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GENERALIZED HYPERGROUPS AND

ORTHOGONAL POLYNOMIALS

NOBUAKI OBATA AND NORMAN J. WILDBERGER

Introduction

We study in this paper a generalization of the notion of a discrete hypergroup

with particular emphasis on the relation with systems of orthogonal polynomials.

The concept of a locally compact hypergroup was introduced by Dunkl [8], Jewett

[12] and Spector [25]. It generalizes convolution algebras of measures associated to

groups as well as linearization formulae of classical families of orthogonal polyno-

mials, and many results of harmonic analysis on locally compact abelian groups

can be carried over to the case of commutative hypergroups; see Heyer [11], Litvi-

nov [17], Ross [22], and references cited therein. Orthogonal polynomials have

been studied in terms of hypergroups by Lasser [15] and Voit [31], see also the

works of Connett and Schwartz [6] and Schwartz [23] where a similar spirit is

observed.

The special case of a discrete hypergroup, particularly in the commutative

case, goes back earlier. In fact the ground-breaking paper of Frobenius [9] impli-

citly uses the notion of a hypergroup as the central object upon which the entire

edifice of harmonic analysis on a finite (non-abelian) group is built (see Curtis [7]

for an interesting discussion of this important historical point, and also Wildber-

ger [34] for an extension of this point of view to Lie groups). Variants of the con-

cept have appeared in many places: the early work of Kawada [13] on C-algebras;

the systems of generalized translation operators studied by Levitan [16]; the

hypercomplex systems studied by Berezansky and Kalyushnyi [4] and others; the

work of the physicists on Racah-Wigner algebras (see for example Sharp [24]); the

association schemes studied by combinatoricists (see for example the book of Ban-

nai and Ito [3]); and the work of McMullen [18] and McMullen and Price [19].

More recently we mention also the objects introduced by Arad and Blau [1] called

table algebras (see also [2]); the hypergroup-like objects studied by Sunder [26];

the convolution algebras studied by Szwarc [28]; and the fusion rule algebras
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arising in conformal field theories [29].

Here we introduce a very general class of objects which we call 'generalized

hypergroups' which include as special cases many of the above. We have, in view

of the multitude of approaches outlined above, attempted to keep our axioms down

to an essential minimum. A generalized hypergroup is simply a * -basis of a * -

algebra with unit satisfying essentially one axiom on the structure constants (see

(A3) below). A main set of examples arises from general systems of orthogonal

polynomials on the real line.

The paper is organized as follows: In Section 1 we introduce the notion of a

generalized hypergroup and investigate some general features. In Section 2 we dis-

cuss characters of a generalized hypergroup and observe how a hypergroup is

obtained from a generalized hypergroup by means of renormalization. In Sections

3 and 4 we establish a boundedness criterion that will ensure that the generalized

hypergroup can be densely imbedded in a C -algebra. An interesting example is

given by the Jacobi polynomials. It is also proved that every countable discrete

hypergroup satisfies the boundedness criterion. We then show in Section 5 how

the Gelfand theory can be used to establish representation of a commutative gener-

alized hypergroup. Examples of orthogonal systems of polynomials are shown to

satisfy the boundedness condition so we see that the rudiments of a theory of har-

monic analysis are present in this case even if the usual positivity condition of the

linearization coefficients (as studied for example by Gasper [10] for the Jacobi

polynomials) is absent. In Section 6 we introduce the notion of a generalized eigen-

vector and study, in the case of commutative generalized hypergroups, characters

of it. Finally Section 7 is devoted to a study of the Fourier transform on a com-

mutative generalized hypergroup. We establish analogues of the Plancherel formu-

la and the inversion formula.

Acknowledgements. The present joint work started during the first named

author's stay at the University of NSW in 1992. He is most grateful to the School

of Mathematics for its hospitality. He also thanks Professor K. Aomoto for many

interesting remarks on orthogonal polynomials.

1. Generalized hypergroups and examples

DEFINITION. A (discrete) generalized hypergroup is a pair ($f, sέ0) where s40 is a

*-algebra with unit c0 over C and $f = ίc0, clf c2,. . .} is a countable (infinite or

finite) subset of d0 satisfying the following conditions:

(Al) # * = # ;
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(A2) # is a linear basis of sέ0 i.e., every a ^ s40 admits a unique expression

of the form a = Σ , α ^ with only finitely many non-zero a{ e C;

(A3) The structure constants b(i, j , k) €= C defined by

CfCy = Σ b(i,j9 k)ck

satisfy the conditions:

c* = c, <* b(i, j , 0) > 0, cf Φ Cj & b(i, j , 0) = 0.

If no confusion occurs, we simply say that # is a generalized hypergroup.

Given a generalized hypergroup # we define a bijection σ : {0, 1, 2, . . . }—•

{0, 1, 2, . . .} by cf = c σ ω . Obviously σ2 = id and σ(0) = 0. Note that σ = id

may happen. It is convenient to put

> °i), i, 0) > °'

which is called the weight of cf. Obviously, ίί;0 = 1. Note also that

(1.1) K ή , 0) = ( < 1 > 0 i i i = σ W >
10 otherwise.

DEFINITION. Let $1 = {c0, q, . . .} be a generalized hypergroup with structure

constants b(i, j , k). Then it is called

(i) hermitian if c{ = cf for all i

(ii) commutative if c?c;- = CjC{ for all z, j'

(iii) rβα/ if 6(ί, , t ) e R for all i, j , k

(iv) positive if b(i, j , k) > 0 for all z, , k;

(v) normalized if Σkb(if j , k) = 1 for all ί, y

(vi) signed if it is both real and normalized.

Remark. By definition a positive, normalized generalized hypergroup is a

countable discrete hypergroup and vice versa. A hypergroup-like structure intro-

duced by Sunder [26] is a generalized hypergroup with structure constants being

non-negative integers.

We now assemble some general results. In what follows let # be a general-

ized hypergroup with structure constants b(i, j , k).
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LEMMA 1.1. It holds that

(1.2) b(i, 0, ft) = 6(0, i, k) = δik9

(1.3) 6(σ(/), σ(i), σ(ft)) = bit, j, k),

(1.4) WjbdJ, k) = wkb(σ(k)} i, σ(j)).

Proof. Identity (1.2) follows immediately from the fact that cQ is the unit of

d0. Identity (1.3) is easily verified by applying the *-operation to the identity

Cfj — Σik b(i, j , k)ck. We show (1.4). Since (cicj)ck = c^CjCj), we have

Σ biij, l)b(l, k,rn) = Σ b(j, ft, l)b{i, /, m)
I I

for any choice of /, j , k, m. In particular, taking m = 0 we obtain

b(i,j, σ(ft))6(σ(ft), ft, 0) = b(j, k, σ(i))b(i, σ(ι), 0).

Namely,

wσU)b(i, j , σik)) = wkb(j, ft, σ(i))

and therefore

w f 6(σ(ί) , ; , σ(ft)) = wΛδ(;> ft> * ) .

Then (1.4) follows by changing suffixes. q.e.d.

LEMMA 1.2. Put

(1.5) ΛΓy = {ft 6(i, , ft) ̂ 0 ) , / „ = « 6(i, 6( i , ; , ft) ̂ 0 } ,

are all finite sets. If furthermore # is positive, each of these sets is

non-empty.

Proof. We first prove that Jik = Kσ(i)ίc. In fact, by definition and by (1.4) we

see that

j €= Jik <ϊ b(i, j , ft) Φ 0 <=> b(σ(k), i, σ(/)) ̂  0.

In view of (1.3) the last condition is equivalent to

In a similar manner one sees easily that Ijk — σ(Kjσ(k)). Since # (K^) < °o for all
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ί, by (A2) and (A3), it also follows that # (Jik) < oo and # (Ijk) < oo.

Now suppose that # is positive. We note that ct c; =£ 0 for any ί,y. In fact,

suppose Cfij = 0. Then,

0 = Cliche*) = Σ 60, <K/)> AO^c* = Σ 60, σ(j), k)b(i, k, l)ct.
k k,l

Since b(i, j , k) > 0 for all i, j , k by assumption, we have

60, σ(j), k)b(i, k, I) = 0

for all /c, /. Putting k = 0 and / = z, we obtain

60, σO),O)6(i, 0, i) =0,

which is impossible by (1.1) and (1.2). Thus eft Φ 0 for any /, . In other words,

K(j is not empty for any /, / It follows from the first part of the present proof

that both Ijk and Jik are also always non-empty. q.e.d.

By definition we have

LEMMA 1.3. The following conditions are equivalent:

(i) Ψί is hermition]

(ii) σ = id

(iii) b(i, i, 0) > 0 for all i and b(i, j , 0) = 0 for distinct i, j .

LEMMA 1.4. The following conditions are equivalent:

(i) X is commutative',

(ii) sέ0 is commutative]

(iii) b(i, j , k) = 60, i, k) for all i, j , k.

LEMMA 1.5. Let ΊK be a hermitian generalized hyper group. Then ${ is commuta-

tive if and only if it is real.

Proof By definition

CjCj = Σb(i, j , k)ck.
k

Since # is a hermitian generalized hypergroup, we have

jCi = Cj c{ — (eft)* = Σ b(i, j , k)c* = Σ b(i, j , k)ck.
k k

Hence $C is commutative if and only if b(i, j , k) = 60', , k) for any choice of
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i, j , k. q.e.d.

We also make the following definition.

DEFINITION. TWO generalized hypergroups ( # , sέ<) and (®, So) are called iso-

morphic if there exists a *-isomorphism φ:sdo-+ $lQ such that φ($C) — ®.

We now introduce our main class of examples. Let μ be a finite measure on R

and assume that 1, x> x , . . . belong to L (R, μ) and are linearly independent. Let

$1 — {p0 = 1, pv p2, . . .) be the associated system of orthogonal polynomials

obtained in the usual way by performing the Gram-Schmidt orthogonalization to

the sequence 1, x> x , . . . up to constant multiples. Then each pt is a polynomial

of degree i with real coefficients. For each i, j we may write

pj)j = Σ b(i, j , k)pk, bit, j , k) e R.
k

Moreover, it is known that b(i, j , k) = 0 unless | i — j \ < k < i + j . Let dQ be

the commutative *-algebra of all polynomials in x with complex coefficients.

Since each pt has real coefficients, pt = pt for all i, i.e., σ = id. It then follows

that ( # , ^ 0 ) is a hermitian, commutative (hence real by Lemma 1.5) generalized

hypergroup. In fact, axioms (Al) and (A2) are obvious. Axiom (A3) is immediate

from the relation:

(1.6) bit, j , O)μ(R) = <pi9 A W , ) ,

which follows by observing that

bit, j , 0) Γ po(x)2μ(dx) = Σ b(i, j , k) f pk(x)p0(x)μ(dx)

= f Pi(x)pj(x)po(z)μ(dx) = f ptixipjixϊμidx).

In short, a system of orthogonal polynomials on R canonically becomes a hermi-

tian, commutative generalized hypergroup, which we call a generalized hypergroup of

orthogonal polynomials. A particularly interesting question in this connection is to

determine conditions on μ that will ensure that $( is positive.

One may generalize this construction by orthogonalizing the sequence 1, z,

z ,. . . with respect to a finite measure on C. In that case, however, axiom (A3) is

not satisfied automatically.
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2. Renormalization and characters

In this section we discuss how a normalized generalized hypergroup occurs.

LEMMA 2.1. Let (X, sd0) be a generalized hypergroup with structure constants

b(i, j , k).. Let d{ ^ C be a sequence satisfying

(2.1) do = l, dtΦO, dσii)=~di.

Define

Cf = ~ry Jί = \ C 0

 = C o, Cit C2,. . . / .

T/î n W , sέ0) is a generalized hypergroup with structure constants:

(2.2) b(i,j,k) =j^b(ij9k).

Proof We must check (A1)-(A3) for (X, sd0). In fact, (Al) and (A2) are ob-

vious. As for (A3), it is straightforward that b(i, j , k) are the structure constants

of X. Since ( ζ ) * = c} <^> σ(i) = j and

5(ί ;> 0 ) = ^ f t ( ί ' y ' 0 ) = | 7 ] ft(θ") ^ o)ί

(A3) follows immediately. q.e.d.

DEFINITION. The generalized hypergroup (X, sd0) constructed as described in

Lemma 2.1 will be called a renormalization of (X,

LEMMA 2.2. Let (X, d0) be a generalized hypergroup. Then there exists a renor-

malization X which is a normalized generalized hypergroup if and only if there exists a

sequence d{ G C satisfying (2.1) and

(2.3) didj = Σb(i,j, k)dk.
k

Proof The generalized hypergroup X is normalized if and only if Σkb(i,j, k)

= 1 for any i, j . In view of (2.2) one sees that the last condition is equivalent to

(2.3). q.e.d.
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LEMMA 2.3. Let (${, sd0) be a positive generalized hypergroup. Then there exists

a renormalization °K which is a countable discrete hypergroup if there exists a sequence

d{ > 0 satisfying (2.1) and (2.3).

This is immediate from definition and Lemma 2.2. It is now convenient to in-

troduce the following

DEFINITION. Let ( # , s40) be a generalized hypergroup. A function χ : # — > C

is called a character of $f if it admits an extension to a non-zero * -homo-

morphism of d0 into C. Let ΘC = 9C($() denote the set of all characters of # .

For any character χ of # we denote by the same symbol the (unique) exten-

sion to a * -homomorphism of d0 into C. It is easily seen that χ (c0) = 1 for any

χ E f. By definition

LEMMA 2.4. Let W , s$0) be a generalized hypergroup. A function χ : # —* C is

a character if and only if the sequence d{ = χ (c, ) satisfies (2.1) and (2.3).

Thus we come to

THEOREM 2.5. Let ( # , Λ#0) fr# a positive generalized hypergroup. Then there ex-

ists a renormalization $ί which is a countable discrete hypergroup if there exists a char-

acter χof^ί such that χ (q) > 0 for all i.

Such a character need not exist. Here is a simple example discussed by Voit

[32]. Let Hn(x) be the Hermite polynomials which satisfy the orthogonal relation:

HJx)Hn(x)e~x2dx = ^z
•/ —oo

Then it holds that

m/\n / M \ / wi \

Hm{x)Hn(x) = Σ2kkl(n

k) (m

k) Hm+n_2k(x).

Hence the Hermite polynomials constitute a positive, commutative generalized

hypergroup. Let χ be a character and assume that cn = χ (Hn) > 0. Then cxcn =

cn+ί + 2ncn_ι for n = 1, 2, . . . , which implies that cn < c^^ < c\cn/2n. But

this is impossible as is seen by w—• oo.
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Remark. A character χ G dC with χ (ct) > 0 for all i is called a dimension

function for the generalized hypergroups studied by Sunder [26].

3. Generalized hypergroups imbedded in C -algebras

We first note the following

LEMMA 3.1. For a generalized hypergroup ( # , d0) define a linear functional φ0:

do-^C by

(3.1) φ0 Σ « A = α0.

Then, φQ(a*ά) > 0 for all a ^ d0 and φo(a a) = 0 i/αwrf onfy ifa = 0.

Proof First note that φ0 is well defined. In fact, by (A2) every a ^ d0

admits a unique expression of the form a = Σ , aici with only finitely many

non-zero α, e C. Then we have

a a = Σi oίfiίfi Cj = 2- aμ^

and therefore

(3.2) φo(a*ά) = Σ α^αy6(σ(f), i , 0) = Σ I α, | 26(σ(O, i, 0) - Σ
i i

The assertion is then immediate. q.e.d.

DEFINITION. A generalized hypergroup ( # , d0) satisfies Condition (B) if for

each i there exists yi > 0 such that

(3.3) I φQ(b*φ I < rtΨo(b*b) for all b e rf0,

where φ 0 is defined as in (3.1).

THEOREM 3.2. Let (ft, d0) be a generalized hypergroup satisfying (B). Then

there exist a unital C -algebra dy a positive functional φ on d and an injective * -

homomorphism π : do—> d with dense image such that the following diagram com-

mutes

d0 -^ d

c
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Here we recall that every positive linear functional on a C -algebra is con-

tinuous, see e.g. [21]. We begin with the following preliminary result.

LEMMA 3.3. For a generalized hypergroup {$(', s$0) Condition (B) is equivalent to

Condition (B'): for each a ^ dQ there exists γ(a) > 0 such that

(3.5) φQ(b*a*ab) < γ(a)φo(b*b) for all b e d0.

Proof (B) => (BO. For a = Σt α,c, e s40 and b G st0, we have

φo(b*a*ab) = Σ α^^Ci^cfςW

= Σ ajQtjbiσti), j , k)φQ(b*ckb).
i,j,k

Then by assumption (B),

φQ(b*a*ab) < Σ 1 a{afi{σ{i), , /c) I 7k<Po(δ*W = γicdφ^b),
U,k

where

(3.6) r ( ώ = Σ I ̂ ajbiσiΰj, k)\γk< oo.

In fact, the right hand side is a finite sum, as is easily seen from Lemma 1.2 and

the fact that α f = 0 except finitely many i.

( B ' ) ^ (B). Let #!, ̂ 2 e ^ 0 and e = ± 1, ± i. By assumption

γ{ax + ea^φ^ib^b) > φ(i(b*(aι + εa2)*(a1 + εa2)b)

+ εφo(b*afa2b) + εφ^ata^).

Since φo(b a1a1b) ^ 0 and φo(b a2a2b) > 0, we have

(3.7) eφo(b*aΐa2b) + εψ^ataφ) < γia, + εα2)φ0(&*&), ε = ± 1, ± ί .

In particular, εφo(b ax a2b) + εψoib^a^a^) G B for ε = ± 1, ± i, and hence,

φo{b*ata2b) = φo(b*a2axb).

Using this fact, one can easily see from (3.7) that

( 3 g ) ± 2 Re[φo(b*aΐa2b)] < γia, ± a2)φ0(b*b),

± 2 lm[φQ(b*aΐa2b)] < r(a, =F ia2)φ,(b*b).
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Now put

γ(av a2) = -η= max γ{aλ + εa2).

yZ e=±i,±i

It then follows from (3.8) that

I φQ(b*a*a2b) \ < γ(aί9 a2)φQ(b*b).

In particular, putting γ{ — y(cQ> ct), we obtain

\φo{b*cib)\<γiφo{b*b), b^d0,

as desired. q.e.d.

Proof of Theorem 3.2. Assume that ( # , d0) satisfies (B). According to Lemma

3.1 we introduce an inner product and a norm of d0 by

(a, b) = φo(b*a), \\a\\ = J(a, a), a, b e d0.

Let ίt be the completion of dQ with respect to || ||. With each a ^ d0 we associ-

ate a linear operator π(a) on sέ0 by

π(ά)b = aby b e dQ.

Then, we have

|| π(ά)bf = || ab f = <ab, ab> = φo{b*a*ab), a, b e rf0.

It then follows from Lemma 3.3 that there exists γ{d) ^ 0 such that

|| π(a)b IP < γ(a)φo(b*b) = γ(a) \\ b f.

Hence π(ά) can be extended to a bounded operator on X, which will be denoted

by the same symbol. We have thus obtained a map π : d0 —> 3}{ffl) which is, as is

easily verified, a * -homomorphism. Moreover, 7Γ is injective. In fact, π(a) — 0

implies that 0 = π(a)c0 = ac0 = a. Finally, define φ(x) = (xc0, c0) for x ^

$I(X). Then φ is a continuous positive functional on 9B(X) with φ(π(ά)) —

φo(a) for a ^ d0. This proves (3.4). q.e.d.

COROLLARY 3.4. Notations being as above, { y ^ c ^ o is a complete orthonormal

basis of

Proof In fact,
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~ι(3.9) <ct, Cj> = φo(c*ct) = b(σ(j), if 0) = δϋw~ι.

The completeness follows from the construction of X. q.e.d.

4. A sufficient condition for (B)

We give a sufficient condition for (B) in terms of the structure constants.

THEOREM 4.1. Let $( be a generalized hyper group with structure constants

(4.1) r, - y s u p Σ (I b(σ(j), i, σ(k)) \ + \ b(i, j, A) |) < oo for all i,

then Condition (B) is satisfied.

Proof. For b = Σ ; βjCj ^ d0 we have

b*ctb = Σjβ.cfciC, = ΣΣjjβkb(σ(j), i, l)b(l, k, m)cm.
j,k j,k l,m

Therefore,

φo(b*φ = Σ Jβkb(σ(j), i, /)&(/, k, 0)
i.k,ι

' ) f i, σ(k))b(σ(k), k, 0)

WJ, 0) x βkb(σ(k), k, 0) x b(σ(j)J, OV'biσij), i, σ(ft))

= Σjjtu'1 x βkw~k

ι x Wjbiσij), i, σ(k)).

Then by the Schwarz inequality we obtain

I φo(b*φ I < ( Σ I βjW~ι \2Wj I b(σ(j), i, σ(ft))

x ( Σ I iS,^"1 | V I 6(σO"), i, σ(k)) \) .
j,k '

Since Wjb(σ(j), iy σ(k)) = wkb(i, k, j) by (1.4) we have

Σ I βkwk I Wj I b(σ(j), i, σ(k)) \ = Σ I J8ΛM^ |2M;Λ | δ(z, ft, ) |

( 4 ' 3 ) = Σ I βjwj1 WI b(i, j , k))\ = Σ\βj \2wjι I b(i, j , k) |.
Λ jk
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Inserting (4.3) into (4.2), we have

/ \ 1 / 2 / \ 1 / 2

I φo(b*Cib) I < Σ I ft IV11 b(σ(j), i, σik)) I) Σ I ft I V \ Hi, j , k)) I

< \ ΣI ft IV 1 (I W ) , i, σik)) I + I Hi, j , k)\)
Δ i,k

= \ Σ I ft I V 1 fΣ I 6(σO"), *, <r(Λ)) I + I b(i, j , k) \ ) ] .

By assumption (4.1), we conclude that

I φo(b*φ I < r< Σ I ft I V 1 = r^0(6*W,

i

which proves (B). q.e.d

COROLLARY 4.2. Ef^rj; countable discrete hyper group satisfies (B).

Proo/. By definition the structure constants b(i,j, k) of a countable discrete

hypergroup satisfy

Hi, j , k) > 0, Σ M ί . i , A) = l .
k

Hence (4.1) is satisfied as γ{ = 1. q.e.d.

COROLLARY 4.3. Let $( — {pQ = \,Pι,p2>. - .) be a generalized hypergroup of

orthogonal polynomials on R with respect to a finite measure μ. Then $( satisfies (B) if

i+i
(4.4) s u p Σ I b(i, j , k ) \ < oo for a\χ ι

j k=\i-j\

In particular, if sup j k \ b(i, j , k) | < °° for all i, Condition (B) is satisfied.

Proof Since σ = id and b(i, j , k) = b(j, iy k) in the present case, γ{ defined

as in (4.1) becomes

i+j

Ti = sup Σ\ b(if j , k ) \ = sup Σ \ b ( i , j , k ) \ .
j k j /c=lί-;Ί

Hence (4.4) coincides with the condition in Theorem 4.1.

We next assume that M{ = sup ; > f e | b(i, j , k)\ < °° for any i. Then,

Σ I Hi,j, k) I < M,(i +j - |ι\-j\ + 1) = Mί(min{2ή 2;} + 1) < M{(2i + 1),
c=lί-il
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and therefore,

r, = sup Σ \b(i9j9 k) I <Mt(2i + l) < oo
/ k=\i-}\

for all i. Then we only need to apply the first half of the assertion. q.e.d.

In fact, for a generalized hypergroup of orthogonal polynomials we have a

more complete statement.

THEOREM 4.4. Let Ή = ip0 = 1, plt p2, . . .} be a generalized hypergroup of

orthogonal polynomials on R with respect to a finite measure μ. Then lK satisfies Con-

dition (B) if and only if supp (μ) is compact.

Proof For α, b ^ d0 we write

a = Σ α ^ , b = Σ βfa.
i ί

Then by definition,

φo(b*a) = Σ aβjbij, i, 0).

In view of the simple relation (1.6) we obtain

*φo(b*a) = Σ α ^

Hence Condition (B') reads that for each a ^ dQ there exists ^(α) ^ 0 such that

μiRΓ'iab, ab>L2(R>u) < γ(a)μQK)~ιQ>f b>L2(UιU), b e d0,

i.e.,

Γ I a(x)b(x) \2μ(dx) < γ(a) f \ b(x) \2μ(dx), b e rf0.
J R ^R

Since «rf0 is a dense subspace oί X = L (R, μ), the above condition is equivalent

to that the multiplication operator by any polynomial is bounded on L (R, μ).

Obviously, this occurs if and only if supp(μ) ^ R is compact. q.e.d.

For example, the Jacobi polynomials P%*'B defined for a, β > — 1 satisfy

Condition (B). In fact, they are orthogonal on [— 1,1] with respect to the measure

μ{dx) = (1 - x)a(l + xΫdx, see Szegό [27, Chap. IV].
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5. Commutative generalized hypergroups

In this section we restrict ourselves to commutative generalized hypergroups.

For a compact (always assumed to be Hausdorff) space X we denote by

C(X) the usual commutative C -algebra of continuous functions on X The norm

of C(X) is denoted by || L. The dual space C{X)f is identified with the space of

Radon (or equivalently, C-valued regular Borel) measures on X

If a countable subset ® = {/0 = 1, flf f2, . . .} c C(X) and a dense * -

subalgebra 58O c C(X) constitute a generalized hypergroup (®, S80), we refer to it

as a function realization on X

THEOREM 5.1. Let (#(, d0) be a commutative generalized hypergroup satisfying

(B) and let φ0 be defined as in (3.1). Then it is isomorphic to a function realization

(®, 3§0) on a compact space X with positive Radon measure μ such that μ(X) = 1 and

(5.1) φo(α) = I ά(x)μ(dx),

where a h^ ά stands for the isomorphism from ($ί, sές) onto (®, ®0) Moreover, ® is a

complete orthogonal set for L (X, μ), and supp(μ) = X

Proq/". By Theorem 3.2 there exist a C -algebra «rf, a positive functional φ

on it and an injective *-homomorphism π such that the following diagram com-

mutes:

Since τrW0) c ^ is dense, «δί is commutative. From now on, identifying dQ with

τrW0), we do not use the symbol TΓ.

Since ^ is a unital commutative C -algebra, by Gelfand's theorem there ex-

ists a compact space X such that d — C(X) under the Gelfand map a *-+ a. Then

φ gives a positive (hence continuous) functional on C(X), namely, a positive

Radon measure μ on X :

(5.2) φ(d) = \ ά(x)μ{dx),
Jx

Since φo(a) = < (̂α) for α e ^ 0 , (5.1) follows. Furthermore, φ(c0) = φo(c0) = 1

implies μ(X) = 1. The isomorphism ( # , ^ί0) — (®, SB0) is obtained from d —
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CCX).
Let <•, >0 and || \\u denote the inner product and the norm of L (X, μ), re-

spectively. Then, by (5.2) we have

(5.3) <δ, b>u = [ ά(x)b(x)μ(dx) = φ(b*a), ay b ^ d.

Jx

In particular, by (3.9) we obtain

(5.4) <cif Cj>u = φ(c*ct) = φQ(c*ct) = δ^w'1.

Hence # = ® is an orthogonal set in L (X, μ). Since S o c C(X) is dense with re-

spect to the norm || IL, we see that Ά is complete. q.e.d.

The following result has been already established during the above proof, see

also Corollary 3.4.

COROLLARY 5.2. Notations and assumptions being the same as in Theorem 5.1,

{y/ΰJ^ct}™=0 is a complete orthonormal basis of L (X, μ).

COROLLARY 5.3. The Gelfand map a *-* a yields the following isomorphisms:

% c d0 c d c t

© c So c CUD c U(Xyμ)

where d — C(X) stands for an isomorphism between C -algebras and ffl — L (X, μ)

is a unitary isomorphism with respect to the norms || || and || \\u.

We now consider a commutative positive generalized hypergroup.

THEOREM 5.4. Let ${ be a commutative generalized hypergroup satisfying (B). //

$ί is positive, then there exists a renormalization $1 which is a commutative hyper-

group.

For the proof we need the following result which is contained in Voit [32,

Corollary 1.2].

THEOREM 5.5. Let μ be a positive Radon measure on a compact space X with μ Φ

0. Let ̂  be a family of C-valued continuous functions on X such that

(i) /<Ξ ^/or/e 9"
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(ii)fge&forf, g^$\

(iii) ff(x)μ(dx) > 0 forf e SF.
Jx

Then there exists a point xQ ^ supp(μ) such that f(x0) > 0 for all f ^ &.

Proof of Theorem 5.4. We retain the same notation as in the proof of Theorem

5.1. We put

9 = \Σ a Cj a; > θ\ c CO).

Then by the positivity assumption on $f and the fact that

/ Σ (XjCΛ
Jx j

= a0

we see that $F satisfies the conditions of Theorem 5.5. Hence there is a point x0 e

X with Cj(x0) > 0 for all j . We next prove that Cj(x0) > 0 for all /. Suppose

otherwise, namely, Cj(x0) = 0 for some / Then for all i,

0 = ς Cro)c;Cro) = Σ b(i, j , k)ck(x0).
k

By Lemma 1.2 and the positivity of # , for any k we may find i such that b(i, j , k)

Φ 0 so that ck(x0) = 0. This means that ά(x0) = 0 for all a e d0. But this con-

tradicts the density of d0 in CCX). It follows that ^(x 0) > 0 for all i

Define χ '.do~* C by χ(^) — β(xo)> fl e ^o Obviously, χ becomes a charac-

ter of IK such that χ(c) > 0 for all i. It then follows from Theorem 2.5 that there

exists a renormalization Ά which is a hypergroup. In fact, the renormalization is

given by

(5.5) ct = TΓZΓT.

This completes the proof. q.e.d.

We now recall the following result of Szwarc [28], see also Voit [32, Lemma

2.3].

THEOREM 5.6. Let μ be a positive Radon measure on a locally compact space X.

Let {/;} be a countable orthogonal family of C-valued, continuous, bounded functions

in L (X, μ) such that || f{ \L*(X>ti) Φ 0 for all i and such that {/,} is closed under com-
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plex conjugation. Assume that for all i, j

(5.6) fifj = Σ b(i, j , k) fk (possibly infinite series)
k

holds in U(X, μ) with b(i, , k) > 0 and Σk b(i, ;', k) < 1. Then \ ft(x) \ < 1

holds for all i and all x ^ supp (μ).

THEOREM 5.7. Let {$,, s40) be a positive, commutative generalized hypergroup

satisfying (B) and let a ^ a be a function realization of $( on a compact space X with

a positive Radon measure μ. Then there exists an xQ ^ X such that C^XQ) > 0 for all

i. Furthermore,

Cι (x0) = max I ct (x) \

holds for all i.

Proof. Let $i = ic) be the renormalization of $1 described as in Theorem

5.4. Then, fi = id) c C(X) satisfies the condition in Theorem 5.6. In fact, (5.6)

is reduced to a finite sum and Σk b(i, j , k) — 1. Hence we deduce that

I c{{x) I < 1 for all i and all x ^ supp(μ) = X. In view of (5.5) we obtain

I Ci(x) I < Ci(x0), x ^ X.

The result then follows. q.e.d.

Theorem 5.7 gives a necessary condition for the positivity of a commutative

generalized hypergroup satisfying (B). A good class of examples is given by gener-

alized hypergroups of orthogonal polynomials.

COROLLARY 5.8. Let # = {p0, pv p2,. . .} be a generalized hypergroup of ortho-

gonal polynomials with respect to a finite measure μ on [a, b\. Assume that $ί satis-

fies Condition (B) and that p^x) — ex + d with c > 0. IfΊK is positive,

max \pjix) I = pt(b)
a<x<b

holds for all i.

Proof Condition on px ensures that its maximum occurs at x = b. Hence by

Theorem 5.7 the positivity of the generalized hypergroup Ή forces all p{ to have

maximum at x = b. q.e.d.
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It seems interesting to apply the above result to determining the parameters

(α, β) of the Jacobi polynomials which give rise to a positive generalized hyper-

group, see Gasper [10].

6. Point measures as joint eigenvectors

Given a generalized hypergroup ( # , d0) we consider the vector space of for-

mal series:

(6.1) {

For ξ = ΣjξjCj e dm and c, <Ξ % define

(6.2)

Here we note that both Σ ; ξjbd, j , k) and Σ ; ξjb(j, i> k) are finite sums by Lem-

ma 1.2. Moreover, it is straightforward to see that (6.2) extends to bilinear maps

d0

 x d^d^ and ^ X stQ-*dco. Namely, d^ becomes an ^-bimodule. The # -

operation on d^ is simply the extention of that on d0:

Then, obviously

(aξ) = ξ a , (ξa) = a ξ , a e d0, ξ e .rf̂ .

We say that ξ — ΣjζjCj ^ d^ is hermitian iί ξ = ξ , or equivalently if ξσ(f) = ξt

for all i.

DEFINITION. A non-zero ξ ^ .rf̂  is called a (Ze/t generalized) joint eigenvector if

for each i there exists yl(c^ ) ^ C such that c{ζ
 = Λ(ct)ξ. An invariant vector is by

definition a non-zero element ξ ^ d^ satisfying c{ξ = ξ for all i.

PROPOSITION 6.1. For each joint eigenvector ξ ^ d^ there exists a non-zero

homomorphism A : d0 —+ C 5MC/I ί/iαί

(6.3) aξ = Λ(a)ξ, a <Ξ d0.

Conversely, for any non-zero homomorphism Λ:do—*'C there is a joint eigenvector

ξ ^ d^ such that (6.3) holds. In that case, any joint eigenvector is a constant multiple
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of

(6.4) ξ=ΣΛ(cf)w,c/.
j

Proof. The first assertion is straightforward from the definition. Suppose

that we are given a non-zero homomorphism Λ: d0-^ C. Let ξ ^ d^ be defined as

in (6.4). Obviously, ξ Φ 0. We shall show that (6.3) holds. For that purpose it is

sufficient to prove that c{ξ — Λic^ξ. But this is directly verified with the help of

(1.4) as follows:

Ciξ = Σ Λicfiwjbd, j , k)ck
j,k

= ΣΛ(cσ(j))wkb(σ(k), i, σ(j))ck
j,k

= ΣΛ[Σb(σ(k), i,j)cJ)wkck
k x j '

= ΣΛ(cσik)ct)wkck
k

= Λ(ct) Σ Λ(c*)wkck
k

= Λ(Ci)ξ.

Finally we prove the uniqueness. Suppose that ξ — Σ, ζ}c} ^ d^ satisfies (6.3).

Then, in particular ctξ = Λ(c{)ζ and hence

Σ ξjbti, j , k)ck=Σ
j,k j

for any choice of i. Comparing the coefficients of c0, we have

Λ(c,)ξ0 = Σ ζjbii, j , 0) = ξσωb(i, σii), 0) = u>«{)ξσω,
j

namely

This means that any joint eigenvector ξ ^ d^ satisfying (6.3) is uniquely deter-

mined up to constant multiple. q.e.d.

For the existence of an invariant vector we prove the following

PROPOSITION 6.2. Let ( # , d0) be a generalized hyper group. Then there exists an

invariant vector if and only if 'Jί is normalized. In that case, any invariant vector is a

constant multiple of
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(6.5) λ = Σ lOfi,.
j

Proof Let Λ:do~+C be the linear function uniquely defined by A(c{) = 1.

Since

ΛiCfCj) = Σ b(i, j , k)A{ck) = Σ b(i, j , A),
k k

A is a non-zero homomorphism if and only if Σ * δ(ΐ, j , k) = 1 for any i, y.

Hence by Proposition 6.1, there exists an invariant vector if and only if the case

occurs. In that case, any invariant vector is a constant multiple of λ by Proposi-

tion 6.1 again. q.e.d.

From now on all the generalized hypergroups under consideration are

assumed to be commutative.

PROPOSITION 6.3. Let ( # , d0) be a commutative generalized hypergroup and let

A be a non-zero homomorphism from d0 into C. Then A is a character, i.e. A ^ ΘC, if

and only if there exists a hermitian joint eigenvector ξ G d^ with aξ = Λ(ά)ξ for all

a e d0.

Proof. Let £ £= d^ be a joint eigenvector associated with the given Λ, see

(6.4). Then aξ = Λ(a)ξ for a e d0 and since d0 is commutative, we have

If the above ξ is hermitian, we see that Λ(a ) = Λ(a) . Hence A is a * -

homomorphism and, therefore, it is a character of # .

Conversely, if A is a character of # , it is extended to a non-zero # -

homomorphism from dQ into C. Then

α*ί* = (aξ)* = (Λ(a)ζ)* = Ma)ξ* = Λ(a*)ξ*.

In other words, ξ is also a joint eigenvector with aξ = Λ(a)ξ for a ^ dQ. By

the uniqueness of a generalized joint eigenvector (Proposition 6.1) we see that

ξ = cξ with some c ^ C . Then, at least one of the two vectors

ξ + ξ* 1 + c ξ - ξ* 1 - c

2 2 * ' 2t 2i * '

becomes a hermitian joint eigenvector associated with the given character A. q.e.d.
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THEOREM 6.4. Let ( # , d0) be a commutative generalized hyper group satisfying

(B) and let {$ί, dQ) be the function realization on a compact space X as in Theorem

5.1. Then, for each x e X,

(6.6) χx(ά) = ά(x), a e dQ,

is a character of $ί and the corresponding joint eigenvectors are constant multiples of

(6.7) δx = Σ CjWwjCj e d^.
j

Moreover, the map X »-» χx yields an injection from X into ΘC.

Proof It is easy to see that χx defined as in (6.6) is a non-zero * -homo-

morphism of d0 into C, and hence χx is a character of lK. It then follows from

Proposition 6.1 that

Σ χx{cj )WJCJ = Σ χx{c)wjci = Σ CjixϊWjCj
j j j

is a joint eigenvector associated with χx. Since X is a compact Hausdorff space,

C(X) separates the points and therefore x »-• χx is injective. q.e.d.

Viewing rfoc#c d^ we extend the inner product <• , •> of ffl to a ses-

quilinear form on « 0̂ X ^ ^ More precisely, define

( 6 . 8 ) < « , ξ> = φo(ξ*a) = Σ a&w'1, a=Σ a,ct e < , ξ = Σ ^ c , e d^.
i i i

With this notation, we have

PROPOSITION 6.5. <α, δx) = ά(x) holds for any a e d0 and x ^ X.

Proof. Put a — Σ ; d ; c ; . Then by Definition (6.7) we have

<α, ^> = Σ α^;(x) = ( Σ apA (x) = ά(x),

as desired. q.e.d.

Namely, δx corresponds to a point measure on X concentrated at x ^ X.

Moreover, since

I <a, δx>\ = \ά(x) I < U L - l k I L a*Ξd0,

δx extends to a continuous linear functional on d. In other words,
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PROPOSITION 6.6. δx e dr for all x e X.

Note the following diagram which extends that of Corollary 5.3:

d0 c d c # c ^ c ^

- 1 - i ^ 1 - I
^o c CUO c L2(X,μ) c CQO'

7. Fourier transform

We continue to assume that (#, d0) is a commutative generalized hypergroup

satisfying Condition (B). The particular element λ ^ d^ introduced in (6.5) is now

regarded as a measure on X. Let 2F0(X) denote the space of all C-valued func-

tions on X with finite supports. For/ ̂ ^0(X) we define

(7.1) </>, = Σ/(cM .

If X is normalized, it is natural to say that λ is an invariant measure on X, see

Proposition 6.2. In case of a countable discrete hypergroup λ is well known for a

Haar measure, see [12].

Now we define

Ii/IL2= <//>, = Σ I f(Ci) I V

Let Z, (#, yί) denote the Hubert space which is the completion of 2F0(X) with re-

spect to the norm || ||̂  and let $FJ$O denote the space of all C-valued functions

on X. Obviously,

Note also that any character of X belongs to #«,(#), i.e., ΘC c 9JJC). Modelled

after the Fourier transform introduced by Jewett [12] for a hypergroup, we make

the following

DEFINITION. The Fourier transform of / e SFQ(X) is defined by

(7.2) Of/(χ) = </χ>,, χ e 9Γ.

With each F ^ 2F0(%) we associate a formal series

(7.3) TF=Σ

Then, T becomes a linear isomorphism from S'^iX) onto d^ and from 2F0(X) onto
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dQ. Furthermore, comparing (6.8) and (7.1), we obtain

LEMMA 7.1. <Tf, TF> = <fF>λ forf e 9pC) and F e

As is mentioned in Theorem 6.4, there is a particular class of characters,

namely, χx indexed by x G X, Recall that

(7.4) χx(ci) = ci(x).

In this connection we have

LEMMA 7.2. LetfegFQ(X). Then

In particular, x ^ %f(Xχ) is a continuous function on X.

Proof. By Lemma 7.1,

On the other hand, it follows from (7.3), (7.4) and Theorem 6.4 that

Tχx = Σ χxic)wici = Σ

Therefore, by Proposition 6.5 we see that

as desired. q.e.d.

According to Theorem 6.4, one may regard X as a subset of ΘC by the map

x ι-> χ x . Then 3Γ becomes a probability space in an obvious manner, where the im-

age measure of μ. is denoted by the same symbol. Then we come to an analogue of

the Plancherel theorem.

THEOREM 7.3. The Fourier transform $ is extended to a unitary map from L ( # , λ)

ontoύidC, μ).

Proof Let/ G 2F0(X). By the definition of μ on % we have

(7.5) / I 3r/(χ) \2μ(dχ) =
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On the other hand, since x^f(χx) = (Tf)(x) by Lemma 7.2 and the Gelfand map

is a unitary map between L (X, μ) and $C by Corollary 5.3,

(7.6) jf I %f{χx) \2μ(dx) = fχ I (Tfί(x) \2μ(dx) = || Tff = <Tfy Tf>.

Finally, applying Lemma 7.1, we have

(7.7) <Tf, Tf>

Combining (7.5), (7.6) and (7.7), we obtain

which means that $ is isometric. Since both 2F0(X) c Z,2(#, X) a n d i o c U(Xy μ)

= L (SΓ, //) are dense subspaces, 5 extends to a unitary map from L ($ί, λ) onto

L\9C, μ). q.e.d.

Thus the Plancherel measure is supported on {χx x ^ X) ^ ΘC. The phe-

nomenon that the Plancherel measure is supported by a subspace of ΘC has been

already observed by Jewett [12] in case of a hypergroup. Moreover, this phe-

nomenon is now easily understood as the Fourier transform on a generalized

hypergroup is essentially the Gelfand map.

We have an inversion formula for the Fourier transform.

THEOREM 7.4. For f e &0($ί) it holds that

f(c>) = f

Proof. For each i define Ft e &JJC) by

Fiicj) = daw"1.

Note that TF{ = c{. Then for / e 2F0(X) we have

f(q) = <fFt>λ = <Tf, TF<> = <Tf, Ci>.

Using Corollary 4.2 and Lemma 7.2, we obtain

f(c,) = f' {Tf)'{x)~φΰβ(dx) = f%f(χχ)χx(c)μ(dx).
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The assertion is now immediate q.e.d.

From the viewpoint of Fourier transform the subclass {χx x G X} is more

important than the whole 9C. The subclass is characterized as follows, of which

proof is easy by observing the functional realization.

PROPOSITION 7.5. Let A e % and ξ e d^ be related as aξ = Λ(a)ξ for a e d0.

Then A = χx for some x ^ X if and only if ξ ^ d'.
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