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1. Introduction. In the study of nonassociative algebras various "triple
systems" frequently arise from the associator function and other multilinear
objects. In particular Lie triple systems arise in the study of Jordan algebras
and a generalization of a Lie triple system arises in Malcev algebras. Lie
triple systems also are used to study totally geodesic submanifolds of a
Riemannian symmetric space. We shall show how a generalization of
Lie triple systems also arises from the study of curvature and geodesies of
a torsion free connexion on a manifold and bring out the relation of this
to various nonassociative algebras.

To establish notation we briefly review connexions, curvature and the
second fundamental form in sections 2 and 3 and explicitly indicate how
the results of [13] can be generalized to a manifold and to the study of the
second fundamental form. In section 4 we use the results of [6] on reduct-
ive homogeneous spaces to show the relationships between certain non-
associative algebras, generalization of Lie triple systems and totally geodesic
submanifolds. In section 5 we shall show that the Lie algebra of the
holonomy group and the curvature formula for a reductive homogeneous space
are well behaved in terms of certain nonassociative algebras. Also we shall
give examples for which the curvature formula and the totally geodesic
submanifolds are easy to determine by these algebras.
2. Basics. To establish notation we review some basic facts about co-
variant differentiation, torsion and curvature as given in [1,3]. Let M be
a C°° manifold and let D be a covariant differentiation operator (i.e. con-
nexion) defined on M. Thus for each pair of C°° vector fields defined on
a suitable domain A a M [3] we have a C°° vector field DXY = D(X, Y) with
domain A such that if Z is a C°° vector field on A and / a C°° real valued
function on A, then D satisfies
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D(X, Y + Z) = D(X9 Y) + D(X9 Z),

D(X +Y,Z)= D(X, Z) + D(Y, Z),

D(fX,Y) = fD{X,Y),

D(X, fY) = (Xf)Y + fD(X, Y).

Next we define the torsion and curvature tensors of D by

Tor (X, Y) = D(X, Y) - D(Y, X) - [X, Y],

where [A, B] = AB — BA . Thus the torsion tensor. Tor, assigns to each

pair of C°° vector fields X and Y with domain A a C°° vector field Tor {X, Y)

with domain A. Note that Tor (X +Y,Z) = Tor (X, Z) + Tor (F, Z),

Tor (/X, Y) = /Tor (X, F) and Tor (X, Y) = - Tor (F, X). We define the

curvature tensor, R9 for C°° vector fields X,F and Z with domain A by

R(X9 Y)Z = D(X, 2) (F, Z)) - D(F, D {X, Z))

-D([X,Y],Z)

In particular this says that the curvature measures the failure of the map

I - > D j to be a Lie algebra homomorphism. If / is a C°° real valued

function which is defined on A, then R satisfies R{fX9 Y)Z = fR(X9 Y)Z =

R(X9 F) (fZ), R(X, Y)Z = - R{Y, X)Z and R(Xf Y)Z is additive in each of its

variables.

Next, an abstract Lie triple system has been defined [13] to be a vector

space V over a field F with an operation [X9Y,Z] defined on V x V x V

into V satisfying

(2. 1) [X9Y9Z] is trilinear over F 9

(2.2) [X,Y,Z]=-[Y,X,Z\,

(2.3) [X,Y,Z] + [Y9Z,X] + [Z,X,Y]=O.

These are identities (i), (ii) and (v) of a Lie triple system (L.t.s.), see [5].

In particular if we set [X9 F, Z] = R(X9 Y)Z for C°° vector fields X9 F, Z on M9

we see that [X9Y9Z] satisfies (2. 1) and (2. 2) over the commutative algebra

F(M) of C°° functions on M.

One of the properties of a semi-Riemannian connexion on a manifold

M we want is that Tor (X, F) = 0 for vector fields X and F . In this case

we have the 1st and 2nd Bianchi identities which are respectively [X9 F, Z] +
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[Y,Z,X] + [Z,X,Y] = 0 and [DXR) (Y,Z) + (DYR) (Z,X) + (DZR) {X,Y) = 0,

where DVR denotes covariant differentation of R relative to U. The 1st

Bianachi is identity (2. 3) above. Thus if ϊ(M) denotes the set of all C°°

vector fields on M and Tor(X,F)=0 for all X,Y in 3E(Λf), then X(M) is an

abstract L.t.s over F(M) relative to the operation [X9Y9Z] = R(X,Y)Z.

This definition generalizes to any left module over a commutative ring Φ

with identity.

The study of a L.t.s % involves an imbedding of % into a Lie algebra

£ which is roughly given by S = % + [% %] where [U V] denotes the Lie

algebra multiplication [5]. It was shown in [13] that an abstract L.t.s can

be imbedded in a Lie algebra as follows if it satisfies an additional identity.

Let X(M) be the left ^(Mj-module as above with a trilinear operation

[X,Y,Z] for X,Y,Z in X(M), satisfying (2. l)-(2. 3). Assume 1(M) also

satisfies the "Ricci identity" [[X,Y,Z],U,V]-[[X,Y,U],Z,V] = [X,Y,[Z9U,V]]

- [Z, U, [X, Y, V]], then if we set H{X9 Y) : X{M) -> X{M) : Z -> [X, F, Z] and

© = {i/(X, F) : X, Y in X (M)}, the Ricci identity together with the usual

vector space operations show § is a (left) Lie ring over F(M) under

commutation. Consequently © = X(Λf) © § can be made naturally into a

Lie ring with the properties similar to the Lie algebras used to study a

symmetric space [6,1] that is, if m = 3ί{M), then [m &] am and [m m] c ξ>

so that m with the operation [X,Y,Z] is a L.t.s. The algebra of a

symmetric pair (g, ξ>) with decomposition g = m + § will be generalized in

section 5 to a "reductive pair" (g,ξ>).

Let M be a C°° semi-Riemannian manifold with nondegenerate metric

tensor <, > that is, for each m in M, <, > induces a nondegenerate

bilinear form < , > m on each tangent space Mm. Now there exists a

unique connexion D on the semi-Riemannian manifold M such that for

X,Y,Z in 3E(M),

(2. 4) 0 = Tor {X, Y) = D(X, Y) - D(Y, X) - [X, Y],

(2. 5) Z<X,Y> = <D{Z,X),Y> + <X,D(Z,Y)>

that is, D preserves the metric tensor under parallel translation [3]. We

shall assume in this paper that the connexion D on a semi-Riemannian

manifold satisfy (2. 4) and (2. 5). Thus since Tor {X, Y) = 0 we see that %{M)

is an abstract L.t.s. with other relations involving the metric tensor [3].
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3. Totally geodesic submanifolds. Let M be a C°° semi-Riemannian

manifold and let Mr be a nonsingular submanifold of M that is, M' is a

submanifold of M such that the metric tensor of M when restricted to the

tangent space M'm for all m^.Mr is nondegenerate on Mr

m . The semi-

Riemannian connexion D on M induces a semi-Riemannian connexion Dr

on M' as follows [2,3]. Let M' be a nonsingular submanifold of M, then

for C°° vector fields X and F with domain A c M' and tangent to M',

define Z/(X, Y) and F(X,F) by extending X, Y to a vector field on an open

set of M containing A and by decomposing D(X,Y) into its unique

tangential and normal components, respectively, relative to the metric

tensor on M. Thus

(3. 1) D (X, Y) = D'(X, Y) + V(X, Y).

Then Όf is a connexion on Mf which satisfies (2. 4) and (2. 5) for M' and

V is a symmetric vector valued 2-covariant C°° tensor called the second

fundamental form tensor.

Following the notation in [2] we decompose any vector field W on M'

into its tangent and normal components and write W = tan W + nor W

Thus for C00 vector fields X,Y,Z e Ϊ(M') on M' we have

(3. 2) tan i?(Z, F)Z = Λ'(Jf, Y)Z + tan [Z)(X, F(y, Z)) - D(Y, V(X, Z))]

where R (resp. Rr) is the curvature of M (resp. Mf). As in [2] this

formula can be simplified as follows. The nonsingular submanifold Mr is

framed in M if one can choose n — k = d unit mutally orthogonal C°° vector

fields on Mr which are normal to M' (n = dim. M, k = dim. M'). M' can

always be framed locally in M. Thus assume Mr is framed in M and let

JVΊ, ,Nd be the set of normal vectors. Then define d "2nd fundamental

forms" Bt on AT by V(X,Y) = Σ tiB^YM . Each 5€ is a real valued

symmetric C°° 2-covariant tensor on Mr and depends on the choice of

N19 9N&. Next for each i define the Weingarten maps Lt to be the

F(M')-linear transformation on X(M') given by uL^X) = tan Z)(X, iVt)

where n = <Ni9 Nt> = ± 1, see [2,3]. When evaluated at m in M',/,*

becomes a linear transformation on the tangent space M'm.

Using the above notation we have from [2] that <V(X,Y),Ni>

= - rt<Y, LtX> and B^X, Y) = - <X, UY> = - <L,X, F > which shows
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each Lt is self adjoint. Also V(X,Y) = - Σ U1<X9LiY>Ni. The Gauss

curvature equation (3. 2) now becomes

(3. 2') tan R(X, Y)Z = R'(X, Y)Z + Σ Urι«LiXf Z>LiY - <LτY9 Z>LiX).

From the various equations we see that tan R — Rr also yields an

abstract L.t.s. structure on %(Mr) given by

[X, Y, Z] = tan R(X, Y)Z - R'(X, Y)Z

Σ Uri{<LtX9 Z>LtY - <Lt= Σ Uri{<LtX Z>LtY - <LtY9 Z>L,X).

where each [X, Y, Z\ι = r<(< LtX9 Z>LtY - <LiY, Z>LtX) yields an abstract

Lie triple "subsystem" from which the abstract L.t.s., [X,Y,Z], is

constructed.

Let a be a C°° curve in the C°° semi-Riemannian manifold M with

tangent vector field T. a is a geodesic if Z>(T, Γ) = 0 on <;. A nonsingular

submanifold Mr of M is totally geodesic at a point #a in Mr if for every

X in M i , the geodesic σ{t) of M passing through m and with tangent

vector X lies in M' for small value of the parameter t. If M' is totally

geodesic at every point of M', it is called a totally geodesic submanifold of M.

From this we have that if Mf is totally geodesic at a point, then the 2nd

fundamental form tensor vanishes at that point; thus Mr is a totally

geodesic submanifold yields K(X,F) = 0 for all X, Y in X(Mr). Using this

with (3. 1) and (3. 2) we easily obtain the following standard result [12].

PROPOSITION. Let MT be a nonsingular C°° submanifold of a semi-Riemannian C°°

manifold M, then the following are equivalent

( i ) M is totally geodesic,

(ii) geodesies in Mr are geodesies in M,

(iii) parallel translation in Mr and M are the same.

Any one of the above imply

(iv) if X,Y,Z are in £(M'), then [X,Y,Z] = R{X9Y)Z is in I{M').

Thus evaluating at a given point m in M', each tangent space M'm
becomes an abstract L.t.s.

4. Totally geodesic submanifolds of a reductive homogeneous space.

Let G be a connected Lie group and H a closed Lie subgroup so that
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the homogeneous space M=GjH is reductive; that is, if g (resp. ί)) is the

Lie algebra of G (resp. H), there exists a subspace m of g such that g = nt 4- ί)

(subsp&ce direct sum) where ad{H)m c nt that is, [nt f)] c m if H is connected

where [a b] denotes Lie algebra multiplication in g [6]. Now there exists a

neighborhood V of the identity element e in G such that V — N x K where

K is contained in the identity component of H [6]. Also if π : G -> C/#

is the canonical projection, then π is a differentiable homeomorphism of TV

onto a neighborhood N* of p0 = H in G/iJ and AT* = {ci/: c in N}.

Identifying the tangent space, Mp0, of j)0 in M with πt we define for

each J in nt a vector field X* with domain A = TV* by

where c is in TV, τ(c) p0 = cH and (A'*)ί»β = X in nt. With this notation

we now state the main theorem for invariant aίfine connexions on

M — G\H an invariant affine connexion is an affine connexion which is

invariant by the mappings τ(ά) : M ^M : xH ^axH, for all a in G [6].

THEOREM. Let GjH be a reductive homogeneous space with a fixed Lie algebra

decomposition g = m 4- ίj with ad(H)m c m. Then there exists a one-to-one

correspondence between the set of all invariant affine connections on GjH and the set

of all bilinear functions a :mxm-ϊm which are ad{H)-invariant that ύ ,

ad(h)a{X,Y) = a{ad{h)X, ad{h)Y) for X,Y in nt and h in § The correspondence

is given by

Thus corresponding to an invariant affine connection we can associate a

nonassociative algebra multiplication a(X9Y) on m; α is called a connexion

function [6]. Now for a fixed decomposition g = m + 5 with [m ΐ)] c m we

can define a multiplication, XY, on m as follows for X, Y in nt, let [X Y]

= 1 7 + h{X,Y) where XY = [X Y]m (resp. h(X,Y) = [X Y]t,) is the projection

of [X Y] in g into nt (respi ϊj). The identities which X, Y, Z in nt and

h,h(X,Y) in § satisfy are obtained from the Lie algebra identities of

g = fit 4- ί) and these are

(4. 1) XY= - YX (bilinear)

(4. 2) h{X, Y) = - h(Y, X) (bilinear)

(4. 3) [Z h(X, Y)] + [X h(Y, Z)] + [Y h(Z, X)] = J(X, Y, Z) s (XY)Z

+ (YZ)X+(ZX)Y
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(4. 4) h{XY, Z) + h{YZ, X) + h(ZX9 Y) = 0

(4. 5) [h(X, Y) h] = h([X h], Y) + h(X, [Y h])

(4.*6) [h XY] = [h X]Y + X[h Y].

In particular (4.6) says that the mapping D(h) = admh : nt->nt :

X-+[k X] is a derivation of the algebra tn.

If the reductive space M= G\H is a semi-Riemannian manifold, then

the metric tensor, <X,Y>, on Mis obtained by translating a nondegenerate

bilinear form, <X, Y>Q, on m = MPo by elements in G to the appropriate

tangent space Mrco Pβ I*1 particular the form <X, F > 0 on nt is ad{H)-

invariant; thus we have 0 = <[X h],Y>0 + <X,[Y h]>0 for X9Y in nt and A

in ή . It is shown in [6] that if a connexion, D, on M = G/H satisfies

(2. 4) and (2. 5) for the above metric tensor and if the 1-parameter subgroup

x(t) of G generated by an element X in tn projects by π : G-^GjH : #(0

->sc*(f) so that x*{t) is a geodesic in G/H, then the connexion function for

D is given by a(X,Y) = \ χ Y { = -γ[χ ^lm) for ί ^ i n w . In this case

it is also shown that nt satisfies <XY, Z> 0 = <X, YZ>Q thus nt is an

anti-commutative algebra with a nondegenerate invariant form and multi-

plication in nt is given by the (fixed) decomposition g = nt + 5 Also

according to [6] the curvature formula for M— G\H evaluated at pQ in M

is given by

(4.7) R(X,Y)Z = ±-X(YZ)-±-Y(XZ)--jf(XY)Z-[h(X,Y) Z]

for X, Y, Z in nt. Note that (4. 7) shows a subalgebra nt' of nt (with

multiplication XY = [X Y]m) is an abstract L.t.s. relative to [X,Y,Z]

= R{X,Y)Z if and only if nt' is h(nt',nt')-invariant; that is, invariant under

the set of linear transformations admh(m'm') = {admh(X, Y) : X, Y in nt'}.

From [6,1] a symmetric space M = GjH is reductive with decomposition

Q = m 4- 5 where for X, F in nt we have Z 7 = [ I F]m = 0. Using this and

the formula for the curvature of a Riemannian globally symmetric space

[1], we see that the following generalizes the results on totally geodesic

submanifolds and Lie triple systems.

T H E O R E M . Let M = GjH be a reductive semi-Riemannian homogeneous space with

a fixed Lie algebra decomposition g = nt + ί> find with 1-parameter subgroups and
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connexion, D, as previously described so that the connexion function a{X, Y) = -^- XY

for X,Y in m. If Mr is a totally geodesic nonsingular submanifold of M

containing p0 = H and if MpQ = m' am denotes the tangent space of p0 in Mf,

then m' is an abstract L.t.s. with [X, Y, Z] given by (4. 7). Conversely if m' is a

nonsingular sub algebra of m which is an abstract L.t.s. as given by (4. 7), then

there exists a totally geodesic nonsingular submanifold Mr of M— G\H with p0 in

M' and M'n = m' .

Proof The first part follows from statement (iv) in the proposition in

section 3 concerning totally geodesic submanifolds. For the converse we

note that from the remarks following (4. 7) we see that the subalgebra tn'

is h(m'9 m')-invariant. This yields that the subspace c$' = tn' + h(m'9m') is

actually a Lie subalgebra of g for,

[8' tn'] = [tn' m'] + [*(m',m') tn']

c tn'tn' + A(m', m') + m'

cm'-}- h{mf,mr) = g',

[8'

and this last expression is in qr. To see this we use (4. 5) and the

assumption that m' is h{vxr

9 m')-invariant to obtain [§(nt',m') §(m',m')]c§(m',m').

We may now proceed analogously to the case of a symmetric space. Let

Gr be the connected subgroup of G with Lie algebra g' and let Mr = G' p β .

Then Mf is a submanifold of M containing p0 and is diffeomorphic to

G'\Kf where Kr is the closed subgroup of G' leaving ^0 fixed. M'H — mr so

that Mr is a nonsingular submanifold. Next by the assumption concerning

the connexion we have that the geodesies in M through p0 are of the form

exp tX φ0 where t in R and X in tn. This geodesic is tangent to Mr

at Po if and only if X e Mp0 = m' thus from the definition, the submanifold

Mf is totally geodesic at φQ. Next note that the connexion D is G'-

invariant (because it is G-invariant) and G' is a group of isometries of M

and M' relative to the corresponding semi-Riemannian metrics (by definition

of these metrics), and G' acts transitively on M'. Using these .we see

that a geodesic at any point of Mr is taken by some isometry induced by

G' into a geodesic through p0 in AT and consequently Mr is geodesic at

each of its points; that is, totally geodesic.
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5. Examples. Let M = G\H be a semi-Riemannian reductive homogeneous

space with connection function a(X,Y) = 1/2 XY as determined by the (fixed)

decomposition g = m + 5 Let L{m) be the Lie transformation algebra

generated by all the right multiplications

R(X) :

see [11]. Thus L{m) = Mx + M2 + where Mx = {R{X) : X e m> and

The holonomy algebra, §*, which is the Lie algebra of the holonomy

group of G/H relative to the connection given by «(I,F) = 1/2IF is the

smallest Lie algebra of endomorphisms of nt such that (1) [R(X),ψ] c ψ

and (2) the curvature endomorphism R(X, Y) e ψ for all I , F G J Π and

i?(X, F) is given by (4. 7). When m is a simple algebra (with multiplication

XY and nondegenerate invariant form <X,Y>) it can be shown that the

derivations D(h{X,Y)) = admh{X,Y) e L(m). Using this we have the following

result [10].

THEOREM. Let G/H be a simply connected semi-Riemannian reductive homogeneous

space with connection function a{X,Y) = 1/2X7 determined by the fixed decomposition

g = tn + 5 Assume G\H is not symmetric (i.e. mm ψ 0). Then G\H is holonomy

irreducible if and only if m is a simple algebra. Furthermore the holonomy algebra

§* = L(m) and is semi-simple.

Remarks. In case M = GjH is Riemannian, the deRham decomposition

theorem can be used to show M= 5 x Mr with m = f © nt' where \m! = \\ = 0

and \ corresponds to the symmetric space part S of M and m! = m[ ®

®m'r is a direct sum of simple ideals which corresponds to the non-

symmetric space part Mr of M.

If the nondegenerate form <X, Y> is such that there are no ideals n

of nt such that n2 = 0, then from [4, p. 71] we have m = ntj © ®mr

where tπy are simple ideals. For example if nt is a Lie or Malcev algebra,

the form <X, Y> = trace R{X)R(Y) works.

The nondegenerate invariant symmetric forms on a simple anti-

commutative algebra need not be unique. But if <X,Y> and < X , F > '

are two such forms, then these differ by a multiple in the centroid of M

[4, p. 290]. That is, there exists a unique linear transformation A in
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Γ{m) = { T G Hom{m, m): [T, R(X)] = 0 all X <= m} such that <X, F > = < X ,

for all X, F in nt. The proof of this is as in the case of Lie algebras

for a fixed Y in m the form <X,Y> is a linear functional on m and since

<X, F > ' is nondegenerate, there exists a unique Y' in m such that

<X,Y> = <X,Y'>' for all X in m. The unique map 4 : m->m : F - + F '

is a linear transformation; thus <X,Y> = <X,AY>' for all X,Y in m.

Next <XF, Z> = <XY, AZ>' = <X, Y{AZ)>' but <XY, Z> = <X, YZ>

= <X,A(YZ)>'. Since the forms are nondegenerate, Y(AZ) = A{YZ)

which implies [A, R(Y)] = 0 that is A is in Γ(m). This proof holds for

any field, however over the reals we have that Γ{m) = RI or Γ{m) = RI + RJ

which is isomorphic to the complex numbers where / 2 + / = 0 [4, p. 298].

Thus in this case A = al + βj and also <AX, Y> = <X, AY>.

The preceding has an obvious extension to the case when m = m1 ©

© mk where the vxi are simple ideals. Since xcii = vx\ the restriction of

<X,Y> to mi is a nondegenerate invariant form; in particular for

X = HXi, Y = HYi in m, < X , 7 > = Σ < X i , F J > . Thus if < X , F > ' is

any other non-degenerate form on m, <-X"£,yi>'= < X ί , Λ ί F ί > where 4̂<

is a unique element of Γ(nti) and therefore <X,Y>' =J]<Xi,AiYi>. For

example these remarks apply to compact Lie groups as follows.

If G is compact, then the Killing form B(P,Q) of g is negative definite.

Thus if § is the Lie algebra of H we may write <$ = m + 5 with m = ϊj^

relative to Z?(P, (?). The form B{P, Q) restricted to m is a nondegenerate

invariant form. For if X is in m and B(X, m) = 0, then since m = Ij-L we

have 5(X, §) = 0 so that S(X, g) = 0 thus X = 0 . Also for X,Y9Z in m ,

J5(XF, Z) = £(XF + A(X, F), Z) = ([X Π, Z) = 5(X, [F Z]) = £(X, FZ). Next if

n is an ideal of m with n2 = 0, then B{nm, tint) c i?(ιt, nnt) = -B(n2, m) = 0 and

since ^(P, Q) is definite on m, we have mπ = 0 . From this f = Σ tt,

summed over all ideals n with n2 = 0, is an ideal of m such that ί2 = Σ \χι

= 0. Thus by the deRham decomposition theorem m = \®m' where

m' = vx[ ® © m'r is a direct sum of simple ideals and — B{P, Q) restricted

to mj yields a positive definite form Bj{X,Y) on vij. Thus if <JY",F>; is

any other nondegenerate invariant form on nty, then for X,F in rttj we

have <X, F>j f = Bj{AjX, Y) with ^ uniquely determined in Γ(vXj). But

^4y = o^/ + ^ 7 and is self-adjoint relative to Bj{X, F) . Thus if / exists in

Γ(vXj), then / has a symmetric matrix and therefore a real characteristic

root λ satisfying λ2 + 1 = 0 so / does not exist. Thus <X,Y>j = ajBj(X9Y)
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is uniquely determined on each vxj and thus uniquely determined on the

non-symmetric space part of GjH.

The two forms trace R{X)R{Y) and B{X9Y) just discussed are closely

related even if they are not nondegenerate or invariant; essentially the

difference between these forms is the Ricci scalar curvature of M—GjH.

First let <r{X,Y) : m->m : Z-+[h{X,Z) Y] and let s{X,Y) = trace σ(X,Y). Then

from (4. 3),

[R(Y), R(X)] - R(YX) = σ(Y, X) - σ(X, Y) + D(h(X, Y))

and since trace R(Z) = 0 = trace Z> we have s(X, Y) = s(Y, X). Next from

(4. 7) we have that the mapping

p{X,Y) :m-+m :Z-+R(X,Z)Y

is given by p(X,Y) = —j-R(X)R(Y) --j-R(XY) +±-R{Y)R{X) - σ(X,Y).

Thus the Ricci scalar curvature [1] of M is r(X9 Y) = trace p{X, Y) = ~- trace

R{X)R{Y) — s{X9Y). This form is symmetric since s{X9Y) is symmetric.

Now a straightforward calculation of the Killing form in Q show that for

X,Y in m

B{X,Y) = trace adQXadqY

= 4 - trace R(X)R(Y) + 2r(X, Y).

We shall now give some examples of reductive spaces in terms of the

simple algebra m for which B(X9Y) is a multiple of trace R{X)R{Y) and

for which totally geodesic submanifolds are easily determined. From the

theorem in the first part of this section we see that the derivations

D{h(X, Y)) are essentially polynomials in elements from {_R{Z) : Z in m}.

We now consider the case where there is a well behaved formula for each

D(h(X, Y)) in terms of elements from the Lie subalgebra L(X9 Y) which is

generated by {R(Z) : Z in m(X9 Y)} where m(X, Y) is the subalgebra of m

generated by X, Y in m. Thus we are assuming there exists an ordered

family of functions

A(m) = {aQ, a19 a2 bt with i = 1, , 5 ch... ik}

which depend only on m and are of class O(m x m), regarding m as the

usual Euclidean vector space, and such that for every X, Y in m,
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(5. 1) D(h(X, Y)) = ao(X, Y)I + ax{X, Y)R(X) + a2(X, Y)R(Y)

+ bx{X, Y)R(X)R(Y) + bz(X, Y)R(Y)R(X)

+ bt{X9 Y)R(X Y) + b,(X9 Y)R(X)2 + b5(X, Y)R(Y)*

- - -R(Zik)

where the Zi19 *9Zik in m(X9Y) are determined by the cil...ik(X,Y) and

the terms in the sum 2 are homogeneous in X and Y of degree ^ : 3 .

Using (5. 1) and a few of the identities for the simple algebra m we shall

show

(5. 2) D(h{X, Y)) = MX, Y)I + f(Y)R(X) - f(X)R(Y)

where / 0 is bilinear on m, / is a linear functional and b19b3 are in R.

Remarks. Since L(X, Y) is finite dimensional the right side of equation (5. 1)

is defined; the set of functions A{m) is used to determine the elements from

L(X,Y) for which the functions in A(m) are to be the coefficients. This

formulation is the same as assuming an identity D{h{X9 Y))Z = aQ{X9 Y)Z + •

given by (5. 1) with the functions defined by the identity, say aQ : m x m

-> R : (X, 10 -> aQ{X, Y), of class Cι(m x m).

We now determine (5.2). Let / be in R9 then for D(X9Y) = D{h{X9Y))

we have tD(X,Y) = D(tX9Y)

= aQ(tX9 Y)I + ax{tX9 Y)R(tX) + a2(tX9 Y)R(Y)

+ bx{tX9 Y)R(tX)R(Y) + b2(tX9 Y)R(Y)R(tX)

+ bt(tX, Y)R(tXY) + b4(tX, Y)R(tXY

h...ik{tX9Y)R(Zφ)) R(Zik(t))

where Zi5(t) are in m(X9 Y). Now note that if the expression R(Zit) R(Zit)

is of degree > 1 in X9 then

dt

at t = 0. Thus using the product rule of differentiation,

D(X,Y) = d(tD{X,Y))9 at f = 0

+ [fttΠTOΠ + bι(09Y)R(X)R(Y)



TRIPLE SYSTEMS AND TOTALLY GEODESIC SUBMANIFOLDS 17

+ 62(0, Y)R(Y)R(X) + 6,(0, Y)R(XY)

+ bs(0,Y)R(Y)2

where each term R(Wiι) R(Wik) is of degree < 1 in I and of degree

^ 2 in 7 and [gj{Y)]{X) = da^tX,Y)\dt at t = 0 defines a linear functional

gj{Y) on nt. Similarly, using this last expression for D{X9 Y) and

differentiating tD(X,Y) = D(X,tY) at ί = 0 w e obtain

D(X, Y) = /β(X, F)/ + fί(Y)R(X) + ft(X)R(Y)

+ b1R(X)R(Y)

using 2 is homogeneous of degree > 2 in F and where b.L = 6^0,0) is in

/?, Λ(y) = da^O, tY)ldt at ί = 0 and /2(X) = [gz(0)]{X) define linear

functional on nt, and /0(X, Y) = d[0oUF)](X)/<^ at ί = 0 defines a bilinear

function on m.

Next we have 0 = D{X, X) = /0(X, X)/ + (Λ + f2)(X)R(X) + ^ + W^PO2

so that applying this to X we obtain /0(X,X) = 0 for all l i n m . Applying

the resulting formula for D(X, X) = 0 to any Y in nt we obtain

[- (Λ

and linearizing

[- (Λ +

Now since we are assuming nt is a simple finite dimensional algebra,

dim. nt > 1 and therefore there exists Pψ 0 in nt with (fx + fz)(P) = 0 (using

kernel of linear functional =̂ =0). Let p = Pnt, then

(b, + b2){YP)Z = -(b1 + bz)(YZ)P

+ [ - (Λ + h)[Z)}YP

which is in p and shows p is an ideal of nt if bx + b2 Ψ 0. Now if p = nt,

then R{P) is surjective and therefore injective; but R{P)P = 0. This

contradiction shows p = 0 which implies PR is a one dimensional ideal

which must equal m. This contradiction yields bx + b2 = 0 . From this

we have (/Ί + f2){X)R(X) = 0 for all X in nt and this implies Λ + Λ = 0

which proves (5. 2).

We now determine completely the above algebras nt. An algebra nt

obtained from a Lie algebra decomposition g = nt 4- % is called flat if nt not

only satisfies (4. 1)—(4. 6) but also R{X, Y)Z = 0 in (4. 7).
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THEOREM. Let m be the algebra obtained from a Lie algebra decomposition

g = ttt + ϊj with [nt, ίj] c nt. If m is a simple Lie, Malcev or flat algebra, then

it satisfies (4. 1)—(4. 6) and its derivations are given by (5. 2) with / 0 = / = 0 .

Conversely if vx is a simple algebra as has been discussed; that is, m satisfies

(4. 1)—(4. 6) and has a nondegenerate invariant form <X, Y> such that <DX, Y>

+ <X,DY> = 0 and <XY,Z> = <X,YZ> for all D = D(U9V) and

X, Y, Z,U,V e nt, and m also satisfies the condition discussed in (5. 1), then nt is

a Lie, Malcev or flat algebra. In these respective cases we have bx — b3 = 1 and

D(X, Y)Z = (XY)Z - bx = b, = 1 and D{X, Y)Z = - (XY)Z + {YZ)X + (ZX)Y

(and nt not a Lie algebra) 2b, = fe3 = - L and D(X,Y)Z = \

Proof. If m is Lie, Malcev or flat, then the results follow from [7] where

the formulas for the derivations are also determined. For the converse we

first note that from the assumption concerning the invariant form trace

[R(X)] = traceD = 0 so that from (5. 2), 0 = traceD(X,Y) = fQ(X,Y) (trace I);

therefore /0(X, Y) = 0. We now rewrite (4. 3)—(4. 6) using (5. 2) with

/ 0 = 0 to obtain from (4. 3)

(5.3) (2bι + bι

= 2[f(X)YZ + f(Y)ZX+f(Z)XY].

For D = D{h) :X-^[h X] we have from (4.5) that [D(h),D{X,Y)]

= D{D{h)X, Y) + D{X, D(h)Y) and using (5. 2) in this expression we eventually

obtain

(5. 4) f(D(h)X)R(Y) = f(D(h)Y)R(X).

Now since m is simple, (5. 4) implies f{D{h)X)Y = f(D{h)Y)X otherwise

there exists A ψ 0 in nt with R{A) = 0 which implies that nt has a one

dimensional ideal. But since dim. nt > 1 this formula implies f(D(h)X) = 0

for all X in nt and h in ϊ). For D{h) of the form D(X, Y) we have from

(4. 3),

f(J{X,Y,X))=0.

But from (5. 2) we also have

0 = f(D(X,Y)U)

= f(f(Y)UX-f(X)UY)

+ / ( - bJ{X, Y, U) + (ft, - bx)U{XY))
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which implies

f{Y)f{UX) + f(X)f(YU) = (ft, - bt)f(U(XY)).

Using this and (5. 3) we have

0=^(26, +6,-l)/(/(*,r,ί/))

= f(X)f(YU) + f(Y)f(UX) + f{U)f{XY)

Set U = XY in this last equation to obtain f(XY) = 0 for all X,Y in m.

But since m is simple m = m2 which implies / Ξ O on m and the results

now follow from [7].

Thus the algebras m satisfying (5. 1) are such that a subalgebra m' is

§(m', m')-invariant so that using the remarks following (4. 7) we see that these

algebras m are such that nonsingular subalgebras yield totally geodesic

submanifolds according to the theorem in section 4. Putting these algebras

into their reductive context, g = m + 5 > a straightforward computation

using (5.2) shows s{X,Y) = trace <r(X, Y) = {b3 - bx) trace R{X)R{Y); consequently

the Killing form on m and the Ricci scalar curvature are B(X, Y) — (1 +

2&! - 2b,) trace i?(X)i?(Y) and r(X, Y)=^λ.+ bι- 63) trace i?(Z)/?(F).

For simple Lie and Malcev algebras <X, Y> = trace R(X)R(Y) is known

to be a nondegenerate invariant form and consequently define an essentially

unique metric on the corresponding homogeneous space M = G\H (e.g., G is

of type B3, H of type G2 in the Malcev case). If m is flat the form

<X9 Y> satisfies <XY, Z> + <YZ, X>+<ZX, Y> = - 3 trace [#(*), Λ(F)]Λ(Z)

and the identities or simplicity do not appear to imply <X, Y> is in-

variant.
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