< Ώ, [^ A i l e S .

(ii) requires the independence of the motions of w-particles starting

from [x19 pl9 j], [x29 φz, j]9 , [xn9 pn9 j] and ending at the minimum of their

first branching times inf{/ > 0 ; Jt(w) ψ JQ{w) or sup \Ns{w) | = oo}, while (5. 4)

means that only one of them branches at the first branching time η and

the others do not. ((ii) and (iii) of Condition 3 correspond to the property

B III in [7]. ) The existence of a strong Markov process satisfying Condi-

tion 3 will be proved in §8

Now our purpose is to prove the following

THEOREM 5 .1 . If a strong Markov process Z- {Zt = [Xt,Nt9Jt]9 ζ,

Pr ' [x9p,j]^§y on § satisfies Condition 3, then Z is a signed branching

Markov process with age.

First we shall prepare some lemmas. Let Ut be the semi-group on

B(8) induced by Zt and set

(5. 5) UVh{[x9 A j]) = EίχpJ} [h(Zt) ;Vr^t< * r + i L r ^ 0, [x, p9 j] e §,

for a Borel measurable function h on S provided that E[χpjΊ(h(Zt)) exists.

In the following lemmas, it is always assumed that Condition 3 holds,

f(=C*{E) and 0 ^ ^ < l .
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LEMMA 5. 1. For any r^O, we have

(5. 6) UrpΛdx, P, j]) = (-l)fτ]; " [ / « H ( [ ί , 0,0]), [x, A y] e £ .

Proof. (5. 6) holds for r — 0 and hence it suffices to prove (5. 6) for r + 1

under the assumption that (5. 6) holds for r.

Now it follows from (5. 4) and (ii) of Condition 2 that for any [x,p]<El§

and {B,q]

Ψ([x,p,O];dt, [B,q, 1]) = Ψ([x,p, 1] dt, [B,q,0])

= Ψ([x, p,2];dt, [B, q,3]) = Ψ([x, A3] Λ, [B,q,2]),

*"(]*,Λ0] dt, [B,q,3]) = Γ([*,P,3]; dt, [B,q,0])
(5.7)

= Ψ([x,p,l];dt, [B,q,2]) = Ψ([x,p,2];dt, [B,q, 1]),

Ψ([x,p,j]; dt, [B,q,j']) = 0, for other pairs of (;,;'),

Ψ([x,P, j] dt, [B,q,/]) = Ψ([x,0,y] dt, [B,q- p, j']), j,i'e/,

where q — p denotes p' with |j>'| = |g| — \p\. Then we can see from
(5. 7) and the strong Markov property of Zt that

= \[\-Ψ([x, P, j] 5 ds, [dy, q, j'])Urisfί([y, q, j'])

,O,O]; ds, ?^

where | p + βΊ = |/»| + |gΊ By the assumption of induction, we have from
the above equation

>O,O]; ds, [dy,q,j'WV.

as was to be proved. Q.E.D.

LEMMA 5. 2. For any r ^ 0 and [x,p] = [[x1)xi, , xn], [plfp2, ,pj],
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(5β 8 ) rι+rt£.+r = r U S Ss ̂ ^ P ΐ ' Λ 5 ^ ' W i f ' *' ^ U^sT^{[U, Q, Π)

= (-i)M^ +^ Σ+y =r+i• π^vΛία^poO]).

Pro^/. According to (i) of Condition 2 and Lemma 5. 1, it holds that

Hence, by (5. 7) and Lemma 5. 1, it suffices to prove (5. 8) for the case

p = 0 and j = 0 .

Now let us put gcrs{s) =U°sU
c

t

rz\7^λ{[xi9090]). Then gw{s) is indepen-

dent of s by the semi-group property of U°t. Further we can see from the

strong Markov property of Zt that for r ^ 1

, p, j]) = J ^ S J . Ψ{[x, p, j] Λ , [dy, g, j'\)U<&lZf?X(ly9 q, j']),

and hence we have

Then the left hand side of (5. 8), where p = 0 and j = 0, is equal to

Σ Γ ί l rf.(-flfcr'+1)W)Πflrcr )(5) i

Writing ri + 1 as r { and noting </*g(0)(s) = 0 and gίr<> (t) = 0 for r* ^ 1, the

above expression is equal to

Σ
+ + +

Σ π^(θ)= Σ Σ
+rr+li l r+r++r r+l i l

as was to be proved. Q.Έ.D.

LEMMA 5. 3. For any r ^ O , [x,p] =

7 e /, we have
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(5. 9) U<pf λ(U

and

Σ Π_ Mx,/>,;]; </s, [dy,v,j']y
m = n — 1 JOJ1-* χJ

Γ ¥ 1 m

(5.10) ..fY_-nL—J \i

.Sis'

Σ

πϋWVJ
IΦi

where y = [y19y2, , ym] and q = [ ,̂̂ 2, , # J .

Proof. For r = 0, (5. 9) follows from Lemma 5. 1, and (5. 10) follows

from Lemma 5. 1 and (iii) of Condition 3. Hence we shall prove the

validity of (5. 9) and (5. 10) for r + 1 under the assumption that (5. 9) and

(5. 10) hold up to r . Further, by Lemma 5. 1, we may assume p = 0 and

j = 0.

By Lemma 5. 2 and the assumption of induction, we have

c,0,O]; ds,

So (5. 9) holds for r + l.

Now we note that for any (m^w)-matrix A = (άij)™^

m mm m m—ί

Σ Π aπ(ίhi= Π (Ίy'akti) - , Σ - , Π ( S ά^f<

m nx—2 w

(ii,ii, ,*,»-I)» = l >=1 J .. (t)i = l
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holds, where Σ * denotes the summation over all permutations (π(l), π(2), ,

π{m)) of (1,2, , m) and Σ ( f c l # # fc , r ^ m — 1, denotes the summation

over all {k19k2, , kr) such that l<ki<m and all kt are different.18)

Let hi^B* ([0, oo) x £ ) , i = 1,2, , m. Considering #/ } λ([yt, Pi, 0])

in the place of aίΛ in (5 11), we have for [x] = [x19 x2, , xn]

l ) ^ Σ Π AS&
7Γ ί = l

= Σ (-1)" 2 Π y[ x, 0,0]) rfs, [dy, p, j))

• (-i)C-f] π

According to Lemma 5. 1, and (5. 4), the right hand side of the above

equation is equal to

Σ (—1) Σ \\ Ψ([x9O9O]: ds9 [du,ρ,j])

=Ϊ=ΪΛ

Now noting that for y =

Π ί / ° ( Σ AΪ)

m—n+1 m—v /0m-»*mS

and applying again (5. 11) to the integrand { }, the above expression is

equal to

(5. 13)

9 Pμ, o]) Jiy ίh£^λ([χl9 o, o]),J
where {μt; 1 ̂  / < n, Iψ i} = {m-.n + 2, m — n + 3, , m} and π is a per-

mutation on (1,2, , m) If we use the following notations:

cf. Ryser [15], Th. 4. 1 (p. 26)
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2 : the sum over all choices (k19 k2, , km-n+i) from (1,2, , m),
<h,k*, ,km-n+i>

Σ ( w the sum over all permutations π on (kί9k29 , fcTO_n+1),

Σ(*° : the sum over all permutations π on (kί9k29 , ^Λ-i) which is

the remainder of (1,2, , m) excluding (fc1,fc2> * * >&m-n+i)>

then (5. 13) is equal to

τ J Π Ai3> % , J ) , , O ] ) Π ί / K ' i([*«,0,0])
1 7Γ(//) / ^ πiμ^

Now putting A(

A

f) = {U^IJ*λ)\E, we can see from (5. 9) for rt^

ri+rz+ +rm=r+l i=l

Γ S Σ1 Σ L m M+1 . . y([»*, 0,0] rfs, [rfy, p9 >])

.-C(-i)L-rJ Σ π C/'

• Π l/;i/fi>

,P, j]) /π ί/ ! ί /^Mϊ ( ,o ,o]) .

Summing up both sides of the above equation over all m 3; n — 1, we have

(5. 10) for r + 1. Q.E.D.

LEMMA 5. 4.

UJ^λ([χ, p, j]) = Σ UvT^kx, P, Λ), [*, A /lei.

/'. By (iv) and (v) of Condition 3, we have
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UJ?X[x, P,;]) = ElχpJ](f?X{Zt);t<ηj + EUpJι[?^(Zt) t ̂ ? J

= Σl EUpj] (f^λ(Zt) ;vr^t< yr+1] + EίχpJ] [Ut.vJ^λ(J) tϊzvj

= XUrtt(ix,P,fi). Q E.D.
r = 0

We are now in a position to prove Theorem 5. 1.

Proof of Theorem 5. 1. It suffices to prove (2. 9). By Lemma 5. 4 and

9), we have

= (-i)[-f](-i)[-f]jii" f] s Σ π
0 0 0 l

rhere JC = [a?!, x2, , α?n] 'arid.> = [p19pi, , pn]. Q.E.D.

§6. Semi-linear equation. In this section, we shall consider an

pplication of Corollary 4. 1 to a probabilistic interpretation of the following

mi-linear equation:

*(Lx) J ) + k(x)F(x; u(

here k{x) is a non-negative bounded continuous function on Rd and F(ά ί)

itisfies the following conditions: there exists a positive constant K such that

ί. 2) \k(x)F(x; ξ)-k(x')F(x'; ξf)\<K{\\ x - xf || + I ί ~H>,

Semi-linear equations of this type are discussed in Kolmogoroff-Petrovsky-PiscounofT
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where || x — xr || denotes the Euclidian distance between x and x', and it

also holds that

(6. 3) F(x;0) = F(x;l) = 0 and 0<F(x;ζ) for 0 < f < l .

Throughout this section, we shall consider a strong Markov process Zt

satisfying Condition 3 (and hence, by Theorem 5. 1, a signed branching

Markov process with age) whose basic Markov process is a standard

Brownian motion on E = Rd U {°o} which is obtained by the one-point com-

pactification of Rd.2^

We first consider the special case satisfying Condition (Q):

(a) Let q${x) and qZ{x) be functions given a priori in Condition 3

(through the part (i)). Then q%{x) = q~0(x) = 0 and there exists an integer

M>0 such that q+(x) = qή(x) = 0 for n>M.

(b) Set

M
where k[x) = Σ (q»(x) + qή(x)) Then

i

ξ)> x<BRd, f e ( 0 , l ) ,

and also there exists a positive constant K such that

\k(x)F(x; ξ)-k(x')F(x'; ξ')\ ̂  K{1\ x-x' II +|f - ξ'\}, x,xf e Rd, f,re[0,1].

M

(c) • Σ c ? ; ( * y - « : ( * ) > = o , xeκa.
n=l

Condition 3 is called "Condition 3 with (ζ))" when q% and qZ satisfy

Condition (Q).

LEMMA 6. 1. Let Z = {Zt = [Xt9Nt,Jt], ζ, &,P[XfP>J]; [x,P,Ω e §} be a

signed branching Markov process with age on &' satisfying Condition 3 with (Q) and

let Ut be the semi-group on B{3) induced by Z21>. Then there exists a positive

number dQ such that Utf-2{[x,p,j]) exists for any 0<t<δQ9 any f e C*(Rd)

with /(oo) = 022) and [x, p,β e S.

20) Cf. §4. ,
2 1 ) I n L e m m a 6.1, (b) a n d (c) in Condition (Q) are not necessary.

22) "UtfU exists" means that %,,,/j l\f^\(Zt)l < °9 . Also the condition "/(oo) = 0"

does not have any influence in the sequel, because oo is a trap of X\ and almost all sample

functions of X't with XΌ{w) =(= °° do not reach oo ϊn any finite time interval.
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Proof. First of all, we shall prove the e&lstewe of δQ>0 such that

Ut\ϊ^2\[[x,0,0}) = ̂ [ x O O ][ίl^2l(Z ()] is finite for any t<δ0 and x e Rd, where

si.

By the same method as in the proof of Lemma 5. 4, we have

(6. 4) Ut\l^2\{ίx9p9n) = Σ2 Urί

where

^ > | Γ 2 | ( [ x , Λ / | ) = E [ χ > p > y ][|T^2|(Z f); ̂  ^ ί < ? r + 1 ] , r ̂ 0 .

Then, by (ii) of Condition 3, Lemma 5. 1 and Lemma 4. 1, we have

(6. 5) U°t\ΐ^2\(lx,pJΊ) = 2^U°t |Γ2 | ( [JC,0,0]) = 2"' Π Ex [l(Zί)3 = 2™ ,
ί = l *

* = [>!, a?2, , x J , B< e ^ , i e / ,

where Ex denotes the integral by the probability measure of a standard

Brownian motion X't. Accordingly, it follows from the strong Markov pro-

perty of Zt that

(6. 6)

On the other hand, if we apply (5. 4) to f(t, •) = 1, then we have

(6.7) = Σ Σ , , Σ ΣV<Lχ<,θ,01;ds, [Em,Pi,n)

• Π P[^00](ΛΓβ=: pl9 s<v).

Since Zt satisfies Condition 2, (4. 7) holds and hence we have

M+n-l 3

Σ Σ Ψ([χ{,o,oy, ds, [Em,Pi,β)
m=l i=0

(6 8) = Pr Λ ftl (Xv. G ^ , 5? e ί/5, Λ^v. =



ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE 189

and by (3 11)

Now let us consider an wί/-dimensional standard Brownian motion

{X^\X^\ , XT) and denote by £ ( a. l f X j l t... f ί O the integral with respect to

the probability measure PCXίX2 ... x > corresponding to (Xc/},X^\ , Xc

5

n)).23)

Also we set

n

Then it is obtained from (6. 7), (6. 8) and (6. 9) that

k(X'v)dv)
M

IAI!

_ Π
ΣVi=\p\ ί = l

IPI

r,", .-.,x<nds\.

Applying the above result to the right hand side of (6. 6), we have

2 3) AT'/' are mutually independent and equivalent standard rf-dimensional Brownian
motions and xt<aRd, i = l , 2 , , n.
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Now we shall assume that for any x = [xί9 x2, , x J and r ^

(6. 11) tfyηί^|([x,0,0])^n(n + M). (n + (r - ^ ^

Since we have by the same method as in the proof of Lemma 5. 1

(6. 12) Ur\ί^2\(\*,P>Ω) = 2l»lί7c

ί

r)ίί^2|([ιr,0,0]),

it follows from (6. 11) and the strong Markov property of Zt that for

x = [x19 x 2 9 , xn~\

,0,0])

/ I

because, by the assumption that qt(x) = q»(x) = 0 for n>M, ¥(\x,0,0] ds,

[Em,p,j]) = 0 for m>-n + M. Applying (6. 10), the right hand side of the

above inequality equals

S t v / II h II (f __ Λ\r

II k l l r + 1 p«

^ n(n + Λ f ) . . . (n + rM) J L O j (ί - s)rds
r\ Jo

= n(n + M) (n + ('{^j^Γ

Thus (6. 11) holds for any r ^ l because it stands for r = 1

Now, by (6. 4) and (6. 5), we have

,0,0])

This shows that Ut\l^2\([x909O]) is finite for any 0^t <llM\\k\\ = δ0 and
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Next we prove the finiteness of Ut | 1 21 ([x, p, f\) for any t <δ0 and

lx,PiJ]^ 8 As in the proof of (5. 9), we may obtain

UV|T^21([x,0,0]) = Σ Π U^ \ΓUI([xί90,0]),
rχ+r2 + * +rn = r i = l

r^O, x=[xί9x29 , χ

n], t<δ0.

Applying (6. 11) to this equation, we have

urίϊ^KlxiOiOD^ Σ π(M||*H0 rs ^<
r\+rι+ +rτι=r i=l

Hence it follows from (6. 4) and (6. 12) that

Ut |T^21 ([*, p, β) = 2\"Wt |ί^21 ILx, 0,0])

= 21*1 Σ ^ ' N I f c 0,0])
0

as was to be proved. Q.E.D.

Next we shall consider the following integral equation which turns out

to (6. 1):

112/—a;

(6. 13)

ds \ J ^ ) 2 e 2S k(y)F(y u(t - 5,

where JcF is bounded and satisfies (6. 2) for all x, x' e 7?d and £, f e i?1 and

also (6. 3). Further set

JL
e k{y)F{y;un(t- s,y))dy,
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Then the following result is well known.24)

LEMMA 6. 2. For a given / e C*(Rd)+, the following holds:

(i) Let u[t,x;f) be the unique solution of {6. 13) with initial value f. Then

we have

(6.14) 0<u{t,x;f)<l, t>:0,x<ERd.

(ii) For any positive constant T,un{t,x) defined above converges to u{t,x;f)

uniformly in (t9 x) e [0,T] X Rd.

Let Zt be a signed branching Markov process with age on § satisfying

Condition 3 with (Q) and let Ut be the semi-group induced by Zt. If we

consider the integral equation (6. 13), where kF is given by

M

k(x)F(x; ξ) = Σ {qϊ(x) - Qn(x)}ξn

9 x^Rd

9 ξ e R\

then it follows from the uniqueness of the bounded solution of (6. 13),

Lemma 6. 1 and Theorem 4. 1 that

where u{t9x\ f) denotes the solution of (6. 13) with initial value / . On the

other hand, by Lemma 6. 2, the solution u(t,x;f) of the integral equation

(6. 13) where kF is replaced by

M

Σ {qi(x) - qn(x)} ξn, .x €= Rd, ξ e [0,1],f Σ
k(x)F1(x;ξ)= *-

[ 0 , otherwise,

satisfies c 0 ^ a(t,x; / ) ^ 1 ' for / e C*(Rd)+, because JcFx satisfies the condition

(6. 3) and (6. 2) for all x,x' e Rd and ξ,ξ' e R1. Since F(x; ξ) = F^x; ξ) for

f e [0,1], we have u{t, x /) = s(f, a? /) e C*([0, oo) x i?d)+. Hence, using

Lemma 6. 1 again, we can consider the following:

Ut(UJ^2) (|>,0,0]) = Ut((Us7^2)\E 2) ([*,0,0])

= «(f, a? w(5, •;/)) = u{t + s,x;f),

feC*(Rd)+, 0^t9s<δQ, xeRd.

But, in general, we can not express the left hand side of the above equation

cf. Kolmogoroff-Petrovsky-Piscounoff [8], theorems 1, 4 and 6.
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by {Ut+sf 2)\E{x) because it may happen that E[χ 0 0 ] [ | / 2|(Zt)] = oo . Even

so, still we have the following

THEOREM 6. 1. Let Z={Zt = [Xt,Nt,Jtl ζ, &, PίXtPtJ1; [*, A Λ e 8} be

a signed branching Markov process with age on § satisfying Condition 3 with {Q)

and let Ut be the semi-group on B{§) induced by Z. Then, for f e C*{Rd)+, we

can define Utf 2{[x90,0']) with the following properties:

(i) Utf^2([x,0,ϋϊ> = (UJ^2)\E(x) if UJU exists, f e C*(Rd)+ .

(ii) u(t9x) =ί/ί/ 2([ίc,0,0]) is the unique solution of {6. 13) with initial value

f e C*{Rd)+, where kF is given by

M

k(x)F(x ί) = Σ ίqϊ(x) - qΰ(x)} ξn, x e Rd, f e i ? 1 .

Proof According to Lemma 6. 1, there exists δύ>0 such that Utf 2([JC, p, /])

exists for / e C*(7?(')+, 0<t<δQ and [JC,p,β e 5f. Set

Since (ί/ t/ 2)U(x) = w(f,&; /) e C*([0,50) x Rd)+ as was mentioned already,

(£/t/^2)U(αj) belongs to C*([0,50) x Rd)+ and also φj^2)\E{p°) = 0. Using

Lemma 6. 1 again, set

(6.15) ^ t + f

because the right hand side of the above equation is equal to

u(t,x; {uj^2)\s) = u(t + s,x; f),

and hence the right hand side of (6 15) depends only on t + s for given

/ G C*(Rd)+ and x e E. Repeating this procedure, we can see that

Utf 2{[x,Q,0']) can be defined for all t^Q and it is the unique solution of

(6. 13) with initial value / e C*{Rd)+. The property (i) of the theorem is

evident by the definition of Ut and the semi-group property of Ut. Q.E.D.

In the sequel of this section, we shall use the notation Ut instead of

Ut because {UJ^2)\E{x) = ^7^2(^,0,0]) if UJ^2 exists.
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Let {ki(x), {qin(x), q7,n{x));n = 1, 2, , M,< oo}, % = 1,2, 3, , be

systems satisfying Condition (Q) and Zψ be signed branching Markov pro-

cesses with age on S satisfying Condition 3 with (Q) for given {ki(x)9{q\,n(x)9

qΊ.J&))\ n — 1,2, , MJ-. Let also ί/itί be the semi-group induced by

Zψ and set

(6. 16) Fi\x\ ζ) = 2J j ^ j ξ , i = 1,2,3,

According to Theorem 6. 1, if ktFi satisfies

(6. 17) \kt(x)Ft(x;ξ) - W * ' ) ^ * ' ; 601 ^

where iΓ is a positive constant independent of i, then u(t){t,x) = {Uittf' 2)\E{x)

is the solution of the integral equation (6. 13) with initial value / e ^*(i?d)+

where fcF is replaced by kiFi. Then we have

THEOREM 6. 2. Z ί̂ {^ (x), (qtn[x)9 ί,»W); w = 1, 2, , MJ ί̂  systems

satisfying Condition (Q) and let ki(x)Fi(x; ξ) given in (6. 16), i — 1,2,3, , satisfy

(6. 17). IfkiFt converges to kF considered in (6. 13) uniformly in (x,ξ) e ^ X [0,1],

then {u(i\t,x) = (t/ίfC/ 2)U(#); ί = 1,2,3, •} is a uniformly convergent sequence

in (t,x) G [0,T] x Rd for any given Γ > 0 . Moreover, u(t,x) = lim u{ί\t,x) is
t-»oo

^ unique solution of the integral equation (6. 13) aώA mfώ/ UΛ/M^ / e C*(i?d)+,

According to (i) of Lemma 6. 2, we may regard fc^^F^a; f) =

k{x)F{x; ξ) = 0 for fφ[0, l ] so far as we consider the solution of integral

equation of type (6. 13) with initial value /GC*(i?d) + , because Ft and F

satisfy (6. 3) and (6. 17), and hence we may apply Lemma 6. 2 in the present

case.

Let us set

d _ \\y~x\\2

' 2 t A y ) d y '

n ^ O , i = 1,2,3, .

For any given ε > 0, we take also iV0 so large as
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(6. 18) \kt(x)Ft(x ξ) - kjWFjix ;ξ)\<e, x e R\ ζ e R1,25>

holds for any i,j^NQ. Noting that uψ(t9x) is independent of /, we can

see by (6. 18)

; uψ(y,1 - s,y)) - kj(y)Fj(y; u«\t - s,y))\dy ̂  εt,

x G Rd, i,j^N0.

Assume

(6. 19) I ftf>(f,») - «^(/, a?) | ^ εt Σ Q - A y r " , » e /?d, /, ^ iV0,

and it follows from (6. 17), (6. 18) and (6. 19) that

; u«\t-s,y))\dy

; u«\t-s,y))\

u«\t - s,y)) - kj(y)Fj(y; uT{f - s,y))\}dy

n
+ εtΣ

P=I

n (Jζf)P

Therefore, by induction, (6. 19) holds for any n ̂  0. Then (ii) of Lemma

6. 2 shows that

I ua\t, x) - ua\t, x) I < εteκt , /, j^N0.

Since e > 0 is arbitrary, the above inequality proves the first half of the

theorem.

25) We regard ki{x)Ft(x ξ) = k(x)F(x I) = 0 for £ 3 [0, 1 ] .
2 6 ) Assume ϋ C ^ 1, if necessary.
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On the other hand, uω{t,x) is the solution of

u{ί) (t,x) = uψ (t, x) + j o ds J^ (-JL-) 2 e 2S kt(y)Ft(y uw(t - s,

Letting / tend to infinity in the above equation, we can see that u{t, x) =

lim u(ί)(t,x) is the unique solution of (6. 13) with initial value / e C*(Rd)+.

Q.E.D.

Transforming (6. 13) into the corresponding differential equation, we

have

COROLLARY 6. 1. Let ki{x)Fi(x9 u)9 u
(i\t9 x) and k{x)F(x9 u) be functions as

in Theorem 6. 3. Then u{t9 x) = lim uω[t9 u) is the bounded solution of the
i = oo

parabolic equation

Mt

dl
x) = \Mt,x) + k(x)F(x u(t,x)),

with initial value f e C*{Rd)+.

In the following corollary, we consider the case where k{x) is a positive

constant and F{x ξ) is a function of ξ alone.

COROLLARY 6. 2. Let F(ζ) be a function which is continuously differentiable

on [0,1] and F'(0)>0. Let also F{ξ) satisfies the condition:
(6. 20) F{0) = F{1) = 0 and 0 < F(ξ) for 0< ζ < 1.

Then the unique solution u(t9x;f) of the parabolic equation

(6. 21) 8 * y = -i- J«(ί, x) + F(u),

with initial value / e C*{Rd)+ is expressed as the limit of u{ί){t9x) of the type which

appeared in Theorem 6. 2.

Proof Since F'(ξ) is continuous on [0,1], there exists a sequence of

polynomials #{(£) converging to F'(f) uniformly on [0,1]. Set

= \ gi(s)ds + c£, t = 1,2,3,
Jo

where Cι is chosen so that G<(1) = 0. Then ĉ  tends to zero as i increases,

because F(l) - 0 and #<(?) converge to F'(£) uniformly on [0,1]. Hence

the polynomials Gt{ξ) converge to F{ξ) uniformly on [0,1] and Gί{ξ) is uni-
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formly bounded. Moreover, ζ4 = inf{£ > 0 ; Gt(ξ) = O} tends to 1 as i increases

because F'{0)>0 and F(ξ)>0 for 0 < £ < l . Expressing Gt{ξ) in the

following form:

Mi

Gt{ξ) = Σ (qtn - qln)ίn, i = 1,2,3, ,27>

where q\%n and q1,n are non-negative constants such that qtnq7,n = 0 and
Mt

Σ (qtn — qi.n) = 0, we set
l

= Σ (̂ ί.«
l

/ = 1,2,3,

Since ft4F4 = G ,̂ ktFi(ξ) converges to F(ξ) uniformly on [0,1], and there exists

a positive constant K such that

£K\ξ-ξ'\, ζ,ξ' e [0,1], i = 1,2,3, . . . .

Also it holds that

0<Ft(ξ), 0<ξ<ξi9

Now let Z(i) be signed branching Markov process with age on §

satisfying Condition 3 with (Q) for {(#*,„, tf7.w); n = 1,2, , MJ given above

where the condition 0 < F(x; ξ), 0 < ξ< 1, is replaced by 0 < F f ( ί ) for

0 < f < ^ , and let Uitt be the semi-group induced by Z(i\ Then, by

Theorem 6. 1, u{ί\t,x) = {Uittf'2)\E{x) is the solution of the integal equation

of (6. 13), where kF is replaced by ktFi, with initial value / e C*(Rd)+

whose norm || / 1 | is less than ?*. Moreover, it holds that

Since ktFi(ζ) converge to F(ζ) uniformly on [0,1], we can see, as in the

proof of the convergence of u(i)(t, x) in Theorem 6. 2, that u(ί){t, x) converges

to the solution of (6.21) with initial value / e C*{Rd)+, where | | / | | ^ i n f

{£,; i = 1,2,3, •>, because the integral equation of type (6. 13) is equίva-

2 7 ) Since G t (0) = 0, the constant term of G<(f) is zero.

28) fciFi(O) = ΛiF(e<) = 0 a n d ktF(ξ) > 0 for 0 < ξ < £<. So we m a y consider ^t instead

of 1 in T h e o r e m 6.1.
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lent to (6. 21) in the present case. On the other hand, ζt tends to one as

i increases, and hence the same assertion holds for any / e C*(RdY.

Q.E.D.

§ 7. Construction of signed branching Markov processes with

age (I). (Non-branching part.)

In this and in the next section, we shall construct the process discussed

in the previous sections. Although such a process can be constructed by

continuation of sample paths,29) we shall here construct them by an analytic

method originated by J.E. Moyal [10].

In this section, we shall deal with a process corresponding to a non-

branching part. For this purpose, we construct a process which is able

to describe the creation of mass, i.e. using the process, we can interpret

probabilistically the parabolic equation:

(7. 1) du{!lx) = 4"
ot 2

where k{x) is a bounded continuous continuous function on Rd.

First, we shall state some known results which are useful for the const-

ruction of our processes. Let S be a locally compact Hausdorff space

satisfying the second axiom of countability and let XQ(t,x, •) and Ψ(x;t, •) be

measures on &(S) for fixed x&S and t^O. Let also XQ{t, ,B) and

Ψ( t,B) be Borel measurable functions for fixed t and 5 G ( S ) . Let the

pair of Xo and Ψ also satisfy the following conditions:

(7. 2) XQ(t + s,x,B) = \ Zo(*,«, dy)Us9 V, B),

(7. 3) l im Ψ(x ;t,S) = l — l im xo(t, x, B),
t—>oo t-+oo

(7.4) Ψ(x;t + s,B) = Ψ(x;t,B) + \ Xt(t,x,dy)Ψ(y; s,B),

(7. 5) Ψ{x; t,S) is continuous in t,

x e S, ί ε ^ t S ) , t,s^O.

Then it is said that χ0 and Ψ satisfy the XQΨ-condition.30) When Zo and Ψ

29) cf. M. Nagasawa [13].
3°) MoyaΓs ^-condition is stated for non stationary Markov processes. The condition

stated here is the one for the stationary case and is strengthened in the part of (7.5). (cf. Moyal
[10].)
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satisfy the z0?F-condition, by (7. 4), Ψ(x; t,B) is nomotone non-decreasing in

t. Let Ψ{x;dt,B) be the measure induced by Ψ{x; t,B) for fixed x and

B. We define Ψr and Xr by

Ψ1(x;dt,B)=Ψ(x;dt,B),

(7. 6) Ψr+1(x; dt9B) = Π ?Fr(α;; ds,dz)Ψ(z; d(t-s),B),
v 0 J S

(7.7) Xr(t,x,B) = \'\ ΨΛx;ds,dz)Xa(t-s,z,B), t ^ l .

Then we have the following

LEMMA 7. 131> (J.E. Moyal) If the XOΨ-condition is satisfied, then it holds

that: (i)

(7. 8) Ψr+r, (x dt, B) = Π ¥r(x ds, dy)Ψr, (y d{t - s), B), r, rf ^ 1,
JoJs

(7.9) zr+r/(ί,*,JB)= ['( Ψr(x;ds,dy)xr,(t-s,y,B), r^l, r'^0,
JoJs

(7. 10) χ r(/ + s, *, B) = Σ3 [ z» ' (ί, *, rfy)zr_r, (5, y, B),

oo

r=0 r->oo

(ii) 7%^ function X defined by

(7. 12) χ(f, x, B) = Σ zr(ί, a, 5 ) , α e S, J5 e ^ ( S ) , ί ^ 0,
r=0

(7. 13) X(t + 5, a?, 5 ) = \ s X(t, x, dy)χ(s, y, B)

and

(7. 14) x(t, x, B) = χ0 (t, x, B) + J j 5 Ψ(x rfs, y)χ(/ - s, y, B)

3 1) cf. J.E. Moyal [9], theorems in §§2-8.
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(iiί) For given XQ and Ψ, X is the minimal non-negative solution of (7. 14), and

if

(7.15) UmΨr{x t,S) =0
r-»oo

holds, then X is the unique solution of (7. 14).

Now let us set

(7.16)

= \x(t,x,dy)f(y),
J S

According to (7. 2) and (7. 13), there exist two Markov processes (but we do

not assume the right continuity of sample paths here) X°t and Xt whose

semi-groups are given by T[o:> and Tt respectively. When we consider that

there exists a Markov time r of Xt and X°t is the process obtained by

the killing of Xt at the time τ, it is expected that Ψ(x;dt,B) denotes

Px(τ e ds, Xτ e B) under certain conditions, where Px denotes the probability

measure of Xt. About this, we quote from Sirao [17] the following

LEMMA 7. 2.32> Let Ψr9 Xr and X be the functions defined by (7. 6), (7. 7)

and (7. 1.2). Let them also satisfy the following conditions: (a) T[o:> given in (7. 16)

is strongly continuous on CQ(S). (b) T\n given in (7. 16) maps CQ{S) into itself and

also we have

lim||Tr/ll = 0, r ^ l , / e CQ(S).

Then it holds that (i) there exists a strong Markov process X={Xt,ζ, &t9Pχ\ %^S}

corresponding to the semi-group Tt given in (7. 16) whose sample paths are right

continuous and quasi left continuous^ (ii) there exists a [J@r) Markov time τ of

Xt such that there exists a strong Markov process X° = {.Xot,τ,&ot,Pχ; a e S } cor-

responding to the semi-group T^ and X° is the killed process of X at the time τ,

and (iii) setting

32) cf. [17], Theorem 1.
3 3 ) A right continuous strong Markov process Xt on ̂ f is said to be quasi left continu-

ous if, for any monotone non-decreasing sequence [τn n ̂  0} of Markov times,

Px(\im Xτn = Xr, τ<ζ) = Px(τ < c),
n-><»

holds, where τ = Km τΛ and C denotes the terminal time of Xt.
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Γo = τ, τi = τ, r r + 1 = τr + Θτrz, r ^ 1,34>

we have

(7. 17) Px{Xt e β , z r < t < τr+1) = χr(t, x, B)

(7. 18) Px(Xτr EΪ B, zr e rff) = ?Fr(ff </*, 5 ) ,

Now let us apply the above lemmas for our case. In the sequel of

this section, let E be a locally compact HausdorίF space35) satisfying the

second axiom of countability and X' = {X't, &'t9Px\ x e E} be a conservative

Feller process. Then the semi-group Ht induced by X't is strongly continu-
CO

ous on Co(£).36) As in §2, we shall consider the topological sum S= U Ex{p}

= E x N, where N = {0,1,2, •}. Then S U {β}9 δ being an isolated point,

is a locally compact HausdorίF space satisfying the second axiom of counta-

bility. A point of S and a Borel sub-set of S are denoted by [x,p\ and

[A, p] respectively, where A e &(E).

Let k{x) be a bounded continuous function on E and let k(x) = k+(x)—k~{x)

where k+(x) = max(fe(ίc),0) and fc"(α) = max(— k(x),0). Then

(7.19) Pί(w)

φ-t(w) = \k-(X's(w))ds ,
Jo

are non-negative additive functionals of Xr and hence we can consider the

exp{-Ψt) sub-process of Xr, which will be denoted by X°={X°t9σ, &°t9P°x; x<=E}.

Then it trivially holds that

(7. 20) P°(X°t G B) = P2(X? e S , ί < *) = £ , [ ^ ; Zί e ^ ] ,

3 1 ) τ r ' s are Markov times, cf. I to-McKean [7], p . 87.
3 5 ) I n this section, we do not assume that E is a compact space, because we consider the

equation of type (7.1) with initial value fEC(E) a n d the assumption of non-compactness

does not cause any difficulty in the discussions of this section.

36) When we consider Ht on C0(E), Ht m a y be regarded as the semi-group on C(E[j {oo})

where E[) {oo} denotes the one-point compactification of E. T h e n it is known that the con-

vergence of Htf(x) to fix) a t any xEE implies the strong convergence of Htf to / , i.e.

11 Htf - /11 -> 0 as / -* 0. (For instance, cf. Dynkin [2], T h e o r e m 5.)
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where Ex denotes the integral by Px.

Now let us set

(7. 21) χβ(/, [a, p], [5, d) = 0 , if [x, p ] =

11 , if [x, p] = δ and d e [B, q],

and

(7.22) Ψ([x,p\;dt,[B,q]) =

i f * e j E a n d ί =

i f * e ^ a n d ^ e ί B ' q l

s 0 , otherwise,37)

[a?, p\ e S, [5, d

where δpq denotes Kroncecker's delta. Then x0 is a measure on

with parameters ί and [x,p] e Su{5} and f is a measure on ^ ( [ 0 ,

with parameter [x,p] e 5U{^>. Moreover Z0U»[»»iP]> [ # , £ + #]) and ??"([», p] ;

dt,[B,p + q + 1]) are independent of p and vanish for q^O. Let also set

(7.23) yα>,ri; ί,[5,d)

Then we have

L E M M A 7. 3. Let XQ{[x,p], t, •) ίmd ^ ( [ # , # 1 ; *, •) ^ measures given in

(7. 21) tf/zrf (7. 23) respectively. Then they satisfy the MoyaΓs X0Ψ'-condition.

Proof. By the definition of XQ and Ψ, X<>(t9δ,{δ}) = 1 and Ψ(δ; t,S) = O

for any t^O. So it suffices to show that the conditions (7. 2) — (7. 5) hold

for [x, p] e 5 .

Since X°t is a Markov process and X0{[x9 p\ ί,[ ,#]) corresponds to the

transition function of X?, (7. 2) holds evidently.

Combining (7. 22) and (7. 23), we can see that

,ri; f,s u#» = £ , [ ! ! ^ r f ( 9 i + 97)]

3 7) —jf- y ~~rh~ a n d ΪJ denote the derivatives of φti ψ+

t and ψi in the sense of

Radon-Nikodym respectively.
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= Ex[l - e-*q

which proves (7. 3).

Now set B+ = B Γ\{x; k{x) ̂ 0> and B~ = B Γ\{x; k(x)< 0> for any

B G &{E). Then we have

Ψ(lx,pl;t + s, lB,p + U)

= Ex[ J'( β-'./β (X'v) dφ*\ + Ex[e* Ex't [ \[ e^h (X'v) rfp j]]

= Ψ(ίx,pi; t, lB,p + 1]) + \EXa(t, [x,pl [dy,pW(Ly,pV, s, [B,p + 1])

= Ψ([x,pV,t, [S,j» + l]) + JSu{J}Z,(ί,[*,j>], W2/,i])?f([2/,i];s, lB,p + l

[x,p}eS, t,s^O, B

where IB denotes the indicator function of B. Similarly we get

= Ψ([χ,Pl; t, m + \SuWxt(t,l«,Pl Ldy,qW([y,ql; s, ffl.

The above two equations prove (7.4), because X<,{t,[x,J>], [B,q]) - Ψ{ix,pY,

t,[B,q + 1]) = 0 for p ψ q, B e j&(E).

Since (7. 5) is evident by the definition of Ψ, we have proved the

lemma. Q.E.D.

Now let us set

ΨΛ*, Pi; dt, IB, ql) = Ψ(ίx, j»]; dt, [B, ql),

Ψr+1([x,pll dt, [B,ql)=

*Λx, Pi; t, [B, qj) = ( ΨAx, pi; ds, [B, ql),

(7. 24) (

Zr(ί,[*,?], \.B,ql) = Jj S u W»"rα*,J>]; ds, ldy,p'l)x,{t - s, [y,p'l, [B,ql),
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X(t, [as, p], [B, g]) = fl *r(t, ίx, p\ [B, q]),
r=0

ferfeSuO), tB,«]e#(SU{S}], f ^ O .

Then we may apply Lemma 7. 1 for our Xr, Ψr and X.

LEMMA 7. 4. Ze/ ίPV fo defined in (7. 24). 7%eκ we have

(7. 25) /tm Wr(ίx,p];t,Sϋ {δ}) = 0,

for any t ^ 0.

/. When l%,p~l = δ, (7.25) is evident. Let fepjeS and let

e &(E). First we shall prove

(7. 26) Ψr{[x,py, t, lB,p + r\) = EJ\Ύ . . Γ e«*rIB(X'Sr)d<p+dφ+ . . .rf?ί r 1

By the definition of ??"„ (7. 26) holds for r = 1. Assume that (7. 26) holds

for r. Then we can obtain from Lemma 7. 1 and the strong Markov

property of X' that

m ,,,,,, *Ί([*,Pi; ds, \dy,q])ΨΛy,ql; d{v - s), [B,p + r + 1])

Ψ^X>ri; rfs' [ ^ ' P + l])9"r([», 3» + U; t - s, [B,p + r + 1])

= £,Γ(T f β-* ,̂/i»(χίrtI)rfp;Irfp:1 rf<

which shows the validity of (7. 26) for r + 1. So we can see inductively

the validity of (7. 26) for any r ̂  0.

Similarly we get

LJoJ*i J*r-i

Combining (7. 26) with the above equation, we have
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Since fc(cc) is bounded on £, it follows from the definitions of φ89 φ+

s, φj

and the above equation that

(7.27) wr(ix,py,t,s\j {δ})< AJIAJliίL, r^i,

which proves the lemma. Q.E.D.

Here we note that

X(t,[x,φ],S U {δ}) = 1, [x,p] e S U O>,

which follows from (7. 11), (7. 12) and (7. 25).

Let us now consider the function space

C0(S u {«•) = {/; f(δ) = 0, / | s e C0(S)>,

where f\s denotes the restricted function of / on S. Let also Vt be the

operator defined by

(7. 28) VJ&x, pi) = \SΌ{δ}rtt, lx, Pi Idy, q!)f&y, q\),

/ <= C0(S U 0 » , [x,p] 6 S U { f t ί ^ 0 .

Then we have

THEOREM 7. 1. Let Ht be the semi-group on CQ(E) induced by the Feller

process X't. Then Vt mentioned above is a strongly continuous and non-negative

contraction semi-group on CQ(S U {δ}).

Proof. Let us set

(7. 29) V°tf([x, PΊ) = JS u { d }Zβ(ί, [*, V\ Idy, Qi)AίV, Q\), f e C0(S U {δ}), t^O.

Then it holds by the definition (7. 21) that

(7. 30)

where /([α,3)]) is considered as a function on £ for fixed p. Since £Te is;

strongly continuous on Co(-E) and k{x) is bounded continuous on E, the

right hand side of (7. 30) belongs to C0(E) as a function of x e £. Hence
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the semi-group 7? is strongly continuous on C0(SU{#>)> because V°tf(δ)=f{δ)

for t^O.

On the other hand, we can see from Lemma 7. 1 and Lemma 7. 3 that

117,-7? || = sup Γί Ψ{[x,A; ds, [dy,q])x(t - s, [y,ql S U {*})
[ jp]eS J o J S u i^

= sup Σ Wιιr,Jr([x,p']; ds, [dy,q-])XQ(t - s, [y,q], S U {δ})

< sup
[ ] S

Applying (7. 27) to the right hand side of the above inequality, we have

{7. 31) I1V,-V?| |^ Σ ~ " =gll*ll<-l,, ί ^ O .

Next we shall prove that Vt maps CQ{S U >̂ }) into itself. Set

Λt,[x,p-], [dy,qϊ)f([y,q]), f e C0(S U

As was proved already, Fc

ί

0) = 7? maps C0(S U {δ}) into itself. Accordingly,

we may use the mathematical induction. Assume that 7(

ί

r) maps C0(S U {δ})

into itself. Setting &+(O,p]) = fc+(ίc) for x ̂  E and &+(<5) = 0, we can see from

<7. 9) that

^ ] ; ds> {dy> q ] ) X Λ t "" 5 ' ίy>ql

/ e C0(S U O», [*, P ] e S.

Since | | 7 c

£

r 2 s / | | ^ | | / | | and Γ Ϊ W . Λ e CD(S U {ί}), the above equation

shows that (77+ 1 )/)U e C0(S). Also ΪΓ(3; , ) = 0, and hence the above

equation shows that 7 (

ί

r + 1 )/e C0(S U{δ}). Thus we can see that Wf^ C0(S UO»

for any / e C0(S U O » and r ̂  1.

Now the function
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vj([χ, PD = Σ vr/dx, pli, / e co(s u o » , t ̂  o,

belongs to C0{S U {£}), because VVf e C0(S U {<5» and, by (7. 27),

(7.32) | | 7 c o / | | ^ i J l M 0 1 | | / | ,

holds for any r ^ 1. Hence the strong continuity of V\ on C0(S U

(7. 31) and (7. 13) prove that Vt is a strongly continuous semi-group on

co(s u o».
The non-negative property of Vt follows from the definitions of X and

Xr and the contractive property of Vt follows from (7. 11). Q.E.D.

New let us consider Markov processes on S U {δ}. Since V°t and V\n

satisfy the conditions (a) and (b) in Lemma 7. 2, there exist two strong

Markov processes F = {Yt = [Xt, JVJ, ξ", ^ , P[sCtP]; [x,p] e S U O » and

yo = ςγo = [JS:?,^?],? 0 ,^?, Pft i r t; [α,3)] e S U O » corresponding to the semi-

groups Vt and V°t respectively and a Markov time τ of F e such that

f Yt(w), if t < τ
(7. 33) Y°t(w) =

Also, we may assume that the sample paths of Yt are right continuous and

quasi left continuous and, by Lemma 7. 1 and Lemma 7. 4, Yt is a con-

servative Markov process. Let us set

(7. 34) σr(w) = inf {t > 0; Nt{w) = iV0(«;) + r>, r ^ 0 .

Then we have

THEOREM 7. 2. Z^ί xr and Ψr be measures given in (7. 2). Let also

Y = { F t = [Xt, iVf], ^ ί , P [ β f P ] ; [a?, p] e 5 U {<5» ^ ^ J/ΓOΛ^ AfβrA w

mentioned above and let σr be the Markov time given in (7. 34). Then we have

(7. 35) P [ ί i P ] (7 t e J5, σr < t < σr+ί) = χr{t, [x, p], B)

(7. 36) p

[xJ
Y*r ^B> σr^ dt) = ?Γr([aj, rt; rff, 5 ) ,

[x, ί ) ] £ 5 U O>, 5 e ^ ( S U W), r ^ 0.

. If [x,p] = 5, then (7. 35) and (7. 36) hold evidently. So we shall
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prove them for lx, p] e 5. Since it follows from the definitions of Xr and

Ψ that

Xr(t, [x, vl IE, pj) = 0, [x, ?]eS, r ̂  1,

we have

P t , / .ε£, t<σi) = Pί,JYteB,Nt = p, t <

= yr teϋ, t<τ),

and hence

(7.37) Pίχfl{σ1^τ) = l, [i,?]eS.

On the other hand, X<,{t,[x,p], •) vanishes on S U {δ} — E x {p} for any

fixed t 2> 0. Hence we have

PM(iVe = p, t < r) = Pt;p](iV; = j), ί < τ) = P[βfrt(ί < r ) ,

which means

Combining (7. 37) with the above equation, we can see that

P[xJτ = σι)=l,

and accordingly

P{XtV{?r = σ r ) = 1, [a, j)]eS, r ^ 0 ,

where r0 = 0, τx — τ and r r + 1 = τ r + ^rrr .

The theorem follows from Lemma 7. 2 immediately. Q.E.D.

Let us now consider the function defined by

p/(»), feries,

for any / e £T(£) and ^ ̂  0. Then it follows from (7. 12) and (7. 32) that
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(7.38) » U life H O "
^ Λ II / II 2 J r f

r=0 '

THEOREM 7. 3. Let V°t, Vt and Ψ be semi-groups and measure given in

(7.29), (7.28) and (7.22) respectively. Let also Y = {Yt = [Xt9Nt\ &t, P^p];

[%fP]e S U {#}}• be a conservative strong Markov process corresponding to Vt *

Then the function u(t, x) = Vtf λ{[x, 0]) is a solution of the following integral

equation

(7. 39) u(t,x) = Vo

tf^λ +

a? e E, t^O, λ^O, /

with initial value u(0 + , x) = f(x).

Proof By (7. 38), VV^ffa, 0]) is bounded on [0,T] x{SU {δ}} for any

given T > 0. Then we have

9 0]) = E[χM \J^λ[Yt) ί < σ\ + £[Xf 0 ] [7t>. / W J σ ̂  ί]

Ψ([x,θy, ds, [dy, ^

Since VJ λ{[x,plί)==λpVtf*λ{[x,ϋ]), we can see that u{t, x) = Vtf λ{[x,O})

satisfies (7. 39). Moreover, V°t is a strongly continuous semi-group on

CQ{S U {δ}) and hence we have

(7. 40) lim Vt^λ{[x9 0]) = lim Vΐf^λ&x, 0]) = /^tf>0,0]) = f(χ0).

Thus we have proved the theorem. Q.E.D.

COROLLARY 7. 1. Let Xf be a standard Brownian motion on Rd. If k(x)

is a bounded continuous function on Rd, then u(t, x) = F t / 2([a?,0]) is a solution

of the following differential equation
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(7.41)

with initial value f e C(Rd).

Proof. By the definition of Ψ, we have

Ψ([x,ϋ]; dt, [B,1J) = Ex

xeRd,

where Ex denotes the integral by the probability measure of a standard

Brownian motion X't. Then it follows from Theorem 7. 3 that

u(t, x) = V°t f^2(ίx,0]) + 2 ΓL Ψ&x,0]; rf(ί - s), [dy, ί\)u(s,y)
(7. 42) U ) E X ί }

~ uo{t, x) + v{t, x),

where

uo{t,x) = Ex\e J o ' S

; ι f{X't)\

a n d

On the other hand, by Kac's theorem,38) we have

d u ^ x ) - = ±- JuQ(t, x) - I k{x) I uQ(t, x),

and

My*L = mx)u{t>x) + llAEΛe-2S°~S^d°k+(XU)u

- \k(x)\v{t,x).

Combining (7. 42) with the above two equations, we have

= -~-Ju + k(x)u(t,x) .

38) cf. Ito-McKean [7], pp. 54-55.
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Since u(0 +, x) = f(x), the above equation proves the corollary.

Q.E.D.

§ 8. Construction of a signed branching Markov processes with.

age (II).

According to Theorem 5. 1, a strong Markov process on S satisfying

Condition 3 is a signed branching Markov process with age. We shall

construct such a process in this section.

Let E be a compact Hausdorίf space satisfying the second axiom of

countability, and consider S(n\ Sn, § and § defined in §2. We shall
oo

define the mapping T from U Sw into S by

r((3l,Pi), (»2,P2), *, (Xn9Pn)) = Π>1, #2, ' ' ' , »»L [Pi, Pzf ' ', PrJ\ ^ S \

Let -[(gί(α ), g»(aO); n = 0 , l , 2 , •••} be a system of pairs of non-negative

continuous functions on E such that

(8. 1) k(x) = Σ ίqtix) + «(«)>, XΪΞ E,

w=0

is bounded continuous on E9 and

(8. 2) qi(x)qZ(x) = 0 , a G £, w = 0,1,2, .

Further let Λ"{ be a conservative Feller process on E, Ht be the strongly

continuous semi-group on C{E) induced by X't, and let Y= {Yt = [Xt9Nt]9

Jlftf P[x p ]; IX9P] e S>, where S = E x N, be the strong Markov process con-

structed in §7 from the system {k{x),X't}. (Since k(x) is non-negative, the

extra point δ is not needed.) Then, by (i) of Lemma 7. 2, we may assume

that almost all sample paths of Yt are right continuous and, for any given

Markov time τ > 0, they have their left limit Yv- at the time τ.
Let us set

k(lx9p]) = k{x)9 [«,p]G S,

and

We shall denote the exp{-φt) sub-process of Yt by F° = {Y°t = [J??,ΛΓJ], ^

^ < , Pj-0,. p ]; [3,2>] G S}. Let also Y°ίlt, i = 1,2, , n9 be Markov processes
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such that their fundamental spaces are identical to the one for F?, each of

them is stochastically equivalent to F? and they are mutually independent

to each other. Then the probability measure of the joint process (FJ.^FξL,

• , Yn.t) starting from ((α^,^), {x2,p2), -, (&n>2>»)) G S(n) is given by the

product measure ^ 1 ) } ) 2 ] X ^ l l P 2 ] χ χ P{%n,vny Using this product mea-

sure, we shall define a measure X0{t,[x,p], •) on &{§) by

<8. 3)

if [ΛΓ, p] f= J, [5, p],

1 , if [JC, p] = [d, p] and [d, p] e [β, g],

1 , if [x, p] = Δ and J e [β, g],

0 , otherwise,

where x = [x19x2, , an], p = [Pi,p2> •» P J and 5

Let us next define a measure Ψ{[x,p,j])'9 , •) on J^flΌ, oo) x 5). Using

a given system {((?ί(α),^(aί)); n = 0,l,2, •}, we shall define π(I>,p,./], [5,g,/])

by (4. 1). Then a measure Ψ([x,p,j]; dt, [B,q,j']) on ^([0,00)xg) is defined

by

<8. 4) y([»,p,Λ; Λ, [5,g,/]) = E°ίχpl(π([Xl, N;_, j], [β,g

[a?, p, i ] e S x /, [B, q, n

Λvhere F? = \_Xo

t,N
o

t\ is the Markov process mentioned above, E* p] denotes

the integral by the probability measure P°χ p ] of FJ and / = {0,1,2,3}. Then

we shall extend the parameter space of Ψ to S as follows:

<8. 5) Ψ(J; dt,S) = ^ © , p , ; ] ; rfί, S) = 0, [9,p] e S°,

.and for [x, p] = [[a?!, a?2, , xn\ [pl9 p2, , p J ] <= STO

<8.6)

where Zo is given in (8. 3), x't = [*,, , x(-u xi+1, , * n ] , p^ = [p l (
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i-i, VM, , ί>J, and [Bv,q'] denotes the Borel set {[z,r]e 8; n r ' ^

Now we shall define Xo, *<-, * and Ψr by

?!([*, A Λ dt, iB, q, n) = niχ, p, Ω dt, [B, q, n)

y,«([ϊ,ΛΛ; <», [B, g, /]) = Q§ΨΛLX,PJD; ds, [dy,P

r, iW(ίv,p',«]

rf(ί-s), Γ5,g,/]),

^ra*,A Λ; ί, LB,q,jΊ) = \'wΛχ,p,Ω; ds, [B,q,n),
J 0

(8. 7) X0(t, [x, p, Ω, IB, q, Π) = δ u X0(t, [x, />], [5, g]),

Zo(ί-s, lv,P',il lB,q,;']),

3t(ί,[*,AΛ [5,3-,/])= Σ ϊf(<,[*,AΛ [B,</,;']),

[*, p, i] e S, [B, q, i'\ e ^(S) , r ^ 1, ί ^ 0.

Then we have

LEMMA 8. 1. z0 and Ψ mentioned above satisfy the MoyaVs X0Ψ'-condition,

i.e. it holds that for any [x, p,;'] e S, [B, g , / ] e J&{§) and t,ssZθ

(8. 8) X0(t + s, [x, p, j], [B, q, jr]) = jsX0(t, lχ, p, j], [dy, p', f])

'Xo(s,[y,p',il lB,q,j'J),

(8. 9) Ψ([x, A Λ oo, S) = 1 - lim χo(ί, [*, p, j], 8),
t—too

(8. 10) Ψ([x,p, J];t + s, [B,q,;']) = y([JC,p, ] t, [£,g,/])

o(ίf fe A Ω, Idy, P', iWdu, P', /] 5, [5, g, / ] ) ,

(8. 11) f fcp,;]; /, 5) is continuous in t.

f. Since (8. 8) is evident from the definition of Xo and also (8. 9)-

(8.11) are evident when \x,p,j] = Δ or \x, p,β = [d,p,fl, we shall prove

(8. 9)-(8. 11) for [x,p,β e S - (S° X /) U {J}.

Let FJ f ί , i = 1,2, , n, be Markov processes and let P° P]X-P^. Pz]><

• X PJ-^^J be the probability measure used in (8. 3). Then it follows

from (8. 6) that
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Ψ(ίχ,P,il;dt, S)

= Σ L*<Lxt,l>t,f];dt, [dy,q,n)Ut, [xi,p't,0], §)
i = l J^

= -d'Pl,vύ x x Pk.v^Y° > - » Π.«) e r>£),

[*,p] = [*i,s2, , xj, [j?i,fc . j JeS*, n

Hence we have

*([*, A Λ ; t,S)=- \[dap{xiPύ x x P ^ i B j ( ( n t , , Ylt) e

= 1 - Z0(ί, [x, p, /], S), [x, p, ] ε S , ί ̂  0,

which proves (8. 9).

We shall next show (8. 10). Considering the process (FJ. t, , YlΛ)

mentioned above, we have for [x, p] = [[*„ * 2 , , x j , [j>i, j>2, , j?J]

= Ψ([x,P,JV, t,[B, q, Π

Σ [.VfauPufi dυ, ldv,p',j'])x0(v, ίx'uP'iJΊ, LBυ,q',n)
i = l JS

, A Λ; *, [β, ?, / ]

where E°[x^ denotes the integral by P» i i f t ] X X P ^ ^ for [x, p] = [[*„ xz,

•--, * J , [pi,Pi, , ί>J] and [X<,?, JV{.?] denotes \Y\.t, • - , YU,t,Y«i+1,t,

• ' » Yn. t ] Then the right hand side of the above equation is equal to

A ; ] ; t, [B,q,n) + \[EIXP1[ Σ \aΨ([Xlt ,N°t.t ,jγ, dυ, \dy,P',n

lt,Xlt,-", Xi.,Ί, LNlt ,Nl,t, ,NltlJ];dυ, IB, <?,/
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+ J~ Ut, [x, P, f], ίdy, p', i])Ψ([y, p, i] 5, [J3, g, / ] ) .

So we have (8. 10) for any [x,p,;]GS.

Now k{x) is bounded continuous and hence W([x9p9jY9 ,S) is absolutely

continuous with respect to the Lebesgue measure on [0,00). Then (8. 6)

proves (8. 11) for any [x9p,f]e S. Q.E.D.

Now we shall consider the linear operators U\n and Ut on B(S) defined

by

Urh([x, P, β) = \§ Xr(t, [x, p, β, [dy, q, j'])h([y, q, / ] ) ,

(8. 12) [x,p,j]ζΞS.

UMx, A JΊ) = \§ X{t, [x, p, β), [dy, q, jr])h([y, q, jr]) ,

Further set

/^([>, P, Λ) = 7^([x9 p, 0]), / e B{E), [x, p, j]eS.

Then we have

LEMMA 8. 2. Let U^ be the operator defined above. Then U^ is strongly

continuous on Co{§).

Proof. By Theorem 7. 1, the semi-group Vt corresponding to the process

Yt —[Xt>Nt] on S is strongly continuous on C0(S), while k{[x,p]) = k[x) (^0)

is bounded and continuous on S. Hence Uc

t

0) is strongly continuous on

Co(S).

Now suppose h e C0(S) and set

h([x,p,n), if fe/)]eSΛ, rc^O,
h\Snχ, Λ[x,p,j~ϊ) = 1 .

x{<7} ί 0 , otherwise.

Then we have

(8. 13) U T H ί x , p , β ) = U ° t ( h \ S n χ J ) ( [ * , A β ) , ί x , P , β ^ S n x { ; } , n ^ 0 .

On the other hand, the linear hull of (f^λ; f e C*(£), 0 < ^ < l } is dense

in COGS) and ^ l S n χ { y } e C 0 ( S κ x { i } ) which follows from

= {U\Q<f^λ)\E'λ\Snχ{j} and ί/(

(

0)7 ] | £ GC 0 (S). So, for any e>0, w^O and

j<=J, we can find constants ai9 fι<Ξ C*(£) and 0 ^ ^ < l , i = 1,2, , in9

which may depend on ©, n and j , such that
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(8. 14) || h - J3 ajtf^λύ \\Snχ{j}

Then (8. 13) and the contraction property of Uc

t

ω imply that Uψh e Co{§).

Next we shall show the strong continuity of U^ on Co{§). As was

stated already, U^ is strongly continuous on C0{S). Hence we have

(8. 15) \\Urf^-f^\\SxJ^0 as

/ e C*(£), O ^ J K l .

Then, for any [x, p\ =[[a?ι,α?2, , α?n], [Pi,p2, •» PJ] and e /, it follows

from the definitions of C/c

£

0) and Xo that

< I Π Urf^([xί9pί9O])- Π

(8. 16) = I f ^

^ ( [ l t Vu 0)] Π t/V^ffa;,, pt> 0]) |
ί=l ί=r+l

^ C(/, A) II m 0 5 /^ - Λ HSx/, / e C (£), 0 ̂  ^ < 1,

where C(/,^) is a constant defined by

C(f,λ) = sup{nwf^λWHj; n = 1,2,3, •}.

Combining (8. 15) and (8. 16), we have

(8.17) lim || t/< o i /^ - f^λ \\~s = 0, / e C * ( £ ) , O

because ί/c

(

O)/^([3,2),i]) =/^([a,JJ,i]) and UT^{A) ='f^λ{Δ) = 0. Then it

follows from (8. 14) and (8. 17) that for any fixed n Sg 0 and ' ε /

(8. 18) lim || CΛβ)*ls.x{Λ - h\Snχ{j} | | s = 0, έ e C,(5).

3 9) For any function / on a topological space ^ ί 5 ? , we denote in the sequel

sup {\f(x)\;xEA(Z^r} by \\f\\A.
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On the other hand, h and UTh are elements of C0{S). Hence there exists

an n0 such that

|| UTh - h \\~s^n max s / | | UTh \Snχ{J) - hs,χ{j.}\\~s.

Therefore we can see from (8. 18) that U\o:> is strongly continuous on Co{8).

Q.E.D.

Now let Yitt = [Xi,t,Nift], i =1,2, , n, be Markov processes on S

such that their fundamental spaces are identical to the one of Yt, each of

them is stochastically equivalent to Yt = [Xt,Nt] and mutually independent

to each other. Then the probability measure of the joint process {Yltt9 Y2,t>

. , yΛ i ί) is given by the product measure PίxuVίl x PίXt,Ptl x x p

ίXn,Pny

The integral by the probability measure P, . x P, p , X x P. p . is

denoted by £ ( j c p ) when x = [xl9x29 •••,»„] and p=[3>19j>29 , P J τ h e n

the process y j t ί mentioned already can be considered as the exp{—φt) sub-

process of Yitt.

We shall next define the set Z)Λ by

Dn = -[x; x = [a, α, , x] e £ n } .

Then, by (8. 4), ?F(|>,3>,0]; ds, [ ,g, •]) vanishes outside of ( U Dn) x{l,3>.
n=0

n=0

Hence it follows from (8. 6) and (8. 7) that for [x,p\ = \[x19x29

= Σ
1

s/ DO w pO Y w pO

(8. 19) ( ( n , , , Π-i. , ̂ ?+.. , , Ylt) e r '([5,, g'J))

ii

e r ' i h

Ίr-1(LB,,q'J)(.Y1,t, ' ,
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|

•Ir-ι(LB,.Q'Ί){Yi.tf * , Yi-i.t, Yi+i.t, , Yn.t)}]dt ,

where [x'u p{] = [[xί9 , a ^ , a?<+1, , x j , [$19 , p ^ , p<+1, , pj]

and [5,, g'] = {[*, r] e £ ; rίrKΓiί, />']) x r 1 ([*, r]) e [5, g]>. Similarly, we

have

(8. 20)

Then we have

LEMMA 8. 3. Let Ucp be the operator on B{S) given in (8. 12). Then Uc

t

n

maps Co{3) into itself. Moreover it holds that

(8. 21) lim || U'ph \\ = 0, Ae Co(3), r ̂  1.

/; We shall first prove that C/̂ A e C0(S) for any A e C0(S). By

Lemma 8. 2, ί/ί0) is strongly continuous on Co(3). So it suffices to prove

that for h e C0(S) U\r+i:>h is continuous in {t,[x,p,f]) as a function on

[0, oo) x § and U\r+1)h e Co(^) for any fixed ί ^ 0 under the assumption that

U[nh satisfies the same properties.

Now, by (8. 7) and (8. 12), we have

Ψ([X,P,0]; ds, {dy,qJW\rlsh([y,qJ-\).

Applying (8. 19) and (8. 20) to the right hand side of the above equation,

we can see that for [x, p] = [[&lf x2, , xn], [pu pz, , p j ]

(8. 22)

n oo
• 2-i 2-i \Qm\Λits)U t-sfϊ{lΛltS9 , Λi_1§β, Λί>s, , ΛitS9 Λi+ίtS9 , AΛ f SJ,

i = l m=0 K ,

[iV1>M , JV*-,.., iV4.,, 0,0, , 0, JV4+lff> , ΛΓm.J, 1])
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qm{Xi,s)U\r2sh([[XltS, , Xi-ltS, XiiS9 , XitS9 Xi+i,99 , Xn,s],

[Nus, , N^ltS9 NitS, 0,0, , 0, Ni+Ui, , NntS],

m - l

To prove the right hand side of (8. 22) is continuous in {t,[x, p\) and

also belongs to CQ(S) for any fixed t >̂ 0, we consider the following function

2 Σ {Λ(
£ = 1 m=0

(8. 23) [pl9 , Pi-j, pi9 0, , 0, 2><+1, , p j , 1])

IPu , Pi-u Pi, 0, , 0, pi+l9 . , pnl 3])},

m - l

where [x, p] = [[#!, a?2, , # J , [p1? #2> * # > pJ] By the assumption of

induction, Wph is bounded and continuous on [0,T]x>§ for any given T > 0

and belongs to Co{§) for any fixed / ̂  0. On the other hand,
oo

Σ {.Qm{x) + qm{%)} converges to k{x) uniformly on the compact space E be-

cause {qm{%) + qm{%)} ^ 0 and k[x) is continuous. Hence the right hand side

of (8. 23) is the sum of uniformly convergent series of continuous functions,

and accordingly g{s;[x9jA) is continuous in (s,[jc,p]) Moreover we can

see that g(s {x9p]) belongs to CQ{£) for any fixed t^O.

Now we have from (8. 22) and (8. 23)

• ^ - 5; [[X1>s, X8it, , Xn,s], [Nus, N2tS, , N

Since the semi-group F c corresponding to Yitt — [Xi,t,Nitt\ is strongly

continuous on C0(S) and g{s;[x9ph) is bounded and continuous on [0,T]x§,

the integrand of the right hand side of the above equation is also continuous

on [0,T]x£. Hence U[r+I>h{[x,p,0]) is continuous in (/,[.*,!>]) and belongs
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to C0(S) for any fixed t ^ 0 because g(t,[x, p]) e Co(5) for fixed ί ^ O . Simi-

larly, we can see that U?+i:>h{[x, p9f]), j e / , are continuous in (/,[#,/>])

and belong to Co($) for any fixed t ^ 0. Hence U\r+i:>h is continuous in

(ί,[jc, p,y]) and belongs to Co(5) for any fixed t^O.

Next we shall prove (8. 21). Let r ^ l . Since Ucph is continuous on

a compact set [0,T] X § as a function of (t, [x, p, f\) and vanishes on

[0,T] X {/}, it holds that for any e > 0 , there exists an n0 such that

(8. 24) sup || UVh \\SnχJ< ε, 0 < ί ^ T.
n>n0

On the other hand, it follows from (8. 22) that

^\tECxJe''tVok(ίXu9'Ni';DdϋΣ Σί (qUXt..) + Qm(Xi..)) sup \\UΐS9»h\\ds

8 2 5 ) = o sup II Ur»h j ; CXfp) l Σ

= sup II U<Γ»h II (1 - ^" n " k l ϊ 0, [JC, A J] e S, ί ^ 0.

Since Uΐ'^h is bounded on [0, T] X /§, there exists a constant M such that

sup II Uΐ'^h || < M< oo .

Then (8. 24) and (8. 25) show us the following inequality.

\\UcPh\\<M(l- e~nollkilt) + ε , 0<t^T.

This proves (8. 21) because ε is arbitrary. Q.E.D.

We are now in a position to state the following

THEOREM 8. 1. Let {_(qi{x)9 qZ{%))l n = 0,1,2, •}• be] a given system of

pairs of non-negative continuous functions on E such that

k(x) = Σ (Qn{x) + QZix)), x e E,

is bounded continuous on E, and

qn{x)qή(x) = 0 , n = 0 , 1 , 2 , . . . .

Then there exists a signed branching Markov process with age Z = {Zt = [Xc,A^t,/J>

ζ9 &t, PίXlPtfl> [ ^ A Λ (Ξ 8} on § satisfying Condition 3 for a given {.(qϊ{x),qή(x));

n= 0,1,2, .}.
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Proof. According to Lemma 7. 2 and Lemma 8. 2-8. 3, there exists a

right continuous strong Markov process Z = {Zt = [Xt,Nt9 /*], ζ, J&t, P [ j C p i ] ;

[x, P, β & 3} on § corresponding to the semi-group Ut given in (8. 12) and

a ^ - M a r k o v time η such that

PίxpJΊ (Zt eB,yr<t< vr+1) = χr(t, [x, p, j], B),

(8. 26)

Pίx,pJ](ZVr ^B,ηrςΞ dt) = WΛ[x,P,n; dt, B),

[x,p,j]e§, Be&iS), r^O, jf^O,

where

Vo = 0 , 37X = V, y r + 1 = V r + θ V r η , r ^ 1 .

Let us set

rj{w) = inf{/ > 0 ; Jt(w) Ψ Joiw) or sup \Ns{w)\ = 00}.

Since we can see from (8. 4), (8. 6) and (8. 26) that
Pίχ,PJl(A = /o o r S U P I Λ' ίw) I = 00) = 0, [x, p, I E S ,

we have

On the other hand, xo(t, [x, p, fl, •) vanishes outside of § x O l Hence we

have

P\χ.p.i\U'*J*> t<y)=O,

which means

Pb*.*.nV = ^ f o r any s ̂  ί < 'J) = P [ j r ^ Λ ( / < ? ) ,

because Jt is right continuous. So we have

P

ix,p,n(v^V)=O9 lx,P,j]<Ξ S,

which means that we may regard vr is the rth branching time of Zt.

Now we shall check the conditions in Condition 3 for our process.

(a) (i) of Condition 1 follows from (8. 4), (8. 26) and the definition of

Y°t which was used to construct XQ.
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(b) Let X't be the conservative Feller process on E and let Yt=iXt9Nt~\

be the strong Markov process on S which are mentioned in the first part

of this section. Then it follows from the way of constructions of Xo and Ψ,

that

&Xt,Nt])]dt

where E, λ and Ex denote the integrals by the probability measures of Yt

and X\ respectively, and k{[x,p]) = k(x). So (3. 3) holds. Similarly, (3. 4)

holds. Moreover, by the definitions of X09 Ψ and Ψr9 we have

Ut, I*, P, Ωf IB, q, /]) = Ut, [x, P, ϊ\ [B, q, /]),

Ψ([x, P, Ω; dt, [B, q9 /]) = Ψ([x, p,n; dt,[B9 q9 /]),

and hence

ΨΛlx, P, Ω; dt, IB, q, /]) = Ψr{\x9 p, / ] ; dt, IB, q, /]),

[x, pi e S, j , y e /, [B9 q]

So we have

Z(MAAΛ [B9q9J]) =X(t9[x9p9f]9 [B,q9J])9

[x9 p] e &, j , y e /, IB, q]

Thus our process satisfies (i) of Condition 2.

(c) (4. 2) follows from (8. 26) and (8. 4). (4. 3) follows also from Theo-

rem 7. 2 and (7. 22).

Combining (a) - (c), we can see that our process satisfies (i) of Condition

3.

{d) (ii) of Condition 3 follows from (8. 3), (8. 7) and the definition of

(e) (iii) of Condition 3 follows from (8. 6).

(/) (iv) of Condition 3 follows from (8. 3), (8. 5) and (8. 7).

(g) By the definition of X and (8. 26), we have
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P[χptJ][Zt e 5) = Σ Q U r i g ( I A AΛ)

[x, p, fi(Ξ 3.

Therefore we may consider that

Pi*.P. fi (̂ - < Ω = 0 , [x, p, l e S .

If we consider a new process Zt defined by

f Zt(w), if / < v~(w) A ζ{w),
Zt(w) =

[ Δ , iΐ t^y^w) Aζ(w),

and Borel field &ft induced naturally from ^ , then Zt satisfies (v) of

Condition 3.

We shall denote Zt by Zt again. Then [a) - {g) implies that our process

Zt satisfies Condition 3. Moreover, by Theorem 5. 1, Zt is a signed

branching Markov process with age on 3. Q.E.D.

COROLLARY 8. 1. Let {{ql{x), qTι(x))I n = 0,1,2, } be a given system
CO

of pairs of non-negative continuous functions on E such that k{x) = 2 (#«(#) + Q7*{s))
n=0

is bounded continuous on E and qti(x)q7,(x) = 0 , n = 0,1,2, . Then there exists

a signed branching Markov process Z = {Zt, ζ, &t, P [ Λ .,; [x, q,j] e §} on S

satisfying Condition 2 for a given {{qt{x), qZ{x))) n = 0,1,2, •}•.

COROLLARY 8. 2. Let {qn(x); n =0,2,3, •} be a given system of non-

negative continuous functions on E such that k(x) = 2 Qn(%) ^ bounded continuous
nψl

on E. Then there exists a branching Markov process with age Y = {Yt =[Xt,Nt~],

ζ, J^t, Pvx -tl I*, p] ^ £} on £ satisfying Condition 1 for a given ζqn{x); n — 0,2,

3, •••}.

Proof Let us consider in Theorem 8. 1 the special case where qn{x)=0,

n = 0,1,2, , and q\{x) = 0. Let Z = {zt = [Xt, Ntf JΛ , f, &u P[XpJ];

[x, P, fi ^ 8} be the process obtained in Theorem 8. 1 for the present case.

Setting
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n , if lXt(w), Nt{w)Ί e S Λ , n ^ 0,

oo, if [Xt{w), Nt(w)] = Δ ,

and

τ(w) = inf {t > 0 ; ?e(tc/) f= fo(«;) or sup \Ns{w) \ = 00},

we have

p (r =̂ η) = 0, [JC, />] e /§ .

Also it follows from the definition of Ψ that

P [*,p,o]( / ί = 2 o r 3 ) = 0 ' C o p i e d , ί ^ O ,

and hence we have

So, if we disregard Jt in Z t = \Xt,Nt9Jά and define F [ x p ] by

Pίx>pl <LXt,Nt] e [5, d) = P^^o] ( [ ^ e [B, q, /]),

then the process Y = {Yt = [Xt,Nt~\, ζ, J%?t9 P[x p] [JC, p] e <§} satisfies Condi-

tion 1 and

, P]) = (7YΛΛ) I * ^ f e P]), [«, ri e ^ , / e C*(£)f 0 <£ i < 1,

where T t denotes the semi-group on B{&) induced by Y. Q.E.D.
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