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Introduction. Let S denote the integral closure of a complete discrete
rank one valuation ring R in a finite Galois extension of the quotient field
of R, G the Galois group of the quotient field extension, and f an element
of Z¥G,U(S)) where U(S) denotes the multiplicative group of units of S.
A crossed product 4(f,S,G) whose radical is generated as a left ideal by
the prime element II of S is an hereditary order according to the Corollary
to Thm. 2.2 of [2], and we call such a crossed product a II-principal
hereditary order. In previous papers the author has studied II-principal
hereditary orders 4(f,S,G) for tamely and wildly ramified extensions S of
R (see [10] and [11]). The purpose of this paper is to study II-principal
hereditary orders 4(f,S,G) with no restriction on the extension S of R.

In Section 1 we present necessary and sufficient conditions for a crossed
product 4(f,S,G) to be I-principal. Let G, denote the Galois group of
the quotient field of S over the quotient field of the maximal tamely ramified
extension of R in S. We associate to the cohomology class [f] a subgroup
R, of the center of G, called its radical group and prove that the following
statements are equivalent

(1) 4(f,S,G) is a H-principal hereditary order
(2) G, is an Abelian group and R, = (1)
3 R,=(1).

Thus we generalize a result obtained in [11] for wildly ramified extensions
S of R.

It is natural to ask if each hereditary crossed product is II-principal.
In Section 2 we present an example of an hereditary crossed product which
is not I-principal. However, if the residue class field extension S of R is
separable, then a crossed product 4(f,S,G) is hereditary if and only if it is
I-principal. In order to prove this main result we make use of facts
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concerning the cohomology of wildly ramified extensions presented in an
appendix.

Finally, in Section 3 we present a criterion for determining the number
of maximal two-sided ideals in a II-principal hereditary order by generaliz-
ing a result obtained by the author for crossed products over tamely rami-
fied extensions (see [10]).

The following notation shall be in use throughout the entire paper.
The multiplicative group of units of a ring R shall be denoted by U(R);
rad R shall denote the radical of R and ctrR its center. If R is a local
ring, then R shall denote its residue class field. Unless otherwise stated, R
shall always denote a complete discrete rank one valuation ring, S the
integral closure of R in a finite Galois extension of the quotient field of R,
and G the Galois group of the quotient field extension. The prime elements
of R and S shall be denote by n and II respectively, and p shall denote
the characteristic of R.

1. The radical group. The purpose of this section is to present
necessary and sufficient conditions for a crossed product 4(f,S,G) over an
integrally closed extension S of a complete discrete rank one valuation ring
R to be a II-principal hereditary order. According to Thm. 3-4-7 of [9]
we may consider the maximal tamely ramified extension 7 of R in S.
Let G, denote the Galois group of the quotient field extension of S > 7.
The criteria for determining whether or not a crossed product 4(f,S,G) is
I-principal shall be given in terms of a subgroup R, of the center of G,
called the radical group of [f] (see Thm. 1. 9).

Observe that the subgroup G, of G defined above is a p-group. In
the case when the residue class field extension S of R is separable, G, is
the first ramification group G, of S over R. It is easy to construct an
example to show that when the extension S of R is inseparable, G, need
not equal G;. The following relation between the inertia group G, of S
over R and G, shall be useful throughout the paper.

ProrosiTioN 1. 1.  The inertia group G, of S over R is the semi-direct
product Gy = ] X G, where ] is a cyclic group of order relatively prime to the
characteristic p of R.  Moreover, G, is a normal subgroup of G.

Proof. We first observe that G, is a normal subgroup of G,. Consider
the chain of rings RcUcTcS where U and T denote the maximal
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unramified and tamely ramified extensions (respectively) of R in S. Let
n, denote a prime element of 7 and recall that =z} ==z for some prime
element = of U and positive integer e relatively prime to the characteristic
p of R (see Prop. 3-4-3 of [9]). The conjugates of =z, relative to U are
therefore of the form ¢'z, for 1<i<e where ¢ denotes a primitive e'*
root of unity. Since the quotient field extension of S> R is Galois, ¢
must be in S. Let { denote the image of ¢ under the natural map of S
onto S. The extension U c U({) is separable since (e,p) =1, so that  is
in U because U is the separable closure of R in S. The polynomial
X°®—1 of U[X] is separable and has { as a root; by Hensel’s lemma we
may now conclude that ¢ is in U. Let ¢« denote an element of G, and
¢ an element of G,. Since T =Ulr,] (see Thm. 3-3-1 of [9]) it suffices to
show that ¢ 'zg(n;) =n, to prove that G, is a normal subgroup of G,.
Using the fact that o(r,) = 'z, for some i together with the fact that ¢ is
in U it is easy to check that o7'zo(n,) ==, .

We may now verify that G, is a semi-direct product. For the factor
group Gy/G, is a cyclic group of order e relatively prime to the order of
the normal subgroup G,. Thm.15.2.2 of [4] now implies that there
exists a cyclic group J of order e such that G, = JxG,.

Finally we shall make use of the fact that the inclusions G, c G, and
G,C G are normal to prove that G, is a normal subgroup of G. Consider
elements ¢ of G and ¢« of G,, and let » denote the order of z. Then
ore”! is in G, so we may write o707! = po for some element p of J and o
of G,. Using the definition of semi-direct product we may now obtain
the equalities 1= (pw)" = p"Il_Iw""‘i where 1<i=n, from which it follows
that p™ =1. The order of p is relatively prime to n. Therefore p =1
and g707! is In G, .

We proceed to define the radical group R, of [f]l. Let C denote the
center of G, and consider the crossed product 4(f,S,C) where f denotes
the image of f under the natural maps Z*G,U(S)) - Z¥G, U(S)) — Z¥C, U(S)).
The radical group of [f] was defined by the author in [11]. For the
convenience of the reader we present the definition here. Let C = E, X
<+ +XE, be a decomposition of C into a direct product of cyclic p-groups.
According to Cor. A. 3 of [11] we may assume that f is normalized on
CxC in the sense of Abelian p-groups, so that f= f,--.f, where each
element f; of Z%E,U(S)) is normalized in the sense of cyclic groups. For
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1=<i<t let a; denote the element of U(S) which corresponds to f; under
the canonical identification H2(E;, U(S)) = US)/[U(S)]* where e, denotes the
order of E;, and consider the polynomials #,(X)= X*—a; of S[X]. The
element [f] of H2(C,U(S)) determines a chain of fields L, S-S L; S L;s,
C...cL,, defined inductively in the following way. Let L,=S, and
when L; has been defined we then define L;,, to be a splitting field for
the polynomial #;,,(X) over L,. We next define R, for 1<i<¢ to be
the maximal subgroup of E; with the property that [f,] is in the kernel of
the natural map HXE,;,U(S)—>H*R, ;,U(L;~,)). The radical group Rj of
the element [£] of HXC,U(S)) is defined to be the direct product R, X « - «
X R;.. The significance of the radical group of [f] is indicated by the
fact that the crossed product 4(f,S,C) is semi-simple if and only if R7 = (1),
(see Prop. 1. 10 of [11]).

DerintTiON.  The radical group Ry of an element [f] of HG,U(S)) is
defined to be the radical group of [f] where f denotes the image of f
under the natural map Z%G,U(S)) —~ Z%C, U(S)) and C is the center of the
subgroup G, of G.

It follows at once from the definition that a crossed product 4(f,S,G)
is a II-principal hereditary order if and only if the crossed product
4(f,S,G) is a semi-simple ring. And accordiné to Prop.3.1 of [11],
4(f,S,G) is semi-simple if and only if the subring 4(£,S,G,) is semi-simple.
Observe that the inertia group G, acts trivially on S.

The notion of a splitting field of a crossed product shall be useful for
studying 4(f,S,G,). Given a finite group G, fields F and K such that K
is a G-ring over F, an extension L of K is called a splitting field of
A(f, K,G) if [f] is in the kernel of the natural map H*G,U(K))— H*G,U(L))
induced by the inclusion of K in L. If in addition L is a purely
inseparable extension of K, then L is called a purely inseparable splitting field
of 4(f,K,G).

The next two propositions establish the existence of splitting fields for
certain crossed products. In the proof of Prop. 1.2 we shall make use of
the notion of the central series of a p-group G, (see Section 2 of [11]). which
is defined to be the (normal) series G, =C, D+++DC;D+++DCy,DC_; = (1)
where C_, = (1) and C,,, is the preimage in G, of the center of G,/C; for
l<isn-—1L
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ProposiTioN 1. 2. Let G, denote a p-group with trivial action on a field
F of characteristic p.  Each crossed product A(f,F,G,) has a purely inseparable
splitting field.

Proof. The proof is by induction of the length [,(G,) of the central
series of G,. If [(G,) =1 then G, is an Abelian p-group, so that
4(f,F,G,) has a purely inseparable splitting field according to Lemma 2.1
of [11].

For the inductive step we assume that the assertion of the proposition
is true for p-groups H for which [(H)<wn, and consider a group G, with
1{(G))=n+1. Let G,=C,DCpnyD++-DC., =(1) be the central series
of G,. It is easy to check that [,(C,.;)<n, so that the crossed product
4(f,F,C,-;) has a purely inseparable splitting field L,-, according to the
induction hypothesis.  The sequence H*G,/Cp-1,U(Ln-y)) > H¥G,,U(Ly-1))
—HYCp-y, U(L,-;)) (where the maps are inflation and restriction) is exact
according to Prop. A.7 of [11]. For convenience of notation denote the
image of f under the natural map Z*G,U(F)) - Z%G,U(L,-,)) by f also.
From the definition of L,., it follows that [f] is in the kernel of the
restriction map H¥G,,U(L,-1)) = H¥Cpeyy U(Ly-y)). The exactness of the
above sequence implies that there exists an element [g] of H¥G,/Cy-y,U(L,-))
such that inf([g]) = [f]. Form the crossed product 4(g,L,-;,G,/Cy-y). The
factor group G,/C,-, is an Abelian p-group with trivial action on L,_,, so
that 4(g, L,-y, G,/C,-,) has a purely inseparable splitting field L according to
Prop. 2.1 of [11]. Observe that L is a purely inseparable extension of F.

It remains to show that L is a splitting field of 4(f, F,G,). Consider
the following diagram of cohomology groups and homomorphisms.

HXG,, U(F)) > HY Gy, U(Lp-y) > HYG,, U(L))

[inf Iinf

H¥Gp[Cpyy U(Lp-y) > HYG5/Cpt, U(L))

where the horizontal maps are induced by the inclusions Fc L, , c L.
Using the commutativity of this diagram together with the fact that the
image of [g] under the map H*G,/Cp-,, U(L,-,)) > H¥G,/C,-;, U(L)) is trivial,
one may obtain by diagram chasing the fact that [f] is in the kernel of
the map H*G,,U(F)) - H*G,U(L)), i.e. that L 1is a purely inseparable
splitting field for 4(f, F,G,).
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CoroLLARY 1.3. Let G, be a p-group with trivial action on a field F of
characteristic p. A crossed product 4 = A(f,F,G,) has the property that Alrad 4
is a field. (In fact Alrad 4 is a purely inseparable extension of F and is contained
in every splitting field of 4).

Proof. Let L denote a purely inseparable splitting field of 4 whose
existence is guaranteed by Prop. 1. 2. Since [f] is in the kernel of the
natural map H*G,,U(F)) - H¥G,,U(L)) the crossed product 4(f,L,G,) is
L-algebra isomorphic to the trivial crossed product 4(1,L,G,). Now
41,L,G,)rad 41,L,G,) 1is isomorphic to L (see p. 435 of [3]) so that
A4(f,L,G,)rad 4(f,L,G,) is isomorphic to L. The natural map 4/rad 4
= 4(f,L,G,)rad 4(f,L,G,) is well-defined because rad 4 is contained in
rad 4(f,L,G,) according to Lemma 1.4 of [11]; and it is an injection
because the intersection [rad 4(f,L,G,)] N 4 1is contained in rad 4 (see
Lemma 2. 4 of [11]). We may conclude now that d4jrad 4 is a field since
a semi-simple subring of a field is a field.

Combining Cor. 1. 3 with Prop. 2.9 of [11] we obtain at once the
following result.

CoroLLARY 1.4. Let G, denote a p-group with trivial action on a field F
of characteristic p, and f an element of Z*G,, U(F)). Then the following
statements are equtvalent:

(1) 4(f,F,G,) is a semi-simple ring
(2) A(f’ chp) is aﬁeld
(3) 4(f,F,C) is a field where C denote the center of G, .

Observe that the equivalence of statements (1) and (2) of Cor. 1. 4 does
not depend upon the fact that 4(f, F,G,) has a splitting field which is purely
wnseparable.  However we did make use of the existence of a purely
inseparable splitting field to prove that (3) implies (1), (see Section 2 of
[11]). This stronger implication shall be used to prove the main result of
Section 2 of this paper.

CoRrROLLARY 1.5. Let S denote an inertial extension of a complete discrete
rank one valuation ring R with no tame part, and let G, denote the Galois group
of the quotient field extension. If [f] is an element of HXG,,U(S)), then the
Sollowing statements are equivalent :
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(1) 4(f,S,G,) is an hereditary order
(2) 4(f,S,G,) is a maximal order.

Proof. Assume that the crossed product 4(f,S,G,) is hereditary. The
fact that 4(f,S,G,)/rad 4(f,S,G,) is a simple ring (Cor. 1. 3) implies that
rad 4(f,S,G,) is the unique maximal two-sided ideal of 4(f, S,G,). Therefore
4(£,S,G,) is a maximal order according to the Corollary to Thm. 2. 2 of
[2. To complete the proof we recall that each maximal order is
hereditary.

Consider the inertia group G, of an extension S of R and the Galois
group G, of the quotient field of S over the quotient field of the maximal
tamely ramified extension of R in S. The next proposition concerning the
existence of splitting fields shall be useful in proving that 4(£,S,G,) is
semi-simple if and only if 4(f,S,G,) is semi-simple.

ProrosiTiION 1. 6. Let G, denote the inertia group of S over R.  The
crossed product A(f,S,G,) has a splitting field.

Proof. Prop. 1. 2. implies that the crossed product 4(£,S,G,) has a
splitting field L,. For convenience of notation denote the image of f
under the natural map Z%G,, U(S)) ~ Z%G, U(L,)) by f also. Consider the
sequence (1) > H¥G,/G,,U(L,)) > H¥G,,U(L,)) > H¥G,,U(L,)) where the
maps are inflation and restriction. This sequence is exact according to
Prop. 5 p. 126 of [7] because HY(G,,U(L,)) = (1), (see Lemma A. 6 of [11]).
The definition of L, implies that [f] is in the kernel of the restriction
map H¥G,U(L,)—~H G, U(L,). The exactness of the above sequence
implies that there exists a 2-cocycle g in Z*G,/G,U(L,) such that
inf ([g]) = [f], and we may assume that g has been normalized in the sense
of cyclic groups. Consider the crossed product 4(g,L,,G,/G,). Let a be
an element of U(L,) corresponding to g under the canonical identification
H*Go/Gp U(Ly)) = U(Lp)/IU(L,)]* which holds because G,/G, is a cyclic group.
Let a denote a root of the polynomial P(X)= X°—a of L,[X], and define
L =L,a). Itis easy to check that L is a splitting field for the crossed
product 4(g, L,, G\/G,).

In order to prove that L is in fact a splitting field for the crossed
product 4(f,S,G,) consider the following diagram:
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HYG,, U(S))

!

HYG/G,, U(Ly)) > HYG, U(L,)) = H¥G, U(L,))

! }

H¥G,/G,, U(L)) — H*Go,U(L))

where the horizontal maps are inflation and restriction, and the vertical maps
are the obvious ones. The commutativity of this diagram together with the
above observations implies that [£] is in the kernel of the map H*G,, U(S))
—~ H¥Gy,U(L)). Therefore L is a splitting field for 4(f,S,G,) and this
completes the proof.

ProrostTioN 1. 7.  The radical of A(f,S,G,) is generated both as a left
and a right ideal by the radical of A(f,S,G,).

Proof. According to Prop. 1.6 we may consider a splitting field L for
the crossed product 4(f,S,G,). The definition of splitting field implies
that 4(f,L,G,) is L-algebra isomorphic to the trivial crossed product
4(1,L,G,). We shall make use of this isomorphism to prove first of all
that the radical of 4(f,L,G,) is generated as a right ideal by rad 4(f, L, G,).
For the exercise on p. 435 of [3] implies that rad 4(1,L,G,) is generated by
rad 4(1,L,G,). Let ¢ : G,—>U(L) be the map which makes f cohomologous
to the trivial 2-cocycle in Z*G,,U(L)). Consider the L-algebra isomorphism
¢ Af,L,Gy) = 4(1,L,G,) induced by ¢. The restriction of ¢ to 4(f,L,G,)
establishes an isomorphism of 4(f,L,G,) with 4(1,L,G,). From the above
observation concerning 4(1, L, G,) we may conclude therefore that rad 4(f, L, G,)
is generated as a right ideal by rad 4(f,L,G,).

Now we may prove that rad 4(f,S,G,) is generated as a right ideal by
rad 4(f,S,G,). The radical of 4(f,S,G,) is contained in rad 4(f,L,G,),
(see Lemma 1. 4 of [11]) and so rad 4(f,S,G,) is contained in rad (£, S, G,
by the above observation. The fact that [rad 4(f,L,G,)] N 4(f,S,G,) is
contained in rad 4(f,S,G,) (Lemma 2.4 of [11]) now implies that the
right ideal generated by rad 4(£,S,G,) is contained in rad 4(£,S,G,). To
obtain the opposite inclusion consider a disjoint right coset decompoéition
G, = U G,a; of G, relative to the subgroup G,. The fact that rad 4(f, S, G,)
is contained in rad 4(f,L,G,) (see Lemma 1.4 of [11]) implies that an
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element ¢ of rad 4(f,S,G,) may be written uniquely in the form 5 = Zi.“niuai
with each #», in rad 4(f,L,G,), since rad 4(f,L,G,) is generated as a right
ideal.by rad 4(f,L,G,). Each », must be in 4(£,5,G,) since & is an
element of 4(f,S,G,). The intersection [rad 4(f,L,G,)1n 4(£,S,G,) is
contained in rad 4(f,S,G,) by Lemma 2. 4 of [11]. Therefore each #, is
in rad 4(£,S,G,), and this completes the proof of the fact that rad 4(f, S, G,)
is generated as a right ideal by rad 4(£,S,G,). A similar computation
shows that rad 4(7,S, G,) is generated as a left ideal by rad 4(£,S,G,).

The following corollary follows at once from Prop. 1.7 and shall be
useful in Section 2 of this paper (see Prop. 2. 1).

CororrARY 1.8.  The radical of A(f,S,G,) 1is generated both as a left
and a right ideal by the radical of 4(f,S,G,).
Now we may prove the main theorem of this section.

TaEOREM 1.9. Let S denote the integral closure of a complete discrete rank
one valuation ring R in a finite Galois extension of the quotient field of R and let
G denote the Galois group of the quotient field extension. If [f] is an element of
H¥G,U(S)), then the following statements are equivalent:

(1) 4(£,S,G) is a Y-principal hereditary order
(2) G, is an Abelian group and R, = (1)
8 R,=().

Proof. We have already observed that 4(f,S,G) is a II-principal
hereditary order if and only if 4(f,S,G) is a semi-simple ring and that this
in turn is equivalent to the semi-simplicity of 4(f£,S,G,). Prop. 1.7 now
implies that 4(f,S,G) is I-principal if and only if 4(f,5,G,) is semi-simple.

According to Cor. 1.4, 4(f,S,G,) is semi-simple if and only if it is a
field. Using Prop. 1. 10 of [11] we see that 4(f,S,G,) is a field if and
only if G, is Abelian and R, =(1). Therefore statements (1) and (2) are
equivalent. On the other hand, 4(£,S,G,) is semi-simple if and only if
4(£,5,C) is a field (Cor. 1. 4) which is equivalent to R, = (1).

2. Wild ramification. The purpose of this section is to prove that
a crossed product 4(f,S,G) is hereditary if and only if it is II-principal in
the case when the residue class field extension S of R is separable. And
we present an example to show the necessity of the assumption that the
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residue class field extension be separable. In [6], Harada has proved that
if R is perfect, a crossed product 4(f,S,G) is hereditary if and only if S
is a tamely ramified extension of R. The proof of this fact suggested to the
author a way of viewing the more general problem considered here. Each
crossed product over a tamely ramified extension is II-principal; so for the
purpose of this section we may as well restrict our attention to crossed
products over wildly ramified extensions.

Unless otherwise stated, throughout this section S shall always denote
a wildly ramified extension of a complete discrete rank one valuation ring
R. The first step is to reduce the problem to a study of the crossed
product 4(f,S,G,) where G, denotes as usual the Galois group of the
quotient field of S over the quotient field of the maximal tamely ramified
extension of R in S. For Prop. 2.1 we make no restriction on the
extension S of R.

PropostTioN 2. 1. The crossed product A(f,S,G) is hereditary if and only
if the subring 4A(f,S,G,) is hereditary.

Proof. According to Harada’s criterion (Lemma 3 of [6]) a necessary
and sufficient condition for an order 4 to be hereditary is that there exist
an element « in 4 and a positive integer ¢ such that (rad 4) = a4 = Ae.
For convenience of notation denote 4(f,S,G) by 4 and the subring
A4(1,S,G,) by 4,;let N=rad4 and N,=rad4,. Prop. 3.1 of [11]
together with Cor. 1. 8 implies that N = N,4 = 4N,,.

Let = denote a prime element of R. According to Thm. 6. 1 of [5],
the assumption that 4 is hereditary implies the existence of a positive
integer ¢ such that N'=n4 because nd4 is an invertible ideal. We shall
show that N}=nd,. The equalities N = N,4 = 4N, imply that zd=N*'=N}4.
Let G = U G,o; be a disjoint right coset decomposition of G relative to the
subgroup G,. Using the fact that 4(f,S,G) is a free left 4(f,S,G,)-
module with free basis {#s} one may obtain the inclusion (Nj4) n 4, € N},
from which it follows that =4, is contained in Nj. To obtain the
opposite inclusion, observe that N} is contained in (z4) N 4,. Using the
fact that 4(f,S,G) is a free left S-module with free basis {u#,} for ¢ in G,
one may obtain the equality (nd) N 4, ==n4,, so that N} is contained in
nd,. Therefore N, =nd,= d,t since = is in ctrd,. It now follows from
Harada’s criterion that 4, is an hereditary order.
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The proof of the assertion in the other direction follows at once from
Harada’s criterion together with the equalities N = N,4 = 4N,,.

We proceed to prove that if 4(f,S,G) is hereditary, then it is II-
principal. The proof shall be indirect; so we assume that 4(f,S,G) is an
hereditary order which is not II-principal and contradict the assumption
that S is a wildly ramified extension of R.

Consider a decomposition C = E;X + + + XE, of the center C of G, into
a direct product of cyclic groups. We next observe that we may assume
that the restriction of f to E; X E; is normalized in the sense of cyclic
groups. Since cohomologous 2-cocycles determine isomorphic crossed
products it suffices to prove the following lemma.

LemMma 2. 2. There exists a 2-cocycle g in Z*G,U(S)) cohomologous to f
such that the tmage of g under the restriction map Z*G,U(S)) — Z¥E,,U(S)) is
normalized in the sense of cyclic groups for each i.

Progf. Let f; denote the restriction of f to-E; x E,. It is well known
(see p. 82 of [1]) that there exists a 2-cocycle g, in Z2(E,,U(S)) such that
fi is cohomologous to g; and g; is normalized in the sense of cyclic groups,
For each i let ¢, : E;, > U(S) be the map satisfying g;(s,7) = fi(a,7)p.(0)87(z)/
¢:(ot) for all elements ¢ and ¢ in E;, and note that ¢,(1)=1. We next
extend the ¢, to a map ¢ : G—>U(S) by defining ¢(o) = ¢;(0) if ¢ is in E;
and ¢(s) =1 if ¢ is not in any subgroup E;. It is easy to verify that the
2-cocycle g of Z*G,U(S)) defined by g(s,7) = f(s,7)¢(0)¢°(c)/p(or) has the
desired properties.

The assumption that 4(f,S,G) is not II-principal implies that the
radical group R, of [f] is non-trivial according to Thm. 1. 9. Recall (see
Section 1) that R, is by definition a direct product of cyclic groups
R,=R;,X+++XR,;, where R,; is a subgroup of E,. Since R, is non-
trivial we may consider the subgroup @, of order p contained in the first
non-trivial component R, , of R;. Observe that the choice of « implies
that the crossed product 4(f,S,E,;x + + - XE,_,) is a field, and that there exists
an element b» in 4(f,S,E,x -+ +XE,.) such that f(p,p™")=5b" where p
denotes a generator of Q,. Write 5 in the form b =>!a,u, with ¢ in
E/x+++XE,, and d, in §. Since 4(f,S,E,x -+ XE,_,) is a commutative
ring of characteristic p, it follows that &° =3}(as)?(us)?. Observe that
b” = 31 (ds)?(us)” with ord e =p since »” is in S.  Therefore the element
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b of A(f,S,E,x -+ XE,.,) satisfying f(p,p™!) =5b" may be taken to be of
the form b = 3la,u, where each element ¢ has order ». Now let g denote
an element of 4(f,S,E,x:-+XE,.) in the preimage of b.  Since U =35
where U denotes the inertia ring of S over R, the element g may be
chosen in such a way that g8=>lq,u, where each a, is in U and each
element ¢ of E;X .- XE,_, has order p. The notation introduced in this
paragraph shall be in use throughout the rest of this section. The following
technical lemma shall be useful in proving that the non-triviality of the
radical group of [f] implies that 4(f,S,G) is not hereditary when S is a
wildly ramified extension of R.

Lemma 2.3. Let p denote a generator of Q, and let B° denote the element
of A(f,S,E;X «++XE,_,) defined by the equality fup = upp’ for 0<i<p—1.
Then the element f(p,p™?) —EI: B is in II2A(f,S,E; X + + « XE,).

Proof. Recall that by Lemma 2. 2 we may assume that the restriction
of f to E; X E, is normalized in the sense of cyclic groups. In order to
.make use of Props. A.4 and A.5 of the appendix, we first observe that
we can restrict our attention to a crossed product over an elementary
Abelian p-group. For 1<i=<u2, let Q; denote the (unique) subgroup of
E, with order p, and observe that @,x - -+ xQ, is an elementary Abelian
p-group. Recall that g is of the form B8 =a,us where each a, is in the
inertia ring U and each element ¢ of E;x:.+XxE,_, has order p, so that
B is in fact an element of the crossed product 4(f,S,Q,X -+ - XQ,).

The next step is to show that there exists an element @ in the fixed
ring S, of @, = (p) such that ppza mod II24(f,S,E, X -+ XE,). Consider
the crossed product 4( 7> S/T2S,Q, % « » + XQ,) where F denotes the image of
f under the natural map Z¥@,X + + - XQ,,U(S)) > Z%Q, X - - + XQ,, U(S[TI2S)).
According to Prop. A. 4, the crossed product 4(f,S/II%S,Q,X - XQ,) is a
commutative ring with characteristic p, so that the image § of 8= X asu,
in A(f,S/T2S,Q,% « + + XQ,) satisfies the equalities B2 = 31 (ds)"(us)?
=YYa@s)?f(o,57"). The element X (@,)?f(s,07)) of S/T2S is in the image of
the fixed ring Sg of @,X -« -+ xQ, under the natural map of S onto S/II2S
(see Prop. A.5). It suffices therefore to let ¢ denote an element of S, in
the preimage of SW(d@s)? fla,67Y) to guarantee that ff =a mod
24(f, S, E;X  + - XE_,).
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Now we may complete the proof of the lemma. The congruences
flpsp™) — p* =0 mod IA(f,S,E; X+ -+ XE,) and f(p,p™") — = flp,p™") —a
mod II24(f,S,E,X - - - XE,) imply that f(p,p™)—a=0 mod IIS since
flpyp™)—a is in S. The fact that the extension S of S, is a wildly
ramified inertial extension of degree » implies that f(p,p™!)—a=0 mod
II2S since f(p,p™')—a is in S,. On the other hand, the fact that
A(f,S/T2S,Q, X + + - XQ,) is a commutative ring implies that f(p,p™") — g°
= flp,p™") — (ﬂﬂ"_l- --8°) mod II%4(f,S,E;x---XxE,). By combining the
above congruences we may now conclude that f(p,p"l)—ii[: g is in
M24(f, S, E;X « » «+ XE,).

ProrosiTiON 2. 4. Let S be a wildly ramified extension of R, and [f] an
element of HXG,U(S)) such that R, s non-trivial. Then the crossed product
A(f,S,G) is not an hereditary order.

Proof. The proof is by contradiction. Suppose therefore that 4(f, S, G)
is hereditary. Then the subring 4, = 4(f,S,G,) is hereditary according to
Prop. 2.1. The fact that 4,/rad 4, is a field (Cor. 1. 3) now implies that
4, is a maximal order with the property that all ideals are two-sided and
are powers of the radical (see Thm. 3. 11 of [2]).

Throughout the proof of this proposition we shall assume the notation
introduced in the statement of Lemma 2. 3. The ideals 114, and
(4o — B)4, are therefore two-sided and either 14, is contained in (#o — p)d,
or the opposite inclusion holds. Since the residue class ring 4,/114, is not
semi-simple, we may conclude that the ideal II4, is contained in
(o — p)d,. This inclusion of ideals shall be used to contradict the
assumption that S is a wildly ramified extension of R.

According to the above we may write II = (#, — p)d for some element
o of 4,. Observe that the elements of E, may be taken as part of a
system of representatives of a disjoint coset decomposition G,
=U(E;X+++XE;)o of G, relative to the subgroup E;X-:+XE,,.
Therefore 6 has a (unique) expression in the form & = Xl u.6, with the &,
in the crossed product 4(f,S,E,;X: -+ XE,.,) and so 1I Z (o — B) 23 Uabs .

Now (#p — p) X tebs = 3} f (0, 0)thoads — S uusf 6, where g denotes
the element of 4(f,S,E,x -+ XE,.,) defined by the equality pus = u.p"".
Let z=po. From this change of variable we obtain the equality
I = ;uf[fr-l(p,p_lf)ap'lr ——ﬁ"iéf]. Using the fact that the elements {up}-
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form part of a free basis for 4(f,S,G,) over 4(f,S,E,X+++XE,.,) together
with the fact f is normalized on E, x E, in the sense of cyclic groups we
may now obtain the equalities

II = f(p, p™")0o-1 — B3,
0 = dpi-1 — B 60 foro< i< p,

which in turn combine to imply that II =[f(p, 07! —%]illﬁp_tlap-l.

Now we may complete the proof of the proposiéi_on. For according
to Lemma 2.3 the element  f(p,p™") ——pI:I; g is in the submodule
124(f,S,G,). The fact that 4(f,S,G,) isZ—a free left S-module with free
basis {us} for ¢ in G, now implies that the equality T =[f(p,p™)
— Zi':i:ﬁ"_i]ap-x cannot hold. This contradiction completes the proof of the
proposition.

Thus we have established the following main theorem.

THEOREM 2.5. Let S denote the integral closure of a complete discrete rank
one valuation ring R in a finite Galois extension of the quotient field of R, and G
the Galois group of the quotient field extension. If the residue class field extension
So R is separable, then for each element [f] of HXG,U(S)) the following
statements are equivalent:

(1) 4(f,S,G) is an hereditary order
(2) 4(f,S,G) is a W-principal hereditary order.

Finally, we present an example to show the necessity of the assump-
tion that the residue class field extension be separable.

ExamprLE 2. 6. Let R =Z[X]e be the localization of the ring of
polynomials with integral coefficients at the minimal prime ideal generated
by 2. Let K=kX %) where %k denotes the quotient field of R, and let
G ={1,¢5} denote the Galois group of K over k. The integral closure of
R in K is S=R[XY and the residue class field extension S of R is purely
inseparable of degree two. Let f be the element of Z%G,U(S)) correspon-
ding to the element 2—X of U(R) wunder the canonical identification
HG,U(S)) = UR)/N({U(S)), and consider the crossed product 4 = 4(f,S,G).
An easy computation shows that rad 4 = (#s—X 4 is a free right 4-module,
so that 4 is an hereditary order according to the Corollary to Thm. 2. 2
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of [2]. However, 4 is not a Il-principal hereditary order since IId4 is

strictly contained in rad 4.

3. The conductor group. Harada has shown in [5] that the
number of maximal two-sided ideals in an hereditary order 4 in a central
simple algebra 3>} over the quotient field of a discrete rank one valuation
ring R is equal to the length of a saturated chain of orders in X3
containing 4. We are interested therefore in determining the number of
maximal two-sided ideals in a II-principal hereditary order 4(f,S,G). In
[10] the author proved that the number of maximal two-sided ideals in a
»crossed product 4(f,S,G) over a tamely ramified extension S of R is equal
to the order of the conductor group H, of 4(f,S,G) where H, is defined
to be the maximal subgroup of the inertia group of S over R such that
[f] is in the image of the inflation map H¥G/H,,U(S)) - H¥G,U(S)). In
this section we shall generalize the notion of the conductor group to the
case of any II-principal hereditary order 4(f,S,G) and then observe that
the number of maximal two-sided ideals in 4(f,S,G) is equal to the order
of its conductor group.

The number of maximal two-sided ideals in a II-principal hereditary
order 4(f,S,G) is equal to the number of primitive orthogonal idempotents
required to generate the center of the (semi-simple) ring 4(f,S,G).

ProrosrTioN 3. 1. Let S denote the integral closure of a complete discrete
rank one valuation ring R in a finite Galois extension of the quotient field of R,
and G the Galois group of the quotient field extension. Then the center of 4(f,S,G)
is contained in the center of A(f,S,G,) where G, denoles the inertia group of S
over R.

Proof. Consider the separable closure U of R in S, and let ¢ denote
an element of U for which U = R(¢). A non-zero element 6 = 3! s.us (with
ss % 0) in the center of 4(f,S,G) has the property that 89 =65. Now
80 = 31 ss0°us so that 60 =65 if and only if 9 =6 for each 6. But 47 =94
if and only if ¢ is in G, since G/G, is the Galois group-of U over R.
Therefore 4 is in the subring 4(f,S, G).

The next two propositions pertain to the center of 4(f,S,G,). “Recall
(Prop. 1.1) that the inertia group G, is the semi-direct product J X G,
where G, is a p-group normal in G, and the order e of [ is relatively

prime to p.
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ProposrtioN 3. 2. The center of G,=] X G, is of the form [, xC,
(direct_product) where J, is a subgroup of J and C, is a subgroup of the center of
G,. Furthermore, [, ts a normal subgroup of G.

Progf. Let pr denote an element of the center C(G,) of G,, where p is
in J and 7 isin G,. To prove the proposition it suffices to show that
both p and r are in C(G,). To prove that p is in C(G,) we first observe
that the fact that J is an Abelian group may be used to show that <
commutes (element-wise) with every element of J. Let n denote the order
of z. Then (pr)" = p™ since = commutes with p, so that p" is in C(G,).
The fact that the order of p is relatively prime to » implies that p is in
C(Gy). We may conclude at once that 7z is in C(G,) since pr and p are
in C(G,).

We next show that J, is a normal subgroup of G. Let o denote a
generator of the cyclic group /., and r an element of G. Since ¢ is in
G, and G, is a normal subgroup of G, it follows that zgr™! is in G,. Let
p denote the image of an element p of G under the natural map of G
onto G/G,. The homomorphic image J of J under this map is a normal
subgroup of G/G, since J is the inertia subgroup of G/G,. From this it
follows that the subgroup J, of the cyclic group J is also a normal
subgroup of G/G,. Therefore 7o =5t for some integer i, and so we may
write ¢ = pg'c for some element p of G,. It remains to show that p =1.
Let »n denote the order of ¢ and observe that » is relatively prime to p.
Then 7o' = ps’ has order n. The fact that ¢ is in J, implies that
1=(pd" )" =p". Since p is in the p-group G, and (n,p) =1, we conclude
at last that p =1.

ProrostrioN 3. 3. The crossed product A(f,S, J. X C,) is contained in the
center of A(f,S,G,).

Proof. 1In order to establish the inclusion 4(f,S, J, X C.) < ctrd(f, S, Gy)
it suffices to show that every element of the form u, with « in J, X C,
commutes with every element of the form #; with 8 in G,. Now u.u
= ugu. if and only if f(a,p) = f(B,@) since « is in the center of G,.

It remains to show that f(a,p) = f(g,a) for each @ in J, x C, and B
in G,. Write « in the form « =47, with ¢, in J, and 7, in C,, and
write g in the form 8= g,r, with ¢, in J and =, in G,. We first observe
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that £ (s.75, 0,)= f (61, 6,72). For the equalities f (o575, 0,) f (625 72) = F (025 720 f (725 3,)
and  f(ay 0173) flo, 72) = floa0y, T3) flony 7,) together imply  f(gyrs ay)
= flow0yy 75) f (02 0) S ey 01) ] floo 7o) floy 7s) since 1,0, = gy7, . Now
flza ) = f(o,7,) according to Lemma A. 1 of [11] because the order of ¢,
is a p** power. Therefore f(a,rs 01) =F(0201,72)f (02 0)/f (672). On the
other hand, the associativity property of f implies that f(gy, 67s) f (62 72)
= f(0,03,75) f (615 02)- Since J is a cyclic group it follows that  f(s;,0,)
= f(0sy0,). Therefore f(o,rs,0,) = floy 0572).

Now we may prove that  f(ory,007s) = flosts,097y).  The equalities
f;(o'lfn 0279) floy 1) = f(o'ls 710272)f-:(719 0273) and S oy, 0372 7y) f(”zfz’ ;)
= f (010570 71) (01, 0375) imply that F o171y 0579) = F (0105725 71) F (01, 0575) F (21 0575)]
f (o370, 7,) f (01, 7,) Since ty0,7, = dyror; . On the other hand, fF(s7s, a17y) f (04, 7,)
= f(047201,71) f (02755 01).  Now f(ry,057y) = f(os7s7,) by Lemma A. 1 of [11],
and  f (o, 0575) = f(0,70,0;) by the above observation. Therefore f(o,cy,0,75)
= f(oy7y 007,) and this completes the proof.

Observe that for Props. 3.1, 3.2 and 3. 3 we did not need to assume
that 4(f, S,G) is I-principal.

ProrosiTiON 3. 4. If the crossed product A(f,S,G,) s I-principal, then
the center of A(f,S,G,) is contained in A(f,S, J, x G,).

Proof. Recall that the assumption that 4(f,S,G,) is II-principal implies
that G, is Abelian (Thm. 1.9). Since G, is the semi-direct product
J X G,, the elements of J may be taken as representatives of a disjoint
coset decomposition of G, relative to the (normal) subgroup G,. An
element & of 4(£,S,G,) has therefore a unique expression in the form
d=3dus with each ¢ in J and each 4, in the subring 4(f,S,G,)
according to Lemma 2.5 of [11]. If 6=36sus (with 6,+0) is in
ctr4(f,S,G,) then u.6=26u. for each element r of G,. By an easy
computation one may obtain the equality du. = 384 f(a,7)/f(c% 0)lth otte
where ¢ is the element of G, defined by or =1%. The fact that
#:6 = du: now implies that ds = 8, f(s,7)/f(c% 0)lu.c for each o. The
assumption that 4(f,S,G,) is Il-principal implies that 4(£,S,G,) is a field
(see Thm. 1.9). Therefore 1 =[f(s,7)/f(c%a)lu.s which implies that #.. is
an element of S and so z* must equal 1. We have shown that each ¢ in
the expression &= 3ld,us for an element & in the center of 4(£,S,G,)
commutes with each element of G,, and this completes the proof.
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Combining Props. 3.3 and 3.4 we may now determine the idempo-
tents in the center of 4(f,S,G,) when 4(f,S,G) is Il-principal.

ProrosiTioN  3.5.  If A(f,S,G) is a I-principal hereditary order then the
idempotents in the center of A(f,S,G,) are precisely the idempotents of the commutative
ring A(f,S, J.)-

Proof. Prop. 3.4 implies that the idempotents in the center of
4(f,S,G,) are present in the commutative ring 4(f,S,J,x G,). Let d
denote an idempotent element in 4(f,S, J. X G,) and observe that d has an
expression in the form d = 3d.u. with each ¢ in G, and d: in 4(£,S, J.).
The assumption that 4 is an idempotent implies that d" =d where #n
denotes the order of G,. The fact that 4(f£,S,J. X G,) is a commutative
ring of characteristic p implies that d" = 3} (d:)"(u<)" since =n is a p‘* power;
thus d" is in 4(f,S, J.) since (u:)" is in S by the choice of n. Therefore
d is in 4(f,S, J.).

On the other hand, Prop. 3. 3 implies that each idempotent of 4(f,S, J.)
is in the center of 4(f,S,G,).

If 4(£,S,G) is I-principal, then Props. 3.1 and 3.5 together imply
that the idempotents in the center of 4(f,S,G) are precisely those
idempotents of 4(£,S,J.) which are also in the center of 4(f,5,G). This
motivates us to generalize the notion of the conductor group in the
following way.

DerFiniTION.  Let 4(f,S,G) be a Il-principal hereditary order, and let
J. denote the subgroup of the inertia group defined in Prop. 3. 2. Then
the conductor group H, of 4(f,S,G) is defined to be the maximal subgroup
of J. with the property that [f] is in the image of the inflation map
H*G|H,,U(S)) - H¥G, U(S)) where f denotes the image of f under the
natural map Z%G,U(S)) = Z%G,U(S)).

Observe that J.=G, when S is a tamely ramified extension of R.
Therefore the above definition of conductor group is indeed a generalization
of the definition given in [10] for the tamely ramified case.

The arguments used in Section 2 of [10] may now be extended to
prove that the number of maximal two-sided ideals in a II-principal heredi-
tary order is equal to the order of its conductor group.

LEMMA 3.6. Let ¢ denote the order of J.. For each element = of G we
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have (&) = t™° for each c¢'™ root of unity & in S where n(r) is the integer defined
modulo ¢ by the equality vor™' = g™ and o denotes a generator of J,.

Progf. Consider the maximal tamely ramified extension 7 of R in S,
and recall (Prop. 1.1) that 7 contains a primitive e'* root of unity where
e denotes as usual the order of /. The image J of J under the natural
map of G onto G/G, is the inertia group of T over R. Denote the image
of an element = of G in G/G, by 7. Then Prop. 2.1 of [10] implies that
7(§) = ¢™® for each e** root of unity ¢ in S where n(z) is the integer
defined modulo e by the equality zaz™! = @™ where @ denotes a generator
of J. Let o denote a generator of J.. The equality ror™' =" holds
because /. is a normal subgroup of G. This is sufficient to prove the
lemma.

It is convenient to introduce the following subgroup of J. in order to
determine the number of primitive orthogonal idempotents in ctr 4(f, S, G).

DerFiniTION. Let I'y denote the maximal subgroup of J. with the
property that the image of [f] wunder the restriction map H*G, U(S))
- H¥I',,U(S)) is trivial.

Observe that the conductor group H, of 4(f,S,G) is a subgroup of
I';. An easy computation shows that f is cohomologous to a 2-cocycle
whose restriction to I'y X Iy is trivial. Thus we shall always assume that
F is a properly normalized 2-cocycle; i.e. that f(s,7)=1 for all ¢ and < in
r,.

The next two lemmas are essentially the same as Props. 2. 2 and 2. 3
of [10] and so we refer the reader to [10] for their proofs.

LEmMMA 3. 7. The number of simple components of A(f,S,J.) is equal to
the number of simple components of A(f,S,I';) and the primitive orthogonal
tdempotents are given by 7; =~717}"i,‘ (Gur)* for 1<i<m where m is the order of

k=1

I', and the &; are the m distinct m'™ roots of unity.

LeMvMA 3.8. Let f be a properly normalized 2-cocycle and p an element
of I'y.  Then the cyclic group generated by p is contained in H, if and only if
Fflr,p) = f(p™,z) for each element = in G.

Combining these three lemmas we may now obtain the following
result.
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ProposiTiON 3. 9.  The number of simple components of A(f,S,G) is equal
to the order of the conductor group H, .

Progf. The number of simple components of 4(f,S,G) is equal to the
number of primitive orthogonal idempotents required to generate its center.
According to Props. 3.1 and 3.5 the idempotents in ctr 4(£,S,G) are
precisely those partial sums P of elements %; such that P is in ctr 4(f,S,G)
where the 7; are defined in Prop. 3.7. Let P= .Zt}:?,- be any partial sum

of elements 7; (with a suitable reordering) and observe that P is in
ctr4(f,S,G) if and only if #.P= Pu. for every ¢ in G. By an easy
computation we obtain that

uP = Zm
x=1

t

3 AL (e T 4, )l e

Lemma 3. 6 implies that (") =§,*" so that u.P = Pu. if and only if
fle,7%) = F(r*,¢) for every r in G and every integer k for which zt]r(;‘ik)
is non-zero. Prop. 3. 8 now implies that P is in ctr 4(f,S,G) if anglonly
if P is in the subring 4(f,S,H,). Therefore 4(f,S,G) has precisely as
many simple components as 4(f,S,H,) and this is equal to the order of
H, since f=1on H, x H,.

The main theorem of this section follows at once from Prop. 3. 9.

THEOREM 3. 10.  The number of maximal two-sided ideals in a TI-principal
hereditary order is equal to the order of its conductor group.

Appendix. Cohomology. In this appendix we shall study the second
cohomology group H*G,U(S)) where S is a wildly ramified inertial extension
of a complete discrete rank one valuation ring R for which the Galois
group G of the quotient field extension is an elementary Abelian p-group.
The results are used in Section 2 of this paper.

We first prove two preliminary facts which may be presented in a
more general context.

LemmMa A.1. Let G be a finite group, A a left G-module, and (c) the
cyclic group generated by the element « of G. Let f denote an element of Z*G, A)
such that the image of f under the restriction map Z¥G,A)—~>Z¥(z),A) is
normalized in the sense of cyclic groups. Then



II-PRINCIPAL HEREDITARY ORDERS 61

iIZIl [f(e, o) fo, )1 = fc™h ) fo(e™ 0)
Jor each o in G commuting with = where n denotes the order of r.

Proof. From the associativity property of the 2-cocycle f we obtain at
once the equalities f(oz™%,7)f (6,27 )=f(z7 2), f(c70,2) f (z7Y, 6)=f (7, 0¢) f* " (0, T)
and f(z™%,¢0)f*(zr,0) = f(z7%,z) which together imply that

S e, o) f (" )l fr o, 2) f (o, e7Y) = f (7 @) fo(e ™ 2) .

We next obtain an expression for f(z"',¢). Consider f(z" "', s) for
l<i=<n-—1. From the associativity property of f together with the fact
that f is normalized on (¢) X (zr) in the sense of cyclic groups we obtain
that  f (="', zo) f7 (e, 6) = f(e"7% o) and  f("Y, o7) 77 (o, )
= f(c""*'e,7)f(z"""",0). Together these equalities imply that

S @ 0) = [f (7, 0)/ f (o, 0)17" " f (02" 2) f (e*7F Y 0) o

Combining these equalities we finally obtain that
S0 = LIS (e, ) f (0, 2)]™ £ (o™, ) .

On the other hand, by combining the equalities  f(s,7"7%)
= flor" " Y 2)f(o,z""Y) for 1<i<un—1 we obtain that f(s"")
= i[zf(ar7z'i,r).

Substituting these expressions for f(z"*,0) and f(s,z"') into the
equality established in the first paragraph of the proof we conclude that

iijl [f (e o)l f (o, D) = f(e™2)[f7(c7 7).

DEeFiNITION.  Let G =E, X+ -+ X E, be a decomposition of an Abelian
group G into a direct product of cyclic groups, and A a left G-module.
An element f of Z%*G,A) which is of the form f= f,.--f, where each
element f; of Z%*E;A) 1is normalized in the sense of cyclic groups is said
to be normalized in the sense of Abelian groups; i.e. f is normalized in the sense
of Abelian groups if and only if f(s+* 0y 0, 0,) = flo, )+« floy )
where ¢; and o; are in E;.

LemmMa A. 2. Let G=E, X+ ++XE, denote a decomposition of an Abelian
group G into a direct product of cyclic groups, and A a left G-module. For each
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element f of Z¥G,A) there exists a 2~cocycle g of Z*G,A) cohomologous to f such
that

1) 9(os0;) =1 for all elements o, in E, and o; in E; with i <j

2) the restriction of g to E; X E; is normalized in the sense of cyclic groups
Jori=i<t.

Proof. An argument similar to that of Lemma 2.2 shows that f is
cohomologous to a 2-cocycle & satisfying assertion 2). Now define a
map ¢ : G - A by setting ¢(c)="h(a;,0;) if « is an element of the form ¢ = g0,
with ¢; in E; and ¢; in E; and i<{j, and ¢(r) =1 otherwise. It is easy
to verify that the 2-cocycle g defined by g(z, #) = h(z, p)d(z)6*(p)/¢(cp) has
the desired properties.

Now we proceed to establish results concerning cohomology and wild
ramification.

ProrosiTioNn A.3. Let S be a wildly ramified inertial extension of a
complete discrete rank onme valuation ring R such that the Galois group G of the
quotient field extension is an elementary Abelian p-group, and let f denote the image
of an element f of Z*(G,U(S)) under the natural map Z*G,U(S)) - Z¥G, U(S/TI2S)).
If f is normalized in the sense of Lemma A. 2, then f is normalized in the sense
of Abelian groups.

Progf. Observe first of all that the action of G on S/II2S induced by
the action of G on S is trivial because G is the first ramification group of
S over R.

The proof of this proposition is facilitated by choosing judiciously a
decomposition of the elementary Abelian p-group G into a direct product
of cyclic groups. Let G, denote the second ramification group of S over
R, i.e. G, is the set of all elements ¢ of G such that o(s)=s mod II3S for
all s in S. An elementary p-group is completely reducible. Therefore G,
is a direct factor of G according to the theorem on p. 148 of [8], from
which it follows that G is isomorphic to G/G, X G, in a natural way. Let
G/G,=Q, X+ ++-XQ, be a decomposition of G/G, into a direct product of
cyclic groups, and let G, = @,,; X+ + + X @, be such a decomposition of G,,
so that G=Q, X+++-XQ,.

For 1<i<1t define S; to be the fixed ring of @;, and let II; denote
a prime element of S;. If 1=<i<s then the second ramification group
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G$ of S over S; vanishes. For, an element ¢ of G$ has the property
that o(s)=s mod II?S for each s in S, and therefore ¢ is in G,. Since
G/G, N G,=(1) we conclude that o¢=1. On the other hand, for
s+1<i=<t it is easy to see that G = Q,.

Let N;:S—S; denote the norm function from S into S;. We next
observe that for elements ¢; of @; and ¢; of @; with {<j, the congruences
Ni(f(0j50:)) =1 mod II2S; and N,(f(sj;0))=1 mod II;2S; hold. For the
assumption on f together with Lemma A.1 implies that N,(f (o 7))
= f(d7% 0/ f°(a7"y0;). Now f(s7',0;) is in S; (see p. 82 of [1]). Therefore
fo(a7*,05) = f (a7, 0;) mod II2S; since the Galois group of the quotient field
extension of S;D R is G/Q;, and hence N,(f(s;,0;)) =1 mod II2S;. A
similar application of Lemma A. 1 shows that N,(f(s;,0,))=1 mod II,2S;.

We show next that f(s;,0)=1 mod IS for all ¢; in @; and ¢; in Q;
with i<j. Consider the filtration U(S)* of U(S) defined on p. 74 of [7],
and observe that f(s;,0;)=1 mod IIS according to Prop. A.1 of [11] so
that f(o;,0,) is in U(S)'. If s<j then the second ramification group of S
over S; is non-vanishing. Therefore the map Nj,, : U(S)/U(S)? = U(S;)}/U(S;)?
is an injection according to Cor.1 on p. 93 of [7], and so f(sja)=1
mod 112S.  On the other hand, if i< j<s then the second ramification
group of S over S; vanishes. Therefore the sequence

(0) —> Q, 245 U(SHU(S): —X2> U(S,)H/U(S,)?

is exact according to Cor. 1 on p. 93 of [7] where 6, ; is induced by the
map ¢ — II9/II of @; into U(S)'. The fact that N;(f(s;,0;)) =1 mod II 2S;
now implies that f(s;,0;) = %/II mod U(S)* for some element o; of Q;.
In a similar way, the fact that N,(f(sj,0))=1 modII2S; implies that
flojy0;) =TIl modU(S)? for some element o; of Q,. Together these
congruences imply that TII*/II* is in U(S)? from which it follows that
e — 11 is in I13S and so ;e is in the second ramification group G,
of S over R. But o, and w; are elements of G/G,. The fact that
G/G, N G, = (1) implies that w;=;, and so w;=1 ' since Q; N Q; = (1).
This completes the proof of the fact that f(s;,0;) =1 mod II2S.

We have shown that f(e;,0,) = f(os0;) =1 for all ¢; in Q; and o, in
Q; when i+ j. A computation similar to that of Cor. A. 2 of [11] shows
that this is sufficient to guarantee that f is normalized in the sense of
Abelian groups.
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ProrosiTiION A. 4. Let S denote a wildly ramified inertial extension of a
complete discrete rank one valuation ring R such that the Galois group G of the
quotient " field extension is an elementary Abelian p-group, and f an element of
ZXG,U(S)).  Then the crossed product A(f,S/TI%S,G) is a commutative ring where
f denotes the image of f under the natural map Z*G,U(S)) - Z¥G, U(S/II2S)).

Proof. The 2-cocycle f is cohomologous to an element g of Z%G,U(S))
which is normalized in the sense of Lemma A. 2. The fact that § is
normalized in the sense of Abelian groups (Prop. A. 3) together with the
fact that G acts trivially on S/II%S implies that the crossed product
4(g, S/1%S,G) is a commutative ring. Since f is cohomologous to § it
follows that 4(f,S/II®S,G) is isomorphic to 4(g, S/TI%S,G) and this completes
the proof of the proposition.

ProrositioN A. 5. Let S denote a wildly ramified inertial extension of R
such that the Galois group G of the quotient field extension is an elementary Abelian
p-group, and let G =Q, X +++ X Q, be a decomposition of G into a direct product
of cyclic p-groups. Let f be an element of Z*G,U(S)) with the property that the
restriction f; of f to @, X Q; is normalized in the sense of cyclic groups for each i.
Then there exists an element a; in U(R) such that f(oi50.") =a; modM?S for
each i where o, denotes a generator of E,.

Proof. Let S; denote the fixed ring of @, and II; a prime element of
S;. Recall that S;= R[II;] according to Cor. 3-3-2 of [9] where the
brackets denote ring adjunction. Therefore the element f(s;50,™) of S;
may be written in the form f(s; 0, = b+ b1+ + « + b, I, with
coefficients in R, where m denotes the order of G/Q;. Since II,=0
mod II”S it suffices to choose a;= b, to prove the proposition.
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