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TOPOLOGICAL ENTROPY AND PERIODIC POINTS OF

A FACTOR OF A SUBSHIFT OF FINITE TYPE

TAKASHI SHIMOMURA

§ 0. Introduction

Let X be a compact space and / be a continuous map from X into

itself. The topological entropy of /, h(f), was defined by Adler, Konheim

and McAndrew [1]. After that Bowen [4] defined the topological entropy

for uniformly continuous maps of metric spaces, and proved that the two

entropies coincide when the spaces are compact. The definition of Bowen

is useful in calculating entropy of continuous maps.

By improving on the definition of entropy given in [1] and [4], we

have the following results.

THEOREM 1. Let f:X—>X be a continuous map on a compact space X

and let g: Y—> Y be a continuous map on a compact Hausdorff space Y.

Suppose there is a continuous map π:X-+Y such that π{X) = Y and goπ

= πof. Then

h(f)^h(g) +sup h{f,π-\y)).

This is a generalization of the result of Bowen (Theorem 1.7, [4]). As

a corollary of Theorem 1 we have

COROLLARY 2. Let E, X and G be compact Hausdorff spaces. Suppose

that π: E'—> X is a projection of a fiber bundle with the total space E, the

base space X and the structure group G. If f:E-*Eίsa bundle map and

ff: X —> X is its base map, then h(f) = h{ff) holds.

Introducing a new method of calculating entropy, we have

THEOREM 3. Let σ:Σ-±Σ be a topologically mixing subshift of finite

type and let f: X -> X be a continuous map on a compact metric space X.

Suppose there exists a continuous map π: Σ —• X such that π(Σ) = X and
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foπ = πoσ. Then

where Nn(f) is the cardinal number of the set {x e X; fn(x) = x} and

log Nn(f) = oo if Nn(f) is not finite.

As a corollary of Theorem 3, we can give a partial answer for a

problem stated in Walters (p. 180, [8]). More precisely

COROLLARY 4. Let X be a compact metric space and f: X -> X be an

expansive homeomorphism. If (X, f) is a factor of a topologically mixing

subshift of finite type, then

Bowen proved in ((2.8), [2]) that if / is expansive then

^ l i m sup (1/n) log #,,(/).

From this result together with Theorem 4, Corollary 4 is obtained.

The author would like to thank Prof. N. Aoki and Prof. K. Shiraiwa

for encouragement and effort to form the paper.

§1. Definitions and basic properties

Hereafter X is a compact space and / is a continuous map of X into

itself. By (X, f) we denote the dynamical system of X and /.

Let a be a finite open covering of X and *a denote the cardinality

of a. For K a subset, we put

Nκ(a) = min {*β: β C a, K c U B}

and for n > 0

Further we define

h(f K, a) - lim sup (1/ή) log Nκ(a}) ,
n-*oo

h(f, K) = sup h(f, K, a)

where the supremum is taken for all the finite open covering of X. If in

particular K = X, then we write h(f) = h(f, K). This is in the case given

in [1].
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Remark 1. If K is closed and f(K) c Ky then the existence of

lim(l/n)logiV*(αj)

is easily checked (cf. see [1]).

Remark 2. If (X, d) is the metric space and K is closed, then h(f, K)

coincides with entropy given in [4].

In the rest of this section we investigate the properties of the defini-

tion of entropy given here.

Let a = {Au , At) be a finite family of closed sets of X and denote

by M = (Mtj) a t X ^-matrix of 0's and Γs. We say that a pair (a, M) is

a CM-pair for f if for any x eX there is a sequence

x* - (x0, xu . . •) e Π S(i) (S(i) = {1, •, *}, i ^ 0)

such that MXiXi+1 = 1 (i ^ 0) and x e ΠΓ°=o/~'(Λtί).

Remark 3. Under the notations, let us put

I1 = jx - (x0, x1? •) e Π S(ΐ): M w + 1 = 1 (i ̂  0)} .

Then 21 is closed. We define a shift σ usually by

Obviously (/(I1) = 21. Such a shift σ: J -> Σ is called to be a one side

subshift of finite type.

Fix n^.1. A finite sequence (x0, xlt , xw_2) is said to be an admis-

sible sequence of length n if J l ί W H = 1 for 0 ^ i <; M — 1. Let £ n denote

a set of admissible sequences of length n. We say that En is separated

if for any distinct points (x09 , xn^)9 (y09 - —, yn-i) £ En there is 0 ^ ^

n — 1 such that AΛj Π Ayy = ^. For K a subset we say that an admis-

sible sequence (x0, , xn_1) is attached to K iϊ K 0 fyiZo f~\Ax) ψ φ.

Denote by Sn ((a, M), K) the largest cardinality of any separated set

E of admissible sequences of length n attached to K, and put

Sf((a, M), K) = limsup (llή) log Sn((a, M), K) .

PROPERTY 1. Under the notations and the assumptions, Sf((a, M)y K)

<, h(f, K).

Proof. For x e X we put
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O(x) = n{X\A» xeAi. A^a}.

Then β = {O(x); x e X) is an open covering of X. For fixed n > 0, let En

be a separated set of admissible sequences of length n attached to K with

the maximal cardinality for (a, M). Let ϊ be a covering of K such that

ϊ c $ and K C Uce r C, Then for each x* = (x0, , xn_j) e J£n there is a

CeΓ such that x* is attached to C. It is easy to see that x* is only one

point of En attached to the C. Indeed, write C = Π?-o/"*(0<) for some

Oi e β (0 ̂  i £ n - 1). If 5>* = (y0, , y^-i) e En is attached to C, then A^

n O f ^ ί and Ay. 0 Ot Φ <j> for all 0 £ i ^ n - 1. So we have x* = y*.

Therefore

Sn((a, M), K) = *EigN (ft)

and so

Sf((a, M\ K) ^ h{f, K, β) £ h(f, K) .

Let ϊ be an open covering of X. For C eϊ we define

st(C) = U ί ^ e r C n C ^ ^ } ,

st(r) = {st(C); Cer}.

PROPERTY 2. Let α be a finite open covering of X and β be a covering

of X. If (0, TV) is a CM-pair for / such that st(/3) refines α, then for n ^ 1

Nκ(a})^Sn((β,N),K) and h(f, K, a) ̂  Sf((β,N\K) .

Proof. Let j?n be a set of admissible sequences of length n for (β, N).

Suppose that En is separated and attached to K and further has the

maximal cardinality. Let x e K. Then there is an admissible sequence

x* = (x0, . .,*„_!> such that x e Γ Ί ^ ί Λ ' Φ J Obviously if Π Π ? ^ / " ' ^ )

^ ^. Since £„ is maximal, there is y* = (y09 • • • j j e £ ) ι such that Bx.

Π ByiΦ φ for 0 < ί S n - I, and so x 6 ΠΓ-o1 st(By i). This implies that

{Π?=ist(jBy<); y* ei?w} is a covering of K. Since each Π?=oStBy< contained

in at least one element of a}, we have

Nκ(a}) < *En = Sn((j8, iV), K) and so Λ(/, «, K) ^ S/ίjS, 2V), K) .

PROPERTY 3. For a finite open covering a there is a finite open

covering ϊ such that st(Γ) refines a.

Proof. Recall that compact Haudorff spaces have the uniform struc-

ture. We denote by N(X) the family of all neighborhoods of the diagonal
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subset of X X X. Then there exists L e N(X) such that for all x e X there

is A e a such that {y e X; (x, y) e L} c A.

Take an open set U e N(X) such that UoZJoUaL (here AoB =

{(x, z); (x, y) e A, (y9 z) e B}). Clearly U[x] = {y e X; (x, y) e U} is an open

neighborhood of X, and st(U[x]) c (U<> UΌ U)[x] c L[x] holds. Hence a

finite subcovering of {L[x] x e X) is the desired one.

PROPERTY 4. Let 5" be a family of CM-pairs for /. Suppose that for

any finite open covering a of X, there is a CM-pair (/3, N) e S? such that

/3 refines α. Then for K a subset

Hf,K)= sup Sf((β,N),K).

Proof. By Property 1 it is enough to see that

h(f,K)£ sup Sf((β,N),K).

By Property 3 there is a finite open covering Γ such that st(Γ) refines a.

So we choose (β, N) e 3^ such that β refines 7 by assumption. Obviously

st(/3) refines a. By Property 2 we have

h(f,K,a)^Sf((β,N),K)^ sup Sf{(β,N),K).

Since a: is arbitrary, we obtain the conclusion.

§ 2. Proof of Theorem 1

Let a be a finite open covering of X and put

a = supinf (1/π) loglV^-^/α}) .

Take and fix ε > 0. For any y e Y there is my > 0 such that

(l/m,)logiV,_1(,X<0 ^ a + ε

and so

Nπ-ι{y)(ajv) ^ e ^ α + ε) .

From now on we fix y e Y and choose ay c α:^ such that

TΓ-1^) C U A , *αy = iV x- x ( y )«0 .

Put O?y = U^eαy^ a ^d denote by C(y) the family of the closed neighbour-

hoods of y. Then we have
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(X\Oy) Π ( n π~\K)) = φ .
kGC(y)

Since X is compact, there is Ky e C(y) such that π~\Ky) c Oy. If ITj, is

the interior of Ky, then {C7y; y e Y} is a covering of Y. Hence there is a

finite subcovering β = {Z7yi, , t/ yJ of Y. For simplicity we write mk = myk

and J7λ = UUL for £ = 1, , ί. Remark that

Take and fix n > 0. Then B e βn

g is expressed as B = f^zl g~%B{i))

for some B(i) e β (0 <L ί ^ n — 1). We fix this £ and define recursively a

finite sequence {ij such that

i0 z= 0 , is+ί = is + mk w h e n J3(is) — Uk .

Let g be the least integer such that iq+1 ^ n and put ns = mk if B(ίs) = ^

for 0 ^ s ^ g. Since for any x e π~\B) and s with 0 fg s ^ g, /ίs(x) e

-~ι(Bί), we have

and hence

logΛU(*K) ^ Σlog^- 1 ( i , ( ? s ) )«
5)

6 = 0

<(n + H)(a + ε)

where H = max {nu , 72J. Therefore

,(w + //)(α+ ε)

Since S is arbitrary in /3" we have

and so Λ(/, α) ^ h(g, ε) + α + ε fg /z(^) + α + ε. Since or and ε are arbi-

trary, the conclusion is obtained.

Remark. We give an example such that the equality of Theorem 1

does not holds. Let X and / be as in Theorem 1 and Z be a compact

space. Suppose that / has a fixed point (f(x0) = x0), h(f) > 0 and further
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(Z, φ) is a dynamical system such that h(φ) > 0.

Now we put Y — X U Z (disjoint union) and define a continuous map

g:Y->Y by

ίf(y) w h e n yeX
g(y) = i , . , ~

19(37 when y e Z .

Set TΓ: Y - ^ Z b y

ί y when . y e l
~(y) = \ , ~

(x0 when y e Z .

Then Λ(g) = max {/*(/), /&($} (see R. L. Adler, A. G. Konheim and M. H.

McAndrew [1]). And supxex h(g, π-\x)) = h(φ) > 0. So that h(g)< h(f)
+ Kφ).

Proof of Corollary 2. Since /' is a factor of /, we have h(f) <ί h(f).

Hence it is enough to show that h(f, π~1(x)) = 0 for all xeX.

Let β be a finite open covering of X such that for all B e β there is

a coordinate neighborhood UB with cl (B) C UB (here cl (B) denotes the

closure of B in X). For any B e β let ξB denote the coordinate map

ξB:UBχF >π~\UB)

where F is the fiber space. Then for fixed x e cl (B) the map

is defined by ξB,x(y) = ξB(x,y) for y e F.

Now take and fix a finite open covering a of E. Firstly we show

that there is a finite open covering ΪB of F such that TB refines ξB^x(a) for

all x e B. For any (x, j) e cl (B) X F we can find an open neighborhood

Uy(x) X Ux(y) of (x,y) that is contained in some element of ζ B\a). If ye F

is fixed, then cl(B) d{Jt

i=1Uy(xί) for some finite set {xu •• ,x j . So we

put Ŵ  = PJ[ = 1 Ux.(y). Since {W^ y e F } is a covering of JP, we have a

finite subcovering ΪB = {W7 }̂ which is the desired one.

We put r = {Πss^ W ί̂ ^ e ^} a n d fix x e x T h e n for i ^ 0 t h e r e

is B(j) e β such that fJ(x) e B(j), and so put

Then gj: F-+ F coincides with action of some element of G on F. Since

G is compact by assumption, the action of G is equicontinuous. Therefore
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there exists an open covering V of F such that gj\T) is refined by V for

j 2£ 0.

Therefore we have Nπ-Hx)(a}) < NFQ") for all j Ξ> 0, which implies

h(f, π~\x), a) = 0. Since a is arbitrary, the conclusion is obtained.

§ 3. Proof of Theorem 3

Since σ: Σ -»Σ is the subshift of finite type, there exist a p X p-

matrix M of 0's and Γs and a finite set S = {1, 2, ,p} such that

Σ = fx = (x.) e Π S(i); MXiXi+1 = 1 (i e Z)\ .

Here each SO') denotes the copy of S, i.e. S(j) = S for j e Z. Note that

the shift σ is defined by σ(x)i = xi+1 for i e Z.

It is well known (cf. (1, 3), [6]) that σ is topologically mixing if and

only if Mn > 0 (i.e. M?j > 0 for all ij) for sufficiently large n.

Now we give the proof of Theorem 3. Let ί I> 0. For any

C = (α_,, -.,α,)e Π S(ί)

we write

[C]_£ = {xeΣ; Xi = ai9 \i\^£}>

_,, ., x,) e Π S(ΐ); MXiXi+x = 1, -^ ^ i < A .

Since [M]e is finite, we put [M]t = {C\ , C'}. If B3 = π([Cj]_e) for 1 ^

j ^ ί, then β = {β1? , BJ is the family of closed subsets of X and β covers

X.

By using this β, we construct a CM-pair for /. Define a ί X Z-matrix

B = (BfJ) as follows.

In case ^ = 0, we put

1 when Mαjαy = 1 where C* = (αj) and CJ' = (α^),

0 otherwise

and in case ί > 0

(1 when α*+1 = a{ ( — ̂  ^ n < £) where

C ί = (aίi9 , αj) and V = (α> „ , α/)

0 otherwise.
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It is easy to see that (β, B) is a CM-pair for /.

We denote by (ΣB, σB) the subshift of finite type defined by the matrix

B and a finite set {1,2, •••,£}. Since σ: Σ -> Σ is topologically mixing,

there is m > 0 such that Mm > 0. Then we have BL > 0 where L = 2^

+ m. Hence σB: 2^ —• 2^ is topologically mixing.

Let £ e 2. For any i e Z there is a unique Cjί e [M]^ such that

So we put ^(Λ X = j t (ί e Z) and p(x) = (p(x)i). It is easily checked then

that ρ\ Σ -> ΣB is a homeomorphism and the diagram

Σ Λ ί

commutes. Define π' = π°p~K Then π ': 2"̂  —> X is surjective and for 1 <Ξ

C* =

For fixed 72 ̂  1, let En be a separated set of admissible sequences

attached to X for (β, B). We may assume that En is chosen such that *En is

maximal. Since σB: ΣB —> ΣB is topologically mixing, for x* — (x0, - , xn-i)

e En we can find an admissible sequence jc* = (x0, •• ,xL+ίί_1) such that

ô — %L+n-i Put En — {£*; x* e En}. Since En is separated, so is En. For

any j ' * € En define a periodic point y = (^)ίG^ by

y< = Λ (i = ( t + n - ΐ)p + r, 0 £ r < L + n - 1, p e Z) .

Obviously y has the period L + n — 1 and y e 2^. For ;y*? £* e J?n, as

above there exist periodic points y,zeΣB corresponding to y*9 z* repsec-

tively. If y* Φ z*, then we have π\y) Φ π\z) since {y*, z*} is separated.

Hence we have

*En = *EK ^ iV^^X/) ,

i.e. Sn((β, B), X) < NL+n^(f) since *En is maximal.
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Now let a be a finite open covering of X. By the construction of β

we have that diam (β) -> 0 when £ -> oo (here diam (/3) = max {diam (Bt)

1 ^ i ^ ί}). Hence there is β such that st (β) refines a. From Property

2 and the above inequality we have

and therefore the desired inequality is obtained.

Remark. Under the notations and the assumptions of Theorem 3, we

can construct an example such that

Let I7 be a shift space defined by two symbols {0,1} and as before

define a shift σ: Σ -> Σ. For k e Z (k > 0) we consider a point pk = (pf)

e Σ defined by

{1 when [ilk] is even

0 otherwise

where [ ] denotes the Gauss' symbol. Obviously each pk is a periodic

point of period 2k. For this point pk we denote by Ok(p) the orbit of σ.

Consider two the matrices A = L Λ and B = ί^ .,) and define

shift spaces of finite type which are denoted by ΣA and ΣB. Let pω be a

point in Oω = ΣA U ΣB. We define a new space X by

X = (Σ - (O^p) U 02(p) U U OJ) U {p\p\ ,pω}

and construct a map π: Σ -+X by

pk when x e 0k(p) (k = 1, 2, , ω)

otherwise .

Obviously π is surjective. So we introduce the strongest topology in X

for which π is continuous. It is easily checked then that X is Hausdorff

and compact. Hence the product topological space Σ X Xis Hausdorff and

compact.
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It is easy to see that a continuous map /: X —> X is induced from σ

by π. Then / has infinitely many fixed points. In fact, f(pk) — pk for

k = 1, 2, , ω. Put ρ(x, y) = (#, π(y)) for (#, J>) e Σ X 21. Then the diagram

commutes. (Σ X Σ, σ X σ) is a subshift of finite type and topologically

mixing, and h(σ X f) <̂  h(σ X σ) = 2 log 2 holds. However iV^σ X /) is

infinite for n > 0.
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