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A CLASSIFICATION OF RIEMANNIAN 3-MANIFOLDS

WITH CONSTANT PRINCIPAL RICCI CURVATURES

Pi = Pz φ Ps

OLDRICH KOWALSKI

Introduction

This paper has been motivated by various problems and results in differen-

tial geometry. The main motivation is the study of curvature homogeneous Rieman-

nian spaces initiated in 1960 by I.M. Singer (see Section 9-Appendix for the pre-

cise definitions and references). Up to recently, only sporadic classes of examples

have been known of curvature homogeneous spaces which are not locally

homogeneous. For instance, isoparametric hypersurfaces in space forms give nice

examples of nontrivial curvature homogeneous spaces (see [FKM]). To study the

topography of curvature homogeneous spaces more systematically, it is natural to

start with the dimension n — 3. The following results and problems have been

particularly inspiring.

1) K. Sekigawa [Sel] has constructed in 1975 a locally nonhomogeneous

Riemann metric on R with the constant principal Ricci curvatures Pι — p2 —

— 1, p3 = 0. This example was extended by F. Tricerri, L. Vanhecke and the pre-

sent author in [KTV1] as follows:

Let a Riemannian metric g be given in a domain U c R (w, x, y) by an

orthonormal coframe of the form

ω 1 = f(w, x)dw, ω — dx — ydw, ω3 = dy + xdw.

Then

(a) if f(w, x) = a{w)e + b(w)e , then the corresponding principal Ricci curv-

atures are pλ — p2 — ~ k , p3 = 0

(b) if f(w, x) — a{w) cos kx + b{w) sin kx, then the corresponding principal

Ricci curvatures are pλ — p2 — k , p3 = 0.

Here A: is a constant and a{w), b(w) are arbitrary functions of one variable.

These metrics are always locally irreducible and not locally homogeneous.
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Moreover, it was proved in [KTV1] that the local isometry classes of each of the

families (a) and (b) still depend on two arbitrary functions of 1 variable (modulo

some constants).

The present author [Kl] has given an explicit local classification of

3-dimensional Riemannian spaces with the constant index of nullity v(p) = 1

(which means that the null space of the Riemann curvature tensor has dimension 1

at all points). As a by-product, the following results follows:

THEOREM A. Let (M, g) be a Riemannian manifold with the constant principal

Ricci curvatures pγ — p2 Φ 0, p3 = 0, which is not locally homogeneous. Then there is

an open dense subset S C M such that, in a neighborhood of each point p Ξ S,

(M, g) is isometric to one of the spaces described above {i.e., to a space (U, g) of type

(a) or (b) according to whether pγ~p2 — ~ k2 or pλ — p2 — k holds for some k > 0,

respectively).

2) The following conjecture is attributed to M. Gromov: Let M be a compact

manifold. Then the set of isometry classes of metrics on M having at each point

the same Riemannian curvature tensor as a given homogeneous Riemannian space

(M, g) is a finite dimensional space. In order to prove or disprove this conjecture

in dimension n — 3, one has to get an overview about all 3-dimensional local

Riemannian metrics with the constant principal Ricci curvatures. (See [TV2] and

[KTV1] for more details).

3) K. Tsukada [Ts] has classified all curvature homogeneous hypersurfaces

isometrically immersed into space forms. The only cases which remained open

were the situations M3—+H4( — k2) and M3—• S (A:2). The attack on the Tsuka-

da's problem leads naturally to the study of Riemannian 3-manifolds with the cos-

tant Ricci roots px = p2 Φ p3 Φ 0.

4) K. Yamato [Ya] has studied the criteria for the local homogeneity of

3-dimensional Riemannian manifolds with constant principal Ricci curvatures. He

also gave first examples of Riemannian matrics on R which are not locally

homogeneous and have 3 distinct constant principal Ricci curvatures plf p2, p3.

Such a Riemannian metric always exists if the numbers

A - Pi+ P2~ Pz D _ Pi ~ Pz n _ __ (Pi "
LJ (JO fjn (r\ f\ \

r 3 r 2 ψ2 PO

satisfy the inequalities A > 0, C > 0, A + B O 0.

In the "degenerate" case P\~ P2Φ P3Φ 0, the author gives a number of local

and global criteria for the homogeneity but the existence of nonhomogeneous exam-
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pies is not investigated.

5) J. Milnor [Mi] has proved that there exist some signatures of the Ricci ten-

sor which are never reached by left invariant Riemann metrics on 3-dimensional

Lie groups. It follows easily that one of these signatures is never reached by a

homogeneous Riemannian 3-manifold. It is a stimulating problem to construct ex-

plicitly nonhomogeneous Riemannian metrics with constant principal Ricci curva-

tures and with the "forbidden" signature of the Ricci tensor.

6) D. De Turck (see [DeT] or [Be], Theorem 5.14) has proved the local exist-

ence of Riemannian metrics with the prescribed (nonsingular) Ricci tensor. Let us

notice that the existence of Riemannian metrics with the prescribed principal Ricci

curvatures does not follow from this theorem and a different method is needed.

The contents of this paper is as follows: In the first section we derive the

basic system of partial differential equations for the problem in title. This is a

system of nine PDE for 3 functions of 3 independent variables (in a convenient

system of local coordinates). In Section 2 we partially integrate the previous sys-

tem of PDE. We are left with only three PDE and a system of (many) algebraic

equations for new functions which depend only on two variables. In Section 3 we

calculate the covariant differentia] of the Ricci tensor. In Section 4 we study the

geometric structure of the case p3 < 0 ("hyperbolic case"), namely the existence of

"asymptotic foliations". In Section 5 we introduce new local coordinates which are

adapted to one of the asymptotic foliations. This essentially simplifies our task to

resolve the given PDE system in the hyperbolic case. A quasiexplicit general solu-

tion is given as well as some explicit examples. In Section 6 we calculate the local

isometry classes of the whole set of solutions. They depend on two arbitrary func-

tions of 1 variable. Sections 7 and 8 are devoted to the (more difficult) elliptic

case where p3 > 0. Again a quasi-explicit solution is given and we prove that the

local isometry classes depend at least on 2 arbitrary functions of 1 variable. In

Section 9 we show that there are many nonhomogeneous metrics (some of them ex-

plicit) with constant principal Ricci curvatures which are never reached by the

homogeneous metrics.

For attacking our problem with constant pλ — p2 Φ p3 Φ 0 we are using a

modification of the direct method from [Kl]. The classification problem for the

case pλ Φ p2 Φ p3 Φ p1 seems to be of a different nature and it will be studied in

a subsequent paper.

Acknowledgement. The author is grateful to E. Boeckx (Leuven) for some

corrections made in the preliminary version of this paper.
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1. The basic system of PDE for the problem

Let (M, g) be a 3-dimensional Riemannian manifold whose Ricci tensor R{j

has constant eigenvalues pλ = p2 =£ • p3, p3 ^ 0. Choose a neighborhood U of a

fixed point m ^ M and a smooth vector field E3 of unit eigenvectors correspond-

ing to the Ricci root p3 in U. Let S : D —* U be a surface through m which is

transversal with respect to all trajectories generated by E3 at all cross-points and

not orthogonal to such a trajectory at m. (The vector field E3 determines an

orientation of S). Then there is a normal neighborhood U 3 m, [/ c: U, with the

property that each point p ^ U is projected to exactly one point π(p) ^ 5 via

some trajectory. We fix any local coordinate system (w, x) on S and then a local

coordinate system (w, x, y) on U such that the values w(p), x(p) are defined as

w(π(p)), x(π(p)) for each p e [/, and

= d+(π(p),p) = the oriented length of the trajectory joining /> with

Then £ 3 = 9/9z/ can be extended in U to an orthonormal moving frame {Elf E2,

E3}. Let {ω , co , α> } be the corresponding dual coframe. Then ω are of the form

(1.1) α/ = α'dw + tidx (i =l,2),ω3 = dy + Hdw + Gdx.

The Ricci tensor expressed with respect to {Elf E2, E3} has the form Rϋ — /0, δ ί7.

Because each f>{ is expressed through the sectional curvatures K{j by the formula

Pi — RH = Σ ϋCί; , there exist constants k and c ^ 0 such that
jψi

(1.2) X 1 2 = A, X 1 3 = K23 = c, pγ = ρ2 = k + c, p3 = 2c.

Define now the connection form {cop by the standard formulas

(1.3) dω - Σ J Λ ω = 0, ω + ω\! = 0 0', > = 1,2,3).

Because i? l7A/ = 0 whenever at least three of the indices i, j , k, I are distinct, the

formulas (1.2) are equivalent to

(1.5)

t l i 1 A
 3 1 l Λ 2

dw2 -r ω3 Λ ω2 — kω A ω ,
, 1 i 1 Λ 2 ~ 1 A

 3

aw3 -r ω2 Λ ω3 — cω A ω ,
T 2 . 2 Λ 1 ~ 2 Λ 3

αw3 + ωx A ω3 — cω A ω .

Next, differentiate the equations (1.5) and then substitute from (1.5). We

obtain easily

(1.6) ω\ A ωι A ω = 0, ω\ A ωι A ω2 = 0,
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and

(1.7) d(ωι Λ ω2) = 0.

1 2 1 2

The formulas (1.6) mean that α>3, ω 3 are linear combinations of co , ω only, and

the third equation of (1.3) then means that dco is a multiple of co Λ ω . From

(1.1) we see that the functions G, H are independent of z/.

Now, there is a local coordinate system (w, x, y), w— w(w, x), x —

x(w, x) (possibly in a smaller neighborhood of m) such that

(1.8) ω1 = Pλdw+ Qιdx, ω = P2dw + Q2dx, co3 = dy + H{w, x)dw.

Indeed, because the surface S is not orthogonal to the vector field E3 at m, the

Pfaffian form H(w, x)dw + G(w, x)dx from (1.1) is nonzero in a neighborhood of

m in M. Then we define w(w, x) as a potential function of the Pfaffian equation

Hdw + Gdx = 0, and the second function x(w, x) can be defined as an arbitrary

smooth function which is functionally independent of w. In addition, there are new

Pfaffian forms ώ , ώ such that (ώ ) + (ώ ) = (ω ) + (ω ) and ώ does not

involve the differential dx. We can summarize:

PROPOSITION 1.1. In a normal neighborhood of any point m €= M there exists an

orthonormal coframe {ω , co , ω } and a /oca/ coordinate system (w, x, y) such that

(1.9) ω = /dM;, ω = Adx + Crfw;, a>3 = dy +

Here f, A, C, fA Φ 0, ar<? smooth functions of w, x, y and H — H(w, x).

The formula (1.7) can be now written in the form

(1.10) (fA)'y = 0, i.e.,/A = 1 / χ O , x) for some function χ ^ 0.

We see immediately that, introducing a new variable x(w, x) instead of x, we

obtain after such a transformation

(1.11) fA = 1, i.e., χ = 1.

For the connection form we obtain easily (using (1.9) and (1.10))

(1.12) α>2 = ~ Aadx + Rdw + βdy, ωl = Aβdx + Sdw, ω\ = A'ydx + Tdw,

where

(1.13) a = χ(A'w-C'x-HA'y), β = \{E'X + AC'υ - CAy),
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and

(1.14) R = χffx - Ca + Hβ,

(1.15) S^/ +Cβ,

(1.16) T= Cy-fβ.

The curvature conditions (1.5) then give a system of nine PDE for our problem:

(Al) (AaYy + βx = 0,

(A2) # ; - jS; = 0,

(A3) C 4 < + Rx + &ij - 4 8 Γ = - Aχ"1,

(Bl) A'y'y-Aβ2= -cA,

(B2) - A;; + Tx + A(αS + βR) = MίΓ,

(B3) τ; - sβ= - cc,

(ci) CAiS); + A;β = o,

(C2) S^ - (AβYw - (AaT + Λ i?) - 0,

(C3) 5; + Tβ = - cf.

2. The first integrals and the reduction of the basic PDE system

The aim of this section is to replace the PDE's of the series (B) and (C) by a

system of algebraic equations for the new functions depending only on w and x.

First of all, we eliminate the equations (B2) and (C2).

PROPOSITION 2.1. The equation (B2) is a consequence o/(Al) and (Bl).

Proof. Using (1.14)—(1.16) we obtain

T^-A^ + AίaS + βR)

= Cyχ-f'xβ -fβχ-Am+A(χβff^af; + Hβ2).

From (1.13) we get, using also (1.10),

A'y'w = (afA + CX + HA'X

and after the substitution we obtain, using again (1.10)
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T'x - A;w + A(aS + βR) = / ( - βx - (AaYy) + H(- Am + Aβ2).

This is equal to cAH due to (Al) and (Bl).

PROPOSITION 2.2. The equation (C2) is a consequence of (Al), (A2) and (Cl).

Proof. First we have, due to (1.14) and (1.10)

CAR)', = (/x' - ACa + AHβYy = /£ - CACaY, + H(AβYy.

From (Cl) we get

(2.1) CAR)', = fί'y ~ (ACaY, - HβA'y.

Using (1.14)—(1.16) and also (A2), we obtain

S ; - (AaT + A'yR) - (Aβ)'w

= / ; ; + (CβYx - Aa(C'y - fβ) - CAR)', - βA'w.

Substituting now from (2.1) and using (1.10) we can rewrite the right-hand side

in the form

- β(A'w -C'x- HAy) + aβχ~ι + C{β'x + (Aa)'w),

and this is zero due to (1.13)! and as a consequence of (Al).

PROPOSITION 2.3. The equations (B3) and (C3) are satisfied if and only if

(2.2) fT- CS= φ0,

where φ0 — φo(w, x) is an arbitrary function and, moreover,

(a) in the hyperbolic case c = — λ we have

(2.3a) S2 + T2 = λ(φ/λy + φ2e~2λy - φ3),

(2.4a) fS+ CT= φ/λy - φ2e~2λ\

(2.5a) f2 + C2 = j(φ/λy + φ2e~2λy + φ3),

where the functions φ{ — Ψiiw, x), i— 1, 2, 3, satisfy the single relation

(2.6a) φ0

2 - Aφγφ2 + φ2 = 0

(b) in the elliptic case c — λ we have

(2.3b) S2 + T2 = λ(- φ1sin2λy+ φ2cos2λy+ φ3),
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(2.4b) fS+ CT = φγ cos 2λy + φ2 sin 2λy,

(2.5b) f2 + C2 — -jiψi sin 2λy — φ2 cos 2λy + φ3),

where the functions φ{ — <pf(w, x), z = 1,2,3, satisfy the single relation

(2.6b) <p0

2 + <^2 + φ 2

2 - φ2 = 0.

/. First, using (1.15), (1.16), (B3) and (C3) to express the derivatives fy\

Cy, T;, S'y, we obtain (fT - CS)y = 0, which is equivalent to (2.2).

Further, put X= S2 + T2, Y = fS + CT, Z = f2 + C2. Using the same

argument as before we obtain a system of PDE

(27) ^ - - 2 c Y ^ - X - c Z ^~2Y

Hence the formulas (2.3a)-(2.5a), or (2.3b)-(2.5b) follow. The last equations

(2.6a), (2.6b) are consequences of the algebraic identity

(fT- CSΫ+ (fS+ C D 2 - (/2 + C2)(S2+ T2).

Hence all formulas above are consequences of (B3) and (C3).

The converse part follows easily: differentiating (2.2) and writing explicitly

the equation dY/dy = X — cZ, we get a system of two linear algebraic equations

for Sy, Ty, which can be solved by the Cramer's rule. Hence (B3) and (C3) follow.

PROPOSITION 2.4. There is a function φ4(w, x) such that

(2.8) SA= φ4(w,x).

Further, the equation (A3) simplifies to the form

(2.9) (Aa)'w + Rf

x - - (k + c)χ~ι = - plX'\

Proof Using (C3) and (1.15), (1.16) we get

(2.10) (SAY, = SA'y - A(Tβ + cf) = fft + (CAy - ACy) + f(Aβ2 - cA).

Due to (Bl) we obtain hence

(2.11) (SAYy = fft + β(CA'y - AQ + fA'v'υ = (A'J)'y + β(CA'υ - AC).

On the other hand, using (1.15) first and (Cl) later, we get
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(2.12) (SA)'¥ = if ft + (48) C]; = (ffi)'y - β(CA'v - AC).

As the arithmetic mean-value of (2.11) and (2.12) we obtain

(2.13) (SAY, = \{fAYy = 0,

(using also (1.10)). Hence (2.8) follows. Then (2.13) and (2.10) imply

(2.14) SAy - ATβ = cAf= cχ'\

and the equation (A3) takes on the form (2.9), q.e.d.

PROPOSITION 2.5. The equations (Bl) and (Cl) are satisfied if and only if

(2.15) β = λao/A2

where a0

 = aQ(w, x) is an arbitrary function and, moreover,

(a) in the hyperbolic case c — — λ we have

(2.16a) A — aλe + a2e + a3, a{ — a^w, x),

where

(2.17a) a0

2 + a3

2 - 4a,a2 = 0;

(b) in ί/iβ elliptic case c — λ we have

(2.16b) A2 = a^cos 2>?z/ + α2sin 2/ίz/ + a3, a{ = a{(w, x),

where

(2.17b) a2 + a2 + a2 - a2 = 0.

Proof The equation (Cl) means (A2βYy = 0 and hence (2.15) follows. (Bl)

can be written in the form

(2.18) 2AΉ, = 2^2(α0)
2A^4"3 - 2cAAy.

Integrating with respect to y we see that there is a function φ(w, x) such that

(Ay)
2 = - λ2(a0)

2A~2 - cA2 + φ(w, x).

Hence

(2.19) {A2Yy = ± 2 J- cA* + φA2-

For c = — λ we obtain the general solution
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A2 = (μ/λ)/cosht- φ/2λ2

where

μ = V02/4Λ2 + λ2a0

2, t = ± 2λy + v(w, x).

For c = λ we obtain the general solution

A2 = (μ/λ) cosί + 0/2/

where

μ = Jφ2/U2 - λ2a0

2, t = ± 2λy + v(w, x).

Here ι>(w, x) is a new arbitrary function. Hence (2.16a), or (2.1βb), follows with

specific coefficients av a2, a3 satisfying (2.17a), or (2.17b), respectively.

CONVENTION. Up to the end of this section we always assume that the local coor-

dinates (w, x, y) are fixed in such a way that (1.9) and, in addition, (1.11) holds,

i.e., χ = 1.

PROPOSITION 2.6. For c— — λ2 we have

(2.20a) iλaJίC = (φ5 + 2λ)a/λy + (φ5 - 2λ)a2e~2λ* + φ5a3,

and for c — λ we have

(2.20b) 2λa0AC — (φ5aλ + 2λa2) cos 2λy + (φ5a2 ~ 2λaλ) sin 2λy + φ5a3,

where φ5 = φ5(w, x) is some function.

In addition, in the elliptic case we always have a0 Φ 0.

Proof Subtracting the formulas (2.11) and (2.12) we get

(fA'y - AfX + 2β(CA'y - AC'V) - 0, i.e.,

(A2(f/A)'yyy + 2βA\C/A)'υ = 0.

Using (1.11) and (2.15) we get (A2(l/A2yχ + 2λao(C/A)'y = 0.

By the integration we obtain

= φ5(w, x),

where φ5 is an arbitrary function. This can be rewritten as

(2.21) 2λaoAC= φ5A
2 + {A2)'y

and then we substitute from (2.16a), or (2.16b), respectively. Hence (2.20a,b) fol-
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low.

In the elliptic case, let us suppose a0 — 0. Then (2.20b) implies

φ5aί + 2λa2 — 0, φ5a2 — 2λax — 0,

and hence 2λ(a1 + a2) = 0. Then (2.17b) implies a3 = 0 and hence A — 0, a

contradiction with fA Φ 0.

The following proposition deals with a more general situation.

PROPOSITION 2.7. For c — — λ2 we have

(2.22a) AC = b/λy + V " ^ + *3

and for c = λ we have

(2.22b) AC = ^

where b{ — b^w, y), i = 1,2,3.

/ For tf0 ^ 0 the relations (2.22a,b) follows from (2.20a,b), which is al-

ways the case for c — λ . Suppose now c — — λ and a0 = 0. Then β — 0 and

from (1.16), (B3) we infer C'y'y = - cC = λ2C. Hence

(2.23a) C = reλy + se'λ\

where r, s are functions of w, x only. On the other hand, (2.16a) and (2.17a) im-

piy

(2.24a) A=peλv + qe~λ",

where p, q are functions of wy x only. Hence (2.22a) follows.

PROPOSITION 2.8. Introduce the function

(2.25) h(w, x) = Wx.

In the hyperbolic case we have

\haι = 2λ(aλb3 — a3bλ)t ha2 = 2λ(a3b2 — a2b3),
( 2 " 2 6 a ) [ha3 = 2λ(a0 + 2axb2 - 2a2b^),

and in the elliptic case we have

\haγ = 2λ(b3a2— b2a3), ha2 = 2λ(bιa3 — axb3),

\ha3 = 2λva0 + bxa2 — axb2).
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Moreover, if a0 Φ 0, then

(2.27) h = 2ελa3/a0, ε = sgn c.

Proof From (1.13)2 we get h = 2β - (ACYy + 2CA;. Then (2.15) implies

(2.28) hA2 = 2λa0 - (A2) (ACYy + W O (A%

Now we use (2.16a,b) and (2.22a,b) to get (2.26a,b). To obtain (2.27) we use

(2.26a,b), (2.20a,b), (2.17a,b) and the direct check.

Next, we shall derive additional algebraic relations. From (2.2) and (2.8) we

obtain (under the condition χ = 1)

(2.29) S= φj, T= (PoA + φ4C.

Substitute from here into the differential equation (C3). We obtain

ψj'v + ΨoAβ + ΨiCβ = - cf.

Multiplying this equation by 2A and using (1.11), (2.15) we get

(2.30) - 2φ4AA; + 2a0φ0λA2 + 2φ,a^AC = - 2 cA2,

Then (2.21) implies

(2.31) 2λφ0a0+ φ4φ5 = - 2c.

Further, from (2.29) we obtain also

CT + fS= φoAC+ φ,(f2 + C2).

Substituting from (2.4a,b), (2.5a,b) we get in the hyperbolic case

(2.32a) φ0AC = ^ ( 1 - φA/λ)eUy - φ2(l + φ,/λ)e~2λy -

and in the elliptic case

(2.32b) φQAC = (φλ + φ2φ4/λ) cos 2λy + (φ2 — φγφ±/λ) sin 2/iz/ — φ3φ4/λ.

Another consequence of (2.29) is

S2 + T2 = φ2(f + C2) + (2φ0AC)φ4 + φ2A2.

Using the formulas (2.3a,b), (2.5a,b), (2.16a,b) and (2.32a,b), we obtain finally

(2.33a) φQ

2λaγ = φλ{φA - λ)2, φ0

2λa2 = φ2(φ4 + λ)2, φ0

2λa2 = φ3(φ4

2 - λ2)

in the hyperbolic case, and
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φ0

2λa1 = φ2Q
2 — φ4

2) — 2φλφ4λf

φ0 λa2 = , φ0 λa3 = φ3(λ + φA)
(2.33b)

in the elliptic case.

Consider now

(2.5a,b), (2.16a,b) and (2.22a,b) we get a system of quadratic equations

Consider now the identity (AC) — A (/ + C ) — 1. Substituting from

λb2

2 =(2.34a)

in the hyperbolic case, and another system of quadratic equations

(2.34b)

λ(b2 — b2) = —

2λbxb2 =
2 + b2 + 2b2) =

2λb1b3 = aλφ3 - a3φ2,

2λb2b3 = a2φ3 + a3φι

+ — 2λ,

in the elliptic case.

In the notation (2.22a,b), we can rewrite (2.20a,b) in the form

(2.35a) 2^00^! = (φ5 + 2λ)alf 2λa0b2 = (φ5 — 2λ)a2, 2λa0b3 — φ5a3,

or

(2.35b) 2λa0b1 = φ5a1 + 2λa2, 2λa0b2 = ψ5a2 — 2λalf 2λa0b3 = φ5a3,

respectively.

Also, we can rewrite (2.32a,b) in the form

(2.36a) λφobι = φγ(λ ~ φ4), λφ0b2 = - φ2U

or

(2.36b) /i^o^l = λ<Pl + ^2^4» ^^0^2 = ^^2

respectively.

We conclude with the main results of this section.

THEOREM 2.9. Let λ Φ 0 6β α constant. Let φ0, φv . . . ,φ 5, 0O, 0X, α2>
 β3> î>

δ2, δ3, /z 6̂  functions of two variables w, x defined in some domain V ^ R (w, x),
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satisfying eight collections of algebraic equations (2.6), (2.17), (2.26), (2.31), (2.33),

(2.34), (2.35), (2.36) (either of the hyperbolic type, or of the elliptic type) with the cor-

responding parameter λ, and such that ax ~\~ d2 ~~f~ #3 > 0 in V.

Let A, f, C, H be functions defined in a domain U cz R {w, x, y) where

AΦ 0, by the formulas (2.16), (1.11), (2.22) and (2.25) of the corresponding type, and

let the metric g be defined on U by (1.9). Further, let α, β, R be defined as in (1.13)lf

(2.15), (1.14), with χ = 1. Then the curvature conditions (1.5) are satisfied for the

metric g (with a fixed k and with the corresponding c = ± λ ) if, and only if, the sys-

tem o/PDE (Al), (A2) and (2.9) (with χ = 1) is satisfied.

Remark. The algebraic conditions mentioned above are, of course, far from

being independent, but they are all useful.

The proof follows from the whole series of assertions and formulas given in

this section.

3. The Riemannian invariants

Let (M, g) be given locally as in Proposition (1.1). In this short section we

shall assume that the function χ(w, x) from (1.10) is arbitrary.
1 2 3

We rewrite the formulas (1.12) using the forms ω , ω , ω as a basis. It fol-

lows
1 f / . X . . . .2 i n 3

(3.1) 1 r - l r / 1 1 n 2

ω3 = / fyω + βω ,
ω 3 = (β — hχ)ω + A Ayω (h = H£).

We shall also write, for the brevity,

(3.2) α>3 = aω + bω , ω3 = cω + eω ,

where

(3.3) a = Z " 1 / ; , b = β , c = β - h χ , e = A ~ ι

Using the standard formula from [KN1]

(3.4) VB)E{ = Σ ω,k(E)Ek (i, = 1,2,3)

we obtain
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(3.5)

VEβι = ~ XfΆ ~ aE39 VEE2 = χfiE, - cE3,

VEEX = aE2 - bE3, VEE2 = - aE,~ eE3,

VEiE3 = aEγ + cE2, VEE3 = bE, + eE2,

VEE = - bE21 VEE2 = bE19 VEE3 = 0.

For the Ricci tensor R = R{j we get, using the notation (1.2) and the adapted

local orthonormal coframe co\

R= (k + c) (ω1 <g> ω1 + ω ® ω) + 2c(ω3
(3.6)

Using (3.1) and standard formula

ω 3 ).

(3.7)

we obtain

(3.8)

where <2,

Vxω = - Σ ω C W
j

VR = (c - k) [<W + bω2) ® (ω1 <g> ω3 + ω3 ® ω1)

+ ( cω + eω2) (8) (ω2 ®

are given by (3.3). Hence we get also

ω3 + ω3 ® ω2)],

(3.9) || VRf = 2(c-k)\a + b2 + c2 + /) = + ύ2 + c2 +

4. The existence of asymptotic leaves in the hyperbolic case

The basic assumptions in this section are: a) (M, g) is of hyperbolic type,

b) x = 1, i.e., fA = 1 in the given local coordinates.

We shall start with some additional algebraic formulas.

PROPOSITION 4.1. We have

(4.1)

(4.2)

Ψs = 2φ4,

- λao(f2 + C2) + </ylC + A = 0.

Proof. Let first aoφo Φ 0. Then ^ α 2 Φ 0 holds due to (2.17a), and φγφ2 Φ 0

holds due to (2.6a). From the formulas (2.34a)L3 we see that bλb2 Φ 0. Using

(2.35a) and (2.36a) we obtain

b^ _ (φ5 + 2λ) ax _ φ1(φ4 - λ)

Substituting for a1/a2 from (2.33a) we get
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(φ5 + 2λ)/(φ5 - 2λ) = (φ4 + λ)/(φA ~ λ),

and hence (4.1) follows.

Suppose now that φ0 — 0. Then (2.31) implies (because c = — λ)

(4.3) φ4φ5 = 2λ2 Φ 0.

From (2.36a) it follows

(4.4) φx{φA - λ) = 0, ψ2(φA + X) = 0, φ3 = 0.

Because λ Φ 0 and φ1 + φ2 + <p3 > 0, we get two cases:

(a) </>! ̂  0, ^ 2 ~ 0. Then <p4 = ^ and (4.3) implies φ5 = 2λ = 2φ 4

(b) #>! = 0, φ2 ^ 0. Then φ4 = - Λ and (4.3) implies φ5 = - 2^ = 2φ4.

Hence (4.1) follows once again. For a0 — 0 we use (2.35a), and the proof is simi-

lar.

To derive (4.2), let us suppose first a0 Φ 0. Then (2.35a) and (4.1) imply

_ (φ4- λ)a2 _ φ4a3

and (2.31) can be rewritten, due to (4.1), in the form

(4.6) 2 2

Now we first substitute for A2, f2 + C2, AC, φ5 and h into (4.2) from (2.16a),

(2.5a), (2.22a) with (4.5), (4.1) and (2.27), respectively.

If φ0 Φ 0, we express av a2, a3 from (2.33a) and use (4.6) to eliminate φ0.

Then the identity (4.2) follows.

If a0 Φ 0, φ0 = 0, we calculate φl9 φ2 explicitly from (2.34a)1>3. From (4.5)

and (4.6) we get bγb2 — 0, hence φγφ2 — 0, and (2.6a) implies φ3 — 0. Substituting

for φ{ into (4.2), we easily check this identity.

Suppose finally ao = O. Then (2.21) and (2.28) imply h= - φs(AC) ~

(AC)'y, and (4.2) is equivalent to φ0A — (AC)'y = 0. This is easily checked by us-

ing (4.6), (2.33a), (2.35a) and (2.36a) (for φQ Φ 0), or (2.34a) l t3 (for <p0 = 0).

Now, we shall introduce a useful geometric concept (cf. also [Kl]):

DEFINITION 4.2. An asymptotic leaf of (M, g) is a smooth surface N c: M

such that a) Λ̂  is tangent to the field ζ of principal Ricci directions corresponding

to the principal Ricci curvature p3, b) the family {TpN)peN of tangent planes of N
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is parallel along each trajectory of ζ contained in N (with respect to the Rieman-

nian connection of (M, g)).

Now, we are going to prove

THEOREM 4.3. Let (Af, g) be of hyperbolic type. Then for each point m e M

there is a neighborhood U^ m and an adapted local coordinate system (w, x, y)

{i.e., one satisfying (1.9) and (1.11)) with the following property, a surface N <z U is

an asymptotic leaf if and only if its tangent planes satisfy the quadratic equation

(4.7) λa0dχ2 + 2φ4dxdw — φ0dw2 = 0

along N. As a consequence, there are two distinct asymptotic leaves through any point p

e U.

Proof Choose an adapted normal coordinate neighborhood U(w, x, y) of m.

Let now N ci U be an asymptotic leaf. Then the tangent planes along N contain

the vector field E3 and can be described by a formula

(4.8) sin φ-ω1 + cos φ-ω2 — 0,

where φ is a smooth function on N. This means

(4.9) TPN = spanίcos φΈ1 — sin φ E2, E2}p, p e N'.

Now, the integrability condition

(4.10) [cos φΈι — sin φΈ2, E3] ^ span {cos φΈι — sin φΈ2, E3}

and the parallelism condition

(4.11) VE (cos φΈι — sin φ E2) <Ξ span {cos φΈι — sin φΈ2, E3}

must be satisfied along N. Hence it follows that also the condition

(4.12) Fcos^-s in^ £ 3

 G span {cos φΈι~ sin φΈ2t. E3)

holds along N. From the formulas (3.5) we obtain that (4.12) is equivalent to

(4.13) sin φ b + sin φ cos φ(e — a) — cos φ-c = 0.

Using (4.8) as a proportion formula, we see that the tangent distribution of iV

satisfies the equation

(4.14) c(ω1)2 + (e - a)ωιω2 - b(ω2)2 = 0.
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Substituting for ω , ω from (1.8) and expressing a, b, c, e in the form (3.3) we

get hence (using also (1.11) and the derivative of this relation)

Ua0A
2)dx2 + (2λa0AC - (A2Yy)dxdw + (h - λaj2 + λa0C

2 - 2CAy)dw2 = 0.

Finally we substitute from (2.21), (4.1), (4.2) to obtain (4.7).

It remains to prove the converse implication and the last statement of

Theorem 4.3. Let us observe first that, due to (4.6), the discriminant of the

quadratic equation (4.7) is equal to λ > 0. Hence in the given neighborhood

U ci M, (4.7) determines two different smooth 2-dimensional tangent distribu-

tions. We see that the equation (4.7) decomposes in two ways as

(4.15) φodw — (φ4 + ελ)dx = 0, (φ4 + ελ)dw + λaQdx = 0,

where either ε = 1, or ε = — 1. At the initial point m ^ M, either the equations

with ε = 1 are linearly independent, or the equations with ε = — 1 are linearly

independent. Hence the corresponding equations (4.15) are linearly independent in

a normal neighborhood {/' c: f/ of m. We see that both 2-dimensional distribu-

tions are integrable and any smooth surface N c: [/' satisfying (4.7) is an integral

manifold of one of these distributions (in fact a level surface of some potential

function of (4.15)). Also, the previous calculations show that the condition (4.11)

is satisfied along each surface N satisfying (4.7); i.e., the constructed integral man-

ifolds are asymptotic leaves (forming two distinct "asymptotic foliations"). This

concludes the proof of Theorem 4.3.

5. The quasiexplicit classification in the hyperbolic case and examples

The aim of the previous section was to prepare the following

COROLLARY 5.1. Let (M, g) be of hyperbolic type. Then, in a normal neighbor-

hood U CL M of any point m, there are adapted local coordinates w, x, y such that

(1.9) and (1.11) hold and, moreover, a0 — 0.

Proof Let ε be a sign for which φ4 + ελ Φ 0 in a normal neighborhood

U ^ m. Then choose a new variable w as a potential function P(w, x) of the

equation (φ4 + ελ)dw + λaodx = 0. Using the new local coordinates w, x, y, in

U, we obtain, for a new orthonormal frame {Elf E2, E3},

(5.1) ώ = fdw, ώ = Adx + Cdw, ω — dy + Hdw.

Now, we shall look for a substitution y = y + φ(w, x) such that



CLASSIFICATION OF RIEMANNIAN 3-MANIFOLDS 19

(5.2) dy + Hdw = dy + Hdw,

where H = H(w, x) is another unknown function.

The corresponding conditions can be written in the form

(5.3) φ'w

The (local) integrability condition of (5.3) is

(5.4) Hβ'w - Eww'x = HX9

which is a linear PDE for H.

Let us fix one solution H(w, x) of (5.4). Then the function φ is determined by

(5.3) up to an additive constant. We see that the formula (1.9) is satisfied with re-

spect to the new variables w, x, y. Finally, the condition (1.11) can be also satis-

fied by introducing a new variable x.

Having fixed the new local coordinates w, x, y (possibly in a smaller neigh-

borhood U' c U), the equation of the asymptotic leaves has the form (4.7). But

now one of the asymptotic foliations is given by the level surfaces w = const.

Hence the corresponding equation (4.7) cannot involve the square dx and thus

ά0 = 0 holds in the whole neighborhood, q.e.d.

Remark. In the elliptic case, the asymptotic leaves can be also defined, but

they are imaginary. On the other hand, we always have a0 Φ 0 according to the

last part of Proposition 2.6.

Now, we shall proceed with the classification in the hyperbolic case under the

hypothesis a0 — 0.

PROPOSITION 5.2. In the adapted coordinates from Corollary 5.1 we always have

(5.5) A = pe\ f=\e~λ\ C = reλυ + Se~Xy, h = 2λps,

where p, r, s are some functions ofw, x p Φ 0.

Proof. First we have β — 0 due to (2.15). From the equations (1.15) and (C3)

we obtain / = teλv + ue~h'. Now, (2.24a) means that A = peλv + qe~λy and the re-

lation Af= 1 implies that either t — q — 0, up — 1, or u = p = 0, tq = 1.

Replacing possibly λ by — λ, we can always assume the first case. The expression

for C is just (2.23a). From (1.13)2 we see that h = CA'y - ACy = 2λps.
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PROPOSITION 5.3. // the formulas (5.5) hold with arbitrary functions p(w, x),

r(w, x), s(w, x), then all algebraic equations from Theorem 2.9 (of hyperbolic type)

are satisfied.

The proof is an easy direct check. In particular, we get here φ0

 = 2λrp ,

φ4 — — λ, φ5 — — 2λ.

Thus, we are left with the differential equations (Al), (A2) and (2.9).

Obviously, we can write down this system of PDE in the simple form

(5.6) (AaYy = 0, Ry = 0, (AaYw + R^= ~ (k + c) = - Pl.

PROPOSITION 5.4. The system of PDE (5.6) together with the condition h — 2λps

is equivalent to the following system of PDE in two independent variables :

(Dl) f-\ +

(D2) H'x = 2λps,

(D3) p'a-r'χ-λpH=Q,

(D4) - (ps'X + (rs'X = - Pl.

Proof We see easily by the definition of a and R that

Aa = p(p'w -γ'x- λpH)e2λy - ps'xt R = \ \\ + Λ e~2λy + rs'x.
Δ ιρ j*

Hence the result follows.

PROPOSITION 5.5. In the real analytic case, the general solution of the PDE system

(Dl)—(D4) depends (locally) on 5 arbitrary functions of the variable w.

Proof. From (Dl) one gets s = p \p φ — 1 , where φ = φ(w) is an arbit-

rary function. Then (D2) and (D3) are equivalent to a unique equation

(5.7) ΨΊφ), = 2 ^ V ~ l

and (D4) can be written in the form

/ — P'τ V I rPr V
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Now, (5.7) and (5.8) form a system of two 2nd order PDE for r and p which can

be expressed with respect to rxx and p'x'x respectively. Hence the Cauchy-

Kowalewski theorem can be applied and the solution of (Dl)—(D4) depends on 4

additional arbitrary functions of w.

PROPOSITION 5.6. For any (local) hyperbolic metric g determined by Proposition

5.5 we have

(5.9) || VRf = 2(Pl- p3)
2(2λ2 + h2).

Consequently, if h Φ const., then the metric g is not locally homogeneous.

Proof. The formula (5.9) follows from (3.3), (3.9), (5.5) and the identity β = 0.

From Proposition 5.6, the proof of Proposition 5.5 and formula (D2) we get

COROLLARY 5.7. The hyperbolic metrics constructed in Proposition 5.5 are not

locally homogeneous, in general.

We conclude with some explicit examples, which can be checked easily.

EXAMPLE 5.8. ?utp= p(w), s = s(w), H= 2λp(w)s(w)x+ φ(w),

r—— λ2p2(w)s(w)χ2 + [p'(w) — λp(w)φ(w)]x + φ(w),

where p(w) , s(w), φ(w), φ(w) are arbitrary functions. The corresponding Ricci

roots are pγ — p2

 = 0, p3 = — 2λ .

EXAMPLE 5.9. ?ntp = VI + χ 2 , s = -, H = λ(χ2 + -j).
ή + x2 v 4 /

Λ (Λ i 2N3/2

r= — 4 " ^ ( 1 + x )

The corresponding Ricci roots are px = p2 = -j λ , p3 = — 2λ .

r χ

2 2 3 1 2

EXAMPLE 5.10. Put p = v'l + χ4 , s = , , H = -w λχ3\ r = — Q- λ

Jl+xA ό y

x (1 + x ) . The corresponding Ricci roots are pι — p2 — ~q λ , p3

 = — 2λ .

We see from Proposition 5.6 that all these examples are nontrivial, i.e., the

corresponding metrics are not locally homogeneous. The question if there exist
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non-trivial explicit examples for other Ricci roots pλ — p2 — const., p3 — — 2λ ,

remains open.

6. The geometric existence theorem for the hyperbolic case

In this section we shall calculate the "number" of locally non-isometric spaces

corresponding to any prescribed pλ — p2 Φ p3, p3 = — 2λ < 0. To avoid technic-

al difficulties, we shall express our family of metrics in other local coordinates.

For this purpose we shall assume that the function χ — χ(w, x) from (1.10) can

be arbitrary. We obtain first

PROPOSITION 6.1. Every Riemannian space ( M , g) with the given constant Ricci

roots Pι~p2Φ P3, Pz~~ 2/?2, can be expressed locally in the form (U, g), where

U c: R3(w, x, y), g = Σ (ω*)2, and

(6.1) ω1 = te~λydw, ω — peλydx + se~λydw, ω3 = dy + Hdw.

Here t, p, s, H are functions of two variables w, x satisfying the following system of

PDE:

(E2) H'x = 2λps,

(E3) p'w
(E4) Wxt

Proof. We obtain the expression (6.1) from (5.1), (5.5) just fixing a new vari-

able x = x(w, x) as a potential function of the equation pdx + rdw = 0. The

equation (E2) follows again from (1.13)2 where β = 0. From (6.1) and (1.10) we

see

(6.2) Af=pt, x = (pt)~\

Using the expressions for/, A, C in (6.1) and formulas (1.13), (1.14), we obtain

Aa = f\p'w - λpH)e2λy - t~ιsx,
(6.3)

[R = (ttx + ssx)(pt)~ιe~ZλV - {pt)'ιs{pf

w - λpH).

Then the equation (Al), (A2) mean that Aa, R are independent of y\ hence (E3)

and (El) follow. At the same time, we obtain

(6.4) Aa = - Γιs'x, R = 0.
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The equation (2.9) (which is equivalent with (A3)) and (6.2) imply (E4), q.e.d.

Due to Proposition 5.5 (or by the direct check) we see that the solutions (t, p,

s, H) of (El)—(E4) depend, in the real analytic case, on 5 arbitrary functions of 1

variable.

Suppose now that (M, g) be another Riemannian manifold with the same con-

stant Ricci roots as (M, g)\ then we have locally g = Σ ( ώ ' ) , where

(6.5) ώ1 = te ~λydw, ω — peλvdx + se~λydiv, , ώ3 = dy + Hdw.

Let F : [/—• Ό be a local isometry between (M, g) and (M, g) with the coordin-

ate expression

(6.6) w = w(w, x, y), x — x(w, x, y), y = y(w, x, y).

We want to determine a specific form of the equations (6.6) and the specific rela-

tions between the basic coefficients of (6.1) and (6.5), respectively.

From the geometrical meaning we see that the vector field E3 — d/dy must

be mapped by the tangent mapping F% into the vector field ε Έ 3 , where εf — ± 1.

Hence the vector fields Ev E2 are mapped into the vector fields cos φ E λ —

sin φ'E2, ε(sin φΈ1 + cos φ-E2) respectively, where ε = ± 1, and φ is a func-

tion on U. Hence we obtain (denoting the induced forms F*ώ simply by ώ )

(6.7) ώ1 — cos φ-ω + ε sin φ-ω2, ω = — sin φ-ω + ε c o s φ ω2, ώ3 = ε'ω3.

Now, we can compare the expression (3.8) for the tensor V R with the analo-

gous expression for the tensor V R:

(6.8) VR = (c - k) [ (dώ1 + bω) ® (ω1 ® ω + ω ® ω1)

+ (cώ1 + eώ2) ® (ώ2 ® ώ3 + ώ3 ® ώ 2)].

Here we calculate

(6.9) a = a=-λ, b = b = 0, c=-h(pt)~\ c=-h(pf)~\ e = e = λ.

Let us substitute (6.7) into (6.8) and then evaluate the equality V R = F ί as a

system of equalities between the coefficients of the corresponding tensor mono-

mials. By a lengthy but routine calculation we obtain two cases:

(6.10A) ε' = 1 and sin φ = 0,

(6.10B) € = - 1 and 2λptcos φ + ε h sin φ = 0.

If (6.10A) holds, then (6.7) implies

/ n Λ Λ λ _ 1 1 _ 2 2 _ 3 3

(6.11) ω = ελω , ω = ε2ω , ω — ω .
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Let us suppose, e.g., εx = ε2 — 1 (the other subcases are treated similarly). Then

we get from (6.1) and (6.5)

teλ~υdw = te~λy dw,

(6.12)

dy + Hdw = dy + Hdw.

— λy -i - , _ —λy j - , λy j , —λy j

pe dx + se dw — pe dx + se dw,

Here, in addition, the function t, p, s, H satisfy the PDE system (El)—(E4) and

the functions t, p, s, H have to satisfy the analogous PDE system (El) —(E4).

From the first and the last equation (6.12) we get

(6.13) w = φ(w), y = y + μ(w),

and subsequently

(6.14) t=teλu/φf(w),H= (H - μf(w)) /φf{w),

where φ, μ are some functions. Substituting (6.13) into the middle equation of

(6.12), we get formulas involving a new arbitrary function:

(6.15) x=φ(x), p=pe~λu/φr{x), s = seλu / φ'{w), h = h/(ψ\x)φ'{w))

Now we also see that each of the equations (El) —(E4) is a consequence of the

corresponding equations (El) — (E4). We conclude:

In the first case, (6.10a), the functions w, x, y, t, p, s, H can be obtained from

w, x, y, t, p, s, H by formulas involving 3 arbitrary functions of I variable.

If (6.10B) holds, then

(6.16) ώ
1
 = — (hω

ι
 - 2λptω

2
), ω = — (2λptω + hco), ώ

3
 = - ω\

where

(6.17) q2 = 4λ2p2t2 + h\

From (El) and (E2) we get

(6.18) q = 2λpa(w), where a(w) = ys 2 + t2.

The explicit form of (6.16) is, for ει = — 1, ε2 = 1 (the other combinations of

signs are treated similarly)
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te~λydw= [a(w)Yιpteλydx1

' peλydx + se~λydw — a(w)e~λydw + [a(w)~ιpseλydx,

dy + Hdw — — dy — Hdw.

From the last equation we get

(6.20) y=-y~ φ(w, x), dφ = Hdw + Hdw.

Substituting from here in the first and the second equation (6.19) we obtain

(6.21) w=φ(x), x=φ(w),

(6.22)
— pse λψ/(a(w)φ'(x)), h = h/(φ'(w)ψ'(x)).

Now, (El) together with (6.21) means that s2 + ? = [ά(x)Ϋ, where ά(x) is

a new function of one variable, and (6.22) implies

(6.23) pe~λΦ = φ'(x)άix).

We see that if φ(x) , φ(w), ά(x) are arbitrary but fixed, then all functions w, x,

y, t, p, s, H are determined by w, x, y, t, p, s, H. We conclude:

In the second case, (6.1 OB), the functions w, x,...,H can be obtained from

w, x,. . . ,H by formulas involving at most 3 arbitrary functions of 1 variable.

We can summarize:

THEOREM 6.2. For any constant Ricci roots px — p2 Φ p3, p3 — — 2λ , the

isometry classes of germs of the corresponding (real analytic) hyperbolic metrics are pa-

rametrized by the pairs of germs of arbitrary functions of one variable.

Proof Using the local form (6.1) for our metrics, we see that the germs of

these metrics depend on the quintuplets of germs of arbitrary functions of one vari-

able. At the same time, a triplet of germs of arbitrary functions (plus some com-

bination of signs) is needed to generate any fixed isometry class of germs of the

metrics.

7. The quasiexplicit classification in the elliptic case

In the elliptic case, the calculations become more complicated. We assume

again χ = 1 in this section.
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PROPOSITION 7.1. The basic coefficient functions from Theorem 2.9 are deter-

mined, in general, by the following formulas :

2 φt) 2φφ φ^φ2 λ2φ2(λ2 ~φt) - 2φιφ4 φ^φ2 - λ2) - 2φ2φ4

(7.1) a, = — , a2 = — ,
λφ0 λφ0

(7.2) fl3= ,

( 7 3 ) K ~ b ^λφ0

+ φin Λ\ ^ + φ4 I 2 2 2

(7.4) aoφo = j , φ0 = V φ3 - φγ - φ2 ,

(7.5) φ5 = 2φ4, h= ~2λφ3/φ0,

and φlf φ2, φ3, φA are arbitrary functions of w, x.

Proof First, the equations (2.5b), (2.6b) imply φ3 Φ 0 and then (2.33b)3 im-

plies φ 0 Φ 0. Then (7.1), (7.2) follow from (2.33b) and (7.3) follows from (2.36b).

From (2.17b) we also have a3 Φ 0.

Now, if b3 = 0, then (2.35b)3, (2.36b)3 imply φ4 = φ5 = 0 and hence φ5 —

2φ4. The formula (2.31) implies aoφo = - λ, i.e., (7.4). Finally, from (2.27), (7.2)

and (7.4) we get h = 2λa3/a0 = — 2λφ3/φ0.

Assume now b3 Φ 0. Then (2.35b), (2.36b) imply φ4φ5 Φ 0 and

(7 6) b φ a

b2 = φ5a2 - 2λaγ = λφ2 -

b3 φ5a3 - φ3φ4

Hence we get, by a routine calculation

(7.8) (φ2 + φ2

2)(φ5-2φ4) = 0.

Now, φγ + φ2 Φ 0 implies φ5 — 2φ4\ (2.31) then implies (7.4) and hence

_ 2λa3 _ 2λφ3{λ2 + φ4) _ _ 2λφ3

which concludes the proof.

Suppose finally φι — φ2 — 0. Then al — a2

 = bl — b2 — 0 and a3 = εα0,

= =
b3 φ5a3 - φ3φ4
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φ3 = ε'φQ. (2.35b)3 and (2.36b)3 imply

(7.9) φ5 = 2λεb3, φ4 = — λε'b3.

Further, (2.34b)3 implies

(7.10) λb3 = a3φ3 — λ = εε'a^φ^ — λ,

and (2.31) together with (7.9) gives

(7.11) φoao - λεε'b3 = - λ.

Substituting (7.10) into (7.11) we get (1 + εε')λ = 0, i.e. εf = - ε. Then (7.9) im-

plies φ5 — 2φ4, and the rest is the same as in the case φx + φ2 Φ 0.

By a direct check we see that all algebraic formulas (of the elliptic type) from

Theorem 2.9 are satisfied due to (7.1)—(7.5) for arbitrary functions φv φ2, φ3, φ4.

We shall now express the system of PDE (Al), (A2) and (2.9) as a system of

PDE in two independent variables. This leads to a routine but rather lengthy cal-

culation, for which we only give some hints.

First we summarize the formulas (2.16b), (2.22b), (2.5b) and (7.5)2 in the

form

A2 = aλ cos 2λy + a2 sin 2λy + a3,

AC = bi cos 2λy + b2 sin 2λy + b3,
(7.12)

/ z + CΔ = (1 /λ) (φx sin 2λy — φ2 cos 2λy + φ3),

h = - 2φ3λ /φ0, φ0 = Jφ3 - φ,3 - φ2 ,

where aif b{ are specified by (7.1)—(7.3).

Substitute into (Al) the function Aa in the form

(7.13) Aa = \[(A2YW - 2{ACYX + (AC)A~2(A2)X - H(A2Yy]

and the function β in the form β — λao/A , using (7.12) everywhere and taking

the common denominator A for all terms. Then the nominator of the left-hand

side of the equation (Al) is a linear combination of c , c s, c , cs, c, s, 1 respec-

tively, where we put c = cos 2λy, s = sin 2λy. Hence we get 7 (formally indepen-

dent) partial differential equations which are linear with respect to a^, a[x, a^,

a'te and Vv V2, where

(7.14) VΊ = a[w - 2b[x - 2λHa2, V2 = a2w - 2b2x + 2λHav
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Here the third and the fourth equation read

(7.15) a2Vx + aλV2 + b2a[x + bxa'2x = 0,

(7.16) - aιVι + a2V2 - bλa[x + b2a2x = 0.

Using the formula (2.17b) in the form

(7.17) a0 = v<23 ~ a\ ~ a2

and its derivative

(7.18) #o#4r = azaZx ~ a\a\x ~~ a2a2x>

we can eliminate the derivative a'Qx in all remaining equations. Now, using the rela-

tion (2.26b), and also (7.1)—(7.3) when it is necessary, we can see that all the

seven PDE are algebraic consequences 0/(7.15), (7.16).

Next, substitute in (A2) the function R in the form

(7.19) R = \[{f2 + C2YX + H(h + G4C)p - (AOA'\A2yj9

and β in the form β = λao/A2, using (7.12) everywhere, and taking the common

denominator A for all terms, again. By the same argument as in the previous case,

we obtain once more 7 partial differential equations, which are now linear with

respect to a'Ow, a[w, a2w, a3w and Wlf W2, where

(7.20) W, = φ[x - 2b,λ2H, W2 = φ2x - 2b2λ
2H.

The third and the fourth equation have the form

(7.21) φ[x - 2b1λ
2H + •£- a[w - ^-af

2w = 0,

(7.22) ψ'2x - 2b2λ
2H + ~~a[w + ~a'2a = 0.

We can eliminate a'Qw in the other equations using the analogue of (7.18).

It is again a routine to check that the remaining PDE are algebraic consequences

of {Ί.21) and (7.22). Moreover, we can even check that the systems (7.15), (7.16)

and (7.21), (7.22) are algebraically equivalent! Hence the PDE system (Al), (A2) in

three variables in equivalent to the system (7.21), (7.22) in two variables. (This is

in accordance with the hyperbolic case, in which the equations (Al), (A2) have

been also reduced to two equations with two independent variables, namely to (D3)

and (Dl).
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The last equation of (7.12) can be written in the form

(7.23) Hx = - 2φ3λ/φ0, φ0 = Vφ3 - φ2 - φ2

Finally, (Al) and (A2) imply -g-[(AaYw + Rx] = 0, and hence the equation (2.9)

can be written in the form [(Aa)'w + Rχ]v=0 = ~ Pv i.e., in the form

(7.24) [(Aa)y=0Yw + ί(R)y=0Yx = - pγ.

We see easily from (7.13) and (7.19) that

(7.25) (Aa)y=0 = \ [(a, + a3Yw - 2 ^ + b3Yx - 2λa2H

(7.26) (R)y=0 = \ ψhZ_A + H(h

 ( ^ +

and hence (7.24) takes on the form

(7.27) φ^x - φ'^ = F(φif H, φ'iw,

where F is a real analytic function of its variables.

Let φ4(w, x) be fixed as an arbitrary real analytic function, and consider the

PDE system formed by equations (7.21), (7.22), (7.23) and (7.27). We can apply to

this system an easy modification of the Cauchy-Kowalewski Theorem (see e.g.

[Kl], Section 9). It follows that the general solution of this system (with fixed φ4)

depends locally on five arbitrary functions of the variable w, namely φx{w, x0),

φ2(w, x0), φ3{w, x0), φ^iw, x0), H(w, x0) around a point (w0, x0) e R2(w, x).

This general solution determines locally all metrics of the elliptic type with

the prescribed constant Ricci roots pι — p2Φp3 — 2λ.

Next, we have

PROPOSITION 7.2. The norm of the covaήant differential of the Ricci tensor is

given, in the elliptic case, by the formula

(7.28) || VRf = 2(Pι- p3)\h2 - 2λ2).

Proof We use (3.9), (3.3) for χ = 1, (2.15), (2.16b), the identity a + e = 0

and the elementary trigonometric identities. By a routine check we get a + b +

c2 + e2 = h2 - 2λ2. (Cf. formula (5.9)).
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Hence we see that the function h2 is a Riemannian invariant.

Now, we have

PROPOSITION 7.3. A 3-dimensional Riemannian space ( M , g) with the pre-

scribed constant Ricci roots px = p2, p3 = 2λ is locally homogeneous if, and only if,

h = const.

Proof The "only if" part is a consequence of Proposition 7.2. Suppose now
O 9 9 9 9 9

h = const. Using identities a + e = 0, b — c = h, a + b + c + e — h — 2λ

and formula (3.8), we can prove easily that there is an adapted orthonormal cof-

rame (ώ , ώ , ω ) on a neighborhood of any point p ^ M for which all compo-

nents of the tensor V R are constant (which means that all the new functions a, b,

c, e are constant). Because our space is 3-dimensional, we deduce that, with re-

spect to the corresponding orthonormal frame, all components of the curvature

tensor R, and those of its covariant derivative V R, are constant. According to

[Se2] (see also [K2]), the space (M, g) is locally homogeneous. (Let us mention that

the same proposition holds in the hyperbolic case, too).

Hence we obtain

COROLLARY 7.4. The 3-dimensional Riemannian spaces from Proposition 7.3 are

not locally homogeneous, in general.

Proof. Consider a neighborhood U of a point p ^ M with an adapted local

coordinate system (w, x, y). Then we have, let us say, p — (w0, x0, 0). According

to the argument prior to Proposition 7.1, the function φ3(w, xo)/φo(w, x0) can be

chosen as arbitrary. According to (7.23), the function h(w, x0) can be chosen as

an arbitrary real analytic function.

Remark 7.5. The author was unable to find an explicit and not locally

homogeneous example in the elliptic case.

8. The geometric existence theorem for the elliptic case

The complete solution of the local isometry problem in the elliptic case seems

to be tiresome. Nevertheless, the following theorem gives a satisfactory counter-

part to Theorem 6.2:
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THEOREM 8.1. For any constant Ricci roots pλ = p2 Φ p3, p3 = 2λ , there exists

a family f of elliptic metrics such that the isometry classes of germs of f are paramet-

rized by the pairs of germs of arbitrary (real analytic) functions of one variable.

Proof We shall limit ourselves to the local metrics which, in some adapted

local coordinates, satisfy φ4 = 0. According to the previous section, the germs of

these metrics are parametrized by germs of five arbitrary functions of 1 variable.

Suppose that (M, g), (M, g) are two Riemannian 3-manifolds with the same

constant Ricci roots px — p2 Φ p3

 = 2λ , and let the local expression for

(M, g) be given by (1.9), (7.12) and Proposition 7.1 with φA = 0. Suppose that

the local expression for (M, g) is given by the analogous formulas with φ4 = 0.

The only basic functions are φif H and φif H, respectively, i = 1,2,3.

Having any local isometry F : JJ—* Ό between (M, g) and (M, g) given by

formulas (6.6) we see that (6.7) holds once again and hence

(8.1) (ω 1) 2 + (ω 2) 2 = (ω 1) 2 + (ω 2) 2, ώ 3 = εrω\ € = ± 1.

We can assume ε' — 1, the opposite case is treated similarly. We obtain then from

(6.7), (1.9)3

(8.2) w = w(w, x), x = x(w,x),

(8.3) ϋ = y + Φ(u>, x), dφ= - Hdw + Hdw.

We shall now substitute into the first equation of (8.1). We get first

(8.4) (ω 1) 2 + (ω 2) 2 = λ~ι(φί sin 2λy — φ2 cos 2λy + φ3)dw2

+ 2(b1 cos 2λy + b2 sin 2λy + b3)dwdx + (a1 cos 2λy + a2 sin 2λy + a3)dχ2

(8.5) (ω 1) 2 + (ω 2) 2 = λ~\φ1 sin 2λy - φ2 cos 2λy + φ3)dw

+ 2(b1 cos 2λy + b2 sin 2λy + b3)dwdx + (ax cos 2λy + d2 sin 2λy + a3)dx .

In (8.4) we put y = y' — φ and use the standard trigonometric formulas for de-

veloping the sine and cosine of a difference of arguments; in (8.5) we substitute

(8.6) dw = wwdw + wxdx, dx = xwdw + xxdx.

We also notice that b3 = b3 = 0 due to (7.3). Then the equality of the right-hand

sides of (8.4) and (8.5) means the equalities between 3 pairs of quadratic forms in

dw, dx which are coefficients of 1, sin 2λy, cos 2λy, respectively. For each pair

of quadratic forms we compare the coefficients of dx , dxdw and dw , respective-

ly. As a result, we obtain the following system of 9 PDE for the functions
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x(w, x), w(w, x)\

J

(8.7)

= a3,

λ ιφ3wxww + a3x3xw = 0,

-,-1 _ _ 2 , _ _ 2 -,-1

λ φ3ww + « A = Λ Ψi,

(8.8)

1-1 - -

u2Xχ ~ Q>\ s i n

•f % ) + ά.

= --= 2 _ , - 1 /

0 2 COS

&x sin 2Λ0 2λφ,

(8.9) -

— ax cos α2 sin 2λφ,

>ί φ2wxww — bι{wxxw + XjpCu) — aιxxxw = ~ bx cos 2λφ Λ- b2 sin 2λφ,

PROPOSITION 8.2. T ^ functions w, x, y, φif H can be obtained from w, x, y,

φi9 H by formulas involving 3 arbitrary functions of one variable.

Proof We shall use the formulas (7.1)—(7.3) simplified by <p4 = 0, i.e.,

2 2 2

(8.10) aι = φ2λ/φQ , a2— — φγλ/'φQ , a3 = φ3λ/φ0 ,

(8.11) 6X = φ1/φ0, b2 = φ2/φ0, b3 = 0,

and the corresponding formulas (8.10), (8.11).

Suppose first that, at a fixed point p e U, all the derivatives ww, wχt xWJ xx

are nonzero. They remain nonzero in a neighborhood Up c U. From (8.7)2 we get

(8.12) _ 2

Now, substitute for α3 from (8.12) into (8.7): and (8.7)3, and then divide (8.7^ by

(8.7)3 . We get easily

λ2

(8.13) — = -

Hence

(8.14) I
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Substituting first for a3 and a3 from (8.10), (8.10) into (8.7)! and then using

(8.12), (8.13), (8.14) we get

{ } Ψs ww Δ ΔφQ>

where

(8.16) Δ = wwxx - wjcw Φ V

is the Jacobian of (8.2).

Now, substitute (8.12) into the middle equations of (8.8) and (8.9). We obtain

(8.17)
2λ ιφιwxww + b2(xxww + xwwx) = bx sin 2λφ + b2 cos 2λφ,

2λ~ιφ2wxww — b1(xxww + xwwx) — — bλ cos 2λφ + b2 sin 2λφ.

The sum of the squares of the last equations gives, with regard to (8.12),

_ 2 I _ 2 2 . 2

Φi + Ψ? 2 Ψλ "Γ" Φ?

(8.18) — ^ - 42 = ~ ~ ^ .
Ψo Ψo

Hence and from (2.6b) we obtain

- 2 2

(8.19) P\-l)zl2 = ^ - l ,

and using (8.15) we obtain

(8.20) Δ2 = 1, i.e., 4 = ± 1.

(The same follows from ώ Λ ώ — εω Λ ω and A/ = A / = 1).

Now, (8.13) and (8.20) (with fixed φo\) give a system of two 1st order PDE for

x(w, x), w(w, x), which can be written in the form satisfying the conditions of

the Cauchy-Kowalewski theorem. Hence the functions xy w depend on two arbit-

rary functions of 1 variable (supposing that the coefficient functions of

(M, g) are fixed). The equalities (8.14), (8.15) then show that φQ and φ3 are

well-defined (up to a sign) by x(w, x) and w(w, x). Because h2 is a Riemannian

invariant (Proposition 7.2), we get

(8.21) HΈ=±H'X,

and hence H is determined (for known xy w) up to an arbitrary function of one

variable. Then the second equation (8.3) means that φ{w, x) is uniquely deter-

mined by H, H, w up to an additive constant. Finally, the equations (8.17) deter-
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mine φlt φ2 from the already known functions. The function y is also determined

by (8.3)^ This concludes the proof of Proposition 8.2 in the general case.

If some of the derivatives ww, wχy xw, xx vanishes at p, then introducing new

independent variables as linear combinations of w, x we see that the Cauchy-

Kowalewski theorem can be applied to the system (8.13), (8.20), once more. Hence

w, x again depend on two arbitrary functions of 1 variable. The rest of the proof

is a minor modification of the previous argument.

Now, Theorem 8.1 follows as a consequence of Proposition 8.2.

9. Appendix: Curvature homogeneous spaces

A Riemannian manifold (M, g) is said to be curvature homogeneous if, for each

pair of points p and q, there exists a (linear) isometry F between the tangent

spaces TPM and TqM such that F (Rq) = Rp.

Further, let (M, g) be a homogeneous Riemannian space, i.e., a connected

Riemannian manifold such that the isometry group KM, g) acts transitively on M.

We say that a Riemannian manifold (M, g) has the same curvature tensor as the

space (M, g) if, each point p ^ M, there exists a (linear) isometry F : TpM^

T0M such that F*(R0) = Rp. Here o is a fixed point of M, and R, R denote the

corresponding Riemannian curvature tensors of (M, g), (M, g), respectively. We

also say briefly that (M, g) admits (M, g) as a homogeneous model. In such a case,

(M, g) is obviously curvature homogeneous.

The curvature homogeneous spaces have introduced by I.M. Singer [Si], who

put the question whether there exist Riemannian manifolds which are curvature

homogeneous but not locally homogeneous. The first examples of this kind were

constructed by K. Sekigawa [Sel] and H. Takagi [Ta]. A systematic study of this

topic has been done by F. Tricerri, L. Vanhecke and the present author in

[KTV1-3] and [TV1-2], where complete references can be found. Obviously, all

spaces studied in the previous sections are also curvature homogeneous and not

locally homogeneous, in general.

Up to recently, an open problem was to decide whether each curvature

homogeneous space admits some homogeneous model. In [KTV3] the authors have

proved that a four-dimensional example by K. Tsukada [Ts] is curvature

homogeneous without any homogeneous model. They have also proved that all

3-dimensional examples by K. Yamato (see Introduction) possess homogeneous

models.

As one consequence of the present paper we are now able to give explicit ex-

amples in dimension 3 which are curvature homogeneous and do not abmit
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homogeneous models.

PROPOSITION 9.1. The examples 5.9 and 5.10 from Section 5 do not admit any

homogeneous model

Proof. According to K. Sekigawa [Se2], each 3-dimensional homogeneous

Riemannian space is locally isometric either to a Riemannian symmetric space, or

a Lie group with a left invariant metric. According to J. Milnor [Mi], p. 310, no

3-dimensional Lie group admits a left invariant Riemann metric whose principal

Ricci curvatures have the signs ( + , + , — ) . We conclude hence easily that a

3-dimensional homogeneous Riemannian space cannot admit (constant) Ricci roots

with the signs ( + , + , — ) . But the corresponding triplets of the Ricci roots for

( -L 9 -L 9 9 \ I u 9 £j 9 9 \

ηrλy-rλ,—2λ\ and ( Q- λ , -Q- λ , — 2λ ),
respectively.

Moreover, we have also proved the following:

PROPOSITION 9.2. Let pλ = p2 > 0, p3 < 0 be real numbers. Then the local

isometry classes of Riemannian metrics with the prescribed constant principal Ric-

ci curvatures pv p2, p3 depend on 2 arbitrary functions of one variable. On the

other hand, there is no homogeneous Riemannian 3-space with the principal Ricci

curvatures as above.
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