HIGHER DERIVATIONS AND CENTRAL SIMPLE ALGEBRAS

A. ROY and R. SRIDHARAN
(Dedicated to the memory of Tadasi Nakayama)

Introduction. Let K be a commutative ring, A a K-algebra, and B a K-subalgebra of A. The object of this paper is to prove some results on higher derivations (in the sense of Jacobson [4]) of B into A. In $\S 1$ we introduce a notion of equivalence among higher derivations. With this notion of equivalence, we prove in §2 (Theorem 1) that the equivalence classes of higher K-derivations of B into A are in one-one correspondence with the isomorphism classes of certain filtered $B \otimes_{{ }_{K}} A^{\circ}$-modules, where A° denotes the opposite algebra of A. In $\S 3$ we give a cohomological criterion for the extendability of a higher derivation of a commutative ring to a crossed product. We use this result in $\S 4$ to show (Theorem 2) that if A is central simple over K and B is semi-simple, then any higher derivation of B into A which maps K into K can be extended to a higher derivation of A. This result is a generalization of a theorem of JacobsonHochschild ([2], Theorem 6) on extendability of derivations.

§ 1 Generalities on higher derivations.

Let B be a subring of a ring A. We recall that a higher derivation of rank n of B into A is a sequence of additive maps $\delta=\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$ of B into A such that

$$
d_{i}\left(b b^{\prime}\right)=\sum_{0 \leqslant j \leqslant i} d_{j}(b) d_{i-j}\left(b^{\prime}\right),
$$

$b, b^{\prime} \in B, 0 \leqslant i \leqslant n$. If A is an algebra over a commutative ring K and B a K-subalgebra of A, then δ is called a higher K-derivation if the maps d_{i} are K-linear, i.e. if the maps d_{i} vanish on K for $i \geqslant 1$. The following statement is easily checked:

$$
\begin{equation*}
\text { If }\left(d_{0}=1, d_{1}, \cdots, d_{n-1}, d_{n}\right) \text { and }\left(d_{0}=1, d_{1}, \cdots, d_{n-1}, d_{n}^{\prime}\right) \tag{1.1}
\end{equation*}
$$

[^0]are higher derivations of B into A, then $d_{n}-d_{n}^{\prime}$ is a derivation.
For any ring Λ, let $T_{n}(\Lambda)$ be the ring $\Lambda[X] /\left(X^{n+1}\right)$. We shall denote the image of X in $T_{n}(\Lambda)$ by x. Let $\eta_{A}: T_{n}(\Lambda) \rightarrow \Lambda$ be the ring epimorphism defined by $\eta_{A}\left(\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{n} x^{n}\right)=\lambda_{0}$. Since ker η_{A} is nilpotent, $1+\operatorname{ker} \eta_{A}$ is a subgroup of the group of units of $T_{n}(\Lambda)$. We shall denote this subgroup by $U_{n}(\Lambda)$.

With A and B as above, if $\delta: B \rightarrow A$ is a higher derivation, then the map $\alpha_{\grave{\delta}}: B \rightarrow T_{n}(A)$ given by $\alpha_{\grave{\delta}}(b)=\sum_{0 \leqslant i \leqslant n} d_{\imath}(b) x^{i}$ is a section of η_{A} on B, i.e., α_{δ} is a ring homomorphism such that $\eta_{A} \circ \alpha_{\delta}=$ identity. Conversely, let α be a section of η_{A} on B. If $\alpha(b)=\sum_{0 \leqslant i \leqslant n} d_{i}(b) x^{i}$, then $\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$ is a higher derivation of B into A.

If $\delta, \delta^{\prime}: B \rightarrow A$ are two higher derivations, we say that they are equivalent, if there exists an element $u \in U_{n}(A)$ such that $\alpha_{\delta^{\prime}}=$ int $u \circ \alpha_{\delta}$, where int u denotes the inner automorphism of $T_{n}(A)$ given by u. Clearly, this is an equivalence relation. More explicitly, δ and δ^{\prime} are equivalent if and only if there exist elements $u_{0}=1, u_{1}, \cdots, u_{n} \in A$ such that

$$
\begin{equation*}
\sum_{0 \leqslant j \leqslant i} u_{j} d_{i-j}(b)=\sum_{0 \leqslant j \leqslant i} d_{i-j}^{\prime}(b) u_{j} \tag{*}
\end{equation*}
$$

for $b \in B$ and $0 \leqslant i \leqslant n$. A higher derivation is called inner if it is equivalent to the higher derivation $\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$, where $d_{i}=0$ for $i \geqslant 1$.

§ 2. Higher derivations and filtered modules

Let K be a commutative ring, A a K-algebra, and B a K-subalgebra of A. For any positive integer n, we denote by $\bar{A}(n)$, the graded $B \otimes{ }_{K} A^{\circ}$-module $\sum_{0 \leqslant i \leqslant n} \bar{A}_{i}$, where \bar{A}_{i} is the $B \otimes_{K} A^{\circ}$-module A. Let \bar{e}_{i} denote the element 1 of \bar{A}_{i}. Let $\bar{\theta}$ denote the graded endomorphism of degree -1 of $\bar{A}(n)$ defined by $\bar{\theta}_{2}\left(\bar{e}_{2}\right)=\bar{e}_{\imath-1}$ for $i>0$, and $\bar{\theta}_{0}=0$.

We consider the class \mathscr{C} of triples (M, ψ, θ), where M is a $B \otimes_{K_{K}} A^{\circ}-$ module with a filtration $0 \subset M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M$, $\quad \theta \quad$ a $B \otimes_{K} A^{\circ}$ endomorphism of degree -1 of M and $\psi: E^{\circ}(M) \rightarrow \bar{A}(n)$ an isomorphism of graded $B \otimes_{K} A^{\circ}$-modules, where $E^{\circ}(M)$ denotes the associated graded module of M, such that the diagram

is commutative. With the natural filtration on $\bar{A}(n)$, the triple $\left(\bar{A}(n), 1_{\bar{A}(n)}, \bar{\theta}\right)$ is clearly a member of \mathscr{C}. We define a morphism $(M, \psi, \theta) \rightarrow$ $\left(M^{\prime}, \psi^{\prime}, \theta^{\prime}\right)$ in \mathscr{C} to be a map of filtered $B \otimes{ }_{K} A^{\circ}$-modules $M \rightarrow M^{\prime}$ which is compatible with ψ, ψ^{\prime} and θ, θ^{\prime}.

Thus \mathscr{C} becomes a category. Clearly, every morphism in \mathscr{C} is an isomorphism.

Let $\delta=\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$ be a higher K-derivation of rank n of B into A. On the free right A-module $A_{\delta}=\sum_{0 \leqslant i \leqslant n} e_{i} A$, with basis (e_{2}), we define a left B-module structure by setting $b\left(e_{i} a\right)=\left(\sum_{0 \leqslant j \leqslant i} e_{j} d_{i-j} b\right) a$ for $0 \leqslant i \leqslant n, b \in B, a \in A$. This makes A_{δ} a $B \otimes{ }_{K} A^{\circ}$-module. We define a filtration $0 \subset\left(A_{\partial}\right)_{0} \subset\left(A_{\delta}\right)_{1} \subset \cdots \subset\left(A_{\delta}\right)_{n}=A_{\delta} \quad$ by taking $\quad\left(A_{\delta}\right)_{i}$ to be the $B \otimes{ }_{K} A^{\circ}$-submodule of A_{δ} generated by e_{0}, \cdots, e_{i}. We also define a $B \otimes_{K} A^{\circ}$-endomorphism θ_{δ} of degree -1 of the filtered module A_{δ} by setting $\theta_{\delta}\left(e_{0}\right)=0$ and $\theta_{\delta}\left(e_{i}\right)=e_{i-1}$ for $i \geqslant 1$. The map $\left(A_{\delta}\right)_{i} \rightarrow \bar{A}_{i}$ which sends $\sum_{0 \leqslant j \leqslant i} e_{j} a_{j}$ to $\bar{e}_{i} a_{i}$ is $B \otimes{ }_{K} A^{\circ}$-linear. This map is an isomorphism for $i=0$ and has $\left(A_{\delta}\right)_{i-1}$ as its kernel for $i \geqslant 1$. We thus get an isomorphism

$$
\psi_{\delta}: E^{\circ}\left(A_{\delta}\right) \rightarrow \bar{A}(n)
$$

of graded $B \otimes{ }_{K} A^{\circ}$-modules. Clearly, $\left(A_{\delta}, \psi_{\delta}, \theta_{\delta}\right)$ is an object of \mathscr{C}.
Now let $\delta=\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$ and $\delta^{\prime}=\left(d_{0}^{\prime}=1, d_{1}^{\prime}, \cdots, d_{n}^{\prime}\right)$ be two equivalent higher K-derivations of B into A. There exist elements $u_{0}=1, u_{1}, \cdots, u_{n} \in A$ satisfying the condition (*) of $\S 1$. The isomorphism $A_{\delta} \rightarrow A_{\partial^{\prime}}$ of right A-modules which sends e_{i} to $\sum_{0 \leqslant j \leqslant i} e_{j}^{\prime} u_{i-j}$ is easily verified to be left B-linear and actually gives an isomorphism in \mathscr{C} of $\left(A_{\delta}, \psi_{\delta}, \theta_{\delta}\right)$ onto ($A_{\partial^{\prime}}, \psi_{\partial^{\prime}}, \theta_{\partial^{\prime}}$). Thus, equivalent higher K-derivations of B into A give rise to isomorphic objects in \mathscr{C}.

Consider now any object $(M, \psi, \theta) \in \mathscr{C}$. We then have for $1 \leqslant i \leqslant n$, the following commutative diagrams with exact rows:

where $M_{-1}=0$. Let $s_{n}: \bar{A}_{n} \rightarrow M_{n}$ be a right A-linear map such that $\psi_{n} \circ s_{n}=$ identity. The map s_{n} induces right A-linear maps $s_{i}(0 \leqslant i<n)$ such that $\theta_{i} \circ s_{i}=s_{i-1} \circ \bar{\theta}_{i}$ and we have $\psi_{i} \circ s_{i}=$ identity. If $s_{i}\left(\bar{e}_{i}\right)=m_{i}$, we have $M_{i}=m_{0} A+m_{1} A+\cdots+m_{\imath} A$. Since for any $b \in B, \psi_{i}\left(b m_{i}-m_{i} b\right)=0$, it follows that $b m_{i}-m_{\imath} b \in M_{i-1}$. Let $b m_{n}-m_{n} b=\sum_{0 \leqslant i \leqslant n-1} m_{i} d_{n-i} b$. Applying $\theta_{i+1} \circ \cdots \circ \theta_{n}$, we get

$$
b m_{i}-m_{i} b=\sum_{0 \leqslant j \leqslant i-1} m_{j} d_{\imath-j} b,
$$

since $\theta_{i}\left(m_{j}\right)=m_{j-1}$ for $1 \leqslant j \leqslant i$ and $\theta_{i}\left(m_{0}\right)=0$. Now (setting $d_{0}=1$)

$$
\begin{aligned}
& \quad \sum_{0 \leqslant k \leqslant n-1} m_{n-k} d_{k}\left(b b^{\prime}\right)=b b^{\prime} m_{n}-m_{n} b b^{\prime} \\
& =b\left(b^{\prime} m_{n}-m_{n} b^{\prime}\right)+\left(b m_{n}-m_{n} b\right) b^{\prime} \\
& =\sum_{0 \leqslant i \leqslant n-1} b m_{i} d_{n-i} b^{\prime}+\left(\sum_{0 \leqslant i \leqslant n-1} m_{i} d_{n-i} b\right) b^{\prime} \\
& =\sum_{0 \leqslant i \leqslant n-1}\left(\sum_{0 \leqslant j \leqslant i} m_{j} d_{i-j} b\right) d_{n-i} b^{\prime} \\
& \quad \quad \quad \sum_{0 \leqslant i \leqslant n-1} m_{i}\left(d_{n-i} b\right) b^{\prime} .
\end{aligned}
$$

Comparing the coefficients of m_{n-k} on both sides, we get

$$
d_{k}\left(b b^{\prime}\right)=\sum_{0 \leqslant i \leqslant k} d_{i}(b) d_{k-i}\left(b^{\prime}\right), \quad 1 \leqslant k \leqslant n,
$$

i.e. $\delta=\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$ is a higher derivation of rank n of B into A.

The right A-linear map $f: A_{\dot{\delta}} \rightarrow M$ defined by $f\left(e_{i}\right)=m_{i}$ is clearly B-linear, and is in fact an isomorphism in \mathscr{C}.

Let now $s_{n}^{\prime}: \bar{A}_{n} \rightarrow M_{n}$ be another right A-linear map such that $\psi_{n} \circ s_{n}^{\prime}$ $=$ identity and let $s_{i}^{\prime}: \bar{A}_{i} \rightarrow M_{i}$ be such that $\theta_{i} \circ s_{i}^{\prime}=s_{i-1}^{\prime} \circ \bar{\theta}_{i}$ for $0 \leqslant i \leqslant n$. Let $s_{i}^{\prime}\left(\bar{e}_{i}\right)=m_{i}^{\prime}$. Since $\psi_{n}\left(m_{n}^{\prime}-m_{n}\right)=0$, we have $\dot{m}_{n}^{\prime}-m_{n} \in M_{n-1}$. We thus have elements $u_{0}=1, u_{1}, \cdots, u_{n} \in A$ such that

$$
\begin{equation*}
m_{n}^{\prime}=\sum_{0 \leqslant i \leqslant n} m_{n-i} u_{i} . \tag{*}
\end{equation*}
$$

Applying $\theta_{k+1} \circ \cdots \circ \theta_{n}$, we get

$$
\begin{equation*}
m_{k}^{\prime}=\sum_{0 \leqslant i \leqslant k} m_{k-i} u_{i} \tag{*}
\end{equation*}
$$

Let $\delta^{\prime}=\left(d_{0}^{\prime}=1, d_{1}^{\prime}, \cdots, d_{n}^{\prime}\right)$ be the higher K-derivation corresponding to s_{n}^{\prime}. Then, for any $b \in B$,

$$
b m_{k}^{\prime}-m_{k}^{\prime} b=\sum_{1 \leqslant i \leqslant k} m_{k-i}^{\prime} d_{i}^{\prime} b
$$

From ($*)_{n}$ we have,

$$
\begin{aligned}
\sum_{1 \leqslant i \leqslant n} m_{n-i}^{\prime} d_{i}^{\prime} b & =b m_{n}^{\prime}-m_{n}^{\prime} b \\
& =\sum_{0 \leqslant i \leqslant n} b m_{n-i} u_{i}-\sum_{0 \leqslant i \leqslant n} m_{n-i} u_{i} b \\
& =\sum_{0 \leqslant i \leqslant n}\left(\sum_{0 \leqslant j \leqslant n-i} m_{j} d_{n-i-j} b\right) u_{\imath}-\sum_{0 \leqslant i \leqslant n} m_{n-\imath} u_{\imath} b .
\end{aligned}
$$

Substituting for m_{n-i}^{\prime} from $(*)_{n-i}$ in the above equation, and comparing the coefficients of m_{n-k}, we get

$$
\sum_{0 \leqslant i \leqslant k} u_{i} d_{k-i}^{\prime} b=\sum_{0 \leqslant i \leqslant k} d_{k-i} b u_{\imath},
$$

for $0 \leqslant k \leqslant n$. Thus δ^{\prime} is equivalent to δ. It follows now that for a given isomorphism class in \mathscr{C}, there exists a higher K-derivation δ of B into A, unique up to equivalence, such that $\left(A_{\delta}, \psi_{\delta}, \theta_{\delta}\right)$ belongs to that class.

Thus we have the following
Theorem 1. Let A be a K-algebra, B a K-subalgebra, and let \mathscr{C} denote the category of triples (M, ψ, θ) constructed above. The map $\delta /\left(A_{\delta}, \psi_{\delta}, \theta_{\delta}\right)$ of the set of higher K-derivations $\delta: B \rightarrow A$ into obj \mathscr{C} induces a bijection of the set of equivalence classes of these higher derivations onto the set of isomorphism classes of obj \mathscr{C}. Under this bijection, the equivalence class of inner higher derivations corresponds to the isomorphism class of $\left(\bar{A}(n), 1_{\bar{A}(n)}, \bar{\theta}\right)$.

§ 3. Extension of higher derivations to crossed products.

Let L be a commutative ring and let $\delta: L \rightarrow L$ be a higher derivation of rank n. Let L^{*} denote the group of units of L. We then have a homomorphism $\delta^{*}: L^{*} \rightarrow U_{n}(L)$ of groups, defined by

$$
\delta^{*}(\lambda)=\sum_{0 \leqslant i \leqslant n} \lambda^{-1} d_{i} \lambda x^{i}, \quad \lambda \in L^{*} .
$$

Now, let G be a finite group of automorphisms of L. Let G operate
on $T_{n}(L)$ by setting $s \sum \lambda_{i} x^{i}=\Sigma s\left(\lambda_{i}\right) x^{i}, s \in G, \lambda_{i} \in L$. Clearly $U_{n}(L)$ is stable under the action of G. If δ is a higher G-derivation (i.e., if $d_{i} \circ S$ $=s \circ d_{i}$ for all $s \in G$ and $0 \leqslant i \leqslant n$), then δ^{*} is a G-homomorphism. Thus δ^{*} induces a homomorphism $H^{2}\left(\delta^{*}\right): H^{2}\left(G, L^{*}\right) \rightarrow H^{2}\left(G, U_{n}(L)\right)$. Let f : $G \times G \rightarrow L^{*}$ be a 2 -cocycle. We recall that the crossed product (L, G, f) is defined to be the free left L-module with a basis $\left(e_{s}\right)_{s \in G}$ together with a multiplication given by $\left(\lambda e_{s}\right)\left(\mu e_{t}\right)=\lambda s(\mu) f(s, t) e_{s t}, \lambda, \mu \in L, s, t \in G$.

Proposition 1. A higher G-derivation $\delta: L \rightarrow L$ can be extended to a higher derivation of the crossed product $A=(L, G, f)$ if $H^{2}\left(\delta^{*}\right)(\bar{f})=0$, where \bar{f} denotes the class of f. Conversely, if L is an integral domain and δ admits of an extension to A, then $H^{2}\left(\delta^{*}\right)(\bar{f})=0$.

Proof. Let $H^{2}\left(\delta^{*}\right)(\bar{f})=0$. This means that there exists a map $h: G \rightarrow$ $U_{n}(L)$ such that

$$
\delta^{*} f(s, t) h(s t)=h(s) \operatorname{sh}(t), \quad s, t \in G
$$

Let $h(s)=\sum h_{i}(s) x^{i}$. We define additive maps $\bar{d}_{i}: A \rightarrow A$ by setting

$$
\bar{d}_{i}\left(\lambda e_{s}\right)=\sum_{0 \leqslant j \leqslant i} d_{j}(\lambda) h_{i-j}(s) e_{s}, \lambda \in L, s \in G .
$$

It is straightforward to check that $\left(\bar{d}_{0}=1, \bar{d}_{1}, \cdots, \bar{d}_{n}\right)$ is a higher derivation of A which extends δ.

Suppose now that L is an integral domain and that $\bar{\delta}=\left(\bar{d}_{0}\right.$ $\left.=1, \bar{d}_{1}, \cdots, \bar{d}_{n}\right)$ is an extension of δ to A. We first show that for any $i(0 \leqslant \imath \leqslant n)$, we have $\bar{d}_{i}\left(e_{s}\right)=h_{\imath}(s) e_{s}$ for some map $h_{i}: G \rightarrow L$. For, let this be assumed proved for $0 \leqslant j<i$ and let $\bar{d}_{i}\left(e_{s}\right)=\sum_{t \in G} h_{i}(s, t) e_{t} ; h_{i}(s, t) \in L$. For any $\lambda \in L$, we have

$$
\begin{aligned}
\bar{d}_{i}\left(e_{s} \lambda\right) & =\sum_{0 \leqslant j \leqslant i}\left(\bar{d}_{i-j} e_{s}\right)\left(d_{j} \lambda\right) \\
& =\sum_{t \in G}\left(h_{i}(s, t) e_{t}\right) \lambda+\sum_{1 \leqslant j \leqslant i}\left(h_{i-j}(s) e_{s}\right) d_{j}(\lambda) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\bar{d}_{i}\left(e_{s} \lambda\right) & =\bar{d}_{i}\left(s(\lambda) e_{s}\right)=\sum_{0<j \leqslant i} d_{j} s(\lambda) \bar{d}_{i-j} e_{s} \\
& =\sum_{1 \leqslant j \leqslant i} d_{j} s(\lambda) h_{i-j}(s) e_{s}+s(\lambda) \sum_{t \in G} h_{i}(s, t) e_{t} .
\end{aligned}
$$

Comparing the coefficients of e_{t} for $t \neq s$, we get

$$
h_{i}(s, t) t(\lambda)=h_{i}(s, t) s(\lambda),
$$

for all $\lambda \in L$. Since $t(\lambda) \neq s(\lambda)$ for some λ, it follows that $h_{i}(s, t)=0$ for $s \neq t$. Thus we have functions $h_{i}: G \rightarrow L$ such that $\bar{d}_{i}\left(e_{s}\right)=h_{i}(s) e_{s}$, $0 \leqslant i \leqslant n$.

Now

$$
\begin{aligned}
\bar{d}_{i}\left(e_{s} e_{t}\right) & =\sum_{0 \leqslant j \leqslant i}\left(\bar{d}_{j} e_{s}\right)\left(\bar{d}_{i-j} e_{t}\right) \\
& =\sum_{0 \leqslant j \leqslant i} h_{j}(s) s h_{i-j}(t) f(s, t) e_{s t} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\bar{d}_{i}\left(e_{s} e_{t}\right) & =\bar{d}_{i}\left(f(s, t) e_{s t}\right) \\
& =\sum_{0 \leqslant j<i} d_{j} f(s, t) h_{i-j}(s t) e_{s t} .
\end{aligned}
$$

Thus, we have, for every i,

$$
\sum_{0 \leqslant j \leqslant i} d_{j} f(s, t) h_{i-j}(s t)=\sum_{0 \leqslant j \leqslant i} h_{j}(s) s h_{i-j}(t) .
$$

If $h: G \rightarrow U_{n}(L)$ is defined by $h(s)=\sum_{0 \leqslant i \leqslant n} h_{i}(s) x^{i}$, then the above equations can be written as

$$
\delta^{*} f(s, t) h(s t)=h(s) \operatorname{sh}(t),
$$

which shows that $H^{2}\left(\delta^{*}\right)(\bar{f})=0$.
Corollary. If $H^{2}(G, L)=0$, then any higher G-derivation of L can be extended to any crossed product of G and L.

The above corollary is an immediate consequence of the above proposition and the following

Lemma. If $H^{2}(G, L)=0$, then $H^{2}\left(G, U_{n}(L)\right)=0$ for every n.
Proof. We define a G-homomorphism $L \rightarrow U_{n}(L)$ by mapping λ into $1+\lambda x^{n}$. This is an isomorphism for $n=1$ and so $H^{2}\left(G, U_{1}(L)\right)=0$. For $n>1$ we have an exact sequence of G-modules

$$
0 \rightarrow L \rightarrow U_{n}(L) \rightarrow U_{n-1}(L) \rightarrow 1
$$

where the map $U_{n}(L) \rightarrow U_{n-1}(L)$ sends $\sum_{0 \leqslant i \leqslant n} \lambda_{i} x^{i}$ to $\sum_{0 \leqslant i \leqslant n-1} \lambda_{i} x^{i}$. We then have an exact sequence

$$
H^{2}(G, L) \rightarrow H^{2}\left(G, U_{n}(L)\right) \rightarrow H^{2}\left(G, U_{n-1}(L)\right) .
$$

It follows by induction on n that $H^{2}\left(G, U_{n}(L)\right)=0$.

§ 4. Higher derivations and central simple algebras

The aim of this section is to establish the following
Theorem 2. Let A be a finite dimensional central simple K-algebra and let B be a semi-simple subalgebra of A. Then any higher derivation of B into A, which maps K into itself, can be extended to a higher derivation of A.

Before proving the theorem, we prove a few lemmas.
Lemma 1. Let A be a ring, B a subring of A, and let $\delta, \delta^{\prime}: B \rightarrow A$ be two equivalent higher derivations of rank n. If δ admits of an extension to A then δ^{\prime} can also be extended to A such that these extensions are equivalent.

Proof. Let $u \in U_{n}(A)$ be such that $\alpha_{\bar{\delta}^{\prime}}=$ int $u \circ \alpha_{\delta}$. If $\bar{\delta}$ is an extension of δ to A, then int $u \circ \alpha_{\bar{\delta}}: A \rightarrow T_{n}(A)$ is a section of $\eta_{A}: T_{n}(A) \rightarrow A$ on A. This section gives the required extension of δ^{\prime} to A.

Lemma 2. Let A be a K-algebra and let B be a. K-subalgebra of A such that every K-derivation of B into A is inner. Let $\delta, \delta^{\prime}: B \rightarrow A$ be higher derivations of rank n mapping K into itself such that $\delta / K=\delta^{\prime} / K$. Then δ and δ^{\prime} are equivalent.

Proof. The case $n=1$ follows from the hypothesis that the K-derivations of B into A are inner.

Let now $n>1$ and assume by induction that $\delta_{1}=\left(d_{0}=1, d_{1}, \cdots, d_{n-1}\right)$ and $\delta_{1}^{\prime}=\left(d_{0}^{\prime}=1, d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ are equivalent. Let $u=1+u_{1} x+\cdots$ $+u_{n-1} x^{n-1} \in U_{n-1}(A)$ be such that $\alpha_{\delta_{1}^{\prime}}=$ int $u \circ \alpha_{\delta_{1}}$. Consider the element $v=1+u_{1} x+\cdots+u_{n-1} x^{n-1} \in U_{n}(A)$. The homomorphism int $v \circ \alpha_{\delta}: B$ $\rightarrow T_{n}(A)$ gives a higher derivation $\delta^{\prime \prime}=\left(d_{0}^{\prime \prime}=1, d_{1}^{\prime \prime}, \cdots, d_{n}^{\prime \prime}\right)$ equivalent to δ such that $d_{i}^{\prime \prime}=d_{i}^{\prime}$ for $0 \leqslant i \leqslant n-1$. Further $d_{n}^{\prime \prime} / K=d_{n}^{\prime} / K$. Thus $d_{n}^{\prime \prime}-d_{n}^{\prime}$ is a K-derivation of B into A. Therefore there exists a $u_{n} \in A$ such that $d_{n}^{\prime \prime}(b)-d_{n}^{\prime}(b)=u_{n} b-b u_{n}$. It is easily verified that $\alpha_{{\delta^{\prime \prime}}^{\prime \prime}}=$ int $(1$ $\left.+u_{n} x^{n}\right) \circ \alpha_{\delta^{\prime}}$. Thus $\delta^{\prime \prime}$ and δ^{\prime} are equivalent, which proves the lemma.

Lemma 3. Let K be a field and L / K a finite separable extension. Then any higher derivation of K into itself can be uniquely extended to a higher derivation of L.

Proof. Let $L=K(\lambda)$ and let f be the minimal polynomial of λ so that we have an isomorphism $K[X] /(f) \rightarrow L$ under which X goes to λ.

Let $\delta=\left(d_{0}=1, d_{1}, \cdots, d_{n}\right)$ be a higher derivation of K. We remark that δ can be extended to a higher derivation $\delta^{\prime}=\left(d_{0}^{\prime}=1, d_{1}^{\prime}, \cdots, d_{n}^{\prime}\right)$ of $K[X]$ by prescribing arbitrary values for $d_{1}^{\prime} X, \cdots, d_{n}^{\prime} X$.

Suppose, by induction, that ($d_{0}=1, d_{1}, \cdots, d_{n-1}$) has been extended to a higher derivation $\left(d_{0}^{\prime}=1, d_{1}^{\prime}, \cdots, d_{n-1}^{\prime}\right)$ of $K[X]$ such that the ideal generated by $f(X)$ is stable under each d_{i}^{\prime}. Suppose further, that the induced higher derivation $\left(\bar{d}_{0}=1, \bar{d}_{1}, \cdots, \bar{d}_{n-1}\right)$ of L is unique as an extension of ($d_{0}=1, d_{1}, \cdots, d_{n-1}$).

Let g be any element of $K[X]$. Let $\left(d_{0}^{\prime}=1, d_{1}^{\prime}, \cdots, d_{n}^{\prime}\right)$ be the higher derivation of $K[X]$ for which $d_{n}^{\prime} X=g$. It is easily seen that

$$
d_{n}^{\prime} f=f^{\prime} g+q,
$$

where f^{\prime} is the usual derivative of f and q is a polynomial which depends only on $d_{1}^{\prime} X, \cdots, d_{n-1}^{\prime} X$. Since $f^{\prime}(\lambda) \neq 0$, there exists a polynomial $f_{1} \in K[X]$ such that $f_{1} f^{\prime} \equiv 1(\bmod f)$. If we choose $g=-f_{1} q$, then the ideal (f) is stable under d_{n}^{\prime}, and the induced map $\bar{d}_{n}: L \rightarrow L$ satisfies $\bar{d}_{n}(\lambda)=-q(\lambda) / f^{\prime}(\lambda)$. Thus we have a higher derivation $\left(\bar{d}_{0}=1, \bar{d}_{1}, \cdots, \bar{d}_{n}\right)$ of L which extends δ and is clearly unique.

Proof of Theorem 2. We first assume that the theorem is true with $B=K$ and prove it for the general case. Let δ be a higher derivation of B into A which maps K into itself and let $\bar{\delta}$ be an extension of δ / K. The restrictions of δ and $\bar{\delta} / B$ to K are the same. Since any K-derivation of B into A is inner ([3], Theorem 7), it follows from lemmas 1 and 2, that δ can be extended to A.

We now prove the theorem in the case $B=K$. Let δ be a higher derivation of K. We first show that it is enough to extend δ to some central simple K-algebra A_{1} similar to A. In fact, let $\bar{\delta}$ be an extension of δ to A_{1}. If D denotes the division algebra of A_{1}, we have $A_{1}=M_{m}(D)$ for some integer m. Let δ_{1} be the entrywise extension of δ to $M_{m}(K)$. Since δ_{1} and $\bar{\delta} / M_{m}(K)$ coincide on K and since any K-derivation of $M_{m}(K)$ into A_{1} is inner, it follows by lemmas 1 and 2 , that δ_{1} can be extended to a higher derivation $\bar{\delta}_{1}$ of A_{1}. Since $M_{m}(K)$ is stable under $\bar{\delta}_{1}$, and D is the commutant of $M_{m}(K)$ in A_{1}, D is also stable under $\bar{\delta}_{1}$. Thus,
$\bar{\delta}_{1} / D$ is an extension of δ, and this can be further extended to A, since A is a matrix ring over D.

We can therefore assume that A is a crossed product (L, G, f) for some Galois extension L / K, where G is the Galois group of L / K ([1], Theorem 1, p. 66). By lemma 3 we have a unique extension $\bar{\delta}=\left(\bar{d}_{0}=1, \bar{d}_{1}, \cdots, \bar{d}_{n}\right)$ of δ to L. If $s \in G$, then $s \bar{\delta} s^{-1}=\left(s \bar{d}_{0} s^{-1}=1, s \bar{d}_{1} s^{-1}, \cdots, s \bar{d}_{n} s^{-1}\right)$ is also a higher derivation of L extending δ, so that we have $s \bar{d}_{i} s^{-1}=d_{i}$ for $0 \leqslant i \leqslant n$. In other words, $\bar{\delta}$ is a G-derivation. Since $H^{2}(G, L)=0$, it follows from the corollary to proposition 1 of $\S 3$, that $\bar{\delta}$ can be extended to A. This completes the proof of the theorem.

References

[1] Albert, A.A: Structure of Algebras, Amer. Math. Soc. Colloquium Publications, Vol. 24 (1939).
[2] Hochschild, G: Restricted Lie algebras and simple associative algebras of characteristic p, Trans. Amer. Math. Soc., Vol. 80 (1955), pp. 135-147.
[3] Jacobson, N: Abstract derivation and Lie algebras, Trans. Amer. Math. Soc., Vol. 42 (1937), pp. 206-224.
[4] Jacobson, N: Structure of rings, Amer. Math. Soc. Colloquium Publications, Vol. 37 (1956).

Tata Institute of Fundamental Research, Centre for Advanced Study \& Research in Mathematics, University of Bombay, BOMBAY.

[^0]: Received February 15, 1967.

