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TOPOLOGICAL ENTROPY AND PERIODIC POINTS OF
A FACTOR OF A SUBSHIFT OF FINITE TYPE
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§0. Introduction

Let X be a compact space and f be a continuous map from X into
itself. The topological entropy of f, A(f), was defined by Adler, Konheim
and McAndrew [1]. After that Bowen [4] defined the topological entropy
for uniformly continuous maps of metric spaces, and proved that the two
entropies coincide when the spaces are compact. The definition of Bowen
is useful in calculating entropy of continuous maps.

By improving on the definition of entropy given in [1] and [4], we
have the following results.

THEOREM 1. Let f: X — X be a continuous map on a compact space X
and let g: Y— Y be a continuous map on a compact Hausdorff space Y.
Suppose there is a continuous map n: X — Y such that o(X) =Y and gox
=qnof. Then

h(f) = W(g) + sup h(f, =7 () -

This is a generalization of the result of Bowen (Theorem 1.7, [4]). As
a corollary of Theorem 1 we have

CoROLLARY 2. Let E, X and G be compact Hausdorff spaces. Suppose
that =: E— X is a projection of a fiber bundle with the total space E, the
base space X and the structure group G. If f: E— E is a bundle map and
f': X — X is its base map, then h(f) = h(f’) holds.

Introducing a new method of calculating entropy, we have

THEOREM 3. Let o: 3 — 2 be a topologically mixing subshift of finite
type and let f: X — X be a continuous map on a compact metric space X.
Suppose there exists a continuous map =: 2 — X such that =(3) = X and
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for = moa. Then

h(f) < liminf (1/n)log N.(f) ,

n—oo

where N, (f) is the cardinal number of the set {x<cX; fY(x) = x} and
log N,(f) = o if N,(f) is not finite.

As a corollary of Theorem 3, we can give a partial answer for a
problem stated in Walters (p. 180, [8]). More precisely

CoOROLLARY 4. Let X be a compact metric space and f: X — X be an

expansive homeomorphism. If (X,f) is a factor of a topologically mixing
subshift of finite type, then

h(f) = lim (1/n) log N,(f) .
Bowen proved in ((2.8), [2]) that if f is expansive then
h(f) =z lim sup (1/n) log N,(f) .

From this result together with Theorem 4, Corollary 4 is obtained.
The author would like to thank Prof. N. Aoki and Prof. K. Shiraiwa
for encouragement and effort to form the paper.

§1. Definitions and basic properties

Hereafter X is a compact space and f is a continuous map of X into
itself. By (X, f) we denote the dynamical system of X and f.

Let @ be a finite open covering of X and ‘x denote the cardinality
of «. For K a subset, we put

Ny(e) = min {8: 8 C o, KC | B}

and for n >0
ot = {nﬁlf'i(Ai):Aieoz, 0<i<n— 1} .
i=0
Further we define
h(f, K, &) = lim sup (1/n) log N(a}) ,

n—o0o

h(f, K) = sup h(f, K, o))

where the supremum is taken for all the finite open covering of X. If in
particular K = X, then we write A(f) = h(f, K). This is in the case given
in [1].
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Remark 1. If K is closed and f(K) C K, then the existence of

lim (1/n) log N (%)

N0

is easily checked (cf. see [1]).

Remark 2. If (X, d) is the metric space and K is closed, then A(f, K)
coincides with entropy given in [4].

In the rest of this section we investigate the properties of the defini-
tion of entropy given here.

Let « = {A,, ---, A} be a finite family of closed sets of X and denote
by M = (M;,) a t X t-matrix of 0’s and 1’s. We say that a pair (a, M) is
a CM-pair for f if for any x € X there is a sequence

XF = (X, Xy, ) € n SG@)  (SG) ={1,---,t), i=0)

such that M., =1 (@ =0) and xe M,/ (A,).

Remark 3. Under the notations, let us put
S = {x = (% %y - ) e [] SG): My, =1 (i 20)} .
0

Then Y is closed. We define a shift ¢ usually by
o(x); = %, i=0).

Obviously o(2) = 2. Such a shift ¢: ¥ — 3 is called to be a one side
subshift of finite type.

Fix n = 1. A finite sequence (x,, x,, - - -, X,_,) is said to be an admis-
sible sequence of length n if M,,,.,, =1for0<i<n —1. LetE, denote
a set of admissible sequences of length n. We say that E, is separated
if for any distinct points (x,, - - -, x,_1), Vo, - -+ ¥Yu-1) €E, there is 0 <j <
n — 1 such that A, N A,, =¢. For K a subset we say that an admis-
sible sequence (x,, - - -, x,_,) is attached to K if K N i f'(A,,) #= 9.

Denote by S, ((o, M), K) the largest cardinality of any separated set
E of admissible sequences of length n attached to K, and put

S,((a, M), K) = limsup (1/n) log S,((«, M), K) .

N—00

ProperTY 1. Under the notations and the assumptions, S,((«, M), K)
= A, K).

Proof. For xe X we put
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Okx) = N{X\A, x¢ A, A ca}.

Then 38 = {O(x); x € X} is an open covering of X. For fixed n >0, let E,
be a separated set of admissible sequences of length n attached to K with
the maximal cardinality for (o, M). Let 7 be a covering of K such that
7 C pr and K C Uce, C. Then for each x* = (x,, -+, x,.,) € E, there is a
C et such that x* is attached to C. It is easy to see that X* is only one
point of E, attached to the C. Indeed, write C = Mizjf%O0,) for some
O,ep0=i<n—1). Ify =(y, Y1) €E, is attached to C, then A,,
NO,+¢and A,, NO, #¢ for all 0 <i<n—1 So we have x* = y*.
Therefore

S.((ee, M), K) ="E < N (8)

and so
Sf((a’; M), K) g h(f’ K? fg) g h(f9 K) .
Let 7 be an open covering of X. For Ce7 we define

st(C) = U{C'er; CN C' + ¢},
st(7) = {st(C); Cer}.

ProPERTY 2. Let « be a finite open covering of X and 8 be a covering
of X. If(p, N)is a CM-pair for f such that st(8) refines «, then for n >1

Nilap) = S.((8, N), K) and I(f, K, a) = S,((8, N), K) .

Proof. Let E, be a set of admissible sequences of length n for (8, N).
Suppose that FE, is separated and attached to K and further has the
maximal cardinality. Let x € K. Then there is an admissible sequence
x* = (%o, - -+, X,_,) such that xe M=} f"%B,,). Obviously K N N=tf4B,,)
#+ ¢. Since E, is maximal, there is y* = (y,, -+, ¥._1) € E, such that B,,
NB,,#¢ for 0<i<n-—1, and so xe () st(B,). This implies that
{Mizist(B,); y* € E,} is a covering of K. Since each (M?-1stB,, contained
in at least one element of «}, we have

le<a1;) _.<—: gEn = Sn((ﬁr N)9 K) and SO h(f, a, K) g Sf((ﬁ) N)7 K) .

ProperTY 3. For a finite open covering « there is a finite open
covering 7 such that st(7) refines a.

Proof. Recall that compact Haudorff spaces have the uniform struc-
ture. We denote by N(X) the family of all neighborhoods of the diagonal
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subset of X X X. Then there exists L ¢ N(X) such that for all x € X there
is A ea such that {ye X; (x,y) e L} C A.

Take an open set Ue N(X) such that UsUcUC L (here AoB =
{(x,2); (x,» €A, (y,2)eB}). Clearly Ulx] = {yeX; (x,y) ¢ U} is an open
neighborhood of X, and st(U[x]) © (Uo Uo U)[x] < L[x] holds. Hence a
finite subcovering of {L[x]; x e X} is the desired one.

ProPERTY 4. Let % be a family of CM-pairs for f. Suppose that for
any finite open covering « of X, there is a CM-pair (8, N) e F such that
B refines «. Then for K a subset

h(fy K) = (ﬂsg?q Sf((ﬂ) N)y K) .
Proof. By Property 1 it is enough to see that
h(f, K) = sup S,((8,N), K).

B,Nes

By Property 3 there is a finite open covering 7 such that st(7) refines «.
So we choose (8, N) e # such that B refines 7 by assumption. Obviously
st(f) refines . By Property 2 we have

h’(f’ K’ a) é Sf((‘By N): K) é (SS}%E? Sf((ﬁ, N)a K) .
Since « is arbitrary, we obtain the conclusion.

§2. Proof of Theorem 1

Let « be a finite open covering of X and put

a = sup inf (1/n) log N__,(a}) .

Yer n>0
Take and fix ¢ > 0. For any ye Y there is m, > 0 such that
(1/m,)1og Ny (af?) = @ + ¢
and so
Noiy(ay) < emeero |
From now on we fix ye Y and choose a, C a} such that

< U A, ey = Ny .

A€ay

Put O, = U,c., A and denote by C(y) the family of the closed neighbour-
hoods of y. Then we have
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X\0)N (N =(E) =¢.

keC(y)

Since X is compact, there is K, € C(y) such that ="'(K,) c O,. If U, is
the interior of K,, then {U,; ye Y} is a covering of Y. Hence there is a
finite subcovering 8 = {U,,, - - -, U,,} of Y. For simplicity we write m, = m
and U, =U,, for k=1, ---,¢. Remark that

23

N-.-I(L'k)(a}nk) = Nﬂ—‘(?/}.;)(a},]k) < emMera

Take and fix n>0. Then Befp} is expressed as B = (2} g Y(B())
for some B({)e 8 (0 <i < n —1). We fix this B and define recursively a
finite sequence {i,} such that

h=0, t,,=1+m, when B(i,) = U, .

Let g be the least integer such that i,,, = n and put n, = m, if B(i,) = U,
for 0 <s<gq. Since for any xer '(B) and s with 0 < s < q, fi(x)e
=" (B,,), we have

q
N__pla)) < nﬂ Nf—n<1a<is>>(“f;’)
o
and hence
q
log N—.-l(m(“}) = Z‘; log N:—:(B(im(a’_';’)

a
g Z log en,(a+s)
§=0

= Yina+e)
= (n+ H)a + )
where H = max {n,, ---, n,J. Therefore
N oapfa?) < ermiess
Since B is arbitrary in j;, we have

N(aﬂ;) é N([g‘/;)e(n-(- Hy(a+c¢g)

and so A(f, ) < Mg, e) +a +e¢< h(g) +a + e Since a and ¢ are arbi-
trary, the conclusion is obtained.

Remark. We give an example such that the equality of Theorem 1
does not holds. Let X and f be as in Theorem 1 and Z be a compact
space. Suppose that f has a fixed point (f(x,) = x,), A(f) > 0 and further
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(Z, ¢) is a dynamical system such that A(p) > 0.
Now we put Y = X U Z (disjoint union) and define a continuous map
g: Y=Y by

(y) = f(y) when ye X
N {go(y) when ye Z.

Set 7: ¥ — X by

y when ye X
=(y) = {

X, when ye Z .
Then A(g) = max {i(f), h(¢)} (see R.L. Adler, A.G. Konheim and M. H.
McAndrew [1]). And sup,..A(g, 77'(x)) = A(p) > 0. So that A(g) < A(f)
+ A(o).

Proof of Corollary 2. Since f’ is a factor of f, we have A(f) < h(f).
Hence it is enough to show that A(f, z7'(x)) = 0 for all xe X.

Let 2 be a finite open covering of X such that for all Be 8 there is
a coordinate neighborhood U, with cl(B) € U, (here cl(B) denotes the
closure of B in X). For any Be p let &, denote the coordinate map

& Uy X F—>z7(Up)
where F is the fiber space. Then for fixed x € cl(B) the map
ép o F—>E

is defined by &, (y) = &4(x,y) for ye F.

Now take and fix a finite open covering « of E. Firstly we show
that there is a finite open covering 7, of F' such that 7, refines &z'(«) for
all xe B. For any (x,y)ecl(B) X F we can find an open neighborhood
U, (x) X U(y) of (x,y) that is contained in some element of £3'(x). If ye F
is fixed, then cl(B) C | !, U,(x;) for some finite set {x,, - -, x,}. So we
put W, = M., U,(y). Since {W,;ye F} is a covering of F, we have a
finite subcovering 7, = {W,} which is the desired one.

We put 7 = {(Nyes Wy; Wye7,} and fix xe X. Then for j = 0 there
is B(j) € 2 such that f'(x) € B(j), and so put

IR
g, = (Em ')./MJ'H:"H/‘JZI‘)) °f7 ° ‘53(_;),1- .
P J

Then g,: F — F coincides with action of some element of G on F. Since
G is compact by assumption, the action of G is equicontinuous. - Therefore
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there exists an open covering I’ of F' such that g;'(7) is refined by 7’ for
j=0. ‘

Therefore we have N,..,(a}) < Ng(7’) for all j =0, which implies
A(f, = (x), ) = 0. Since « is arbitrary, the conclusion is obtained.

§3. Proof of Theorem 3

Since ¢:3 — 3 is the subshift of finite type, there exist a p X p-
matrix M of 0’s and 1’s and a finite set S ={1,2, - - -, p} such that

J = {x = (xz) € ﬁ S(])’ M.til‘i+l =1 (ZGZ)} .

Here each S(j) denotes the copy of S, i.e. S(j) = S for je Z. Note that
the shift ¢ is defined by o(x); = x;,, for ie Z.

It is well known (cf. (1, 38), [6]) that ¢ is topologically mixing if and
only if M™ >0 (i.e. M}, > 0 for all i,j) for sufficiently large n.

Now we give the proof of Theorem 3. Let ¢ = 0. For any

C=(au - a)e [T S0

we write

[Clly={xed; x, = a, |i| = ¢},
(M], = {(x_b ) e ﬁ SG); Myp,, =1, —(< i< e} .

Since [M], is finite, we put [M], = {C, ..., C'}. If B, = a([C’]_,) for 1 <
j =t then 8 = {B,, ---, B/} is the family of closed subsets of X and 8 covers
X.

By using this B, we construct a CM-pair for £ Define a ¢t X t-matrix
B = (B;;) as follows.
In case £ =0, we put
B 1 when M,;,; = 1 where C* = (af) and C’ = (aj),
Y0 otherwise

and in case ¢ >0

1 when a!,, = af (—4 < n < ¥{) where
B;; = C'=(a',,---,al) and C! = (a’,, -, af)

0 otherwise .
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It is easy to see that (B, B) is a CM-pair for f.

We denote by (23, 65) the subshift of finite type defined by the matrix
B and a finite set {1,2,-..,t}. Since ¢:3 — ¥ is topologically mixing,
there is m > 0 such that M™ > 0. Then we have B* >0 where L = 2/
+ m. Hence o0;: 23 — X5 is topologically mixing.

Let xe 2. For any ie Z there is a unique C’i e [M], such that

Cii = (xi—l; ) xi+l) .

So we put p(x);, =Jj, (1€ Z) and p(x) = (p(x)). It is easily checked then
that p: 2 — 3, is a homeomorphism and the diagram

;]

commutes. Define 7’ = 7op™". Then z’: 3, — X is surjective and for 1 <
J=t

(L) = =({x e 25 o(x), = Jj})
=n{xed; C' = (x_ -, %)}
= =([C'].)
= B,.

For fixed n > 1, let E, be a separated set of admissible sequences
attached to X for (5, B). We may assume that E, is chosen such that *E, is
maximal. Since ¢;: Y, — 3, is topologically mixing, for x* = (x,, - - -, X,_1)
e E, we can find an admissible sequence X* = (x,, ---, X;,,.,) such that
Xy = Xp,n-i;. Put E, = {&*; x* e E,}. Since E, is separated, so is E.. For
any 5* ¢ E, define a periodic point y = (¥);cz by

o=y (G=L+n—-1p+r0<r<L+n-—1peZ).

Obviously y has the period L +n —1 and ye X, For j*, e E, as
above there exist periodic points y, ze Y, corresponding to #*, 3* repsec-
tively. If §*  2*, then we have n'(y) # 7'(2) since {j*, 2*} is separated.
Hence we have

ﬁEn = ﬁENn é N1c+n—1(f) ’

ie. S (B, B), X) < N,.._(f) since *E, is maximal.



126 TAKASHI SHIMOMURA

Now let a be a finite open covering of X. By the construction of B
we have that diam (B) -0 when ¢ — oo (here diam(f) = max {diam (B,);
1 <i<t)). Hence there is § such that st(p) refines «. From Property
2 and the above inequality we have

h(f, @) = lim (1/n) log N(e)
< liminf (1/n) log S.((8, N), X)

n—oco

< liminf (1/n) log Ny, ,-.(f)

N> 00

< liminf (1/n) log N.(f) ,

n—00

and therefore the desired inequality is obtained.

Remark. Under the notations and the assumptions of Theorem 3, we
can construct an example such that

M) = liminf (1/n) log N, (f) .

Let X be a shift space defined by two symbols {0,1} and as before
define a shift ¢: ¥ — 2. For ke Z (k> 0) we consider a point p* = (p})
€ X defined by

. 1 when [i/k] is even
Pe= 0 otherwise

where [ ] denotes the Gauss’ symbol. Obviously each p* is a periodic
point of period 2k. For this point p* we denote by O,(p) the orbit of o.

Consider two the matrices A = G (1)) and B = ((1) i) and define

shift spaces of finite type which are denoted by X, and ;. Let p® be a
point in O, = 3, U Y,. We define a new space X by

X=@ -0 UOMmU---UO0)U{p,p% -, p%
and construct a map 7: 2 — X by

) p* when xeO(p) (k=12 .-+, 0)
xX) =
T otherwise .

Obviously = is surjective. So we introduce the strongest topology in X
for which = is continuous. It is easily checked then that X is Hausdorff

and compact. Hence the product topological space ¥ X X is Hausdorff and
compact.



TOPOLOGICAL ENTROPY 127

It is easy to see that a continuous map f: X — X is induced from ¢
by z. Then f has infinitely many fixed points. In fact, f(p*) = p* for
k=1,2---,0. Put p(x,y) = (x, n(y)) for (x,y) € ¥ x X. Then the diagram

Ixy X vy

‘| l

X X—>2IxX
oXf

commutes. (X X X, ¢ X ¢) is a subshift of finite type and topologically
mixing, and h(e X f) < k(e X ¢) = 21log 2 holds. However N,(¢c X f) is
infinite for n > 0.
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