A CORRECTION TO "THE SCHUR MULTIPLIERS OF THE MATHIEU GROUPS"

N. BURGOYNE and P. FONG

In the paper [1] mentioned in the title, the authors attempted to determine the Schur multipliers of the five simple Mathieu groups. In rechecking the calculations, we find that an error was made, leading to incorrect results for M_{12} and M_{22}. Our purpose here is to compute again the multipliers of M_{12} and M_{22}, which turn out to be cyclic groups of orders 2 and 6 respectively. The multipliers of M_{11}, M_{23}, M_{24} were originally (and correctly) determined to be trivial.

The error in [1] is quite simple, and lies in the statements leading up to the formula (*) on page 738 . We show in $\S 1$ below that $(*)$ is true with an additional condition. In all but two cases of [1] this condition is satisfied. The two exceptions occur in the calculations for the 2 -part of the multiplier of M_{12} and M_{22}, and new calculations for these cases are given in $\S 2$ and $\S 3$.

In concluding this introduction, the authors wish to express their thanks to N. Ito for several helpful discussions.

§ 1

Let \bar{G} be a proper covering of the finite group G with $\bar{G} / Z_{m} \simeq G$, where Z_{m} denotes the cyclic group of order m. Let $\left\{c_{j}\right\}$ denote those classes of G which do not split in \bar{G}. Suppose S is a subgroup of G whose inverse image in \bar{G} is isomorphic to $S \times Z_{m}$. Let π denote the permutation character of G on the cosets of S. Furthermore, suppose that if two elements of S of order not prime to m are conjugate in G, then they are already conjugate in S. Then
(*)

$$
\sum \pi\left(c_{j}\right)^{2} / h_{j}=n \quad \text { is integral }
$$

where h_{j} is the order of the centralizer of an element of c_{j}. The integer

This work was partially supported by the National Science Foundation (NSF GP-6539).
\dot{n} is in fact $n_{1}-n_{2}$, where n_{1} is the number of irreducible constituents of φ^{*}, the character of G induced by a linear character φ of $S \times Z_{m}$ whose kernel is S. The additional condition mentioned in the introduction is in italics.

The above result is proved by computing the inner product of φ^{*} with itself. If \bar{c}_{j} is any class of \bar{G} in the inverse image of a non-splitting class c_{j} of G, then $\varphi^{*}\left(\bar{c}_{j}\right)=0$ (see page 737 of [1]). For a splitting class d_{j} of G, we have $\left|\varphi^{*}\left(\bar{d}_{j}\right)\right|^{2}=\pi\left(d_{j}\right)^{2}$, where \bar{d}_{j} is any class of \bar{G} in the inverse image of d_{j}. This follows directly from the assumptions if d_{j} consists of elements of order not prime to m. If d_{j} consists of elements of order prime to m, then d_{j} lifts to m classes of \bar{G}, of which only one class has elements of order prime to m. On that class $\varphi^{*}\left(\bar{d}_{j}\right)=\pi\left(d_{j}\right)$; on

In [1], it was shown independently of (*) that the 2 -part of the multipliers of M_{11} and M_{23} were trivial, and that the 3-part of the multiplier of M_{22} is Z_{3}. The inducing argument with (*) was used to show that the 2-part of M_{24}, and the 3-part of $M_{11}, M_{12}, M_{23}, M_{24}$ were all trivial. A check of the relevant character tables shows that the additional condition is satisfied in each of these cases.

§ 2

In [2] Coxeter gave an explicit 6-dimensional projective representation of M_{12} over $G F(3)$. From the form of the matrices it is easily seen that this representation is a true projective representation. Since the center of $S L(6,3)$ is Z_{2}, it follows that M_{12} has a proper covering \bar{M}_{12} with center Z_{2}.

The primes 5 and 11 divide $\left|\bar{M}_{12}\right|$ to the first power, so we can apply the theory of Brauer [3] to compute the degrees of the irreducible characters. We restrict ourselves to the projective characters of M_{12}, i.e. those characters of \bar{M}_{12} which are faithful on the center Z_{2}. Now M_{11} has index 12 in M_{12}, and its covering in \bar{M}_{12} must be $M_{11} \times Z_{2}$ by [1]. Induce the nontrivial linear character of $M_{11} \times Z_{2}$ up to \bar{M}_{12}. This induced character must be irreducible. For if not, its restriction to $M_{11} \times Z_{2}$ would show that its constituents can only have degrees 1 and 11. This is impossible, since these degrees must also be even. Thus \bar{M}_{12} has an irreducible projective character of degree $12 . \quad \bar{M}_{12}$ has a 5-block $B(5)$ of projective characters. $B(5)$ contains two exceptional characters of the same degree $\equiv \pm 1(\bmod 5)$
and two non-exceptional characters of degrees $\equiv \pm 2(\bmod 5)$, of which one is the 12. The remaining projective characters of \bar{M}_{12} have degree $\equiv 0(\bmod 5) . \quad \bar{M}_{12}$ has an 11-block $B(11)$ of projective characters; $B(11)$ contains two exceptional characters of the same degree $\equiv \pm 5(\bmod 11)$, and five non-exceptional characters of degrees $\equiv \pm 1(\bmod 11)$. The projective characters of \bar{M}_{12} not in $B(11)$ have degree $\equiv 0(\bmod 11)$.

Consider even positive divisors of $\left|M_{12}\right|$ less than $\sqrt{ }\left|M_{12}\right|$. Those congruent to $1,-1,5,-5(\bmod 11)$ are 12,$144 ; 10,32,54,120 ; 16,60,192 ; 6,72$, 160 respectively. The degrees in $B(11)$ come from this list. Those divisors congruent to $0, \pm 1, \pm 5(\bmod 11)$, and moreover congruent to $1,-1,2,-2$ $(\bmod 5)$ are $6,16,66,176 ; 44,54,144,264 ; 12,22,32,72,132,192 ; 88,198$ respectively. The degrees in $B(5)$ come from this second list. Since 12 is in $B(5)$, there are only two possibilities for $B(5),\{12,132,144,144\}$ and $\{12,32,44,44\}$. In the first case the two 144 characters are 5 -conjugate and so take the same value on an element of order 3. Let $B(3)$ be the 3 -block of \bar{M}_{12} containing one of the 144. $\quad B(3)$ has defect 1 because $144=9 \cdot 16$. Since \bar{M}_{12} contains no elements of order 15, hence the block intersection argument [4], page 167, applied to $B(5) \cap B(3)$ gives a contradiction. Thus $B(5)=\{12,32,44,44\}$, and $B(11)$ has a unique solution $\{12,32,10,10,120,160,160\}$. Now $\left|M_{12}\right|-$ $\sum x_{\mu}^{2}=24,200$, where the sum is overall x_{μ} in $B(5) \cup B(11)$. Since the remaining degrees are $\equiv 0(\bmod 2.5 .11)$, the only possibility is 110 twice. One can easily show that the two 110 's and 10 's are conjugate pairs by considering the restrictions to $M_{11} \times Z_{2}$. In summary, the projective degrees of M_{12} are $\overline{10}, 12,32, \overline{44}, \overline{110}, 120, \overline{160}$, where the bar denotes a pair or conjugate characters.

Suppose M_{12} has a proper covering with center $Z_{2} \times Z_{2}$. To each of the three cyclic subgroups Z_{2} of the center corresponds a pair of conjugate projective characters 10_{i}, and $10_{i}^{\prime}, i=1,2,3$. Choose the notation so that the 10_{i} all coincide on restriction to M_{11}. The product $10_{1} \times 10_{2}^{\prime}$ is projective, and its irreducible constituents must have degrees in the above list. But $10_{1} \times 10_{2}^{\prime}$ restricted to M_{11} becomes $10 \times 10^{\prime}=1+44+55$ (see [1] for the character table of M_{11}). This is incompatible with the above list of degrees.

Suppose M_{12} has a proper covering with center Z_{4}. As before, there would exist a 4 -fold irreducible projective character of degree 12. Repeating essentially identical numerical arguments we find in an 11-block of defect 1
a 4 -fold projective character whose degree is not divisible by 4 , which is a contradiction.

§ 3

In the following three lemmas we prove that the 2-part of the multiplier of M_{22} is cyclic of order two.

Lemma 1. M_{22} has a proper covering \bar{M}_{22} such that $\bar{M}_{22} / Z_{2} \simeq M_{22}$.
Proof. M_{24} contains the holomorph of the elementary abelian group N of order 16 (Frobenius [5] and Witt [6]). This implies that M_{22} contains a subgroup H of index 77 where H is isomorphic to a split extension of N by A_{6}, the alternating group of degree 6 . The representation of A_{6} on N, considered as a 4 dimensional vector space over $G F(2)$, is irreducible, as follows by restriction from $G L(4,2) \simeq A_{8}$. The character table of H is given in Table 1.

Table 1. The characters of H

(1)	360.16	1	5	5^{\prime}	9	10	$\overline{8}$	15	15^{\prime}	30	45	45^{\prime}
$(2)^{6}$	32	1	1	1	1	-2	0	3	-1	2	-3	1
$(3)^{4}$	36	1	-1	2	0	1	-1	3	3	-3	0	0
$(3)^{5}$	9	1	2	-1	0	1	-1	0	0	0	0	0
$(5)^{3}$	5	1	0	0	-1	0	z	0	0	0	0	0
$(4)^{3}$	8	1	-1	-1	1	0	0	1	-1	0	1	-1
$(2)^{8}$	384	1	5	5	9	10	8	-1	-1	-2	-3	-3
$(4)^{4}$	16	1	1	1	1	-2	0	-1	-1	-2	1	1
$(4)^{4}$	32	1	1	1	1	-2	0	-1	3	2	1	-3
$(8)^{2}$	8	1	-1	-1	1	0	0	-1	1	0	-1	1
$(6)^{2}(2)^{2}$	12	1	-1	2	0	1	-1	-1	-1	1	0	0

H has a permutation representation of degree 16 on the cosets of A_{6}. The first column describes the conjugacy classes of H in terms of the cycle structure of their elements in this representation. The second column gives the order of the centralizer subgroups. There are two (5) ${ }^{3}$ classes and two 8 dimensional characters. $z=\frac{1}{2}(1 \pm \sqrt{5})$.

The permutation character π of M_{22} on the cosets of H is $1+21+55$ and hence the double coset decomposition of M_{22} is

$$
M_{22}=H+H x_{1} H+H x_{2} H .
$$

Restricting π to H, we find $21_{H}=1+5+15$ and $55_{H}=1+9+15+30$. A well known result of Mackay states that these irreducible constituents must also occur in the permutation characters of H on the cosets of $H_{1}=H \cap H^{x_{1}}$
and $H_{2}=H \cap H^{x_{2}}$. From Table 1, the unique combinations are $1+15$ for H_{1}, and $1+5+9+15+30$ for H_{2}.

Thus H_{1} has index 16. Since the 15 is faithful on H, we must have $H_{1} N=H, H_{1} \cap N=1$, and hence $H_{1} \simeq A_{6}$.
H_{2} is of index 60. Since the 5 and 9 have kernel $N, H_{2} N$ has index 15 in H. The only subgroups of A_{6} of this index are isomorphic to the symmetric group S_{4}. Put $N_{2}=H_{2} \cap N$, then $N_{2} \simeq Z_{2} \times Z_{2}$ and $H_{2} / N_{2} \simeq S_{4}$. If E denotes the normal subgroup of H_{2} corresponding to the extension of N_{2} by the normal subgroup of order 4 in S_{4}, then $H_{2} / E \simeq S_{3}$. From Table 1 we note that H_{2} contains no elements of order 8, and that H_{2} intersects the $(3)^{5}$ class but not the $(3)^{4}$ class of H. Since the centralizer of an element of the $(3)^{5}$ class contains no involutions, $H_{2} / E \simeq S_{3}$ acts faithfully on N_{2}.

We now prove that (i) E is elementary abelian, (ii) H_{2} splits over E and (iii) the representation of H_{2} / E on E has two irreducible constituents (each faithful of degree 2). Since S_{3} acts faithfully on N_{2}, then $E \simeq Z_{4} \times$ Z_{4} or $Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$. If $E \simeq Z_{4} \times Z_{4}$ the extension of N_{2} by a Z_{4} subgroup of the factor $S_{4} \simeq H_{2} / N_{2}$ would produce a group containing elements of order 8. Thus $E \simeq Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$. To prove (ii), consider the extension of N_{2} by an S_{3} subgroup of the factor S_{4}. Since S_{3} acts faithfully on N_{2} this extension must be isomorphic to S_{4}. An S_{3} subgroup of this extension is a complement to E in H_{2}. The result (iii) is obvious.

If M_{22} has a proper 2 -fold covering \bar{M}_{22}, then a proper 2 -fold covering \bar{H} is induced on H and the corresponding 2-cocycle is stable in the sense of Cartan and Eilenberg [7]. The converse is also true. Thus it is sufficient to produce a cocycle of H corresponding to a proper 2 -fold covering which is stable in M_{22}.

Since the 2 -Sylow subgroup of M_{22} is neither cyclic nor dihedral and since M_{22} contains a unique class of involutions, then these involutions must lift to involutions in \bar{M}_{22}. Thus the covering \bar{N} induced on N is $\bar{N} \simeq N \times Z_{2}$. From the work of Schur [8], A_{6} also has no proper 2 -fold covering in which all involutions lift to involutions, so that $\bar{A}_{6} \simeq A_{6} \times Z_{2}$. Therefore, \bar{H} splits over \bar{N} with factor A_{6}. The representation of A_{6} on \bar{N} is 5 dimensional with irreducible constituents of degrees 1 and 4. Now either $\bar{H} \simeq H \times Z_{2}$ or \bar{H} is a proper covering of H. Also $\bar{H} \simeq H \times Z_{2}$ if and only if the above 5 dimensional representation is decomposable. However,
A_{6} has an indecomposable representation with these irreducible components. This follows from a result of Thompson [9], since one of the complex irreducible 5 dimensional characters of A_{5} has modular irreducible constituents equal to precisely the above 1 and 4 . Thus H has a proper covering \bar{H}. The explicit form of the corresponding 2-cocycle ω is not needed.

Since $\bar{H}_{1} \simeq \bar{A}_{6} \simeq A_{6} \times Z_{2}$, ω is trivial on restriction to H_{1}. An argument similar to the one for \bar{H} shows that \bar{H}_{2} splits over $\bar{E} \simeq E \times Z_{2}$. The resulting 5 dimensional representation of S_{3} has irreducible constituents of degrees $1,2,2$. The representations of degree 2 are principal indecomposables and so must be direct summands. The representation is thus completely decomposable and so $\bar{H}_{2} \simeq H_{2} \times Z_{2}$ implying that ω is also trivial on H_{2}. By the stability criterion, \bar{M}_{22} is a proper covering.

It is worth noting that part of the above proof can be repeated almost verbatim for M_{23}, if A_{6} is replaced by A_{7}. The modular irreducible representation of degrees 1 and 4 lie in different blocks of A_{7} and hence A_{7} has no indecomposable 5 dimensional representation. This gives another proof that the 2-part of the multiplier of M_{23} is trivial.

Lemma 2. The multiplier of M_{22} does not contain elements of order 4.
Proof. Suppose \hat{M}_{22} is a proper 4-fold covering of M_{22} with $\hat{M}_{22} / Z_{4} \simeq M_{22}$. Let H be the subgroup in lemma 1. H has odd index in M_{22} and hence its covering \hat{H} is also proper. We will show that such a \hat{H} cannot exist.

Note that A_{7} occurs as a subgroup of M_{22}, see [1], page 734. The permutation character of M_{22} on the cosets of A_{7} is $1+21+154$, (the possibility $1+21+55+99$ cannot be a permutation character; this follows by considering the restriction of the character 55 to the hypothetical subgroup). The coverings of A_{7} with centre Z_{4} are $A_{7} \times Z_{4}$ and one other, which contains the proper 2 -fold covering of A_{7}, see [8]. However, in this 2 -fold covering all involutions of A_{7} lift to elements of order 4 and, as previously noted, this cannot occur in M_{22}.

Use the inducing argument of $\S 1$ with $G=M_{22}, S=A_{7}, m=4$, and $\pi=1+21+154$. The only classes $\left\{c_{j}\right\}$ which need not split are $(2)^{8},(6)^{2}(3)^{2}$ $(2)^{2}$, and the $(4)^{4}(2)^{2}$ class with centralizer of order 16 , (see [1] for the character table of M_{22}). The values of π on these classes are given in Table 2. From (*) the $(2)^{8}$ and $(6)^{2}(3)^{2}(2)^{2}$ class must split in \hat{M}_{22}.

In \hat{H} the covering induced on A_{6} must be $A_{6} \times Z_{4}$. The argument is

Table 2.

c_{j}	h_{j}	$\pi\left(c_{j}\right)$
$(2)^{8}$	384	16
$(6)^{2}(3)^{2}(2)^{2}$	12	1
$(4)^{4}(2)^{2}$	16	4

the same as for A_{7}. Apply the inducing argument with $G=H, S=A_{6}$, $m=4$, and $\pi=1+15$. From above we know that the $(2)^{6}$ class splits. By (*) the $(4)^{3}(2)$ class also splits and thus φ^{*} contains 2 irreducible components. Their degrees must be either $4+12$ or $8+8$. Both cases lead to contradictions on restriction back to $A_{6} \times Z_{4}$. Thus \hat{H} does not exist.

The same calculations could be performed for the 2 -fold covering \bar{M}_{22}. However, in the final step we could also have $\varphi^{*}=6+10$, and, in fact, H does have projective characters with these degrees.

Lemma 3. The 2 part of the multiplier of M_{22} is cyclic.
Proof. The primes 5, 7, 11 divide $\left|\bar{M}_{22}\right|$ to the first power. Restricting our attention to the projective characters of M_{22}, we find \bar{M}_{22} has a 5 -block $B(5)$ with five characters of degree $\equiv \pm 1(\bmod 5)$, a 7 -block $B(7)$ with 3 non-exceptional characters of degree $\equiv \pm 1(\bmod 7)$ and 2 exceptional characters of degree $\equiv \pm 3(\bmod 7)$, and an 11 -block $B(11)$ with 5 nonexceptional characters of degree $\equiv \pm 1(\bmod 11)$ and 2 exceptional characters of degree $\equiv \pm 5(\bmod 11)$. Consider the even positive divisors of $\left|M_{22}\right|$ less than $\sqrt{\left|M_{22}\right|}$. Those divisors congruent to $0, \pm 1(\bmod 5)$, congruent to $0, \pm 1, \pm 3(\bmod 7)$, and moreover, congruent to $1,-1,5,-5(\bmod 11)$ are $56,144,210 ; 10,120,384,560 ; 60,126,280 ; 6,160,336$ respectively. The degrees in $B(11)$ come from this list.

A character of degree 60 would be exceptional for 7 and 11, and hence assume irrational values on elements of order 7 and 11. But then \bar{M}_{22} would contain elements of order 77 by a theorem of Burnside, which is impossible. A character of degree 384 would be in a 2 -block of \bar{M}_{22} of defect 1 , and thus M_{22} would also have an ordinary irreducible character of degree 384, which is impossible. \bar{M}_{22} contains no elements of order 33. Thus, if $B(3)$ is a 3 -block of defect 1 of projective characters of \bar{M}_{22}, the block intersection argument can be applied to $B(11) \cap B(3)$. In particular,
this will show that characters of degree 6 or 336 do not occur, and that if a character of degree 120 or 210 appears, then a triple of degrees 120 , 210 , 330 must in fact occur. Such blocks $B(3)$ of defect 1 do exist by a result of Brauer, since they exist in the normalizer of a cyclic subgroup of order 3 in \bar{M}_{22}.

It is now fairly straightforward to show there exist unique solutions for the degrees in $B(5), B(7), B(11)$. We omit the details. There are 11 irreducible projective characters: their degrees are $440,330,210,154,154, \overline{126}, 120$, 56 , $\overline{10}$, where the bar denotes a pair of complex conjugate characters. Arguing as in the case of M_{12}, we can conclude that M_{22} has no proper covering over $Z_{2} \times Z_{2}$. Indeed, the argument is simpler, since a 2 -fold projective character of M_{22} of degree 100 must be a sum of 10 irreducible projective characters of degree 10.

References

[1] Burgoyne, N. and Fong, P. The Schur Multipliers of the Mathieu Groups. Nagoya Math. Journal, Vol. 27 (1966), pp. 733-745. (We refer the reader to this paper for all definitions and any unexplained notation).
[2] Coxeter, H.S.M. Twelve Points in PG(5, 3) with 95040 self-transformations. Proc. Roy. Soc. A, 247 (1958) pp. 279-293.
[3] Brauer, R. On groups whose order contains a prime number to the first power I. Am. Jour. Math. Vol. 64 (1942), pp. 401-420.
[4] Stanton, R.G. The Mathieu groups. Can. Jour. Math. Vol. 3 (1951), pp. 164-174.
[5] Frobenius, G. Über die Charaktere der mehrfach transitiven Gruppen. Sitz. Preuss. Akad. Wiss. (1904), pp. 558-571.
[6] Witt, E. Die 5-fach transitiven Gruppen von Mathieu. Abhand. Math. Sem. Hamburg, Vol. 12 (1938), pp. 256-264.
[7] Cartan, H. and Eilenberg, S. Homological Algebra. Princeton (1956).
[8] Schur, I. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. Jour. für Math. (Crelle), Vol. 139 (1911) pp. 155-250.
[9] Thompson, J. Vertices and Sources. To appear in the Journal of Algebra.

Department of Mathematics
University of Illinois
Chicago, Illinois

