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Introduction

Let A be a primary algebra with unit element over a field K and Z its center.

Let A be the simple residue class algebra of A modulo its radical. Then it is

known, and can readily be seen, that there holds the inequality [A : K] =̂  12[Z : K}9

where t is the rank of A over its center. We call A maximally central if in

particular [A : if] ~ i\.Z : K] i.e. if the rank \_Z : K\ takes its maximum value.

Further, an algebra which is a direct sum of those primary algebras will be

called maximally central tooβ The notion was introduced in Azumaya-Nakayama

C5], as a by-product of the study of absolutely uni-serial algebras.

In the present paper, we shall investigate maximally central algebras as a

main subject. For this purpose, it seems very natural to the writer to extend

the definition of these from coefficient fields to coefficient rings.1 } From this

view point, we consider throughout this paper algebras2) over coefficient rings,

and show that maximally central algebras behave quite similarly as simple

algebras in the theory of ordinary algebras, In the former part of this paper,

we introduce, after some considerations about general rings and algebras, the

notion of maximally central algebras over general coefficient rings in an appar-

ently different way from above, and in the latter part we confine ourselves to

particular type of coefficient rings called Hensel rings. Our methods used in this

paper are related not only to the algebraic theory of ordinary algebras but also

to the arithmetical theory of p-adic algebras, particularly obtained by Witt and

Nakayama.^

The main object of this paper is however to prove, in the last section 7,

an existence theorem of inertial algebras, which may be seen as a generalization

of the Wedderburn-Malcev's theorem4' as well as that of Nakayama's theorem.131

Received Dec. 25, 1950.
!> Cf. also the footnote (3) in Azumaya-Nakayama [5],
2> As for the term "algebra," see p. 125 below.

*> Witt [13], Najcayama [12].
4> Albert [1], III, Theorem 23; Deufing [5], II, §11, Satz 1; Malcev [10].

*> Nakayama [11], Satz 3.
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Although most properties concerning simple algebras can be transferred, without

much difficulty, to maximally central algebras over general coefficient rings, our

existence theorem does not hold untill the coefficient rings are assumed to be

Hensel rings, and it seems to the writer that this is a principal theorem that

has a deeper significance in the theory of maximally central algebras most

results from § 1 to § 6 should rather be regarded as preparation for this theorem.

The writer is grateful to Prof. T. Nakayama for his useful advices during

the investigation of this subject.

1. Preliminaries on radicals

Let R be an (associative) ring. R may have an operater domain K such

that ccia + b) =oca -f- ccb, a(ab) = (cca)b = a(ab) for every a G K and a, b&R.

An element c of R is called right quasi-regular^ if there exists an element cf

in R such that cc1 = c •+• c' cf is then called a right quasi-inverse of c. In order

that an element c is right quasi-regular it is necessary and sufficient that the

right ideal q(c) consisting of all elements of the form x - ex with x&R is

identical with R. The notions of the left quasi-regularity and the left quasi-

inverse are also defined in the similar way. Further, an element c is called

quasi-regular simply if it is right as well as left quasi-regular in this case

every right quasi-inverse and every left quasi-inverse of c coincides with each

other and is called the quasi-inverse of c. For a quasi-regular element c with

quasi-inverse & we put xc - x — c'x — xc + c'xc for every xtΞR. Then the mapp-

ing x -* xc is an automorphism of R, which we call the inner automorphism

generated by c. If d is a second quasi-regular element then c + d — cd is.also

quasi-regular and (xc)d - χc+d-Cd holds for every x e R. In case R has a unit

element 1, c is quasi-regular if and only if 1 — c is regular and when this is

the case the inner automorphism x -» xc is nothing but the ordinary inner auto-

morphism x -* (1 - c)-*x (1 - c). Finally, it is to be noted that there exists no

non-zero right {or left) quasi-regular idempotent element^ because from e*1 = e

and e -f e' = eeβ it follows that e -f eef = ee'.

A (right or left) ideal consists merely of right quasi-regular elements if

and only if it consists merely of left quasi-regular elments, and such an ideal

we call a quasi-regular ideal. Let q be a quasi-regular two-sided ideal. Then

an element of R is quasi-regular if and only if it is quasi-regular modulo q.

LEMMA 1. Let q be a quasi-regular two-sided ideal of R and a any two-sided

ideal of R. Then an idempotent element lies in a if (and only if) it lies in q + α.

6 ) For the following statements, see Jacobson [9].
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Proof. Let e be an idempotent element of R lying in q + a. Then the

residue class of e modulo α is also idempotent and lies in q -f o/α. But since

q + α/o is a quasi-regular ideal of R/a it follows 0 = 0 (mod 0).

Following Nβ Jacobson7) the radical N of R is defined to be the join of all

quasi-regular right ideals of R. Then N is itself a quasi-regular two-sided ideal

of R and is also the join of all quasi-regular left ideals of R. Further, JV is

characterized as the intersection of all maximal right (or left) ideals of R that

has left- (or right-) modulo units.** An element of R is quasi-regular if and only

if it is quasi-regular modulo N, and bence the residue class ring R/N has the

radical zero. Let us call a ring semi-primitive if it possesses the radical zero

if moreover it satisfies the minimum condition for right, or equivalents for

left ideals then we call it semi-simple^

THEOREM 1. Let Έίbea finitely generated R-right-module such that WN = 3Ji.
Then necessarily 9JΪ = 0*

The proof is virtually the same as that of Jacobson [9], Theorem 10, but

we give it here for completeness. Let ul9 u», . . . , un be finite generators of

3JΪ. Then 2Jί = 2BiV = WjΛΓ+ u*N + . . . + unN, and uι is expressed in a form

U1Z1 + w 22 + . , . -f unZn with each Zi in N. Denoting by 2/ the quasi-inverse

of Z\, U\~Uι— Ui(Zι + 2 / — ZιZιe) = (iίj — Wj2j) — (wi — « J 2 J ) 2 / is in u*NΛ- . . .

-f «nAζ and we have M= u*N-b . . . + unN« Proceeding in this way it follows

finally 3K = 0.

Consider an idempotent element e and the subring eRe. Let c be in eRe

and be quasi-regular in R. Then denoting by c' the quasi-inverse of c we have

cede = ^c'βc = ̂ (c + c;)^ = c -f ^c'^, that is, ecfe is a right quasi-inverse of c} and

similarly ^c'^ is a left quasi-inverse of c. Thus an element of eRe is quasi-

regular in eRe if (and only if) c is quasi-regular in R in particular, if q is a

quasi-regular two-sided ideal of R eqe = q Π eife is a quasi-regular two-sided

ideal of £ife.

Now two idempotent elements e and / are said to be isomorphic in R if

there exist two elements a and 6 in R such that #6 = e and ba~f; here we

may assume without loss of generality that aGΞeRf and b&fRe. e and / are

isomorphic if and only if the right ideals eR and fR9 or by symmetry, the left

ideals Re and Rf are operator-isomorρhic.J0)

7> Jacobson [9].
8> An element u of R is called a left-modulo unit of a right ideal r of i? if «fl = fl

(mod t) for every a & R,

°> In Jacobson [9], the term "semi-simple" was used for "semi-primitive" in our sense.
J°) For these, see Azumaya [3], I.
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THEΘREM 2. Let q be a quasi-regular two-sided ideal of R and let e and f

be two idempotent elements of R. Then :

i) e -f whenever ef = fe and e=f (mod q).

ii) e and f are isomorphic in R if and only if their residue classes e and

f modulo q are isomorphic in R = R/q further, for any given residue classes

ί ε eRf and T> e fRe such that aT) = e and ba-f we can find representatives

a e eRf and b &fRe of a and T> respectively such that ab - e and ba = /.

Proof i) If ef-fe then e — ef = e(e — f) is idempotent, while if e=f

(mod q) it lies necessarily in q. Therefore it follows that e — ef = 0 i.e. e = ef,

and similarly we have/ = ef; this shows that e = / .

ii) Suppose that e and / are isomorphic and there are given residue classes

βG eRf and T? & fRe such that ab = £ and T>d = / . Take from eRf and fRe

two elements a} and b} so that ax and bλ are representatives of α and T> respec-

tively. Then αibi e £/?£ and αφi ΈΞ e (mod #q£). Since £ is the unit element of

the subring eRe and eqe is a quasi-regular ideal of eTfe, αφi must be regular

in eRe, that is, there exists an element x&eRe such that αifax = e. Similarly

there exists an element yEifRf such that ybia} = / . From this follows that

ybi = ̂ Z?]̂  5P ybiaibix =fbιX = ̂ ΛΓ. Hence a~ax and ^ = 6JJC are required rep-

resentatives of <J and ?, and β and / are isomorphic. That conversely if e and

/ are isomorphic then e and / are isomorphic is clear.

THEOREM 3. Let q be a quasi-regular two-sided ideal of R* Then:

i) If eu e*, . . . , en and ej*> e»*, . . . , en* are two systems of mutually

orthogonal idempotent elements of R such that eϊ= βi* (mod q) for every i,

there exists a (quasi-regular) element c in q such that ef = e%* for every L

ii) If {eij i, i = 1, 2, , . . , n) and {eft i, j = 1, 2, . . . , n) are two

systems of matrix units in R such that eij = efj (mod q) for every i, j , there

exists a {quasi-regular) element c in q such that e^ = efj for every i, j .

Proof Indeed, we have only to put c = e + e* -ee* — Σ ^ ' ^ * i n t i i e first

case, while c = e + e* ~ ee* - Σ e^en m t h e second case where e = "S^/, £*

= Σ^ί* or ^ = Ί]^7, e* = Σ ^ , respectively.

Now we say that R is of the type (S) if i? satisfies the following condition:

(S) The residue class ring R/N modulo the radical N is semi-simple (Le.

R/N satisfies the minimum condition for right, or eqviualently, for left ideals).

THEOREM 4. Let R be of the type (S) and let {*?;/ i, j = 1, 2, . . . , n) and

{fϊj \ i, j = 1, 2, . . . , n) be ttvo systems of matrix units of R such that two
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n n

idempotent elements e = Σ £» β W ^ / = Σ / » β r έ ? isomorphic. Then there exists

a quasi-regular element c in R such that βif = fij for every i9 j .

Proof, By virtue of Theorem 3-3 ii), it suffices to treat the case where R

is itself semi-simple. Then R possesses a unit element and is the direct sum of

the left ideals Re and R{1 - e) as well as Rf and R(l - / ) . Further Re and

Rf are operator-isomorphic and are the direct sum of Ren, Re*?, . . ., Renn and

Rfπ, Rfv>, . . , Rfnn respectively. From these follows, since R is completely

reducible for left ideals, that en and fn as well as 1 — e and 1 — / are isomor-

phic, that is, there exist elements aλ e enRfU} £j &fuRen and έ/ e (1 ~ e)l?(l - / ) ,

y e (l-/)ff(l - e) such that tfj£, = eu, ha, = /„ and </£' = 1 - e, £'</ = 1 -/•
n n

Now we put a ~~ 5] eiiβifu + #' and δ = Σ/ti^i^ji + δ' Then it can readily be

seen that άb - ba = 1 and ̂ ytf = ei\G>\f\j = «/iy for every /, /, and our assertion

is proved,

COROLLARY. Let W be a module with operator domain and let W be a direct

sum of mutually operator-isomorphic (allowable) subrnoduli 3Jίj, 3JΪ2, . . . , 3Jί«

as well as of similar submoduli 9JJ? %, . . . , 5ΪΛ. Suppose further that the

operator-endomorphisfB ring of 2ft, or equivalently, that of 2K/ /s o/ f/te ίjy^

(S), Then 3K, βwrf 9Ϊ/ αr^ operator-isomorphic,

Proof Let ϋ? be the operator-endomcrphism ring of 2ft. Then we can con-

struct, as usual, two systems of matrix units {#;/} and {fij} so that *Σfiu = Σ/*,ι

= 1, the identity endomorphism, and 2ft̂ , , = 2ftί, 2ft//i = 2Ϊ/ for i = 1, 2, . . . , m

Since R is of the type (S) there exists, by Theorem 4, a quasi-regular element

c such that ec

H ~fu, and so en and fa are isomorphic this means that 2ftί and

31 i are operator-isomorphic.

2. Algebras orer a general coeMcienΐ ring

From now on, we assume that K is a commutative ring with unit element

and when we deal wilti moduli with operator ring K we assume always that the

unit element of K operates as an identity endomorphism.

THEOREM 5. Let 2ft be a finite K-module such that p9ft = 2ft for every maximal

ideal p of K. Then we have 2ft = 0.

Proof. Let (ui9 u*9 . . . , un) be a finite (but not necessarily linearly inde-

pendent) basis of 2ft over K and let o be the ideal of K consisting of all elements

a of K such that aUi e Ku2 4- . . . + Kun* Suppose that a # K. Then there

exists a maximal ideal p of K such that p contains α so that pui + Ku« -f . . .

4- Kun # iί^j + Ku* -f- . . . -f iC«w = 2ft. But this contradicts to our assumption

that pui + pu2 4- . . . 4- p r̂t(=J)2ft) = 2ft, and therefore a ~ K i.e. 2)̂  = if«2 + . . .
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+ Kun. Continuing this way we have finally Ίίl = 0.

COROLLARY. Let 2tt be a K-module and 5Ϊ its K-submodule such that 9fl = 5?

4- p3K for every maximal ideal p of K. Then W = 9Ϊ whenever %R is, or more

generally, the residue class module 2tt/9ΐ is finite with respect to K.

A if-module 9JI is called regular (with respect to K) if 3JI has a linearly

independent finite basis over K.

THEOREM 6. Let W be a finite K-module. Then a finite system of element

(ul9 uo, . . . , un) in W forms a basis of %R (over K) if (and only if) it is a

basis of -2JI modulo pWlfor every maximal ideal p of K. If moreover ΊSΪ is regular,

ίhen the system (til, u2,%. . . , un) is a linearly independent basis of 9R if (and

only if) it is a linearly independent basis of Wl modulo #9Jl over the residue class

field K/p for every p.

Proof The first part follows from Corollary to Theorem 5 if we apply it

to the submodule 9Ϊ = Kιιλ -f Ku« + . . . + Kun. To prove the second part, let

(vl9 v», . . . , vm) be a linearly independent basis of the regular module 2W.

Then it forms modulo pTl also a linearly independent basis over K/p. It follows

therefore that m-n and if we put u% = Σ^ύ'^i (<**7 ̂  K) the square matrix \\ccij\\
.7 = 1

is regular modulo p, that is, the determinant | α/y | Ξ θ (mod p). This is the

case for every p9 and | a%j \ is a regular element of K, that is, || ctij || is a regular

matrix in K, which means nothing but that (u\, u», . , . , un) is a linearly

independent basis of Wl over K.

As was shown in the above proof, the number n of the basis elements is

independent of the choice of the basis, and we call it the rank of W over K.

THEOREM 7. Let 2JI be a finite K-module with a finite (but not necessarily

linearly independent) basis (ul9 u», . . . , un) over K. Let θ be a K-endomorphism

of 9ft and let M be a square matrix of degree n in K such that (uxu«. . . un)d

= (#i#2 . . . un)M. Then θ is a root of the (so-called) characteristic polynomial

\tE-M\ of M.

Proof. Consider the square matrix ΘE — M in the commutative ring K[_0~},

the totality of polynomials of β with coefficients in K. Let / be its "adjoint

matrix," so that there holds (ΘE - M)J = J(ΘE - M) = \ΘE -M\ E. It follows

then (UiUi. . . un) \ΘE - M\ = (uxu*. . . un)(0E-M)J = ((UXU<L. . . un)θ-(UιU2

. . . Un)M)J = 0, and we have | ΘE - M\ = 0.

Now, let R be a ring. We say that R is a ring with coefficient ring K if

R is a iΓ-module suck that oc(ab) = (ortf)£ = a(ab) holds for every a, b&R and

cr e K. R is called faithful with respect to ϋΓ if α: = 0 is the only element of

K such that aR = 0. If R has a unit element and is faithful with respect to K
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then K is regarded in the natural manner as a subring of the center of R

containing the unit element if moreover K coincides with the center we call

R normal over K. Let us call a ring R with coefficient ring K an algebra over

K if R is finite with respect to K.

Let R be a ring with coefficient ring K and let cu c2, . . . , cs be a finite

number of mutually commutative elements of R» Then we denote by K(c},c2,

. . . , cs> the commutative subring of R consisting of all polynomials of ci9 c2,

. . . , Cs with coefficients in K and without constant terms, while in case R has

a unit element we mean by K[_Ci, c», . . . , cs~], as usual, the commutative sub-

ring consisting of all polynomials of c,, c», . . . , cs with coefficients in K but

with perhaps constant terms. We may assert here that if R is an algebra over

ϋίso are also both subrings K<cJ? c*, . . . , r s > and K[cu c2, . . . , cs~] I in fact

from Theorem 7 we have immediately

THEOREM 8.Π) Let R be an algebra over K with a finite basis (al9 a2, . . . , an).

Let c be an element of R and M a square matrix of degree n in K such that

c(a\ ai . . . an) = (aiCh . . . an)M. Then c is a root of the polynomial t\ tE — M \,

while in case R has a unit element c is indeed a root of the polynomial \ tE — M\.

Now let c be an element of an algebra R and denote by a(c) the right ideal

consisting of all elements of the form x — ex with x&R. Then the right quasi-

regularity of c means that' q(c) = R. Therefore for a maximal ideal p of K

the right quasi-regularity of c modulo pR means that q{c) H- pR = R. Hence if

we apply Corollary to Theorem 5 to W = R and 9Ϊ ~ q(c)9 we have

LEMMA 2β Let R be an algebra over K. Then an element of R is right

(or left) quasi-regular if and only if it is right {or left) quasi-regular modulo

pR for every maximal ideal p of K.

COROLLARY. Let R be an algebra over K and lei N(p) be, for each maximal

ideal p of K, the two-sided ideal of R such that N{p) ϋ pR and N(p)/pR is the

radical of the residue class algebra R/pRa Then the radical N of R is the inter-

section of all N(p)'s : N= Γ\ N{p).
P

Now we prove

THEOREM 9. Let R be an algebra over K. Then every right {or left) quasi-

regular element c is left {or right) quasi-regular too, and moreover it's quasi-

inverse c' is expressible as a polynomial of c with coefficients in K and ivithout

constant term : c' e ϋC< c >.

Proof. First, we prove the theorem in the special case where K is a field.

This theorem was suggested to the writer by Nagata.
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Let (aj9 Φ>9 . . . , an) be a linearly independent basis of R over if and let Mix)

be the left regular representation of R with respect to this basis: x(as, ch, . . . ,

an) = (ΛI, a2, . . . , βrt)iW(ΛΓ). Then the right quasi-regularity of c implies the

right quasi-regularity of the corresponding matrix M(c): M(c)M(cr) = M(c)

4- Λί(c'), and this means also that E — M(c) is a regular matrix, that is, the

determinant | £ - M(c) | # 0 . Now we put | tE - M(c)\ = *« 4- r j ^ " 1 4- 72**-2

4- . . . + ΐn then it follows 1 + n + rs + . . . + r«( = I £ - Af (£?)|) # 0. Put then

α = -(7i + 7i+ + 7>,)~J ^ d further αj = α, cr2 = α(l 4- 71), . . . , « « = α(l

+ ri + rs + . + r»-j). Then we have αr2 ~ <*J = <*γu α, - α2 = «rs9 . . ., α«

— €r?ί-i = «rw-i and ccn -f 1 = -~αr» These show, combined with the fact that

c is by Theorem 8 a root of the polynomial t \ tE - M(e)\ = ίΛ+J + 7i*Λ + 7s ί*"1

-f . . . 4- 7»*, that έ/ = one71 4- ̂ 2c
Λ-J4- . . . 4- α:*c is the (right as well as left)

quasi-inverse of c: ccf = c 4- c'.

Next we turn to the case of general coefficient ring i£ Let p be a maximal

ideal of K. Then the right quasi-regular element c is of course right quasi-

regular modulo pi?, and since R/pR is an (ordinary) algebra over the residue

class field K/p c is quasi-regular modulo pR, as was shown just above. This

is the case for every p, and by virtue of Lemma 2 c is indeed quasi-regular in R.

We want now to show that the quasi-inverse d lies in iΓ<c>. For this

purpose, we may assume without loss of generality that R coincides with the

(commutative) subalgebra ϋί<c, O : R = K(c, c'>. Let p be a maximal ideal

of K and consider again the residue class algebra R/pR over the field K/p.

Then it was also shown above that c7 lies in i£<c> modulo pR: c'E= i£<c> 4- pR

i.e. i? = K< c > 4- pR. Since this is the case for every p we have R = i£< c > by

Corollary to Theorem 5, and this completes our proof.

COROLLARY. Let R be an algebra over K and S its stώalgebra* Then an

element of S is qtiasi-regular in R {if and) only if it is quasi-regular in S.

Now let 9ft be a module with operator ring K and Q a regular algebra over

K with unit element Then we can readily construct their direct product 3K x Q

over K to be an Q-double- module in which 3R is contained as a submodule

element-wise commutative with Q and such that every linearly independent

basis of Q over K is also the same of 5K x Q over Έi.n) When Έi forms further

a ring i? with coefficient ring K, so is also the direct product R x Q; if more-

over 2? possesses a unit element and is faithful with respect to K then Q (as

well as R) may be regarded as a subalgebra of i ? x Q s o that R and © are

element-wise commutative and they have, with i? x f t a unit element in common.

12> For the general definition of direct products, cf. Artin-Nesbitt-Thrall [2], VI.
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Now we can assert

THEOREM 10. Let N be the radical of R« Then N x Q is a quasi-regular

two-sided ideal of R x Q,

Proof. Consider an arbitrary element c of Nx Q and denote by q(c) the

right ideal of R x Q consisting of all elements of the form x — ex with x £• R

x Q. Then we have evidently R x Q = q(c) + c(R x Q) = q(c) + N x Qv which

implies by virtue of Theorem 1 that R x Q — q(c)$ i.e., c is right quasi-regular

in R x Q.

A commutative ring Ω in which K is contained as a subring is called an

extention ring of K if the unit element of K is also the unit element of Ω. If

moreover Ω is finite with respect to K, Ω is called a finite extension ring of K

such an extension ring may be regarded as a faithful algebra over K, If R is

an algebra over K and if Ω is a (finite and) regular extension ring of K, Then

the direct product R x Ω may be looked upon as an algebra over Ω9 which we

shall somtimes denote by R&.

Finally we prove the following

THEOREM 11." > Let R be a ring with coefficient ring K and possessing a unit

element and let S be its subring such that the commuter ring VR(S) of S in R

is of the type (3), Furthef, let Q be a regular algebra over K with unit element?

and consider the direct product R x Q over & Then an isomorphism ψ of S into

R can be extended to an inner automorphism of R if (and only if) it can be

extended to an inner automorphism of R x Q*

Proof. Suppose that φ can be extended to an inner automorphism x -» u~ιxu

of R x Q: u~ιau = a9 (a E= S). Then uR may be seen as an S-i?-double-module,

Let {fa, h, . . . , bn) be a linearly independent basis of Q over K. Then it forms

also a linearly independent basis of R x Q over R9 that is, R x Q is a direct

sum of submoduli Rb}, Rb , . . ., Rbn each (R-R-whence) S-i?-isomomorphic to Ra

On the other hand, since R x Q = u(R x Q), R x Q is a direct sum of submoduli

uRbi, uRbo, , . . , uRbn each S-R-isomorphic to uR. The operater-endomor-

phism ring of the S-Z?-dotιble~module R is, regarded as a right operator ring,

inverse-isomorphic to VR{S)9

14) and hence is of the type (S). We may therefore

apply Corollary to Theorem 4 to these two direct decompositions of R x Q9 so

that R and uR are S-i?-isomorphicβ Let v be the element of R corresponding

to u in uR, under an S-R-isomorphism between R and uR. Then υ is evidently

Cf. Λzumaya [4], Theorem 8, 1).
Observe that R has a unit element.
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a regular element of R and, moreover, since au = uά* for every o e S there

must hold av = va'? for every a&S. These show that <ρ can be extended to

an inner automorphism x-* V~*XV of R.

3. Proper maximally central algebras over a general coefficient ring

Let A be a regular algebra over K possessing a unit element 1. Let A' be

an algebra inverse-isomorphic to A. under a correspondence a <-> a!, and construct

the direct product Ax Ar over K. Then every A-double-module Til can be looked

upon, in the usual fashion, as an A x A'-right-module by defining the multipli-

cation of a! e A' on the right as the multiplication of c E A o n the left. In

particular, A itself may be seen as an A x A'-right-modulβ. Let us call A

proper maximally central over K if A x A! coincides with the iΓ-endomorphism

ring of At

THEOREM 12. Let A be a faithful algebra over K with unit element. Then

in order that A is proper maximally central over K it is necessary and sufficient

that there exists a basis (al9 a*, . . . , am) of A over K such that the square

matrix
a\ a\ a»a\ . . . am a\

II β y β < n = : ; ; ; ; ; ;

- a\ ajn a* am • amam ~

is regular; and in fact, when this is the case, this condition is satisfied for every

linearly independent basis (a\, α2? . , a>m)

Proof First, we observe that the regularity of ||tf/tf;|| implies the linear

independency of {ai9a»,. . . , α m \ For, if elements ocl9 a»9 . . . , ctm of K satisfy
m m

the relation Σ α « β i = 0 then 5] aiβjβi = 0 for j = 1, 2, . . . , m, and hence we

have 0:1 = o:2 = . . . = ocm = 0.

Now the regularity of the matrix ||tf/fl,-|) means that for any system of m

elements (bi9 b*9 . . . , bm) of A there exists a uniquely determined system of

elements (xi9 Xi, . . . , xm) of A such that (XiX* . . . Xm) \\ajai \\ = (bib* . . .bm).

But this is also equivalent to saying that £ = Ύ\aiXt

J is the only element of

Ax A' such that (a^X, a^%, . . . , a?nχ)( = {ai, a«, . . . , am)χ = («J? α2, . . , β«)

^aix/) ~(b\, b29 . . . , £m), which means nothing but the proper maximal cen-

trality of A.

COROLLARY 1. Let A be a proper maximally central algebra of rank m over

K. Then Ax A' is, as Ax A'-right-module, operator-isomorphic to the m-times

direct sum Am of A.



ON MAXIMALLY CENTRAL ALGEBRAS 129

In fact, if we associate with each χ e A x A! the vector (ai9 a«, . . . , am) χ

= (ΛJZ, a«χ, . . . , amχ) e Am we obtain a desired operator-isomorphism of A x A'

onto Am.

COROLLARY 2. Every-full matrix ring(K)n over K of degree n is proper
maximally central over ϋf.

In fact, if {0,7: i, .7 = 1, 2, . . . ? w} is a system of matrix units in (ϋQn, it

forms a linearly independent basis of (K)n over K and the corresponding square

matrix | |^/^y|| u/>, <*/) (of degree n") has an inverse matrix \\eik en jj because

THEOREM 13, Zέtf A be a proper maximally central algebra over K. Then

K coincides with the center of A, and two-sided ideals a of A and ideals ! of K

correspond one-to-one by the following relation:

Further, when α and ! correspond, A/a is a proper maximally central algebra

over K/ΐ.

Proof. Let (αJ? a2, . . . , am) be a linearly independent basis of A over if.

Then there exists, for each 1* = 1, 2, . . . , wι, an element Jj in A x A! such

that β, Jfr = 1 and βyJft = 0 (/ # /).

Consider an element γ from the center of A and let γci = κ\a\Λ- κ2a2+ - . .

-I- ΛwΛm with every A:/ in ϋf. Then we have r = r«i/j = ̂ I^JZJ + ̂ a2'/i + . . .

+ fcmamXi = «j, and thus the center coincides with K.

Next let α be a two-sided ideal of A and take an element a = #j#i + #2̂ 2

+ . . . + ocmOtnipci ε iΠ from it. Since α is then allowable with respect to A x A',

α#ι is in α; on the other hand, we have a*/j = ctjβj// + .. . + oaaiYj -f . . . -f ocmamXi

= α t , and <z, lies in ! = α Π ̂  This is the case for every flGα and for every

1 = 1, 2, . . . , m, and therefore 0 = ϊβ, + ϊoo + . . . + ϊβm = ΪA The converse

direction follows readily from the regularity of A over K.

The last assertion is an immediate consequence of Theorem 12, since every

linearly independent basis of A over K is also the same of A modulo α over JBΓ/Ϊ.

THEOREM 14. /# castf i ί ά a field, proper maximally central algebras over K

are nothing but normal simple algebras over K,

Proof. That every proper maximally central algebra is normal simple

follows from Theorem 13, while the converse is a well-known fact in the theory

of simple algebras.15)

15) Cf. Artin-Nesbett-Thrall [2], Theorem 7.1F, for instance.
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THEOREM 15. Let A be a regular algebra over K with unit element. Then

A is proper maximally central over K if and only if for every maximal ideal p

of K A/pA is a normal simple algebra over the residue class field K/p.

Proof. Let {au a«, . . . , am) be a linearly independent basis of A over K.

Then it is also the same of A modulo pA over K/pf for every p. Consider the

full matrix ring (A)m of degree m over A. If we apply Lemma 2 to the algebra

(A)m we know that the matrix ||βyβ, || is regular in (A)m if and only if it is

regular modulo p(A)m- (pA)m for every p, and this means, by Theorem 12

and in view of Theorem 14, the validity of our theorem.

COROLLARY. The rank of a proper maximally central algebra A over (its

center) K is a complete square number.

Proof. Let p be a maximal ideal of K. Then A/pA is9 by Theorem 15, a

normal simple algebra over K/p and has the same rank (over K/p) as the

rank of A, and our assertion can be reduced to the well-known theorem of

simple algebras.

Now we prove a theorem which may be seen as a generalization of (the

second part) of Theorem 13 :

THEOREM 16.J6) Let A be a proper maximally central algebra over K. Let

TO be an A-double-module for ivhich the unit element of A is an identity operator

on both sides and let 91 be the K-submodule consisting of all elements of 9ft

element-wise commutative with A. Then W is a direct product of 9ϊ and A over

K: 3ft = 9ϊ x A. A-double-submoduli TOo of TO and K-submoduli 9ϊo of 9ί corre-

spond one-to-one by the following relation:

Ίflo = 9ί0 X A, % = TOo Π 9Ϊ-

Proof. Looking upon Wl as an A x A'-right-module, TO is a sum of submoduli

υf the form u(A x A') with w e Wl. But since u(A x A') is operator-homornor-

phic to Ax A' and A x Af is by Corollary to Theorem 12 operator-isomorphic

to the m-times direct sum Am of A, Wl is expressible as a sum of submoduli

rπμ each operator-homomorpίc to A. Let uμ be the element of mμ corresponding

to the unit element 1 of A9 under an operator-homomorphism of A onto mμ.

Considered TO again as A-double-module, «μ is element-wise commutative with

A and moreover ιπμ = w μ A We have therefore TO = Σ m μ = Σ*fμA = 9ί A. Now

let (#1, ai9 . . . , am) be a linearly independent basis of A over i£ and let Jj

be, for each i = 1, 2, . . . , m, the element of A x A' such that α, Jf, = 1 and

Xi = 0 (/ # i), as in the proof of Theorem 13. Suppose that vΪΛ v2, . . . , υm

l f i ) Cf. Azumaya [4], Lemma lβ
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are elements of 31 satisfying the relation v^i -\- v2a2 + . . . + vmam = 0. Then

it follows Vi = VidxXi H- . . . + tfίβi& + -f vmamyj = 0 for every /, and thus

βι,β! , . . . , β w a r e linearly independent with respect to 91: 2R = 5R x A.

The second assertion follows immediately from the first one, just proved.

COROLLARY.J7) Let R be a ring with coefficient ring K and possessing a unit

element and let A be its proper maximally central svhalgebra containing the

unit element of R* Then R is a direct product of A and its commuter ring

Q = Vβ(A) in R: R = Q x A. Between two-sided ideals Ro of R and tiυo-sided

ideals Qo of Q, or between subrings Ro of R containing A and subrings QQ of Q

containing K, there exists a one-to-one correspondence by the following relation:

RQ = QQχ A, Qo = Ro Γl Q

THEOREM 17. Let A and B are both proper maximally central algebras over

K. Then the direct product Ax B over K is also proper maximally central.

Proof. Let (al9 a«9 . . . , am) and (bl9 & > , . . . , bn) be respectively a linearly

independent basis of A and B over K. Then αφk (i-1,2, . . . , m \ & = 1, 2,. . ,9n)

form a linearly independent basis of A x B and the corresponding matrix \\αjbι

αibk\\dk),(ji) is the so-called Kronecker product of ||β/Λi|| and ||£/ftfe||. The regu-

larities of I) βyΛi || and | |δ/δ*|| implies therefore the regularity of WαjbiαibuW, and

this proves our theorem by virtue of Theorem 12.

Now let A be a faithful algebra over K with unit element and consider a

full matrix ring (A)r over A of degree r, then for every maximal ideal p

of K the residue class algebra {A)r/p(A)r is a full matrix ring over A/pA, and

(A)r/p(A)r is normal simple over K/p if and only if so is A/pA. It follows

therefore from Theorem 15 that (A)r is proper maximally central over K if and

only if so is A. This fact enables us to introduce the notion of algebra classes

over K, as in the case of simple algebras namely, two proper maximally central

algebras A and B over K are called similar (notation: A ~~ B) if there exist

two natural number r and s such that (A)r and (B)s are isomorphic. Similarity

is an equivalent relation, and divides the set of all proper maximally central

algebras over K into classes every class we shali call an algebra class over K.

Since the direct product of two proper maximally central algebras over K is also

proper maximally central by Theorem 17 and since A *** B implies A x C — B x C

for every proper maximally central algebra C? there is defined in the natural

manner a multiplication among algebra classes over K. The tatality of algebra

classes over K forms then an abelian group, which we shall call the algebra

J7> Cf. Azumaya [4], Theorem 1. Cf. also Artin-Nesbitt-Thrall [2], Theorems 7.1B and 7.3F.
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class group over K. Indeed, the class {K} of all full matrix rings over K is

the unit class, and for every class {A} the class {A'} represented by an algebra

A! inverse-isomorphic to A is the inverse class of {A} because of the very

definition of the proper maximal centrality: A x A ' ^ K

Finally we define the general notion of maximal centrality: an algebra A

is called maximally central over K simply if A is decomposable into a (finite)

direct sum of mutually orthogonal subalgebras Ai9 A2, . . . , Ak, such that

each Aκ is proper maximally central over its center. Once the notion is defined

it can readily be seen from Theorem 12 that proper maximally central algebras

are nothing but regular, normal maximally central algebras.

4. Algebras over a completely primary coefficient ring

A (not necessarily commutative) ring with unit element is called completely

primary if the sum of any two non-regular elements is always non-regular too,

or what defines the same, if it has a unique maximal right (or left) ideal \

indeed, when this is the case, the maximal (right as well as left) ideal is the

radical of the ring and consists of all non-regular elements.

Throughout the folloiving we assume that K is a completely primary commu-

tative ring with unit element and with unique maximal ideal (= radical) p and

shall consider those rings or algebras which have K as their coefficient ring;

further we denote by K the residue class field K/p.

Let R be an algebra over K. From Corollary to Lemma 2, it follows that

the radical N of R contains pR and N/pR is the radical of the residue class

algebra R/pRa Since R/pR is an (ordinary) algebra over K = K/p, the residue

class ring R/N is semi-simple, i.e., R is of the type (S). Let us say that R is

unramified over K if pR is the radical of R, that is, if R/pR is semi-simple.

Suppose now that R is not necessarily unramified but a subalgebra A is

unramified. Then evidently Af\NB Af]pREpA. On the other hand, AΓ[N

is by Corollary to Theorem 9 a quasi-regular ideal of A, i.e., A Γ\N is contained

in the radical pA of A : A Π N = pA. We have therefore AΓlN=AΓ\pR = pA;

or in other words, the natural homomorphism of R onto its residue class algebra

R/N or R/pR induces on A the natural homomorphism onto its residue class

algebra A/pA. Finally, we call (the unramified subalgebra) A an inertiαl algebra

of R if every residue class of R modulo N is represented by elements from Ar

that is, if R = A + N.

Now, from Theorem 15 it follows in particular that a regular algebra A

with unit element is proper maximally central over K if (and only if) A/pA is

normal simple over K. We can however assert that this is the case even if we

assume the faithfulness of A instead of its regularity. For, if au a», . . . , am
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be elements of A which form modulo pA a linearly independent basis of A/pA

over K then they form by Theorem 6 a (not necessarily linearly independent)

basis of A over K. Further, since A/pA is normal simple, that is, proper

maximally central over K (Theorem 14), the square matrix \\a.ja;\\ is regular

modulo p(A)m = (pA)m, and so \\ajai\\ is by Lemma 2 regular in (A)m, which

means again by Theorem 12 the proper maximal centrality of A over K>

THEOREM 18. Let R be a faithful algebra with unit element 1 over {com-

pletely primary) K and A its proper maximally central subalgebra containing K.

Then every isomorphism ψ of A into R which leaves K element-wise fixed can

be extended to an inner automorphism of R.

Proof Consider the direct product R x A\ where A! is a (proper maximally

central) algebra over K inverse-isomorphic to A, Then it contains the subalgebra

A X A', and A x Ar is a (full) matrix algebra over K, i.e., there exists a system

of matrix units {βij} such that *ΣKetj ^ Ax A' and 'Σeu = 1. Now φ can be

extended in the natural way to an isomorphism ofΛxA' into R x A' which leaves

invariant every element of A'. Let fa be the element of R x A' corresponding

to βij, under this extended isomorphism. Then {fij} is also a system of matrix-

units and Σ/ίί = 1. Hence there exists, by Theorem 4. a regular element u in

R such that u~*eiju = fij ,for every /, j . The inner automorphism x-*u~ιxu

induces therefore the extended isomorphism on A x A', that is, there holds

u~ιau = a? and u~ιa'u^af for every c E A and a' e A'. Since R is by Corollary

to Theorem 16 the commuter ring of A' in R x A', the latter relation implies

that both u and w"1 lie in R, and the proof is completed.

COROLLARYS Let A be a proper maximally central algebra over K. Then every

automorphism of A which leaves K element-wise fixed is an inner automorphism.

Now we want to see that in case K is a field our definition of maximal

centrality coincides with the definition formerly given in Azumaya-Nakayama

[5]. For this purpose, it is evident from Theorem 13 that we have only to treat

the case of primary algebras. Let K be a field, and consider a primary algebra

A over K with unit element. Let A be the simple residue class algebra of A

modulo its radical N and f1 the rank of A over its center. Let further Z be

the center of A. Then Z is a completely primary commutative ring and in

fact 3 = iV Π Z is the unique maximal ideal of Z. Suppose that A is maximally

central in our sense. Then, since A is two-sided directly indecomposable, A is

necessarily proper maximally central over Z. Hence A is regular over Z and

A = A/N is by Theorem 13 (also proper maximally central whence) normal

over the residue class field Z = ZJ%. We have therfore that ZA:Z} = [A : Z\
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- t- whence [A : K2 = ίA: ZJ_Z : K'} = F[_Z : Kl, which shows the maximal

centrality of A in the sense of Azumaya-Nakayama [5]. Suppose conversely

that [A : K] ^ t-\Z : K~\. Then it was shown in (the proof of) Azumaya-

Nakayama [5], Theorem 2 that N= $A and A = A/N is normal over Z --̂  Z/g.

Hence A is, as was pointed out in the above, proper maximally central over Z.

Thus our assertion is proved.

5. Algebras over a Hensel ring

Let K be a completely primary commutative ring with unit element and

with maximal ideal p.

First, we consider a polynomial rings K[t~] and K\J~\ of one variable t over

K and K = K/p respectively. If we associate with each polynomial f(t) in K[t~]

the polynomial f(t) in K[t^ which is obtained by replacing every coefficient of

f(t) by its residue class modulo p, then we have the natural homomorphism

of K[/] onto K[t~] in this case, we call f(t) an image polynomial of f(t)

and f(t) a representative polynomial of /(£) respectively. We say that two

polynomials f(t) and #(f) in K[t^ are relatively prime if (/(ί)) + (£(*)) = K[t~\9

m

i.e., if there exist two polynomials φ{t) and ψ(t) such that f(t)ψ{t)+g(t)ψ(t)

=•= 1. When this is the case, every polynomial /(£) divisible by both/(f) and

#(f) is also divisible by f(t)g(t), because /(*) = l(t)f(t)ψ(t) + l(t)g(t)ψ(t).

This means that (/(n)(Ί (<?((*))= (f(t)g(t)), and therefore the residue class

ring ΛΓM/(/(ί)^(ί)) is a direct sum of two ideals (f(t))/(/(t)g(t)) and <#(f))

/(f(t)g(t)). Now we note that two polynomials f(t) and £(ί) in K[t~\ are

relatively prime if (and only if) they are relatively prime modulo p{Jβ9 provided

that/(ί) has the highest coefficient 1. For, since that f(t) and g(t) are rela-

tively prime modulo p[f] means that K{f] = (f(t)) + (^(0) + PM and since

whence #[*]/(/(*))+ te(ί)) is finite with respect to K we have

= (/W) + (5T(ί)>, by virtue of Corollary to Theorem 5. We can moreover

assert:

LEMMA 3.19) Let f{t) be aφolynomial in K[Γ\ with highest coefficient 1. Then

every decomposition of the residue class ring K[f\l(f(t)) into a direct sum of

two ideals is always given in the following form:

where g(t) and h{t) are relatively prime polynomials both with highest coef-

ficients 1 and such that g(t)h(t) =f(t).

IS> Under (/(/)) we mean the principal ideal
19> The validity of this Lemma and that of Theorem 19 were pointed out to the writer by

Nakayama.
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Proof. Suppose that /and /' be two ideals of KXf\ containing (f(t)) such that

Kffl/(f{t)) is a direct sum of //(/(*)) and/'/(/(*)) : K[t]/(f(t)) =I/(f(t))@Γ

Ifiit)). Then /and /' consists of all polynomials which annihilate /' and /

modulo if(ί)) respectively. Let fit), 7, Ί' be the homomorphic images of f(t),

I, Γ respectively, by the natural homomorphism of K\_Q onto K{t~], Then the

residue class ring K£f]/(f(t)) is a direct sum of 7/(f(t)) and 7//(f(t)):

#DQ/(/W) = 7/(fit)) θ 7'/(/(*))- Since A is a field, ideals 7 and 7' of # [ i ]

are principal, i.e., there exist polynomials git) and /*(£) in K[tl such that (#(£))

= / and (hit)) = 7'. Suppose that #(£) and h(t) are of degrees r and 5 respec-

tively. Then the r + s polynomials g(ί), tg(t)9 . . . , ts-*git), hit), th(t), . . . ,

tr~ιh(t) form modulo (/(£)) a linearly independent basis of K[t~]/(f(t)) over

K. Now take from / and /' two polynomials go(t) and ho(t) respectively so

that they are representaive polynomials of g(t) and h(t). Then, since K[t~]

/(fit)) is the residue class ring of K[t~]!(f{t)) modulo its ideal ρ(K[ty(f(t)))

= (PM+ if it)))/(fit)), the r + s polynomials g,(t), tg»(t), . . . , ts~ιgo(t), h»(t),

tho{t),. . .,tr~ιJh(t) form modulo (f(t)) a linearly independent basis of K{t~\

I(f(t)) over iΓ, by virtue of Theorem 6. Observing further that K£Q/(f(t))

is a direct sum of I/(f(t)) and Γ[(f(t)), we can conclude that the s polynomials

go(t), tgo(t), . . . , ts~%(t) and the r polynomials h,(t), th»(t), . . . , tr'ιh,(t) form

modulo if it)) a linearly independent basis of I/if it)) and Γ/ifit)) over if, re-

spectively. It follows therefore that the polynomial tsgo(t) in / is modulo if it))

expressible in the following form: tsgoit) = αogΌ(f) 4- acitgo(t)+ . . . -f αfs_,fs"*J^b(ί)

(mod /( ί)) , with α:, in iΓ. Now we put h(t) = ίs - Λ-S^,^-J - . . . - #jf - an

then we have h(t)go(t) = 0 (mod/(ί))y and /ϊ(ί) annihilates / modulo (/(ί))

i.e. ft(f) lies in /'. Conversely, take any polynomial kit) from /'. Then it an-

nihilates go(t) modulp if(t)): k(t)go(t)== 0 (mod f(t)). Since h(t) is a polynomial

of degree s and with highest coefficient 1, we can find a polynomial r(ί) of

degree at most 5 - 1 such that k(t) =r(t) (mod *(*)) whence k(t)goit) = rit)goit)

(modh(t)ga(t)). We have therfore r(t)go(t) = 0 (mod/(*))• But from the linear

independency of go(t), tgo(t), . . . , ̂ -^(t) modulo (f(t)) it follows that r(t) = 0,

and thus every polynomial £(f) in /' is divisible by h(t) i.e. we have /' = (h(t)).

Similarly, if we denote by g(t) the polynomial of degree r and with highest coef-

ficient 1 such that g(t)hQ(t) = 0 (mod/(ί)) then we have / = (g(t)). Since / + /'

= KU1 git) and hit) are relatively prime. Hence (g(t)h(t)) = (g(t))Π(W))

= (/(ί)); but since both g(t)h(t) and /(ί) have the highest coefficients 1 it

follows that git)hit) =f(t), and the proof is completed.

Now let f(t) be a polynomial in K[t~\ and let f(t) be its image polynomial

in Kίt2 (by the natural homomorphism of K[_t2 onto ϋΓ[Ύ]) Let us say that the
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Hensel lemma holds for f(t) if for any given relatively prime polynomials g(t)

and h(t) in # [ * ] such that g(t)h(t) =/(ί) and g(t) has the highest coefficient

1 there exist in K[_Q two representative polynomials g(t) and h(t) of g(t) and

h(t) respectively such that g(t)h(t) =f(t) and g(t) has the highest coefficient 1.

Here, we note that g(t) and h(t) are relatively prime (since they are relatively

prime modulo jj[f] and git) has the highest coefficient 1).

Noticing the fact that in every commutative ring with unit element there

exists a one-to-one correspondence in a definite manner between idempotent

elements and direct decompositions into two ideals, we have immediately from

Lemma 3 the following

THEOREM 19. Let f(t) be α polynomial in K£Q tυith* highest coefficient 1.

Then in order that the Hensel lemma holds for f(t) it is necessary and sufficient

that for every idempotent element of {the residue class ring) K[t~\l(f(t)) there

exists in K[t~]l if(t)) an idempotent representative of it.

COROLLARY. Let fit) be a polynomial in K[t2 with highest coefficient 1 for

tvhich the Hensel lemma holds and let g(t) be a polynomial τin K\T\ by which.

fit) is divisible. Then for every idempotent element of (g(t))/(f(t)) there exists

in (g(t))/(f(t)) an idempotent representative of it.

Proof K[t~M(f(t)) is the residue class ring of K[_QI(f(t)) modulo its ideal

P(Kίtl/(f(t))), which is quasi-regular since K[ίΓ\lif'(t)) is finite with respect

to K. Hence it follows from Lemma 1 that an idempotent element of K[_Q

I (fit)) lies in the ideal (g(t))/if(t)) if its residue class ( e ϊ q r ] / / ( f ) ) lies in

THEOREM 20. Let f(t) be a polynomial in ϋf[T] with highest coefficient 1 for
which the Hensel lemma holds. Let Z be a finite extension ring of K such that
Z = iΓ[c] with f{c) = 0 and let ι be an ideal of Z. Then for every idempotent
element e of the residue class ring Z - Zfi there exists in Z an idempotent
representative e of e.

Proof. First, we treat the special case where 3 = pZ. Since Z = ϋΓ[c] with

f{c) = 0,Z is iΓ-homomorphic to K£tl/(f(t)) by associating with t {modfit))

the element c. Similarly, if we put c the residue class of c modulo $Z9 Z = Z/pZ

is iv-homomorphic to K[t~]Hf{t)) by associating with t (mod f(t)) the element

c. Suppose that there is given an idempotent element e in Z . Then, since

K{t~M(f(i)) may be looked upon as an (ordinary) algebra over the field K

= K/p, there exists in K\_Q/(f(t)) an idempotent representative of Ί>, as is

well-known. Hence there exists in K\f\l(f(t)) an idempotent representative of

it by virtue of Theorem 19. Let e be the homomorphic image of this idempotent

element (of K[f\l(f (t))) in Z. Then e is evidently a required idempotent
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representative of £".

Next, we proceed to the general case. Consider the residue class ring

Z/pZ. Then the residue class of e modulo pZ is an idempotent element of

Z/pZ. On the other hand, since Z/pZ (= Z/pZ -H) is a residue class ring of

Z = Z/pZ and since Z is an (ordinary) algebra over K — K/p, we can find in

Z an idempotent representative I of e (mod pZ). Then we can find further an

idempotent element e in Z so that ~e is the residue class of e modulo pZ, as was

shown just above. If we take the residue class of e modulo ι we have a second

idempotent representative of e (mod pZ) in Z. Since pZ is however a quasi-

regular two-sided ideal of Z this must coincide with the given e by virtue of

Theorem 2, i), and thus our theorem is proved.

THEOREM 21. Let f(t) be a polynomial in K[_Q with highest coefficient 1

and without constant term for which the Hensel lemma holds. Let Z he a

{commutative) algebra over K such that Z'= iΓ<c> with f(c) = 0 and let ι be an

ideal of Z. Then for every idempotent clement e of the residue class algebra

Z - Zji there exists in Z an idempotent representative e of e.

Proof. The proof can be obtained in the same way as that of the preceding

theorem if we consider the algebras Kφl(f{t)) = (ί)/(/W) and Kφ/(f{t))

= (*)/(/(*)) instead of K\jt]/(f(t)) and Klf]/(f(t)) and make use of Co-

rollary to Theorem 19 to these algebras.

Now let us call (completely primary) K a Hensel ring if the Hensel lemma

holds for every polynomial in K[_f\ with highest coefficient 1.

THEOREM 22. In order that K is a Hensel ring it is necessary and sufficient

that the following condition holds for every finite extension Z of K and for

every ideal 3 of Z:

For any given idempotent element e of the residue class ring Z = Z/a there

exists in Z an idempotent representative e of e.

Proof. Assume that K is a Hensel ring. Take from Z a representative c

of the residue class e and consider the subring K\_c~]. Then c is a root of a

polynomial/(ί) in K[t~} with highest coefficient 1 (Theorem 8), and the Hensel

lemma holds for/(ί). Hence there exists by Theorem 20 an idempotent ele-

ment e in K[c~\ which is a representative of e ( e i^[c]).

The sufficiency follows directly from Theorem 19.

THEOREM 23. Let K be a Hensel ring. Then every residue class ring of K as

well as every completely primary finite extension ring of K is also a Hensel ring.

Proof. That every residue class ring of K is a Hensel ring is clear. The

other assertion is an immediate consequence of Theorem 22, since every finite
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extension of a finite extension of K is also a finite extension of K.

Example. The valuation ring of a £-adic number field is a Hensel ring.

More generally, Let K be a completly primary commutative ring with unit

element and suppose that the intersection of all powers of the maximal ideal

p is zero: ΠPV = O. Then we introduce in K a topology by taking all the
V = J

powers £>v as a neighbourhood system of 0 so that K becoms a topological ring.

Suppose further that K is complete with respect to this uniform topology such

K is called a complete local ring-0) in the generalized sense. Then for every

polynomial in K[_t~\ (not necessarily with highest coefficient 1) the Hensel

lemma holds,2J) and hence K is a Hensel ring. The proof may be obtained by

modifying slightly the proof of the usual Hensel lemma in the case of p-adic

number fields, and should be omitted.

THEOREM 24. Let R be an algebra over a Hensel ring K and let α be its

two-sided ideal. Then for any given system of mutually orthogonal idempotent

elements el9e2,. . . ,en in the residue class algebra R = R/a we can find actually

a system of mutually orthogonal idempotent elements el9e29 . . . ,en in R such

that each e% is a representative of ei.

Proof. It is evidently sufficient to show that if e0 is an idempotent element

of R and if e is an idempotent element of R =R/a which is orthogonal to the

residue class e0 of eo modulo a then there exists in R an idempotent representa-

tive e of e which is orthogonal to e0: ee0 - e^e = 0. To prove this, consider the

subalgebra t(e«) of R consisting of all two-sided annihilators of eQ in R. As is well-

known,-ί(e0) coincides with the set of all elements of the form x — eox - xe0 -f eoxeo

with x^R, and so the homomorphic image of t(e0) by the natural homomorphism

of R onto R = R/a is nothing but the subalgebra t(eQ) of R consisting of all

two-sided annihilators of e0 in R. Since e is orthogonal to e0, that is, since e

lies in t{e^)9 we can find in t(et)) a representative c of e; c is by Theorem 8 a

root of a polynomial/(O in K[t~] with highest coefficient 1 and without constant

term, and the Hensel lemma .holds for f(t). Consider further the subalgebra

K(c)> of t(e0). Then there exists in K(c} an idempotent representative e of

e by virtue of Theorem 21, and e is the required idempotent element.

THEOREM 25. Let R be an algebra over a Hensel ring K and let q be its

quasi-regular two-sided ideal. Suppose that there is given a system of matrix

units {eij i, j = 1, 2, . . . , n) in the residue class algebra R - R/q. Then there

exists in R a system of matrix units {βij\ i, j = 1, 2, . . . , n) such that each

20> The notion was introduced by W. Krull and was generalized by Nogata [11].
21> Nagata £11], Proposition 5; cf. also Cohen [7], Theorem 4.
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€ij is a representative ofβij.

Proof Since elί9 e»2, . . . , enn are mutually orthogonal idempotent elements

of R, there exist by the preceding theorem mutually orthogonal idempotent ele-

ments β\9 e2, . . . , en in R such that each βi is a representative of ?,-,-. Further,

since 'e^ύ = e^ea = eu, eaea = £π£j]'= β, j and β j ^ j =• e m β, jβJf = en for every

ί # 1, we can find, by applying Theorem 2, ii) to e -en, / = eu and α = £j, ,

T> = £f ,, representatives gJf and £π of £» and £,i such that £ie,x = £„•£,- = ej, , e ^

= βiiβi = ̂ i and ^J/^IJ = £3, ^π ĵ,- = £, for every f ^ l . Put. now en - βι and ^7

= eήeij for / # 1, y =¥ 1. Then ,̂ , = eι for every ί, and {e,y /, y = 1, 2, '. . . , w}

is a desired system of matrix units in R, as can readily be verified.

Now an algebra R v/ith unit element over a Hensel ring K is called primary

if the residue class algebra R = 7?/iV modulo its radical iV is a simple algebra,

THEOREM 2βa An algebra R with unit element over a Hensel ring K is
primary if and only if R is a full matrix ring over a completly primary algebra
and such a completely primary algebia is uniquely determined by R up to K-
isomorphisms.

Proof, Let R be primary. Then the simple residue class algebra R = R/N

is a full matrix ring over a division subalgebra Rθ9 that is, there exists a system

of matrix unit {e~ij) in R such that R = ̂ Σ'eijRo and Ro is the commuter ring

of {e~ij}. Hence we can find by virtue of Theorem 25 a system of matrix units

{βij} in R such that each e%j is a representative of ?,y. Denoting by Ro the

commuter ring of {#//} in /?, i? is a full matrix ring over Ro: R -*ΣeijR0;

further, the radical iV of it? is the totality of matrices in the radical No of Ro.

R = i?/iV is therefore a full matix ring over Ro/No, and we have Ro = Ro/No.

Thus i?0 is completely primary. The uniqueness of such i?0 follows readily

from Theorem 4e

Let us turn to an arbitrary algebra R over a Hensel ring K. Then the

residue class algebra R = Λ/iV modulo its radical N is semi-simple, that is, a

direct sum of mutually orthogonal simple subalgebras Rl9 R*, . . . , Rk *•

Let ^K be, for each /c, the unit element of Rκ. Then Eί9 E2, . . ., Ek are

mutually orthogonal idempotent elements of R, and there exist by Theorem 24

mutually orthogonal idempotent elements El9E2, ... ,Ek in R such that each

Eκ is a representative of Eκ. Every subalgebra ϋk/fif* has the unit element Eκ

and if we take it modulo its quasi-regular two-sided ideal EKNEK we have the

simple residue class algebra ϊ?κ = EKREK, that is, (EKNEK is the radical of EKREK

and) EKREK is primary. Furthermore there holds the following direct decomposi-

tion of R:
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R = EιREι © E2REZ© . . . © EkREk © n,

where n is a if-submodule of the radical JV. Therefore if in particular R is

unramifϊed over K, that is, if JV = pR it follows from Corollary to Theorem 5

that R = EιREι © E2RE2 © . . . © EkREk:

THEOREM 27. Every unramified algebra over a Hensel ring K has a unit

element and is a direct sum of mutually orthogonal primary subalgebras.

Remark. The notion of radicals considered throughout this paper was

first introduced by Jacobson. The writer has however defined in his previous

paper22) another notion of radicals; a two-sided ideal C of a ring R was called

a radical if all its (right as well as left) subideals, including C itself, and

only those contain no non-zero idempotent element. This radical C does not

always exist, and even when it exists, it does not coincide in general with the

Jacobson's radical JV; but it contains always JV. However in case R is an

algebra over a Hensel ring K both notions of radicals coincide. In fact, if

/ is a (right or left) ideal of R not contained in (the Jacobson's radical) JV

then it contains modulo JV a non-zero idempotent element e, because R = R/N

is semi-simple. Hence if we apply Theorem 24 to the algebra / it contains

indeed a (non-zero) idempotent representative e of e~, and this shows that JV is

the radical in the writer's sense too R is in fact a strongly semi-primary ring

Furthermore, the notion of primary as well as completely primary algebras

coincides with the same ones given in the writer's paper, provided that the

existence of unit elements is assumed

6. Unramified extensions, crossed products and algebra class groups

Throughout this section we assume that K is a Hensel ring (with maximal

ideal p and with residue class field K = ZΓ/p). Then every completely primary

finite extension ring of K is also a Hensel ring by virtue of Theorem 23

LEMMA 4. Let f(t) be a polynomial with highest coefficient 1 in K[jβ and

let f(t) be its image polynomial in K[ϊ] (by the natural homomorphism of KIQ

onto K[t~\). Suppose that f (t) has a non-multiple root ά in K. Then f(t) has

one and only one root a in K which is a representative of a.

Proof. Since a is a non-multiple root of /(*), we have f(t) = (t - ά~)fi(t)

where fiit) is a polynomial in K[t~\ such that fi(ά~) # 0, i.e., t - ά~ and fΛt) are

relatively prime. Hence we can choose suitable representative polynomials

t-a and /,(*) of t - a and /,(f) respectively such that f(t) = (t - a)A(t).

The element a is then a root of f{t) in K which is a representative of a.

S2> Azumaya [3].
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Suppose that «, is a second such root of/(/). Then (as - a)Mai) = 0 and/,(#,)

is, since / Ί ( β i ) # 0 , a regular element of K, and therefore aλ must be equal

to a. This shows the uniqueness of <z.

LEMMA 5. Let Z be a completely primary unramified and regular extension

ring of K such that its residue class field Z = ZjvZ is separable over K and

let L be a completely primary finite extension ring of K whose residue class

field Z is K-isomorphic to Z. Then for any K-isomorphism of Z onto 2 there

exists one and only one K-homomorphism of Z into L which induces moάido pZ

the given isomorphism on Z this homomorphism is an onto-mapping if and

only if L is unramified over K, and moreover this is an {onto-) isomorphism

if and only if L is regular with respect to K.

Proof. Since Z is finite and separable over K, there exists an element a

in Z such that Z = K\β~\. Then a is a root of an irreducible polynomial f(t)

in K M with highest coefficient 1 and of degree n, where n is the degree of

Z over K. Let f(t) be a representative polynomial of f(t) in K[f} also with

highest coefficient 1 and of degree n. Then, since a is a non-multiple root of

f(t)9f(t) has by Lemma 4 one and only one root a in Z which is a representa-

tive of a. Since Z is unramified over K and since 1, a, ά-9 , . . άn~ι form a basis

of Z over K it follows from Corollary to Theorem 5 that 1, a, a* 9 . , , an"ί form

a basis of Z over K; further since Z is regular with respect K and 1, a, ά~\ . . . 9

an-* are linearly independent with respect to K it follows again from Corollary

to Theorem 5 that 1, a9 a-9. . . , an~ι form in fact a linearly independent basis

of Z over K.

Now let a0 be the image of a by the given X-isomorphism of Z onto X.

Then Z^KZao] and a0 is also a root of f(t). Hence it can be seen similarly

as just above that f(t) has one and only one root a0 in L which is a repre-

sentative of α0. Therefore if we associate with a the conjugate α0 we obtain a

if-homomorρhism of Z into L which induces the given isomorphism (a -> aQ) on

Z. On the other hand, any X-homomorphism of Z into L inducing on Z

the isomorphism (a -» BQ) maps a on a root of f(t) in L which is a representa-

tive of ά~o, and this must coincide with ά0 because of its uniqueness, i.e., this

homomorphism is the homomorphism (α -* α0) defined above.

Now let the iΓ-homomorphism (α-*α0) be an onto-mapping (i.e. L ^ i£[>o]).

Then L is evidently unramified over K. Suppose conversely that L is un-

ramified over K. Then, since 1, αθ9 «o2, . . . , «ow~J form a basis of Σ over K9 it

follows from Corollary to Theorem 5 that 1, αθ9 #<r, . . . , αon~ι form a basis of L

over ϋf, and the iίΓ-homomorphism .(α -> α0) is an onto-mapping. The last asser-

tion is also clear, if we observe that the regularity of (the unramified extension)
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L/K means the linear independency of 1, a0, aj,. . . , «O

W~J.

THEOREM 28. For any given finite separable extension field Z of K there

exists one and—up-to-K-isomorphisms—only one completely primary unramified

and regular extension ring Z of K whose residue class field is Z.

Proof. Let a be the element of Z such that Z = K\jaΓ\ and let f(t) and f(t)

have the same significances as in the proof of Lemma 5. Then the residue

class ring Z = K{jβ/{f(t)) is a required extension ring of K, as one can readily

see. The uniqueness of ZjK is an immediate consequence of Lemma 5.

THEOREM 29.23) Let L be a completely primary finite extension ring of K

such that its residue class field Σ is separable over K* Then there exists one

and only one inertial ring24) of L/K.

Proof Let Z be a completely primary unramified and regular extension

ring of K whose residue class field is Z (Theorem 28). There exists by Lemma

5 one and only one ϋC-homomorphism of Z into L which leaves every residue

class modulo pZ. Then the homomorphic image of Z by the homomorphism

is unramified over K by virtue of Lemma 5, and is the inertial ring of L/K

that this is the only inertial ring follows also from Lemma 5.

Let us now call a completely primary finite extension ring Z of K a Galois

extension ring of K if it is regular and unramified over K and moreover its

residue class field Z is a (separable) Galois extension of K. Let then G be

the Galois group of Z/K. Then for every (/GG there exists by virtue of

Lemma 5 one and only one /^automorphism of Z which induces a on Z\ this

automorphism we may and shall denote also by a. The totality of those c 's

exhausts all ϋΓ-automorphisms of Z and so it forms a group isomorphic to G

we shall call it the Galois group of Z/K and shall denote it also by G.

Once the notion of Galois extensions is defined we can now introduce the

notion of crossed products similarly as in the case of ordinary algebras. Namely,

let Z be a Galois extension ring of K with Galois group G and suppose that

there is associated with each pair (σ, τ) of elements of G a regular element

aσ,τ of Z such that

*Zp>σt^σ,τ = ^pσ»"t#ρ,σ5

for every p, a and τ in G such a system {aa,~} we shall call a factor set of

Z/K. Then we define a crossed product (Z/K, aOι~) of Z/K (with respect to

the factor set {aσ,x}) as follows:

2S> Cf. Chevalley [6], III, Proposition 3.
~4) —inertial algebra.
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(Z/K, ao.t)=^
ZUo = UoZ° ( Z G Z ) , UOUΊ = UOiaOti,

where {uo a&G} are linearly independent with respect to Z. Then it is ready

to see that (Z/K, aσ,x) is a regular algebra over K with unit element uxa~t\, Z

is looked upon as its subring in a natural manner and every uσ is a regular

element Taking the factor set {ao,x} modulo pZ, we obtain a (ordinary) factor

set {ao,τ} of the residue class field Z = Z/pZ, and the corresponding crossed

product (Z/K?aa,x) of the Galois extension field Z/K is a normal, simple

algebra over K. Furthermore, (Z/K, άσ,τ) is the residue class algebra of

(Z/K,aΊ,τ) modulo its two-sided ideal p(Z/K,aσ,τ), and we have from Theorem

Iδ the following

THEOREM 30. Every crossed product (Z/K, ao,τ) of a Galois extension ring

Z/K is proper maximally central over K and has (Z/K, βσ,τ) as its simple

residue class algebra.

A Galois extension ring Z is called cyclic over K if its Galois group is

cyclic. For a cyclic extension ring Z/K with rank n and with generating

automorphism a and for a regular element a of K we can also construct a

cyclic crossed product (Z/K, a, a) = Z-f uZ + «2Z+ . . . -f wn"]Z by the relations

zu = #£° (2GZ) and wΛ = or. Then (Z/K,<t9 a) is a proper maximally central

algebra over K whose simple residue class algebra is the cyclic crossed product

(Z/K, σ, a) of Z/K, where a(*e 0) is the residue class of a modulo p.

Let A be a proper maximally central algebra over K and let A = A/pA be

its simple residue class algebra. Then A and A determine respectively an

algebra class {A} over K and an (ordinary) algebra class {A} over K. Suppose

that B is a second proper maximally central algebra over K with simple residue

class algebra B = B/pB. Then it is clear that if A — B then we have A ^ B,

while it can also readily be seen that A x B is the simple residue class algebra

of the proper maximally central algebra AxB:Άx~B = (Ax B)/p(A x B).

These show that by means of {A} ^ {A} the algebra class group over K is

mapped homomorphically into the algebra class group over K. But this

homomorphism is in fact an isomorphism. For, if A ~~ K i.e. if there exists

a system of matrix units {?,-/} in A such that A = Σ Ken, then we can find

"by Theorem 25 a system of matrix units {βij} in A such that each en is a

representative of βij, since A is unramified over K, it follows from Theorem 6

that A = *ΣKeij i.e. A^-iϊ". Now we shall moreover show that this isomorphism

is an onto-mapping. The proof is virtually the same as that of Nakayama [121,

Satz 1, but we give it here for completeness. Let {A} be a given algebra

class over K with exponent e. First, suppose that e is not divisible by the
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characteristic of K. Then there exists a (finite and separable) Galois extension

field Z of K, such that A is similar to a crossed product (Z/K,άσ,~>) of Z/K

with factor set {άσ,τ} consisting of £-th roots of unity only.25) Let Z be a

Galois extensions ring of K whose residue class field is Z (Theorem 28). Since

every £-th root of unity in Z is a non-multiple root of the polynomial xe —1,

there exists by Lemma 4 one and only one representative aσ,χ of άσ,τ which

is an £-th root of unity in Z, for every a, r. Then {aa,x} forms a factor set of

ZIK, as can readily be seen, and the crossed product (Z/K, aa,τ) determines,

by virtue of Theorem 30, the required algebra class over K corresponbing to the

given class {A}. Next, assume that e is a power of the (prime) characteristic

of K. Then there exists a cyclic extension field Z of K such that A is similar

to a cyclic crossed product (Z/K, σ, a) of Z/K with generating automorphism

a of Z/K and with non-zero element a of /f.26) Let Z be a cyclic extension

ring of K whose residue class.field is Z and let a be an arbitrary representative

of a m K. Then the cyclic crossed product (Z/K, a, a) determines also the

required algebra class over K. Observing that every algebra class over K is

expressible as a product of two types of algebra classes mentioned above, we

complete the proof of

THEOREM 31. By associating with every algebra class {A) the algebra class

{A}, where A is a proper maximally central algebra over K and Ά = A/pA its

simple residue class algebra, the algebra class group over K is mapped isomor-

phically upon the algebra class group over K.

Let A be a proper maximally central algebra over K. Then, since A is

primary, A is according to Theorem 26 a full matrix ring over a completely

primary algebra Ao over K, and Ao is also proper maximally central. Suppose

that Ai is a second completely primary proper maximally central algebra over

K which is similar (to A whence) to A,,, i.e., there exist natural numbers r

and s such that (A0)r = (Ai)s then it follows again from (the second half of)

Theorem 26 that Ao ^ Aj. Thus we have that every algebra class over K

contains one and only one completely primary algebra Ao and consists of all full

matrix rings over Ao. From this and from the preceding theorem we can

readily obtain

THEOREM 32. For any given normal simple algebra A over K there exists

one and—up-to-K-isomorphisms—only one proper maximally central algebra A

over K such that A is the residue class algebra of A modulo pA: A = A/pA.

25> Deuring [8], V, §7, Satz 1.
2β) Albert [1], VII, Theorem 31.
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7. Existence of inertial algebras

After above preparations we can now prove an existence theorem of inertial

algebras, which is a main purpose of the present paper. In this section we

assume also that K is a Hensel ring with maximal ideal p and with residue class

field K = K/p. First, we treat the following special case:

LEMMA 6. Let R be a faithful prunary algebra over K with unit element

such that the simple residue class algebra R = R/N modulo its radical N is

normal over K. Then there exists a proper maximally central inertial algebra

A of R ivkich is uniquely determined up to inner automorphisms of R generated

by elements of N.

Proof Let /?' be a normal simple algebra over K inverse-isomorphic to

R* Then there exists by virtue of Theorem 32 a proper maximally central

algebra Af over K whose simple residue class algebra is /?'. Construct then

the direct product R x A' over K; R and A' being contained in it as element-

wise commutative subalgebras. Then evidently the direct product R x R' (over

K) is the residue class algebra R x A'/Nx A'. Since Λ x ί ' i s a full matrix

algebra (K)m of degree m = J[R: K~J over K and since Nx A is a quasi-regular

(two-sided) ideal of R x A', it follows from Theorem 25 that R x A' contains

a full matrix algebra (K)m of degree m over K. Since m = [A ;: 1Q, (K)m is

a direct product of two element:wise commutative proper maximally central

subalgebras A, and A/ which are inverse-isomorphic and isomorphic to Af

respectively.

Now the (K-)isomorphism of A/ onto A' can, according to Theorem 18, be

extended to an (inner) automorphism of R x A'f and under this automorphism

At is carried isomorphically onto a proper maximally central subalgebra A of

R x Af which is element-wise commutative with A\ But since R is the com-

muter ring of A' in R x A' by Corollary to Theorem 16, A is contained in R

and A is a required inertial algebra of R.

Now suppose that A* is a second proper maximally central inertial algebra

of R. Then there exists, by Theorem 32, a /Γ-isomorphism of A onto A*, and

the isomorphism can, again by Theorem 18, be extended to an inner auto-

morphism x-» wKxu of R: u"ιAu = A*. Since A* is an inertial algebra of R

there exists a (regular) element υ in A* such that u s v (modiV). It follows

then that uv1 = 1 (modiV) and {uv~ι)-ιAuv~ι - vu"ιAvu"1 - OA*V'1 =A*, and

this completes our proof.

Now we proceed to the following general existence theorem:

THEOREM 33. {Generalized Wedderburn-Malcev's theorem.) Let R be an alge-
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bra over {a Hensel ring) K such that the semi-simple residue class algebra

R = R/N modulo its radical N is separable over K(~ K/p). Then there exists a

maximally central inertial algebra of R9 and such an inertial algebra is uniquely

determined up to inner automorphisms of R generated by elements of N.

Proof, a) First, we prove the theorem in the case where R is a faithful

completely primary algebra over K (with unit element). Then the residue

class algebra R = R/N is a division algebra. For every subalgebra S of R, the

homomorphic image S by the natural homomorphism of R onto R is, being as

a subalgebra of R, a division algebra, so that the kernel Sf\N is the radical

of S because it is quasi-regular in S by Corollary to Theorem 9. Now let Z

be the center of R. Then Z is a finite and separable extension field of K by

our asumption. Hence there exists an element a of Z such that Z - K[β~]*

Take from R an arbitrary representative b of a and consider the subring K{b~\

of R. Since K\b~\ is a completely primary finite extension ring of K whose

residue class field is Z, K[J)] contains by Theorem 29 an inertial ring Z Z

is a completely primary finite and unramified extension ring of K which is

mapped on Z by the natural homomorphism of R onto R.

Now consider a finite and separable splitting field Ω of Z/K over K. Then

the direct product Z x Ω is directly decomposable in the following manner:

1 x ^ = 6 ^ " ® ^ ® . . . ® en&,

where £i,e2, . . . 9Ί>n are mutually orthogonal (primitive) idempotent elements

of Z x Ω whose sum is the unit element and n = [ Z : K] = ZZ: # ] . Let Ω

be a completely primary unramified and regular extension ring of K whose

residue class field is Ω (Theorem 28), and construct the direct product ZxΩ.

Then ZxΩ is the residue class algebra of ZxΩ modulo p(Zx Ω): ZxΩ

= Z x Ω/p(Zx Ω). Hence there exist by Theorem 24 mutually orthogonal

idempotent elements eJf e«9 . . . , en in Z x Ω such that each eι is a representa-

tive of £*, and we have by Corollary to Theorem 5 that

Z x i ?= exΩ © e*Ω © . . . © enΩ.

Construct furthermore the direct products R x Ω (over K) and RxΏ (over K)~

Then R x Ω is evidently the residue class algebra of R x Ω modulo Nx Ω; but

since Nx Ω is quasi-regular (Theorem 10) and R is semi-simple NxΩ is the

radical of R x Ω. And it is also clear that the natural homomorphism ofRxΩ

onto R x Ω induces on R and ZxΩ the sames onto R and ZxΩ respectively*

Now let Q be the commuter ring of Z in R: Q = VR{Z). Then from the

fact .that every linearly independent basis of Ω over K is also the same of

R x Ω over R it follows that Q x Ω is the commuter ring of (Z whence) ZxΩ
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in R x Ω. On the other hand, the commuter ring of Z x Ω in R x Ω is evi-

dently the commuter ring of {ei9 e«9. . . , en) in R x Ω, and this is nothing but

d(R x Ω)βι ® e»(R x Ω)e2 ® . . . © en(R x £)eΛ, as can readily be verifed27):

Qx Ω = eY{R x Ω)eι®e«(R x Ω)e2® . . . © eΛ(# x Ω)en. From this it follows that

Q is an algebra over K; because βι{R x Ω)ex ® e»(R x Ω)e° ® . . . θ en(R x £)0>i

is an algebra over K and Q x Ω is ϋf-isomorphic to the [i2: ϋf J-times direct sum

of Q. Furthermore, denoting by Q the image of Q by the natural homomor-

phism of R onto R it follows that Q x 5 = £](# x 5 ) ^ ® e i ( S x 5)e © . . .

®Έn(R x Ω)~en. But since every ~e% lies in the center Z x Ω of R x Ω, we have

that Qx Ω( = eι(Rx Ω)®e2{R x Ω)® . .'. © en(R x ^ ) ) = Λ x J2, whence © = ^ .

Since Q is the commuter ring of Z in 7?, Z is contained in the center of Q,

and Q may be considered as a (faithful completely primary) algebra over Z.

Hence, by applying Lemma 6 to (R =)Q and {K = )Z, we can obtain a proper

maximally central inertial algebra A of Q over Z: A/pA(= Q) = R. Since Z is

unramified over K so is also A over #, and A is a desired inertial algebra

ϋiR.

Suppose that A* is a second maximally central inertial algebra of R with

center Z*. Then Z* is unramified over K, by virtue of Theorem 13, and is

mapped on the center Z of R by the natural homomorphism of R onto R.

Therefore, we can find, similarly as Z x Ω above, mutually orthogonal idempotent

elements β\*9e«*9 . . . ,en* in Z* x Ω such that each ei* is a representative of

€i and the following direct decomposition holds :

Z* x Ω = i?!*© © e**Ω © . . . © en*Ω.

Since eι = £;* (modiVx i2) for every /, there exists by Theorem 3 a (quasi-

regular) element c in NxΩ such that ef = ̂ /* for*every /. Since i? is con-

tained in the center of R x Ω of = ω for every ω e i?, and therefore we have

Z c x Ω = (Z x _<2)c =Z* x i?. Now let a be an element of Z such that Z = K\a\

as above. Then a is a non-multiple root of an irreducible polynomial fit) in

K{t~] with highest coefficient 1. Let f{t) be a representative polynomial of

f(t) in K[t~] with highest coefficient 1. Then, by applying Lemma 4 to Z, we

can find, as in the proof of Lemma 5, a root a of f(t) in Z which is a represen-

tative of a, so that we have Z = i^[β]. Similarly, there is obtained a. root a*

of f(t) in Z* which is a representative of « and such that Z* = /\[«*]. And we

h'ave/U) = (* -«*)/j*W with a polynomial /j*(ί) in Z*[ί]; necessarily /,*(«*) * 0

"7> Generally, iϊ e\,e«, . . ., β« are mutually orthogonal idempotent elements in a ring
R then their commuter ring in R is 6jivtei © e«Re« ® . . . ®en Re7ι®t{ei + £24-
+ en), where t (e\ 4- e°. . . + £«) is the two-sided annihilator of e\ + 02 •+• . . . + β/» in i?.
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modulo the maximal ideal pZ* of Z*, i.e., /,*(**) is a regular element of Z*.

Consider now the e1ement ac. Since c is in the radical Nx Ω of R x J2 it

follows that ac = a (moάNxΩ) whence ac^a* (modNxΩ). Observing that

ac is in the commutative ring (Zc x Ω =) Z* x Ω, we have then fι*{cf) = /,*(#*)

(mod Nxi2) whence f*{ac) is also a regular element;- on the other hand, <f

is evidently a root of f(t)9 and we have (#c — <z*)/j*(#*) = 0, which implies

that ac = #* (because of the regularity of f\*(ac)). Thus we have proved that

Zc( = K{_ac~\) = Z* and the inner automorphism x-* xc( = (1 - c)-'x(l - c)) of

RxΩ induces on Z{^R) an isomorphism z -> 2* onto Z * ( i Λ ) . Further,

since the commuter ring ζ> = VR{Z) oί Z in R is an algebra over K9 as was

shown above, Q is necessarily of the type (S), and it follows from Theorem

11 that the isomorphism z -> z* can be extended to an inner automorphism

x -* Ό"1XΌ of R with regular element z> of R. Since*A* is an inertial algebra

of R, there exists an element ιυ in A* such that w == v (mod JV), so that M> is

also regular and we;*"1 Ξ 1 (modΛ^). Put now rf= 1 - z zi;""1. Then c? is in AT

and we have 2* = tvv~1zvιv"i = wz^tv"1 = z* for every 2 E Z . Consider then the

(maximally central) subalgebra A". Since the inner automorphism x-*xι of

Λ leaves invariant every residue class of R modulo N, Ad is, with A, also an

inertial algebra of R, and in fact, since Zι = Z* is its center, it is, with A*,

a (proper maximally central) inertial algebra of the commuter algebra Q1 of

Z* in R. Hence we can find, by applying Lemma 6 to (R = )Q" and (ϋΓ= )Z*,

an element Jj of N such that (Ar/)^i = A*. Putting then </2 = d+ d^ - Λ/,, ίi is-

a desired element of N: Aίfs( = (Ad)"0 = A*.

b) Next, assume that i? is a primary algebra (with unit element). Then R

is a full matrix ring over a completely primary subalgebra # 0 , i.e., there exists

a system of matix units {eij} such that R = Σ e/yRo and J?o is the commuter

ring of {eij} in R. If we denote by No the radical of RQ it follows N= ^eijN*,

and R = R/N is a full matrix ring over £ 0 = Ro/No: R = Σ^y^o. The center

of Rΰ conicides therefore with that of R, and so is separable over K. Hence

there exists, as was showm in a) above, a maximally central inertial algebra

Ao of Ro. Then A = Σ βijAo is evidently a maximally central inertial algebra

of R.

Now suppose that A* is a second maximally central inertial algebra of R~

Then we can find, by Theorem 25, a system of matrix units {eft} in A* such

that e/j ΞΞ *,7 (mod JV) for every i, /, so that there exists by Theorem 3 an

element c in N such that efj = ef$ for every ι, >. Therefore it follows that Ro

c

is the commuter ring of {efi} in i? and the commuter ring Ao* of {eft} in A*

is a maximally central inertial algebra of R on the other hand, A<>c is, since
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c is in N, also a maximally central inertial algebra of Ro

c. Hence there exists,

from a) above, an element c0 in the radical N<f of R{)

c such that (Ao

c)c° = Ao*.

Putting d = c -f- Co - cco(^N) and observing that c0 commutes with every eft,

we have Ad = (Ac)c° = ( Σ efjAfY* = Σ e$ (-Ao

c)c° = Σ *,* Άo* = A*.

c) Finally, we turn to the case of general algebra R. Let # = Λj ©ϊ? 2 . . .

® Rk be the (unique) direct decomposition of the semi-simple algebra R = R/N

into mutually orthogonal simple subalgebras. Then we can find, as in the last

part of § 5, mutually orthogonal idempotent elements El9 E*. . . . , Ek in R such

that each Eκ is a representative of the unit element of RK9 and each subalgebra

EKREK is a primary algebra with radical EKNEK and with simple residue class

algebra Rκ( = EKREJEKNEK). Since the center of Rκ is separable over K by

assumption, there exists, from b) above, a maximally central inertial algebra

Ac of EKREK9 for each K. Then the direct sum A = Aj © A2® . . . © A& is a

desired inertial algebra of R.

Now let A* be a second maximally central inertial algebra of R. Then A*

is (by definition) a direct sum of mutually orthogonal subalgebras Aj*, A2*, . . . ,

A/* such that each Aκ* is proper maximally central over its center. Hence,

denoting by Aκ* the simple residue class algebra of A** (modulo its radical

pAκ*)9 R is a direct sum of AΛ A2*,. . . , A/*. It follows therefore that / = k

and we may assume that AK* = RK for every K. Denote by Eκ* the unit

element of Aκ*. Then £i*, -Ei*, . . . , Ek* are mutually orthogonal idempotent

elements of the center of A* such that Eκ* = £"« (mod iV) for every K, and

there exists by Theorem 3 an element c in N such that Eκ

c = J&K* for every Λ; .

Since A,t is a maximally central inertial algebra of EKREK, Aκ

c is also a max-

imally central inertial algebra of {(EKREK)C = )EK*REK*. On the other hand,

Aκ*(= £κ*A*Z?,c*) is evidently a maximally central inertial algebra of EK*REK*.

Hence we can find, by applying b) to the primary algebra EK*REK*9 an element

€κ in the radical EK*NEK* of E*REK* such that (Aκ

c)c* = AΛ This is the case

for every /c, and if we put d = c + Σ ^ - c Σ c*9 d ι$ a n element of Λ̂  and we

have A1 = Σ Acd = Σ (Aκ

e)c* = Σ -A** = -A*. This completes the proof.

COROLLARY. Every unramified algebra A over {a Hensel ring) K is max-

imally central whenever its semi-simple residue class algebra A = A/pA modulo

the radical pA is separable over K.
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