ON THE CANONICAL FORM OF TURBULENCE
SEIZO 1TO

§0. Inivoduction. In K. It6’s paper [1] on the theory of turbulence, the
problem to determine the canonical form of the moment tensor of temporally
homogenesous and isotropic turbulence, has not been solved. In the present paper,
the author will solve the problem by making use of the result of his preceding
paper [2]. We shall ireat the turbulence in R?, but the similar argument is
possible in RB”,

§1. Generalities. In the theory of furbulence, the deviation of the velocity
from its mean may be considered as a system of random vectors u (¢, ¥, w)
={up (1, X, 0)/p=1,2,3), where t & R’ and X € R* denote the time and the
position respectively and o € (2, P) is the probability parameter; we assume
natucally that «s (1, ¥, o) is B-méasurable in <{, X, ) and belongs to L* (2, P)
for any fixed ¢{p. ¢, ¥>.7 We have clearly

(L.1) Bolup (¢, %X, )] =0 (E,[.] denotes the expectation).

Now we define the moment tensor of the turbulence by

(1-2) RP!I (t: %; S, SD) =Ew[uﬁ (t, x: (D) 2 (S, SD’ (D)],

then

(1.3) Rpg(t, X5 5, 9) = Rgp (s, V5 1, %), and

(1. 4) SliitidjRpp; (ti, ¥i5 £, X;) = 0% (ai: complex number).

We consider the turbulence satisfying the following three conditions:

(1.5 Rpqg(+7,%; s+7,90)=Rpa(t, X; 5,9 (lemporally homogeneous);
(1.6) Rpg(b, X+a; s, Y+a)=Rp (¢, X; 5, 9) (spatially homogeneous);
and

(L.7) SiviakppskpeRpy (L, %5 5, X4+ KD —%X)) =Rpe (i, X5 5, 9)

for any orthogonal transformation K= (Kp./p, ¢ =1, 2, 3) (isotropic). We can
easily prove by (1.3) that the isotropism implies the homogenuity (1.6).
Consequently we get

* Received June 28, 1950.
b See [1].
2 If Rpy (£, %; 5,9) is real-valued and satisfies (1.4), then it satisfies (1.3) automatically.
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(1.8) Sp.akpskaaRyq (t, KX; s, KY) =Rpe (¢, X5 5, 9).

We shall determine a canonical form of Ry, (£, X; s, 9) which satisfies (1.4),
(1.5) and (1.7).

Suppose that Rpe (2, X; s, P) satisfies .(1.4), (1.5) and (1.7) (and conse-
quently all of (1.3) — (1.8) above); then there exists u (¢, ¥, w) satisfying
(1.1) and-.(1.2).» Define

fu(l; £, %, 0) = (I, u(?, ¥, 0))s”; and

(1.9 \R((,¢,%;m,5, ) =Eu[u(l; ¢, %, o) u(m; s, 9D, 0]

for 1 =<1, I, L) e S (= the unit sphere whose center is the origin of R*), and
put 12 ={8p, 0pe, Op3p (E£S) for p=1, 2, 3 (0p¢ is the Kronecker’s delta). Then
we have, by (1.2) and (1.8),

E,[(K®, u (i, KX, 0))s;+ (K9, u(s, K9, 0))s]
=E,[(1?, u(t, ¥, 0))s+ (17, u(s, 9, 0))sl.

From this equality and by simple calculation, we obtain
(1.8) R(K(,¢t,KX; Km,s, K)) =R, t,X; m,s, D).

And (1.6), (1.5), (1.4) (and (1.9)) imply following relations:

(1.6") R, ¢t.X+a;m,s,PD+a)=R(, ¢, ¥; m,s,9),
(1.5 BLt+v, ¥ m,s47,DN=R(, ¢ X; ms, 0N,
(1.4 Dlisaid ;R (i, ti, X5 15, t;, X5) =0.

Now we put R = S X R x R* and define the transformations T-, Ux, Va on
R by Toll, £, ) =<, t+ 7, >, Uxll, t, X) =<{KI, t, KX); Vall, ¢, X
=<[, t, ¥+ a>. Let G be the group of transformations on R generated by T-’s,
{’x’s and Va’s defined above. We easily see that UxVa = VxaUx and that T.
coemmutes with every element of G. Then R is a homegeneous space with the
locally compact group G of homeomorphisms which is transitive on R; for

, 1 0
P =l 0,00ER, {gEG/igP, = Py} is identical with {Ux/K= Ky = (0 cos 0
, 0 sin@
0

— sin %), 0=0< 27:}, which is compact subgroup of G; and R({, ¢, ¥; m, s,
cos

9) is a positive definite function on R? in the sense of [2] by (1.4'), (1.5,

3 See [1].
4 We denote the inner product and the norm in R* by (.,.)s and ||. || respectively.
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(1.6’) and (1.8). Hence there exists a cyclic unitary representation® {9, U,
f1} of {R, G, P} such that

(1.10) R, t,%; m,s, D) = (TVeUxu/fr, TsVyUxm /1) %

where K({) is an orthogonal transformation such as K{)!' = [ and we denote
the unitary operators (€ W) corresponding to 7y, Vz, Ux(€: () by the same
notations respectively.

We shall denote by f» the element of $ corresponding to the point Py = {02,
0,00)=R(p=1,2,3)." Then by (1.10) and (1.9) we have

(TtfoUK(I)fl’ UKfP) = R(rs t’ x; I{IP, 09 0)
=Dk R, E, %; #,0,0) = (T:VeUrySi. 2pkpsfs)

(K = (kpq)). Since {T¢VzUxyp/fi/tER, X& R, [ S} spans 9,7 we have
Usfp = >lpkppfr; and hence

(LL11) Uxf =36 skppas) fo, for £ = Dpasfs (ap: complex nuruber).
Thus we see that, in order to determine a canonical form of R ([, ¢, ¥; m, s,
), it is sufficient to consider cyclic unitary representations {($, 11, 4} satislyine
(1.11).

§2. Preliminary lemmas.
Lemma 1. Let F{.) be an additive set funciion on R™%  ff ? P&V (A X
v R
= 0 for any X R”, then F(.) = 0.
The proof can be achieved by simple calculations and so will be cmitted,

Let @ be a locally compact group, and let g be a compact suhgroup of &,

5 See [2]; — In the paper [2], if we use the notations follewing after the paper [Z21.
the positive-definiteness of f(p, ¢q) is deine
{p, q) and essentially bounded and satisfles.

U as follows: f(f, ¢) is measurable i

(1) flap, oq) =JF 19, 4) P, g7 & @7, o G), and

(2) [§of @ ) xp) xi0) dpag=01tx = L1(@));

and it is noted that if f{p, ¢q) is continuous in {p, ¢, then (2) is equivalent to
(3) St gan f(pe, pi) =0

and (3) implies that f(p, ¢) is bounded (|7 (p, q)| £ f(b, p) = f(po, po)). But it
may be proved without any use of the continuity of f(p, g) that (3) implies (2) (cf.
[5], pp.56-57). So we can make use of the results of the paper [2] directly from (1.4)
(and (1.5), (1.6’), (1.8")) in the present paper.

We denote the inner product and the norm in § by (.,.) and || .|| respectively.

See [2], §2.

Under an additive set function on a topological space S we understand a (generally
complex-valued) countably additive Borel-set function on 8 such that the total variation
on S is finite (following after S. Saks [6]), where Barel sets mean such sets as belongs
to the minimal countably additive class including all open sets in the space S.
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we introduce a @-invariant measure ds on the homogeneous space & = @/g in
the natural way so that ds - dK’ = dK® where dK denotes a left-invariant Haar-
measure on the locally compact group & and dK’ denotes the Haar-measure on

the compact group g such as La’K’-—-L Let F(.), Fi(.), ..., Fx(.) be ad-

ditive set functions on &, and |F|(.), |Fil(.), . .., | Fa|(.) be their total vari-
ations respectively. Then we have the following

LemMMA 2. Suppose thai F (Kd)(K& @) is expressible in the form:
FKa) =31 ¢u (K5 9) Fu(@s),

oy (K 3) being summable oz S with respect to the measure |F\|(.), v=1, 2,
., #. Then F(.) is absolutely continuous with respect to the &-invariant
measure ds.

Progf. Let s5,(eS) be the image of g by the natural mapping §—& = §/g,
K; be an element of & such that Kssp=s, and p(KX) be the Neumann’s function
with respect to the Haar-measure dK on & ; it is easy to see that p(X) =1 on
the compact subgroup g of the group @&, and hence p(K;) depends only on s.

Suppose that 4 is a Borel set in & such that L ds =0, and let Ci(s) be the

characteristic function of 4. Then for all s&&
[ Ca (B9) AR = Cu (K- Kasi) d = Ca (K50 dK = Cs(Kso) 0 (K) dK
=j'6p(1(s) ds L o (B') Cs (Ks K’ 50) dK =S@p(Kg) Ca(s)ds =0.
Hence for every » we have by Fubini’s theorem
0= 17.1(ds) [ Carr15yaK —jm dK | Cr(K-15) | F | (dS) =5@|Fy] (Kd)dK.

Therefore
|Fy| (Kd) =0, v=1,2,...,n,

for almost all K with respect to dK; and for such a K we obtain by the
assumption that

F(4) = F (K- K4) = 5;5}{ oy (K™1; s)Fy(ds) =0, q.e.d,

§3. Canonical form of isotropic turbulence. In this paragraph as well as
in the next, we represent every point X R® except the origin by the couple

9 See [5], pp.43-45.
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<p, 4> of p=[X]5(>0) and A = X/|X|s (& the unit sphere S with the center
0,0, 0> }?3) : X = pl =<{p, 1) ;and in order to clarify that a set 4 is a subset
of the set {X/X & R?), we shall use the notation with the subscript X: dx ;
similarly 7'. and B, denote subsets of {r/— o <1 < o} and {p/0<p < o}
respectively.

The purpose of this paragraph is to prove the following

TueoreM 1, A necessary and sufficient condition for (Rpq (¢, X; s, V)/P, q
=1, 2,3) lo be a moment temsor of a temporally homogeneouns and isotropic
turbulence is that Ry (t, X; s, ) is expressible in the form:

3D Rpg(2, %5 5,9
[ cos[(t~s)r+ (-7, 0d)s]

.\fo,m—.‘xm,w)f,xs

x (K(A)"‘If’, 2 (dr dp) K(x)-qu)) di
3
+ 61){,5”0003 (L —=8)rev(dr),®

where = (3p, Op, 0> (ES)(P =1, 2, 3) and {K(X)/AE S} depoles @ system
of orthogunal transformations such that K () is an arbitrarily fixed one such as
K()<1, 0, 0> =X for every 2 S," and u(A) is written as

.UJ(A) 0
3.2) na=( o ) )

and pp (AP =1, 2) and v (1) are measures defined on [0, o). x (0, ©), and
on [0, c). respectively such ithat pp ([0, o) x (0, o)) <o (p=1,2) and
2 ([0, oo)«) < oo,

The sufficiency of this condition is easily proved by simple calculations.

To prove the necessity, we consider the cyclic unitary representation {$, 11,
i} of {R, G, Py} definedin §1. Since {TyVy/i £ R', ¥ & R*) is a unitary repre-
sentation of the 4-dimensional vecter space, we have by Stone’s theorem (in the
form generalized by W. Ambrose [4])
(3.3) T:Vy =3 (eit:eiﬁ,X)gE(a,ch)
R
where I7{.) is a resolution of the identity on R'(= K x Ry"). The function
JRU The second term of the vight-hand side corresponds to the case mentioned in [1]

(see [1], Theorem 1).
) It is true that the above system {K(2)} is noi uniquely determined, but we may sce

from (3.2) that (K(l)“[l’, ,u(A)i((l)‘"’Iq)q is independent of the special choice of

this system and is continuous in A for any fixed A.
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Fpg(I'x x dx) = (E(]‘._ X dz) fp, fq)(I“x S R', 4x S R?) is an additive set function
on R* and F(I'- X dx) = (FM(I} Xdx)/p, a=1, 2, 3) is a hermitian 3 x 3-
matrix. In considering (1.11), we obtain from (1.10) and (3.3)
(3.4) R(,¢t, %X; m,s, V) = (T:Vx Uk /i, TsVyUramy /1)
=SR4 et gl &=, Y53 (( | F(drdX)m)s
for {, me S, and hence, putting K = (kpq), we get for any ¢ and ¥
, €t €% X0 Fyq (deds (KX0)

={ eitei&x0n (12, F (dedX)19)s = (TeVazSps 12)

= (TValUxfo, U /) = € 80| 53 by by Fya (ded) |-
Therefore by Lemma 1
(3.5) Fpo (T X Kdx) =g, a kop ko Fya (I'x % 4x) .

If we put R: = (— o, ®): x {0}x (£ R*) and define H(M) and H'(M) for
every Borel set M S R* by
H(M) = (Hp (M)) = (Fpo (M = Rx)) -
H' (M) = (H'pg (M)) = (Fpg (MO R2)),
then H’'(M) is a hermitian matrix and satisfies H’ (M) = K+ H'(M) K" for
any orthogonal transformation K = (k) by (3.5). Therefore we see that H' (M)
is specialized as

(3.6) {

HY (M) 0
(3.7) H' (M) =< 0 HY (M) Hy (M) )
1

Next we consider the matrix H(M). For any Borel set AS (— o, ©).

x (0, =),, the function Hpq (A X A) is an additive function of a Borel set 4 £ S,
and we have by (3.5) and (3.6)

(3.8) Hp (A X KA) = X p,akppr kaq Hpg (A X A).
Hence by Lemma 2 (in putting & =S, ¢pq (K ;1) = kppRee) and by Radon-
Nikodym’s theorem, we obtain a function kpe(A ; i) such that

(3.9) Hpo (A x A) =L hpa (A A) di,

where di is the K-invariant measure on S such as L dl = 4xn (i.e., the area in

the usual sense). And for any fixed A, we can determine ks, (A ; 1) for all 2
so that
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(3.10) hpa (A5 K2) = S0 kow kag oy (A5 2),

in making use of (3.8) and the fact that the group {K} of all orthogonal transfor-
mations is transitive on S. Consequently from Hpp (Ax A)=(E(AX Ad—R:) fp, fv)
=[E(AX A~ R:)jpll*=0(see (3.6)) we get

(3.11) hop (A 1) =0,

The matrix k(A ; 2) = (hpa(A; D/P, g =1, 2, 3) is hermitian for every 4 and
4, and by (3.10) we have

(3.10) h(A; Ki)=K+h(A; )+ K.

If we put A=2'=<1,0,0) and K=K (4) in (3.10’) and define % (A) = (Jips(A))
= (hpg(A; A')), then we have

(3.12) R(A; H)=K@Q)R(A) K@),
1 0 0

And if we put 1 =41 and K=K, = (O cos 0 —-Sinﬁ) in (3.107), then we have
0 siné cos f

Koh(A)Ky ' = h(A; K,/ = h(A).

Thus we see that h(A) is a hermitian matrix which is invariant under any
transformation & of the above formi. This fact implies that z (A) is written as
i (A) 0
(3.13) 5 (A) =( e (A) )
0 B (2)

consequently & (4) 2 (A) K(4)™' depends only on / and is indspendent of the
choice of K (1), and hence k(A ; ) is continucts in 4 by (3.12). From this
and (3.11) we get 0 = hp(A)Y(=hpp (A)) < oo (Pp=1,2).

Now we shall show that the set functions %y (A) = hpp (A)(p =1, 2) have
the properties of measure. Obviously they are defined for all Borel sets
AS (=, ©), X (0, ©),. We shall prove the countable additivity of 2, (A).

If A= ni;;,An, then we have by (3.11) and lLebesgue’s theorem
§ 33 hon (Ans Ddx =33 B (A D)t = 33 Hpp (An x 1)
= Hpp(A x A) =jA hpp(A; 4)di
for any Borel set 4 & S. Hence
(3.14) S hop(An; A) = hpp(Az 2)

n=}

for almost all 1; since the group {K} of all orthogonal transformations is transi-
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tive on S, we see from (3.10) that (3.14) is true for all A, especially putting
I=A, we get f_‘,hp (A,) = hp(A), which proves the countable additivity of
n=1
hp(A).
Thus if we put & (I's) = H (I'z x {0}x)(see (3.7)) and apply (3.6), (3.7),
(3.9) and (3.12) to (3.4), we obtain

R(,t, %; m,s,9)
____S i tt=5)% gitE-g). Xis ([, K(A) h(dedp) K(A)™! m) dl
RY_R- 3

+r et ([, m)s 1 (dr), X =<p, 3.

Since R((, t, ¥; m, s, V) is a real-valued positive definite functicn, we can
easily prove that

(3.15) R(, ¢, %; m s, %)

cos[(t—s)z+(X~19, pA)s]

jfo.m)wuo.ec)pxs

X (r, K(2) u(drdp) K(z)"m)sdx

+Si cos (£ — s) t+ ([, M)s » »(dr),

where

[(4) 0
(3.2) sy =(" 7 ma )
L2

and up (AY(Pp=1, 2) and »(I';) are measures defined on [0, ). X (0, =), and
on [0, o). respectively such that us([0, ) X (0, ©),) < o (p =1, 2) and
v ([0, ©):) < o0 ; it i35 true that the transformation K(1) such as K(A) 4 =2
is not uniquely determined, but the measure matrix K(A) u(drdp) K(A)~' depends
only on 4 and is independent of special choice of X (1), as may be verified from
the form of (3.2). Putting (=1, m =17 in (3.15) and making use of (1.2)
and (1.9), we obtain (3.1), which completes the proof of Theorem 1.

§4. Inversion formula. In this parvagraph, we shall show the formulas
which express the measures z,(A)(p =1, 2) and »(I"-) in Theorem 1 by means
of corresponding (R (£, X; 5, 9)), from which we may conclude the uniqueness
of the measures up(A) and »(I'z) for the functions Ry, (¢, X; s, V); D, @
=1, 2,3. By definition we shall term coniinuily points of n such o and ¢ as
#5([0, ©): x {p}) =0 and u,({r} X (0, »),) =0 for p =1, 2, and continuity
point of v such ¢ as v ({r}) = 0.

THEOREM 2. The measures 1i5(A) and v (') in Theorem 1 are expressible
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by Rpg(t, £; s, D) as follows: if we put An={AeS/|2—)s<1/n (A=
<1, 0, 03) and I = {<¢, X5/1t], [%:], |%2], | %3] £ ¢} (X = {1, %o, %3D), then we
have for any continuily points p, o' (0 < p <) and = of

4.1) u5 ([0, 71 X (0, 0')
_hm( )ILm Rup(t, X3 0, 0) dtd%

cos[tt + (¥, X)s]drdX,™”
X =<p, 4>,

‘]
(=1 TIX(ps pIX A

and for any continuity point v of v

(4.2) » ([0, r])-—llm( )hm Ru(t, X3 0, 0) dtd¥

c>o

xf cos [tr + (X, X)s]dedX.
(=1 TIX{IXi3=p)
Proof. Define the measures gp' (M), (M) and o, (M) on R*(= R:' X Rx*)
by
{ap’ (T'x x B, x 4) =j (K(/I)“IP, 2 (= % B,) K(x)~!rﬁ)3dx
ap' (M) =0 if MN ([0, «)= X' (0, ), x S) is empty;
{a’(ﬂ x {0}x) = »(I'x),

a? (M) = 0 if M ([0, =) x {0}x) is empty; and
ap(M) = o' (M) + o* (M) .

Then it follows from Theorem 1 that
Rop(t, %5 0, 0= coslic + (¥, X)sJop(drdX) .

Hence, by Lévy-Haviland’s inversion formula [3], for any continuity points
0, (0 <p <o) and r of u, we have

(4.3) jA (BW =, 400, <1x (b, 0]) E@)7'1?) di
= ap((—l, ] X (0, '] X An)
——hms Rpp(t, X5 0, 0) dtdX

Xf cos [tr + (X, X);]drdX,
(=5 x]x(pyp')¥an
X =<p, 4.
12 «_1” in the domain (—1, 7] of the integral in the right-hand side has no particular

sense, and may te replaced by an arbitrary negative number, as will easily be seen
from the proof of this theorem.
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Since (K(/I)"IP, 2([0, «1x (o, 01 K(z)-‘fﬁ)z is continuous in 4, we get

@D (0, 1% (0, 0D = (2, 4(0, 1% (o, 4D )

= (K@), £ (00, 1 (0, ¢ KG)™12)

3

3

=tim = [ (KW=, 500, 51 (o, ¢ K(D~'17) a2

n->w l

where |4,] =\ di. From (4.4), (4.3) and the fact that lim (| 4| n*/7) =1,
n>%

An

we obtain (4.1)..
Next we put

(4.5) o(c, 0) = 1im7§jl Ru(t, X:°0, 0) dtdx

j cos [tr + (X, X)s1dedX;
(=1 s )x{IX})3=p)

then, by Lévy-Haviland’s inversion formula, we have
(4.6) o,’((-1, ) x (0, o) X s) + 09((—1, £) x (O)X) < ¢(z, p)
< ((_1, 1% (0, o] xs) + ot ((-1, ] x {O)X)

for any v and p. If r is a continuity point of », then a*((——l, ) X (O}x)
= gt ((—] , T1 X (O)x) = v ({0, 7]); and hence, if p tend to 0 in (4.6), we obtain

(4.7) v ([0, r]) = ljg’lcb(f, 0).
Thus (4.2) follows from (4.5) and (4.7), g.e.d.
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