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HIDEO IMAI

We are concerned with the value distribution of a mapping of an
open Riemannian w-space (n ^ 3) into a Riemannian n-space. The value
distribution theory of an analytic mapping of Riemann surfaces was
initiated by S. S. Chern [1] and developed mainly by L. Sario [8], [9],
[10], [11], and then by H. Wu [14], [15]. The most crucial part in
Sario's theory is the introduction of a kernel function on an arbitrary
Riemann surface to describe appropriately the proximity of two points.
His method indicates that the potential theoretic method is one of the
powerful methods in the value distribution theory.

Our main object is to generalize the first main theorem to the higher
dimensional Riemannian spaces according to Sario's method. But in
view of the intrinsic restriction, we need to confine ourselves to a
mapping which does not destroy the harmonic structure. For this
purpose we introduce the notion of a harmonic mapping which was first
considered by C. Constantinescu-A. Cornea in the theory of harmonic
spaces ([2]). Roughly speaking, it is a mapping preserving harmonic
functions. We will see that the first main theorem is valid for an
arbitrary harmonic mapping.

In our present paper we will first introduce the harmonic mapping
between Riemannian spaces. We will show that it is a C2-mapping and
a local isometry except for the set of singular points of the mapping
(Lemmas 1 and 4). To construct the characteristic function, the function
obtained from Sario's kernel by applying Laplacian plays the role of
the volume element on Riemannian spaces. In section 4 we will see
that the total volume of any Riemannian spaces (which is either open
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or closed) is equal to 2 with respect to this volume element. Finally we
will obtain the first main theorem for harmonic mappings which states
that the counting number of the pre-image of a non-singular point α
and the mean proximity of the image of the relative boundary to a point
a is determined only by the given region of the domain space and the
given harmonic mappings.

1. Let R be a Riemannian π-space (n >̂ 3), i.e., a connected, separable
and orientable ^-dimensional in >̂ 3) C°°-manifold with a C°°-metric tensor
gij. A relatively compact subregion Ω of R, the boundary of which are
piecewise C°% is called regular. A sequence /βn}n=i of regular regions
with Ώn c Ωn+1 and R = U Ωn is called a regular exhaustion of R. For
an open set ω of R,H(ω) stands for the class of harmonic functions on
ω and Hc(ω) for the subclass of H(ω), consisting of functions which can
be continuously extendable to the closure ω of ω. Denote by gv(x,ζ)
Green's function of V with its pole at ζ and with the normalization

— *dg(x, ζ) = 1 for any parametric ball V at ζ.
J dv

Let S be another Riemannian w-space with a C°°-metric tensor
gk£. The mapping f:R-+S is called an isometry if / is a diffeomorphism
of R onto f(R) and gίj(x) = gk£(f(x)) for each x in R. For each point
x in R, if there exist open neighbourhoods U of x and V of y = /(#)
such that / is an isometry of U onto V, f is called a local isometry.
As usual, a point x0 e R is a singular point of / if det (—^—) = 0 at

\ dxι /

x = χ09 where x = (x\ , xn) is a local parameter about x and yj = fJ(x)
with /(a) == (f\x), ,/wG*0). For the singular point xQ, yQ = /O0) is
called a singular value of /. Similarly, for any (^-function ψ in R, a
point #0 in i? is a critical point of ^ if (—2-, ,—£-) = 0 at a? = a?0,

\ dxι dxn /

and for the critical point x0 of φ, φ(x0) is called a critical value of ^.
2. Let / be a continuous mapping of R to S. A mapping / is

called harmonic if for any point x in #, any neighbourhood V oί y =
fix) in f(R), and any harmonic function ux in F, ^ x o / is harmonic on
the pre-image f~\V) of V under /. This definition is a version of the
harmonic mapping in the theory of harmonic spaces which was introduced
by C. Constantinescu-A. Cornea [2]. We will consider the properties of
harmonic mappings according to those in the theory of harmonic spaces.
First we will show that / becomes automorphically a C2-mapping.
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LEMMA 1. Let f be a harmonic mapping of R to S. Then f is a

C2-mapping.

Proof. It suffices to show that / is locally C2-mapping. For each

point x0 e R, let y0 = /(#„). Denote by Vo and Ω the concentric parametric

balls about y0 in S such that 7 0 ^ f l and by gΩ(y, y0) the Green's function

of Ω with a pole at yQ. Without loss of generality, we may assume that

there are no critical points of gΩ(y, yQ) in Ω — {y0}, because of the com-

pactness of Ω and of Sard's theorem. Let a19a2, - - -,ccn be real numbers

such that 0 < ax < < an < mina F o gΩ(y9y0) and ηk = (ηξ, , J $ ) be a

point in the hypersurface {gΩ(y,y0) = αΛ} with fc = 1,2, ,w. Since

gΛyk,y) = O(p(Vk,y)2-n) with p(ηk9yy = gtj(ηi-i^ίvj-iφ a n d ^ = (»!,

• , 2/ίD> w e m a y choose 3?fc such that the fc-th coordinate of ^fc is the

only non-zero coordinate. Then, since grad gΩ(y, y0) Φ 0 at y = ηk, the

&-th component of (-—gΩ(y,y0), ,-^-^(l/,2/o)) at 1/ = ^ is the only

non-zero component, where (y19 , τ/w) is a local parameter of the ball

Ω. By the symmetry of Green's function, gΩ{ηk,y^) = gΩ(y0,7]k) and then

the components of (——gΩ(y09ηk), - -, #0(2/0,^)) a t 1/= 37* (fc = l,2,
V dyx dyn I

• , n) are not zero only at the fc-th component. We set uk(y) = gΩ(y, ηk)

for k = 1,2, .,%. Clearly ί ί(7 0 ) =) K}^ = 1 and det ( - ^ - ^ 0 / ) L ^ ^ 0
\ dyt /l^j^n

at 1/ = τ/0. Let V be a connected neighbourhood of y0 such that
det ( Uj(y))Φθ in f(R) and [7 be a connected component of f~\V).

\ dyt /

Then, by the hypothesis, ukofeH(U) and hence ukof (k = 1,2, ,n)

is a C2-function in U. Since, by the construction of {uk}l=lf (u19 ---,un)

serves as a local parameter in V, f is a C2-mapping in [7.

In order to show the global property of a harmonic mapping, we

need the following approximation Lemma, the original form of which

can be found in [6].

LEMMA 2 ([6]). Let G be a Riemannian space and ω be an open

subset of G. For any u e H(ω) and any compact subset K of ω,u can

be uniformly approximated by functions in H(G) on K if and only if

the complement $ω of ω does not contain connected components.

LEMMA 3. Let f be a C2-mapping of R to S. Then, f is a
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harmonic mapping if and only if u f if harmonic on R for every ue
H(f(R)).

Proof. Since the "if part" is trivial, we will show the "only if
part". Let x e R be any point and V be any neighbourhood of y = f(x)
in f(R). Without loss of generality, we may assume that the complement
0 V of V has no connected compact components in S. Indeed otherwise,
we can choose an open covering {Vj} of V in f(R) such that each Vj
has no connected compact components in S and the point y = f(x) is
contained in some Vό. Let ux be any function in H(V) and {Fn}~=1 be
a regular exhaustion of V such that Vn c Vn c Vn+1 for each n and
V = \Jn=ι Vn. For every n 7> 2, we denote by hn a harmonic function
in S with the property that \ux — hn\ < 1/n on Vn_x. This procedure
is possible by Lemma 2. Then, by the hypothesis, hn-feH(R) and
\uxo f — hnof\ < 1/n on f~ι(Vn-d for each n. Hence taking the limit,
Uχ°f coincides with some function heH(R) on f~\V). Therefore we
have uxofeH(f-\V)).

LEMMA 4. For any harmonic mapping f of R to S, f is a local
isometry except for the set of singular points of f.

Proof. Let x0 be any non-singular point of / . Then there exist
open neighbourhoods U of xQ and V of yQ = f(x0) such that / is a
bijective C2-mapping of U onto V. Since, by the hypothesis, / preserves
harmonic functions, it is an isometry of U onto V (c.f. [3, p387]).

The following properties of harmonic mappings are known from the
general theory of harmonic spaces.

LEMMA 5. Let f be a harmonic mapping of R to S. If a subset
A of f(R) is polar, f~\A) is also a polar set. If s' is a superharmonic
function in an open subset G of f(R), then s' f is superharmonic in
f-\G).

COROLLARY 1. Under a harmonic mapping f, f~\y0) is the set of
n-dimensional Newtonian capacity zero for each singular value y0 e f(R),
and f~\y) is at most countable point set for each non-singular value
yefiR).

Proof. Let y0 be a singular value of / and V be a neighbourhood
of y0 in f(R). Then there exists the Green's function gv(y9yQ) of V.
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By Lemma 5, gv(f(x),y0) is superharmonic in f~\V) and gv(f{x),yd —
oo on f~Xyo). Therefore the set f~\y<ύ is polar and it is a set of n-
dimensional Newtonian capacity zero. The second part is clear by
Lemma 4 and the σ-compactness of R.

A typical example of a harmonic mapping is the projection of the
covering Riemannian space. In this case the harmonic mapping has no
singular points.

3. We will recall the Sario kernel on S and then consider the
properties of the composed Sario's kernel under a harmonic mapping / .
These are the basic tool in the value distribution theory by Sario's
method.

In S we take the fixed point yd (j = 0,1) and then the disjoint
parametric ball Vj (j = 0,1) with the center at yά. Let gVj(y, yό) (j = 0,1)
be the corresponding Green's function. Usign Sario's principal operator
Lj (c.f. [7]), construct the harmonic function to(y) = tQ(y, y09 yλ) on S —
{y0, Vi} such that to(y) — gVo(y, y0) and to(y) + gVl(y, yλ) are harmonic in
Vo and VΊ respectively, and that t0 = Ljί0 in a neighbourhood of the ideal
boundary. Normalize tQ(y) in such a way that tQ(y) — gVo(y, y0) —> 0 as
y -> y0 in Vo. Then the functions so(y) = log (1 + eto(x)) and so(y) — gVo(y, y0)
are finitely continuous in S — {yQ} and Vo respectively. For an arbitrary
point a in S — {y0}, we construct the function t(y, a) = t(y, a, y0) in a
similar manner to to(y, y0, yλ) except for the normalization: t(y, a) + gVo(y, y0)
—> so(a) as y —> y0 in Vo. For convenience, in these constructions we
always take y^yλ and a from the set of non-singular values of /.

Let sx{y9a) = so(y) + t(y,ά) and make s^y^y^ = sQ(y0). Then s^yyd)
is bounded from below. We set s(y, a) = sx(y> a) + c, where the constant
c is choosen so as to have s(y, a) > 0 on S X S. The function s(y, a) is
called Sario's kernel on S which is a symmetric kernel. The details for
Sario's kernel may be found in [4], [7] and [13]. Sario's kernel has the
following properties;

LEMMA 6 ([4]). On S - {yo,yi}

Jvs0(y) = e ί0(y)(l + eto{y))-2\gY8idt0(y)\2

holds, and hence JysQ(y) is non-negative there.

LEMMA 7 ([4]). Sario's kernel s(y,a) is jointly continuous on S X S.
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For every regular region Ω' of S which contains the point α, the de-
composition

s(y, a) = go,(y, a) + vΩ,(y, a)

is given, where gΩ, is the Green's function on Ωf and vΩ, is a finitely
continuous function on Ωf x Ω'.

Let f:R-^S be a harmonic mapping and {a3) be the pre-image of
a under /. Since a is a non-singular value of /, {aά} is a totally dis-
connected point set in R. Choose one aό in {α,} and denote by U and
V the isometric neighbourhoods of aj and a under /, respectively, a
stands for the boundary of U.

LEMMA 8. For an arbitrary harmonic mapping f and each a} in

f *ds(J(x),f(βj)) = f *dgu(xfaJ) = f *dgv<J{x)9f(aj)) = - 1
J a J a J a

is valid and hence, for any φeHc{U),

φ(aj) = f φ{x)*dgr{f{x), f(aj)) .
J a

Proof. Since the harmonic structure is invariant under isometries,
the property of Green's function implies that ##(#,%) = gv(f(x), f{a3))

and *dg(x,a,j) = \ *dg(J{x),f(aj)) = —l. Also, by Lemma 7,
J a J a

f *ds(f(x),f(flj))= f *dgv(f(x), f(β5)). Thus we obtain the first part.
J a J a

The second part follows immediately by Green's formula.

The composed function so(f(x)) has the following properties;

LEMMA 9. On R - f~\ya) U f'Wd

holds, where |grad^ tQ(f(x))\2=gίj(x)—^ °-^—(x). Consequently Jxs0(f(x))
dxι dXJ

is subharmonic there.

Proof. For any point x = (x\ x\ - , xn) in R - f~\yQ) U f-\yd,

^ , so\f\X)) = e ° (1 + e ° dx*
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g + g \ o g J j \
dxι dxι / dx3

and

giJ—^— so(f(x)) = e«*'<*»a + e^^)
dxιdxJ

+ e ( i + e y g

dxιdxj

Since 4A(/G*0) = 0 on R - f~\y,) U f'Kvd, we obtain

4. We will construct the volume element of S which is necessary

in order to define the characteristic function. Let λ\y)dVy be the n-

form on S — {y0, y^ defined by

χ\y) = ^

with λ(y) ^ 0 and dVy be the volume element on S, i.e., locally cZF̂  =

nωnτ
ndr with ωnrn the volume of the ball of the radius r. Evidently

λ\y)dVy is non-negative and finite on S — {yQ, y^.

LEMMA 10. As r = \y — yά\ -» 0 (y = 0,1)

s. Hence λ\y) is non-negative and finite on S and the set of zero

points of λ\y) consists of yo,y19 and the critical points of to(y).

Proof. The points t h a t we need to be checked are y0 and yx. On

\y — yό\ = r in the parametr ic ball Vs about ys (j = 0,1), Igrad^ tQ(y)\2 — r2~2w.

Since βίo(2/)(l + e£o(2/))~2 < β- ίo(y) and tQ(y) - r 2 ' w on r = |τ/ - yo|,

Λ2(#) - {exp (_r2-w)}r2~2w - (exp - - ^ — [ 1 - (2 - 2n)rn~2 logr])
I rn~2 J

holds on r = \y — yQ\. Since — rπ~2 log r —» 0 as r —> 0,

Λ2(#) - e x p ( - r 2 " n )

holds as r = |# — yo\ —> 0.

Similarly, in the vicinity of ^ on r — \y — yx\,
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λ\y) ~ [exp(-r 2-w)][l + e χp(-r 2 - w )]- 2 r 2 - 2 n

- [1 + exp ( - r 2 " n )]- 2 exp ( - - * - [l _ (2 - 2ri)rn~2 log r]\ ,
I rn~2 J

where tQ(y) τ2~n onr = \y — yx\. A s r = \y — yι\-+of [1 + exp(-r 2 " w )]- 2

—> 1. Therefore, we have

λ\y) ~ exp(-r 2 " w )

as r —» 0 in Vyi.

By virtue of Lemma 10, λ\y)dVy can be continued to a non-negative

finitely continuous w-form on S and

Δys{y, a) = Λ2(?/)

on S - {α}. Therefore we may regard λ\y)dVy as a volume element on

S. Set oil/) = λ\y)dVy. We will evaluate the total volume of S with

respect to ω(y).

In the case where S is open, let {Ω'n} be a regular exhaustion of S.

For a C2-function ^ on S, we define the Dirichlet integral Ds(φ) = Z?(0

of 9 over S as lim^^..^ D0,n(φ) with DΩ,n{φ) = I dφ Λ*dφ. Similarly we

can define ω(̂ /) = lim^.^ ω(τ/). With these definitions we have;
JS n jΩ'n

LEMMA 11. For any S which is either open or closed, the total

volume of S with respect to the volume element ω(y) is equal to 2. In

other words,

Proof. Let S be open and aά (j = 0,1) be the level hypersurface

{yeS: to(y) = r3) (j = 0,1). Set Do = {y0} U {to(y) < r0} and Dx - {y,} U

{to(y) > r j . Then Do and Dx are compact for sufficiently small r0 and

sufficiently large rλ. Moreover, by Sard's theorem, we can choose such

a pair of r0 and τx that aό (j = 0,1) contains no critical points of to(y).

For such a fixed pair of r0 and r19 let {β }̂ be a regular exhaustion of

S with Ωf

n 2 Z>0 U A for each n. By the same reason, we may assume

that each dΩf

n contains no critical points of ί0. For any r e (r0, r^, set

α(r, t0) = { p S : tQ(y) = r} and αΛ,(r, t0) = α(^, *o) Π Ωn. Since ί io*^io~*
JdΩ'n

0 as β^ -> S ([7]), Green's formula implies that
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DS-DOUDΆ) = l i m ^ _ s I to*dto = r1 — r0.
J ao + ai

Thus, by Fubini's theorem, we have

£*-z>ouDi(*α) = l im^^ ί (ΓdU)*dt0
J aΩ'n(r,to) \J ro /

= (r, - r0) l i m β l - s f * d t l s .
J «fl^(r,ίo)

These two equations imply that, for r e (r0, TΊ),

l i m ^ ^ I *d£0 = 1 a.e..

This guarantees the calculation

f ω(y) = limx,;^ Γ1 e r(l + er

«fl'n(r,ίo)

= {(1 + e")"1 - (1 + ̂ °)-1}

By Lemma 10,

f ω(y) = 0(|rβ|) and f ω(») = 0(r,) .
J Do J ϊ>\

Thus we conclude that

f ω(y) = l i m ^ ^ (f ω(i/) + f ω(y)\ = 2 .

In the case where S is compact, the number of critical points of t0 are
finite. Evaluating directly we have the same conclusion. Thus the proof
is completed.

As a by-product we have;

COROLLARY 2. In the case of a non-compact S, we have for r e ( - o o , oo)

limQ, 8 *dt0 = 1 a.e..

5. We are now ready to give the first main theorem according to
Sario's method ([8], [9], [11], and [12]). We will state some notation
and formulate the first main theorem in this section, while the proof
shall be given in section 6.

Let f:R-*S be an arbitrary harmonic mapping between an open
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Riemannian w-space R and a Riemannian ti-space S. On R choose a
parametric ball Ro with the border /?„. A subregion Ω of R — Ro will
be called an adjacent regular region if Ω U Ro is a regular region of β.
Given such an Ω. We form the harmonic function u — uΩ in Ω which
vanishes on β0 and is equal to a constant k — kQ and which satisfies

ί '*'du = 1, where the constant k = kΩ is determined by the harmonic

modulus £1/& of Ω. As for the harmonic modulus we refer to [13].
For h e (0, k0], let βh be the level hypersurface of u = A, and βΛ be

the adjacent regular region w"J((0, fe)) and, for the given non-singular
value a e S — {τ/0, #x} of /, let y(fe, a) be the number of the pre-images of
α in fl^. We choose the A-function (counting function) as

A(h, a) — v(r, a)dr .
Jo

It reflects the frequency of the α-points. For the B-function (proximity
function) we take

B(h, a) = f s(f(x), a)*du .
J βh-βθ

The integrand is the proximity of the image of βh — β0 to a under /
and hence B(h, a) represents the mean proximity of the image of βh — β0

to a.
As in section 4 we define

λ\f(x)) = ew<*»(l + e^^)-2\grsidxto(f(x))\2 .

Then λ\f(x))dVx with the locally Euclidian volume element dVx on R is
a non-negative finitely continuous %-form on R by Lemma 10 and

holds on R - f~ι(a). We set ω(f(x)) = λ\f(x))dVx. This is independent
of the point α, since ω(f(x)) = 0(1) at each point of /~1(α).

The C-function (characteristic function) C(h) is defined as

C(h) =

where Rr = Ωr U -Bo. The counting function and the proximity function
are essentially determined by the point a and h, where h is determined
by the region Ωh. But the characteristic function depends only on Ωh
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and independent of a. We will see;

THEOREM. For any harmonic mapping f of an open Rίemannian

nspace R to a Riemannian n-space S and for any non-singular value

aeS of f,

A(kΩ, a) + B(kΩ, a) = C(kΩ)

holds.

We stress here that the A-, B-, and C-functions are function of

adjacent regular region Ω, not the scalors. The functions uR = lim^.^ uΩ

and eι/k = e1/ltm°-B kΩ exist and the latter is referred to as the harmonic

modulus of R. According as kR < oo or kR = oo, R is said to be hyper-

bolic or parabolic. Suppose that R is hyperbolic. If R is regular in

the sence that uR\[0, h]) is compact for each h e [0, kB)9 then we can view

that the A-, B-, and C-functions are functions on [0, kR) and our Theorem

will be the proper generalization of the Nevanlinna first main theorem for

the disk \z\ < 1. However, in general, R is not regular and we have

to take Ω as variables. If R is parabolic, then the situation is much

clearer. In this case we can make use of the Evans harmonic function

p(x) on R instead of uR. It is defined as follows (see [5] and [13]): p(#)

is a positive harmonic function on R — Ro with p | βQ = 0, p = oo at the

ideal boundary β of R and *dp = 1. Clearly p^flΌ, h]) is compact for
J βo

each h e [0, oo) and the A-, B-, and C-functions are functions on [0, oo),

and our Theorem with this variation is the proper generalization of the

Nevanlinna first main theorem for the plane \z\ < oo.

6. We will prove Theorem. Let {%} be the pre-image of a in Ω

= Ωk. The set {a3) ΓΊ Ωh has no accumulation points in Ώh for every

h e [0, k), since a is non-singular and {aό} Π Ωh is compact in Ωh. With-

out loss of generality we may assume that dΩh contains no α-points.

In fact, since the only singularity of s(f(x), a) is Newtonian, the hyper-

surface integrals of s(f(x),a) that we shall consider will be finite and

continuous in h and our formulas will be extended to the case ad e dΩh.

For each aό in Ωh, choose a disjoint parametric ball Δ3 about aά which

is contained in Ωh and set aό — dΔj. Applying Green's formula to the

functions v(x) = h — u(x) and s(f(x), α),
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( i )

f v(x)*ds(f(x), a) - s(f(x), a)*dv(x)
J βl-βθ-Σaj

= f v(x)*d8(f(x),a) ,
J Ωh-ΌJj

where as and Δό run over all the α-points in Ωh. As ccj shrinkes to ajf

f s(f(x), a)*dv -> 0 and, by Lemma 8, f *ds(f(x), f(a3)) = - f *dgΔj(x9α).
J CCj J —OCj J OCj

Thus, in the shrinking process of aj —> 0,

ί v(x)*d8(f(x), a) - s(f(x), a)*dv{x)
J-Σ«j

= I v(x)*dgΛx,aό) -+ 2 v{aά) = J (fc — r)dι>(r,a) .
J - Σ «j J o

The integration by part gives

(h — r)dv(r,a) — —hv(0,a) + v(r,a)dr .

o Jo

Hence we have from (1)

-MO, a) + Γ v(r, a)dr + f s(f(x), a)*du — h [ *ds(f(x), a)
/ Q \ J ° J βfι-βθ J βo

c
= v(x)ω(f(x)) .

Again we apply Stokes' formula to the small region Ro — U Δ) and
the function s(f(x),ά), where the Δ)(CLR^ are the small disjoint para-
metric balls about the α-points. Then, we have

f *ώ(/(αθ,α) + K0,α) = f ω(f(x)) .
J βo J Ro

From this equation and (2),

(3) [hv(r,a)dr + f s(f(x), a)*du - h f ω(f(x)) + f v(x)ω(f(x)) .
JO J βh-βo J Ro J Ωh

Next we show that, for almost all h e [0, fe], the ^-derivative of the
right hand side of (3) is the volume of Rh with respect to ω(f(x)). To
show this it suffices to show that, for almost all h e [0, k].

(4) JL([ & ~ ^)M/W)) = f
ah \JΩh / J Ωn

For sufficiently small Δh > 0, let Ωh+Δh be the region with Ωh+Δh =
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{x e R — Ro: u(x) <^ h + Ah}. Since 0 < h + Ah — u < Ah on Ωh+Δh — Ωh,

lim,^+ 0 f A±J*LllJLω(f(χ)) = lim^o f ω(/(α)) = 0 .
J Ωh + Δh-Ωh Δtl J Ωh + Δn-Ωh

Therefore

l im^ + o - J - Γf (h + Ah- M)ω(f(x)) - f (fe - w)ω(/(a?))l

= lirn^o ί h + Δh-u ω(f(χ)) + C ω(f(χ))

JΩh + Jh-Ωh Ah JΩh

= f ω(/(»))

is valid for almost all he[O,k] by virtue of Sard's theorem. Thus the

derivative from the right of (h — u(x))ω(f(x)) is equal to ω(/(#))
JΩh JΩh

for almost all he[0, k]. A similar calculation holds for the derivative

from the left. Therefore the equation (4) is valid for almost all h e [0, k]

and we have

( 5) h[ ω(f(x)) + f (h - u(x))ω(f(x)) =Π[ ω(f(x))]dr .
J Rθ J Ωh JO U Br J

Combining the equations (4) and (5), the proof of Theorem is completed.
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