ε-ENTROPY OF THE BROWNIAN MOTION WITH THE MULTI-DIMENSIONAL SPHERICAL PARAMETER

YOSHIKAZU BABA

§ 1. Introduction

M.S. Pinsker [3] has given a general method of calculating the ε-entropy of a Gaussian process and obtained, for example, an exact proof of the estimate for the ε-entropy of the ordinary Brownian motion $B(t), 0 \leqq t \leqq 1$, which was presented without proof by A.N. Kolmogorov [1].

In this article, we estimate the ε-entropy of the Brownian motion with the multidimensional spherical parameter, by using the expansion of the Brownian motion with a multidimensional parameter by H.P. McKean [4] and by generalizing the Pinsker's method of calculating the ε-entropy.

Let $X(A, \omega), A \in E^{d}$ (d-dimensional Euclidean space), $\omega \in \Omega(P)$, be a Brownian motion with a parameter space E^{d}, that is, $\left\{X(A), A \in E^{d}\right\}$ forms a Gaussian system and

1) $E[X(A)]=0$ for every A,
2) $X(O)=0$, where O is the origin of E^{d},
3) $E\left[(X(A)-X(B))^{2}\right]=\operatorname{dis}(A, B)$, where $E(X)$ and $\operatorname{dis}(A, B)$ denote the expectation of a random variable X and the Euclidean distance between A and B, respectively.

We shall call $X(A)$ when the parameter A is restricted to the unit sphere ${ }^{1)} S^{d-1}$ in E^{d} the Brownian motion with the d-dimensional spherical parameter and denote it, as in the preceding case, by $X(A), A \in S^{d-1}$.

The ε-entropy $H_{\varepsilon}(X)$ of the process $X(A)$ is defined as follows:
Let $\varepsilon>0$ be arbitrarily fixed, and consider an approximating process $X^{\prime}(A)$ for the process $X(A)$ on S^{d-1} satisfying the condition of reproducing accuracy,

$$
\begin{equation*}
\int_{S^{d-1}} E\left[\left(X^{\prime}(A)-X(A)\right)^{2}\right] d \sigma(A) \leqq \varepsilon^{2} \tag{1}
\end{equation*}
$$

Received March 8, 1967.

1) Without loss of generality we may consider the unit sphere only.
where $d \sigma$ is the uniform probability measure on S^{d-1}. Then, the ε-entropy of the process $X(A)$ is defined as

$$
\begin{equation*}
H_{\varepsilon}(X)=\inf I\left(X^{\prime}, X\right), \tag{2}
\end{equation*}
$$

where $I\left(X^{\prime}, X\right)$ is the amount of information contained in a process X^{\prime} with respect to the process X and the infimum is taken for all processes X^{\prime} satisfying the condition (1).

Our aim is to prove that the ε-entropy of the Brownian motion on S^{d-1} is of order $\varepsilon^{-2(d-1)}$ (Theorem 2);

$$
\begin{equation*}
H_{\varepsilon}(X)=O\left(\varepsilon^{-2(d-1)}\right) \tag{3}
\end{equation*}
$$

It seems to be interesting to note that the ε-entropy (in KolmogorovTihomirov's sense, cf. Kolmogorov-Tihomirov [2]) of the space of $\frac{1}{2}$-Hölder continuous functions of ($d-1$)-variables with the sup-norm has the same order $O\left(\varepsilon^{-2(d-1)}\right)$.

The author is greatly indebted to Professors T. Hida and N. Ikeda for their kind suggestions and constant encouragement.

§ 2. The generalization of Pinsker's method

Pinsker's method of calculating the ε-entropy of a Gaussian process with one dimensional parameter is as follows: Let $X(t), 0 \leqq t \leqq T$, be a Gaussian process with mean 0 whose covariance function $r(s, t)=E[X(s) X(t)]$ is continuous in (s, t). Then the ε-entropy $H_{\varepsilon}(X)$ of the process $X(t)$ is given by the formula

$$
\begin{equation*}
H_{\varepsilon}(X)=\frac{1}{2} \sum_{\lambda_{i}>\theta^{2}} \log \frac{\lambda_{i}}{\theta^{2}}, \tag{4}
\end{equation*}
$$

where $\lambda_{i}(i=1,2, \cdots)$ are the eigen-values of the integral operator with the kernel $r(s, t)$ in $L^{2}[0, T], \quad \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq 0$, and θ is determined (uniquely) by the equation
(5)

$$
\sum_{i=1}^{\infty} \min \left(\theta^{2}, \lambda_{i}\right)=\varepsilon^{2} \cdot{ }^{2)}
$$

[^0]The right-hand side of the relation (4) also equals to the ε-entropy of the infinite dimensional Gaussian random variable $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, \cdots\right)^{3}$:

$$
\begin{equation*}
X_{i}^{*}=\int_{0}^{T} \varphi_{i}(t) X(t) d t^{4)} \quad(i=1,2, \cdots) \tag{6}
\end{equation*}
$$

where $\varphi_{i}(t)$ is the eigen-function of the integral operator corresponding to the eigenvalue λ_{i} and $E\left[X_{i}^{*} X_{j}^{*}\right]=\lambda_{i} \delta_{i j}$.

As an example, if in particular the sequence $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq 0$ of the eigen-values of the integral operator with the kernel corresponding to a Gaussian process takes the form: $\lambda_{k}=c k^{-s}(s>1 ; k=1,2, \cdots)$, then, the ε-entropy of the process is

$$
\begin{equation*}
H_{\mathrm{s}}(X)=O\left(\varepsilon^{-\frac{2}{s-1}}\right) . \tag{7}
\end{equation*}
$$

Now, we proceed to a Gaussian process $X(A), A \in S^{d-1}$, with mean 0 . Assume the continuity of the covariance function $r(A, B)=E[X(A) X(B)]$ in $S^{d-1} \times S^{d-1}$, so $\sum_{i=1}^{\infty} \lambda_{i}$ is finite (see the discussion in the footnote 2)) where λ_{i}, $i=1,2, \cdots$, are the eigenvalues of the integral operator with the kernel $r(A, B)$ in $L^{2}\left(S^{d-1}, d \sigma\right)$. Then, the following entirely analogous result holds, and we state it as a theorem.

Theorem 1. The e-entropy $H_{\varepsilon}(X)$ of the above Gaussian process $X(A)$, $A \in S^{d-1}$ is

$$
H_{\varepsilon}(X)=\frac{1}{2} \sum_{\lambda_{i}>\theta^{2}} \log \frac{\lambda_{i}}{\theta^{2}}
$$

where $\lambda_{i}(i=1,2, \cdots)$ with $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq 0$ are eigen-values of the integral operator and θ is determined by the equation (5). The right-hand side of the relation (4') equals also to the e-entropy of the infinite dimensional Gaussian random variable $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, \cdots\right)$:

$$
X_{i}^{*}=\int_{S^{d-1}} \varphi_{\imath}(A) X(A) d \sigma(A) \quad(i=1,2, \cdots)
$$

3) The ε-entropy of X^{*} is defined as $H_{\varepsilon}\left(X^{*}\right)=\inf I\left(\tilde{X}^{*}, X^{*}\right)$ where the infimum is taken for all infinite dimensional approximating random variables $\tilde{X}^{*}=\left(\widetilde{X}_{1}^{*}, \widetilde{X}_{2}^{*}, \cdots\right)$ satisfying the condition: $\sum_{i=1}^{\infty} E\left[\left(\widetilde{X}_{i}^{*}-X_{i}^{*}\right)^{2}\right] \leqq \varepsilon^{2}$.
4) This (Bochner) integral is determined as an element of $L^{2}(\Omega)$.
where $\varphi_{i}(A)$ is the eigen-function of the integral operator corresponding to the eigenvalue λ_{i}, and $E\left[X_{i}^{*} X_{j}^{*}\right]=\lambda_{i} \delta_{i j}$.

Proof. The proof is quite similar to the proof for one dimensional parameter case dealt by M.S. Pinsker [3], except for the construction of the process $\dot{\xi}$ ([3], formula (132)). The proof, however, can be carried out by using the extension theorem of Urysohn, so that we shall not continue the proof further.

§3. The main result

We are now in a position to prove our main result.
Theorem 2. The e-entropy of the Brownian motion with the d-dimensional spherical parameter is of order $\varepsilon^{-2(d-1)}$;

$$
\begin{equation*}
H_{\varepsilon}(X)=O\left(\varepsilon^{-2(d-1)}\right) \tag{8}
\end{equation*}
$$

Proof. According to H.P. McKean [4] the Brownian motion with the d-dimensional parameter can be expanded as a sum of mutually independent Gaussian processes associated with spherical harmonics. We state this expansion and some related results with the Gaussian process $X(A), A \in S^{d-1}$.

$$
\begin{equation*}
X(A)=\sum_{n \geq 0} \sum_{l=1}^{D(n)} x_{n}^{l}(1) h_{n}^{l}(A), A \in S^{d-1} \tag{9}
\end{equation*}
$$

where $h_{n}^{l}(A)$ is a spherical harmonics of degree n satisfying

$$
\int_{S^{d-1}} h_{n}^{l}(A) h_{m}^{k}(A) d \sigma(A)= \begin{cases}1, & \text { if } l=k, n=m \tag{10}\\ 0, & \text { otherwise },\end{cases}
$$

$D(n)$ is the dimension of the vector space spanned by all the spherical harmonics of degree n,

$$
\begin{equation*}
D(n)=(2 n-2+d) \frac{(n-3+d)!}{(d-2)!n!} \quad(d \geqq 2, n \geqq 0)^{5} \tag{11}
\end{equation*}
$$

and $x_{n}^{l}(1)(n \geqq 0,1 \leqq l \leqq D(n))$ are mutually independent Gaussian random variables which can be expressed in the form

$$
\begin{equation*}
x_{n}^{l}(1) \equiv x_{n}^{l}=C(d) \int_{0}^{1} C_{n}(u) d B_{n}^{l}(u) \tag{12}
\end{equation*}
$$

[^1]The processes $B_{n}^{l}(u)(n \geqq 0,1 \leqq l \leqq D(n))$ appeared in the above expression are mutually independent standard Brownian motions and

$$
\begin{equation*}
C_{n}(u)=\frac{\int_{0}^{\cos ^{-1} u} p_{n}(\cos \theta) \sin ^{d-2} \theta d \theta}{\int_{0}^{\pi} \sin ^{d-2} \theta d \theta}, n \geqq 0 \tag{13}
\end{equation*}
$$

with $p_{n}(\cos \theta)=C_{n}^{\frac{d-2}{2}}(\cos \theta) / C_{n}^{\frac{d-2}{2}}(1)$, where $C_{n}^{\nu}(\cdot)$ is the Gegenbauer polynomial and $C(d)$ is a constant depending only on d.

By the expansion (9) and by the independence of the random variables x_{n}^{l} with $E\left[x_{n}^{l}\right]=0 \quad(n \geqq 0,1 \leqq l \leqq D(n))$ we easily see that the covariance function of the process $X(A)$ is expressed in the form

$$
\begin{equation*}
r(A, B)=\sum_{n \geq 0} \sum_{l=1}^{D(n)} E\left[\left(x_{n}^{l}\right)^{2}\right] h_{n}^{l}(A) h_{n}^{l}(B) . \tag{14}
\end{equation*}
$$

Using this, Mercer's expansion theorem shows us that the eigen-values $\lambda_{n}^{l}(n \geqq 0,1 \leqq l \leqq D(n))$ of the integral operator with the kernel $r(A, B)$ are equal to $E\left[\left(x_{n}^{l}\right)^{2}\right]$. Therefore, if we know the amount $E\left[\left(x_{n}^{l}\right)^{2}\right]$ we can obtain the ε-entropy of the Brownian motion with the parameter space S^{d-1} by the formula (4'). In fact, we can prove in the following that for large $n, E\left[\left(x_{n}^{l}\right)^{2}\right]=O\left(n^{-d}\right), 1 \leqq l \leqq D(n)$, holds. Once the result is shown, then just by renumbering the double sequence of random variables $x_{0}^{1}, x_{1}^{1}, x_{1}^{2}$, $\cdots, x_{1}^{D(1)}, x_{2}^{1}, \cdots$ into the ordinary sequence $x_{1}^{\prime}, x_{2}^{\prime}, \cdots$, while keeping the original order, we can easily apply Theorem 1 in $\S 2$. If x_{k}^{\prime}, for large k, corresponds to the original random variable $x_{N}^{M}(1 \leqq M \leqq D(N))$, then by the relation $\sum_{n=0}^{N} n^{d-2}=O\left(N^{d-1}\right)$ (this nearly equals to k) and by the formula (11) $\left(D(n)=O\left(n^{d-2}\right)\right.$ for large $\left.n\right)$, we obtain $N=O\left(k^{\frac{1}{d-1}}\right)$, so that $E\left[\left(x_{k}^{\prime}\right)^{2}\right]=O\left(\left(k^{\frac{1}{d-1}}\right)^{-d}\right)=O\left(k^{-\frac{d}{d-1}}\right)$. Then, by this and the formula (7), follows the desired result $H_{\varepsilon}(X)=O\left(\varepsilon^{-\frac{d}{d-1}-1}\right)=O\left(\varepsilon^{-2(d-1)}\right)$.

Therefore, in the following, we are to prove that

$$
\begin{equation*}
E\left[\left(x_{n}^{l}\right)^{2}\right]=O\left(n^{-d}\right), \quad 1 \leqq l \leqq D(n) \tag{15}
\end{equation*}
$$

holds for large n.

First of all, we show the formula (15) in case the dimension $d=2$ and 3 , and then, generalizing it, we proceed to prove the formula (15) for $d \geqq 4$, that is, (I) in case d is an even integer and (II) when d is odd.

In case $d=2, p_{n}(\cos \theta)$ in the expression (13) turns out to be $\cos n \theta$, so that $C_{n}(u)=\frac{1}{n \pi} \sin \left(n \cos ^{-1} u\right)$. From this we have,

$$
\begin{aligned}
& E\left[\left(x_{n}^{l}\right)^{2}\right]=\frac{1}{n^{2} \pi} \int_{0}^{1} \sin ^{2}\left(n \cos ^{-1} u\right) d u \\
& \quad=\frac{1}{n^{2} \pi} \int_{0}^{\frac{\pi}{2}} \sin ^{2} n \theta \sin \theta d \theta \\
& \quad=O\left(n^{-2}\right) .
\end{aligned}
$$

While in case $d=3, \quad p_{n}(\cos \theta)=P_{n}(\cos \theta)$, hence we have $C_{n}(u)=\frac{1}{2} \frac{P_{n-1}(u)-P_{n+1}(u)}{2 n+1}$ where $P_{n}(\cdot)$ is the $n-t h$ Legendre polynomial. Then, by the orthogonality of the Legendre polynomials, we obtain

$$
\begin{aligned}
E\left[\left(x_{n}^{l}\right)^{2}\right] & =\frac{1}{(2 n+1)^{2}}\left\{\int_{0}^{1}\left(P_{n+1}(u)\right)^{2} d u+\int_{0}^{1}\left(P_{n-1}(u)\right)^{2} d u\right\} \\
& =O\left(n^{-3}\right) .
\end{aligned}
$$

In case $d \geqq 4$, by the formula (12), we have

$$
E\left[\left(x_{n}^{l}\right)^{2}\right]=(C(d))^{2} \int_{n}^{1}\left(C_{n}(u)\right)^{2} d u
$$

$$
=(\mathrm{a} \text { constant depending on } d \text { only }) \times\left\{C_{n}^{\frac{d-2}{2}}(1)\right\}^{-2}
$$

$$
\times \int_{0}^{1}\left\{\int_{0}^{\cos ^{-1} u} C_{n}^{\frac{d-2}{2}}(\cos \theta) \sin ^{d-2} \theta d \theta\right\}^{2} d u
$$

and this expression becomes,

$$
O\left(n^{-2 d+\theta}\right) \times \int_{0}^{1}\left\{\int_{0}^{\cos ^{-1} u} C_{n}^{\frac{d-2}{2}}(\cos \theta) \sin ^{d-2} \theta d \theta\right\}^{2} d u
$$

for large n, since $C_{n}^{\frac{d-2}{2}}(1)=\frac{\Gamma(n+d-2)}{n!\Gamma(d-2)}=O\left(n^{d-3}\right)$.
To prove $E\left[\left(x_{n}^{l}\right)^{2}\right]=O\left(n^{-d}\right)$, we must show that the above integral (we denote it by I_{d}) is of order $O\left(n^{d-6}\right)$.
(I) The proof of the fact that $I_{d}=O\left(n^{d-6}\right)$ for $d=2 p+2(p \geqq 1$, integer).

First we estimate the integrand of the above integral. Let the following integral be denoted by $I_{p}(u)$,

$$
I_{p}(u)=\int_{0}^{\cos ^{-1} u} C_{n}^{\frac{d-2}{2}}(\cos \theta) \sin ^{d-2} \theta d \theta=\int_{0}^{\cos ^{-1} u} C_{n}^{p}(\cos \theta) \sin ^{2 p} \theta d \theta .
$$

The integrand $C_{n}^{p}(\cos \theta) \sin ^{2 p} \theta$ of the above integral becomes, by using the recurrence formula for the Gegenbauer polynomials

$$
\begin{equation*}
\sin ^{2} \theta C_{n}^{\nu+1}(\cos \theta)=\frac{1}{2 \nu}\left\{(n+2 \nu) C_{n}^{\nu}(\cos \theta)-(n+1) \cos \theta C_{n+1}^{\nu}(\cos \theta)\right\} \tag{16}
\end{equation*}
$$

and the formula $\sin \theta C_{n}^{1}(\cos \theta)=\sin (n+1) \theta$,
$C_{n}^{p}(\cos \theta) \sin ^{2 p} \theta=\sin ^{2} \theta C_{n}^{p}(\cos \theta) \sin ^{2(p-1)} \theta$

$$
\begin{aligned}
& =\frac{1}{2(p-1)}\left\{(n+2(p-1)) C_{n}^{p-1}(\cos \theta) \sin ^{2(p-1)} \theta-(n+1) \cos \theta C_{n+1}^{p-1}(\cos \theta) \sin ^{2(p-1)} \theta\right\} \\
& =\frac{1}{2^{p-1}(p-1)!}\left\{A_{1}^{p}(n) \sin \theta \sin (n+1) \theta+A_{2}^{p}(n) \cos \theta \sin \theta \sin (n+2) \theta\right. \\
& \left.\quad \quad+A_{3}^{p}(n) \cos ^{2} \theta \sin \theta \sin (n+3) \theta+\cdots+A_{p}^{p}(n) \cos ^{p-1} \theta \sin \theta \sin (n+p) \theta\right\}
\end{aligned}
$$

where $A_{1}^{p}(n), A_{2}^{p}(n), \cdots, A_{p}^{p}(n)$ are polynomials of n of order $(p-1)$. Noticing that $\sin \theta \sin (n+1) \theta, \cos \theta \sin \theta \sin (n+2) \theta, \cdots$ and $\cos ^{p-1} \theta \sin \theta \sin (n+p) \theta$ are all expressed as the linear combinations of $\cos n \theta, \cos (n+2) \theta, \cdots$, $\cos (n+2 p) \theta$, we can show that the integral becomes

$$
\begin{equation*}
I_{p}(u)=\sum_{k=0}^{p} \frac{B_{k}^{p}(n)}{n+2 k} \sin (n+2 k) \alpha, \quad \alpha=\cos ^{-1} u \tag{17}
\end{equation*}
$$

where $B_{k}^{p}, k=0,1, \cdots, p$, are polynomials of n of order at most ($p-1$). Therefore, changing the variable of integration into α, and making use of the fact

$$
\int_{0}^{\frac{\pi}{2}} \sin (n+2 k) \alpha \sin (n+2 l) \alpha \sin \alpha d \alpha=\frac{1}{2}\left\{\frac{1}{1-4(k-l)^{2}}+O\left(n^{-2}\right)\right\}
$$

we have

$$
I_{d}=\int_{0}^{1}\left\{I_{p}(u)\right\}^{2} d u=\int_{0}^{\frac{\pi}{2}}\left\{\sum_{k=0}^{p} \frac{B_{k}^{p}(n)}{n+2 k} \sin (n+2 k) \alpha\right\}^{2} \sin \alpha d \alpha
$$

$$
\begin{aligned}
& =\sum_{k, l=0}^{p} \frac{B_{k}^{p}(n) B_{l}^{p}(n)}{(n+2 k)(n+2 l)} \int_{0}^{\frac{\pi}{2}} \sin (n+2 k) \alpha \sin (n+2 l) \alpha \sin \alpha d \alpha \\
& =O\left(n^{2 p-4}\right)\left(=O\left(n^{d-6}\right)\right) .
\end{aligned}
$$

The last estimation is valid if the coefficient of the term $n^{2 p-4}$ never vanishes, that is, if at least one of the coefficients of the term n^{p-1} of the polynomials $B_{k}^{p}(n)(k=0,1, \cdots, p)$ does not vanish. But this is true, for example, $B_{0}^{p}(n)$ has non zero coefficient of n^{p-1}.
(II) The proof of the fact that $I_{d}=O\left(n^{d-6}\right)$ for $d=2 p+3(p \geqq 1$, integer).
Similarly to (I), we denote the following integral by $I_{p}(u)$,

$$
I_{p}(u)=\int_{0}^{\cos ^{-1} u} C_{n}^{\frac{d-2}{2}}(\cos \theta) \sin ^{d-2} \theta d \theta=\int_{0}^{\cos ^{-1} u} C_{n}^{p+\frac{1}{2}}(\cos \theta) \sin ^{2 p+1} \theta d \theta
$$

then, by the relation

$$
\begin{equation*}
C_{n}^{p+\frac{1}{2}}(\cos \theta)=\frac{2^{p} p!}{(2 p)!\sin ^{p} \theta} P_{n+p}^{p}(\cos \theta) \tag{18}
\end{equation*}
$$

for the half-integer Gegenbauer polynomial $C_{n}^{p+\frac{1}{2}}$ and the associated Legendre polynomial P_{n+p}^{p}, we have

$$
I_{p}(u)=c(d) \int_{0}^{\cos ^{-1} u} P_{n+p}^{p}(\cos \theta) \sin ^{p+1} \theta d \theta
$$

where $c(d)$ is a constant depending on d. By definition,

$$
P_{n+p}^{p}(x)=\left(1-x^{2}\right)^{\frac{p}{2}} \frac{d^{p}}{d x^{p}} P_{n+p}(x)
$$

and by changing the variable of integration into $x=\cos \theta$, we get

$$
\begin{aligned}
\frac{1}{c(d)} I_{p}(u) & =\int_{u}^{1} \frac{d^{p}}{d x^{p}} P_{n+p}(x)\left(1-x^{2}\right)^{p} d x \\
& =-\left(1-u^{2}\right)^{p} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)+2 p \int_{u}^{1} x\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x) d x
\end{aligned}
$$

From this, the desired integral I_{d} is

$$
\begin{align*}
& {[c(d)]^{2} \cdot I_{d}=[c(d)]^{2} \int_{0}^{1}\left\{I_{p}(u)\right\}^{2} d u=\int_{0}^{1}\left\{\left(1-u^{2}\right)^{p} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)\right\}^{2} d u} \\
& \text { (19) } \quad-4 p \int_{0}^{1}\left(1-u^{2}\right)^{p} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)\left\{\int_{u}^{1} x\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x) d x\right\} d u \tag{19}
\end{align*}
$$

$$
+4 p^{2} \int_{0}^{1}\left\{\int_{u}^{1} x\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x) d x\right\}^{2} d u
$$

To estimate these integrals, we first express $\left(1-u^{2}\right)^{p} \frac{d^{p}}{d u^{p}} P_{n}(u)$ in terms of $P_{n}(u)$ and $P_{n-1}(u)$. For this purpose, we make use of the recurrence formula of the Legendre polynomials $\left(1-x^{2}\right) P_{n}^{\prime}(x)=n\left(P_{n-1}(x)-x P_{n}(x)\right)$ and the differential equation derived from the Legendre's differential equation

$$
\begin{align*}
& \left(1-x^{2}\right) \frac{d^{k}}{d x^{k}} P_{n}(x)-2(k-1) x \frac{d^{k-1}}{d x^{k-1}} P_{n}(x) \tag{20}\\
+ & (n+(k-1))(n-(k-2)) \frac{d^{k-2}}{d x^{k-2}} P_{n}(x)=0, \quad(k \geqq 2) .
\end{align*}
$$

For any $p \geqq 1$, we have

$$
\begin{equation*}
\left(1-u^{2}\right)^{p} \frac{d^{p}}{d u^{p}} P_{n}(u)=P_{n-1}(u) Q_{n-1, p}(u)+P_{n}(u) Q_{n, p}(u) \tag{21}
\end{equation*}
$$

where $Q_{n-1, p}(u)$ and $Q_{n, p}(u)$ are polynomials of u of the form

$$
\begin{equation*}
Q_{n-1, p}(u)=\sum_{k=0}^{p-1} C_{k}(n) u^{k}, \quad Q_{n, p}(u)=\sum_{k=0}^{p} D_{k}(n) u^{k} . \tag{22}
\end{equation*}
$$

The coefficients $C_{0}(n), C_{1}(n), \cdots, C_{p-1}(n), D_{0}(n), D_{1}(n), \cdots, D_{p}(n)$ have the following properties: (i) $C_{p-1}(n) \neq 0, D_{p}(n) \neq 0$ (ii) they are the polynomials of n with the order at most p (iii) if p is an even integer, then $D_{0}(n)$ is the polynomial of order p and if p is odd, $C_{0}(n)$ is the polynomial of order p. By these facts and by the property of the Legendre polynomial: $\int_{0}^{1}\left\{P_{n}(x)\right\}^{2} d x=O\left(n^{-1}\right)$ for large n, we can easily show that the first integral of the right-hand side of the equality (19) becomes,

$$
\begin{aligned}
\int_{0}^{1}\left\{\left(1-u^{2}\right)^{p} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)\right\}^{2} d u & =\int_{0}^{1}\left(1-u^{2}\right)^{2}\left\{\left(1-u^{2}\right)^{p-1} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)\right\}^{2} d u \\
& =O\left(n^{2(p-1)}\right) \cdot O\left(n^{-1}\right)=O\left(n^{d-8}\right)
\end{aligned}
$$

For the second integral of the right-hand side of (19), we have

$$
\begin{aligned}
& \left|\int_{0}^{1}\left(1-u^{2}\right)^{p} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)\left\{\int_{u}^{1} x\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x) d x\right\} d u\right| \\
& \leqq\left\{\int_{0}^{1}\left\{\left(1-u^{2}\right)^{p} \frac{d^{p-1}}{d u^{p-1}} P_{n+p}(u)\right\}^{2} d u\right\}^{1 / 2} \cdot\left\{\int_{0}^{1}\left\{\int_{u}^{1} x\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x) d x\right\}^{2} d u\right\}^{1 / 2}
\end{aligned}
$$

The first term of the product on the right-hand side of the inequality, by the above result, has the order $O\left(n^{\frac{d-6}{2}}\right)$ and the integrand of the second term can be evaluated as follows:

$$
\begin{aligned}
\left\{\int_{u}^{1} x\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}}\right. & \left.P_{n+p}(x) d x\right\}^{2} \leqq \int_{u}^{1} x^{2} d x \cdot \int_{u}^{1}\left\{\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x)\right\}^{2} d x \\
& <\int_{0}^{1} x^{2} d x \cdot \int_{0}^{1}\left\{\left(1-x^{2}\right)^{p-1} \frac{d^{p-1}}{d x^{p-1}} P_{n+p}(x)\right\}^{2} d x=O\left(n^{d-6}\right)
\end{aligned}
$$

Hence the second integral is at most of order $O\left(n^{d-6}\right)$. As for the last integral of the equality (19), by a similar approach, we estimate it to be at most of order $O\left(n^{d-6}\right)$. This proves the desired result for $d=2 p+3(p \geqq 1)$, and thus we have proved the theorem completely.

References

[1] A.N. Kolmogorov: Theory of the transmission of information, Amer. Math. Soc. Translations Ser. 2, 33 (1963), 291-321.
[2] A.N. Kolmogorov and V.M. Tihomirov: ε-entropy and ε-capacity of sets in functional spaces. Amer. Math. Soc. Translations Ser. 2, 17 (1961), 277-364.
[3] М.С. Пинскер, Гауссовские источники, Проблемы Пере5ачи Информации, 14 (1963) 59-100.
[4] H.P. McKean: Brownian motion with a several-dimensional time, Theory Prob. Appl., 8-4 (1963), 335-354.
[5] A. Erdélyi and others: Higher transcendental functions I-III, McGraw-Hill Publ. New York (1953-1955).

Kobe University of Commerce

[^0]: 2) By Mercer's theorem

 $$
 \sum_{i=1}^{\infty} \lambda_{i}=\sum_{i=1}^{\infty} \lambda_{i} \int_{0}^{T}\left[\varphi_{i}(t)\right]^{2} d t=\int_{0}^{T} \sum_{i=1}^{\infty} \lambda_{i}\left[\varphi_{i}(t)\right]^{2} d t=\int_{0}^{T} r(t, t) d t<\infty .
 $$

[^1]: 5) For $d=2$ and $n=0, D(n)=1$.
