
ON THE CANONICAL FORM OF TURBULENCE

SEIZO ITO

§0. Introduction. In K, Itδ's paper [1] on the theory of turbulence, the

problem to determine the canonical form of the moment tensor of temporally

homogeneous and isotropic turbulence, has not been solved. In the present paper,

the author will solve the problem by making use of the result of his preceding

paper [2] , We shall treat the turbulence in R*? but the similar argument is

possible in Rn.

§ !„ Generalities, In the theory of turbulence, the deviation of the velocity

from its mean may be considered as a system of random vectors u(t, 36, ω)

= (up (i, 36, ω)/p --•= 1, 2, 3>, where t&R1 and 36 £Ξ R* denote the time and the

position respectively and ω G ( i 2 , F ) is the probability parameter; we assume

naturally that up (I, 36, ω) is B-measurable in </, 36. &>> and belongs to & ($ , P )

for any fixed <i>. i, X>. j ) We have clearly

(1.1) EtoZup (ί, ϊ , ω)] = 0 ( E w [ J denotes the expectation),

Now we define the moment tensor of the turbulence hy

(1 . 2) RPQ (t, % s, D) = Ew Xτip {i, %, ω) uq (s, φ , ω ) ] I

then

(1.3) i ? ^ ( ί , 36; s, V) = Λ<?i>(5, ?); ί, * ) , and

("̂  4) ^ΐJαi^J^PίPj (it9 Xi > tj'9 %j) ^ 02 ) (ou : complex number).

We consider the turbulence satisfying the following three conditions:

(1.5) Rpq(f+τ, %; s-\rτ, ?)) ~RpQ(t, X s, ςQ) (temporally homogeneous)

(1.6) Rpq (/, ϋ + o s, ?) + o) = i?^ (ί, 36 5, ?j) (spatially homogeneous)

and

(1.7) Σ ^ ί ' ί w ^ ^ l ί , * ; s, aE + iΓ(?)~3E)) = i ? Λ ( ί , ϊ ; s, ?))

for any orthogonal transformation ίΓ== (Kpqjp, q~l, 2, 3) (isoiropic). We can

easily prove by (1,3) that the isotropism implies the homogenuity (1.6).

Consequently we get

Received June 28, 1950.
1} See [1].
*> If Rm (I, %; s, 9) is real-valued and satisfies (1,4), then it satisfies (1.3) automatically.
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(1.8) *Σp>,Q>kp.pkQ><1Rp>Q. (tf KX s9 Kty) = RpQ(t, X s, $ ) .

We shall determine a canonical form of Rpq{t, X; s, $) which satisfies (1.4),

(1.5) and (1.7).

Suppose that RpQ(i9 X; s? $) satisfies .(1.4), (1.5) and (1.7) (and conse-

quently all of (1.3) —- (1.8) above); then there exists u (t, X, ω) satisfying

(1.1) and (1.2).8 ) Define

(1 9) ί * ( ί ; *' * ? ω ) = ( ί ? u ( * > * ' ω))*4); a n d

li?(ί, *, X; m, 5, ?)) = Bβ.C»(ί; *, 36? ω ) ι ι ( m ; s5 φ

for ί =Ξ </j, /2, 4 ) ε S ( = the unit sphere whose center is the origin of /?3), and

put ip = < ί # , ^ 2 , £*»> ( e S) for ^ = 1, 2, 3 ( o ^ is the Kronecker's delta). Then

we have, by (1.2) and (1.8),

«, u (s,

, u (#, ϊ , ω)) 8 (I*, u (s, ?), ω)

From this equality and by simple calculation, we obtain

(1.80 R{K\, t, K%; Km, s, Kty) = J?(ί, ί, ϊ ; m, s, φ ) .

And (1.6), (1.5), (1.4) (and (1.9)) imply following relations:

(1.60 Λ(ί, ί, 36 + o; m, s, φ + α) = Λ ( ί , #, X; m, s, ?)),

(1.50 R(U ί + r, ϊ ; m, s + τ f D) = Λ (ί, ί, 3E; m, s, φ ) ,

(1- 40 Σ-W«iα;Λ (ίi, fc, 36,- ίy, ίy, 3Ey) ^ 0.

Now we put R - S x R1 x R* and define the transformations Tx, Uκ9 Va on

R by j ; < ί ? t, Xy = <ί, ί + τ, 36> Z7κ<ί? *, £> = <iΠ, *, iθ ί> Fα<ί, ί, ϊ >

= <ί, t9 X + α>, Let G be the group of transformations on R generated by TVs,

UK'S and Fa's defined above. We easily see that UκVa = VKaUκ and that T τ

commutes with every element of G\ Then R is a homogeneous space with the

locally compact group G of homeomorphisms which is transitive on R; for

/ r / Z 1 °
Pi s <ίJ, 0, 0> e R, {g e G/ r̂Pj = Pi} is identical with \UκjK = KQ = I 0 cos 0

0 v
— sin<? I 0 ^ ^ < 2π\, which is compact subgroup of G; and i?(ί, f, X; m, 5,

φ) is a positive definite function on R2 in the sense of [2] by (1.40, (1.50,

3> See [1],
4 ) We denote the inner product and the norm in Rn by ( , , . ) n and || ||» respectively.
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(1.60 and (1.8'). Hence there exists a cyclic unitary representation5* {ξ>? U,

/,} of {R, G, Pi} such that

(1.10) R(i, t, 36; m, s, W = ( T ^ D W i , T,VgD3Wi),βI

where K(l) is an orthogonal transformation such as K(ί)V = ί and we denote

the unitary operators (e l l ) corresponding to TV, V$, Uκ(EzG) by the same

notations respectively.

We shall denote by fp the element of § corresponding to the point Pp ~= ζlp,,

0 , 0 ) G R ( ί - 1, 2, 3)O

7) Then by (1.10) and (1.9) we have

, 0, 0)

P'R (U t, x ; i* , o, o) -

Since {TtV^U^hA/t^R1, X(~.R\ ί ε S > spans €>,7) we have

= lEjp'kp'pfp'> &nd hence

(1.11) Z7κf - Σp' CΣpkp'pap) fp', for f = *Σp&pfp (a pi complex number).

Thus we see that, in order to determine a canonical form of R (ί, /, 36; m, s,

^))5 it is sufficient to consider cyclic unitary representations {§, U. fι) satisfying

(1.11).

§ 2c Preliminary lemmas.

LEMMA 1, Let F{.) he an additive set function on Rn.8) If {^/a' X)nF{dX)

= 0 for any 36 e Rn, then F(.) = 0.

The proof can be achieved by simple calculations and FJO wϋl be ojnittecl.

Let © be a locally compact group, and let a he a compact subgroup of @,

5> See [2] ——In the paper [2], if we use the notations following after the paper [2L

the positive-definiteness of f(p, q) is ίleili'\erl as follows: f (p, Q) is measurable hi

ζp, q)? and essentially bounded and satisfies.

( 1 ) f(ap, oq) =fκp, q) (</s tf> e Ω2, σ e G), and

( 2 ) ^Q2/(P, q)x(p)xίq)dpdq^Q(x e L 5 ( Ω ) ) ;

and it is noted that if f(p, q) is continuous in ζp} qy then (2) is equivalent to

(3) Σi,j*tχjf(pi, Pj)^:O

a n d ( 3 ) i m p l i e s t h a t f ( p , q ) i s b o u n d e d ( \ f ( ρ , q ) \ i £ f ( p , p ) = f ( p o , p o ) ) . B u t i l

may be proved without any use of the continuity of f(p, q) that (3) implies (2) (cf.

[5], pp. 56-57). So we can make use of the results of the paper [2] directly from (1.4')

(and (1.5'), (1.6'), (1.8')) in the present paper.
fi) W e d e n o t e t h e inner product and t h e n o r m in § by ( . , . ) a n d || . || respect ive ly .

7) See [2], §2.
8 ) Under an additive set function on a topological space S we understand a (generally

complex-valued) countably additive Borel-set function on S such that the total variation

on S is finite (following after S. Saks [6]), where Eorel sets mean such sets as belongs

to the minimal countably additive class including all open sets in the space S.
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we introduce a ©-invariant measure ds on the homogeneous space © = ®/β in

the natural way so that ds dK = dKd) where dK denotes a left-invariant Haar-

measure on the locally compact group @ and dK denotes the Haar-measure on

the compact group g such as I dK = 1. Let F ( . ) 5 Fj(.)> . . . , F«( ) be ad-

ditive set functions on ©, and \F| (.), | Fj | (.), . . . , | Fn \ (.) be their total vari-

ations respectively, Then we have the following

LEMMA 2. Suppose that F{KJ)(K&(§>) is expressible in the form:

F(KΔ) = it f φ* (K; s) Fv (ds),

ψv(K; s) being sumntable on © &'/£& respect to the measure | F V | (.)> ^ = 1, 2,

. . . , n* Then F ( . ) 25 absolutely continuous zvith respect to the %-invariant

measure ds.

Proof, Let s0 (GΞ©) be the image of g by the natural mapping @

îG be an element of © such that Kss0 ~ s? and p{K) be the Neumann's function

with respect to the Haar-measure dK on @; it is easy to see that p(K) == 1 on

the compact subgroup δ of the group ©, and hence p(iΓs) depends only on 5*

Suppose that A is a Borel set in © such that | ds ~ 0, and let CΔ(S) be the
J Δ

characteristic function of J, Then for all

s) ds j f l p (/f) C, (i&iΓso) d F - {@ P (Ks) CΛ (S) rfs = 0.

Hence for every v we have by Fubini's theorem

0 = J@ !Fvl (ώ) j@CΔ(/Γ ^^ίl/C-J^riirj^CΛ^-^) |Fv| (Λ) =

Therefore

|Fv|(ίTJ) = 0 , ^ ' = 1 , 2 , . . . , Λ,

for almost all iΓ with respect to zi/Γ; and for such a K we obtain by the
assumption that

F{Δ) - F(K-*KΔ) - Σ ( ^ ( i £ " J ; s)Fv(Λ) - 0, ^.ftA
V 1 J KA

§ 3, Canonical form of isotropie turbulence. In this paragraph as well as

in the next, we represent every point i G i ? 3 except the origin by the couple

s) See [5], pp. 43-45,
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<fi, Λ> of p=\\X\\s(>Q) and λ = X/\\X^ (<Ξ the unit sphere S with the center

<0? 0, 0> e R%) : X = pλ = <p3 Λ> and in order to clarify that a set A is a subset

of the set {X/X&.R*}, we shall use the notation with the subscript X: Δx

similarly Γ: and B? denote subsets of {r/~ o o < r < o o } and {ρ/0 < p < 00}

respectively,

The purpose of this paragraph is to prove the following

THEOREM 1, A. necessary and sufficient condition for (Rpq{i, 36; 5,

= 1, 23 3) /o £# # moment tensor of a temporally homogeneous and isotropic

turbulence is thai Rpq{t, X; s, ?)) is expressible in the form:

(3.1) * * ( * , * ; * , $ )

= f cos [(/ ~s)τ+ (36 - ?), p^),]

-f ^ Γ cos(ί-s)
J 0

' 3

10)

- 0

ί̂  = (dpι, δpz, ^ ) ( e S ) ( ί = 1, 2S 3) βwrf {iΓ(i)/iES} denotes a system

of orthogonal transformations such that K(λ) is an arbitrarily fixed one such as

K(λ)(l9 03 0> ^ λ for every ; e S , " > and μ(A) is written as

/Mi (A) 0
(3.2) M{A) = ( μt{A)

\ 0

and μp{A){p = 1, 2) and v(J\) are measures defined on [0, co)τ x (0, oo)p and

on [0 ? oc)- respectively such that μp([Q, 00)τ x (0s 00)p) < 00 (̂ ? = 1, 2) and

^ ( [ 0 ? 00 ) τ ) < co.

The sufficiency of this condition is easily proved by simple calculations,

To prove the necessity, we consider the cyclic unitary representation. {§9 11,

/,} of {!?, G , P3} defined in § 1. Since {T* F s /ί ^ Λ1, '̂ ̂  /?"} is a unitary repre-

sentation of the 4-dimensional vecter space, we have by Stone's theorem (in the

form generalized by W. Ambrose [4])

(3.3) Tt V% = f eitx ei{%> X)*E (dvdX)

where i?(.) is a resolution of the identity on. R%{~Rx

ι x Rχ*)« The function

J0^ The second term of the right-hand side corresponds to the case mentioned in [1]
(see [1], Theorem 1).

1]) It is true that the above system {K {?,)} is not uniquely determined, but we may see

from (3.2) thai (X(λ)~ J I p , u(Λ) K(λ)"Π^^ is independent of the special choice of

this system and is continuous in λ for any fixed A.
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Fpq(Γτ x Δx) = ( # ( A x Δx)fp, Λ ) ( A E Rι, ΔX S i?3) is an additive set function

on R4 and F(Γτ x Δx) = ( ^ ( A X Δx)/p, 4 = 1, 2, 3^ is a hermitian 3 x 3 -

matrix. In considering (1.11), we obtain from (1.10) and (3.3)

(3.4) R(ΐ9 t, X; m, s, ?)) = (

for ί, m e S , and hence, putting K = (kpq), we get for any t and

Ji24

»/it4

= (TtVχUκ-'fp, Uκ-'Λ) = f / " ^ •

Therefore by Lemma 1

(3.5) Fpq (A x iΓJ^) = Σ/>', f f.^ftO T»F ί v (Γτ x Jx).

If we put Rτ = (-co, oo)τ x {0}λ ( s i?4) and define H{M) and /f'(M) for

every Borel set M ϋ RA by

r^(M) = (HPQ{M)) -

W(M) = (^(M))
then H'{M) is a hermitian matrix and satisfies Hf {M) = K* Hf {M) * K~ι for

any orthogonal transformation KΞΞ (kPη) by (3.5). Therefore we see that H' (M)

is specialized as

,Hi'{M) 0 x
(3.7) H'(M)=( Ά'(M) ).

v 0 H{ (M) J

Next we consider the matrix H(M). For any Borel set A i ( - o o , oo)τ

x (0, cx,)p? the function HPQ(A'x A) is an additive function of a Borel set J i S ,

and we have by (3.5) and (3.6)

(3.8) HPQ (A x KΛ) = 'Σp'.vkpp.kwHp q. {Ax A).

Hence by Lemma 2 (in putting © = S, ψpq>(K \ λ) =Ξ kPp>kqq>) and by Radon-

Nikodym's theorem, we obtain a function hpq(A A) such that

(3.9)

where dλ is £/*£ K-iyivariant measure on S swc& «s f dλ = 4π (i.e., the «r^α in
J s

the usual sense). And for any fixed A, we can determine hpq(A λ) for «// A

so that
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(3.10) hfia(A; Kλ) ~^p,tq,kpp,km hp.q,(A\ λ ) ,

in making use of (3.8) and the fact that the group {K} of all orthogonal transfor-

mations is transitive on S. Consequently from Hpp(AxA)~(E(Ax A — Rx)fp, fp)

(3.6)) we get

(3.11) hpp(A; λ) ^0»

The matrix h(Λ λ) = (hpQ(A; λ)/p, q = 1, 2, 3) is hermitian for every A and

Λ, and by (3.10) we have

(3.10') h (A Kλ) = K*h(A; λ) K'1.

If weput>UΛ JΞ<l,0, 0> andif-/if(Λ) in (3.10') and define h(A) = (hPq(A))

= (ft/*?(A ^ J )) ? then we have

(3.12) h{A; λ) = K(λ)h{A)K(λ)-1.

Λ 0 O x
And if we put λ = ^ and if = iΓ0 Ξ (0 cos θ -sin 0 j in (3. KX), then we have

v0 sin ^ cos d'

XohiA)^-1 •==• h(A; KQλ') - h(A).

Thus we see that h (A) is a hermitian matrix which is invariant under any

transformation A"θ of the above form. This fact implies that h(A) is written as

/hi (A) 0 N

(3.13) h(A)=( JhiA) ) ,

consequently K(λ) h (A) K(λ)"1 depends only on / and is independent of the

choice of K(λ), and hence h(A; λ) is continuous in λ by (3.12), From this

and (3.11) we get 0 ^ hp(A)( = hpp(A)) <«>(/>= 1,2) .

Now we shall shov/ that the set functions hp(A) = hpp(A)(β = 1, 2) have

the properties of measure. Obviously they are defined for all Borel sets

A ϋ (— °o, co)τX(0 ? co)p. We shall prove the countable additivity of hp(A)a

If A = ^An, then we have by (3.11) and Lebesgue's theorem
n = J

ί f]hpp(An; λ)dλ=it[ hpt,(An; λ)dλ=--YiHPP{A»y. Λ)

= Hpp(Ax A) = \ hpp,(A; λ)dλ

for any Borel set A S S. Hence

(3.14) Σ ^ ( A M ; /ί) =/2^(A: A)

for almost all λ since the group {K} of all orthogonal transformations is transi-
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tive on S, we see from (3.10) that (3.14) is true for all λ, especially putting

λ = λ*9 we get ^Σhp(An) = hp(A)9 which proves the countable additivity of

hp(A).

Thus if we put Λ'(Γ,) - # / ( J \ x (OK) (see (3.7)) and apply (3.6), (3.7),

(3.9) and (3.12) to (3.4), we obtain

R(ί9 t, X; m, s, ?))

= f eiit-s)τeia-y.χ)s (ι9 K(λ)h(dτdp) Kiλ)-1™) dλ
JR4-RX λ 7 3

-co

Since i?(ί, t, X; m9 $,%)) is a real-valued positive definite function, we can

easily prove that

(3.15) i?(ί, t, X; m, 5, ?))

•'ΓO, » ) χ X (0 , oc )p, X S

x ( ί ,

+ j cos (ί - s) r (ί, m)3 v (dτ),

where

(3.2) / ( ) (
^ 0

and μp(A)(pτ=l9 2) and v(A) are measures defined on [0, oo)τ x (0, oo)p and

on [0, oo)τ respectively such that ^ ( [ 0 , CXD)T X (0? OO)P) < oo (p = 1, 2) and

Ϊ>([09 oo)τ) < oo it is true that the transformation K(λ) such as K(λ) λ1 =

is not uniquely determined, but the measure matrix K(λ) μ(dτdβ)'K(λ)~i depends

only on λ and is independent of special choice of K(λ), as may be verified from

the form of (3.2), Putting ί = P>, tn = ί« in (3.15) and making use of (1.2)

and (1.9), we obtain (3.1), which completes the proof of Theorem 1.

§ 4. Inversion formula. In this paragraph, we shall show the formulas

which express the measures μp(A)(p-l, 2) and v(Γ~) in Theorem 1 by means

of corresponding (Rpg(t, 36 s, $)), from which we may conclude the uniqueness

of the measures μP(A) and *(A) for the functions RPQ(t, 36; s, φ); p9 Q

= 1, 2, 3. By definition we shall term continuity points of μ such p and r as

PpilQ, co)τ X {p}) = 0 and μP{{τ) x (0, oo)p) = 0 for p = 1, 2, and continuity

point of v such r as i/ ({r}) = 0.

THEOREM 2. T/*e measures μp(A) and i»(A) ίw Theorem 1 are expressible
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by RPQ{t, X; s, ?)) as follows: if we put ΛΛ = {A&S/IM - A'Hs ̂  1/τι (A1 =*

/or any continuity points p, p' (0 < p < ρ;) a^J r 0/ #

(4.1) μp(l09 r ] x (p, p'])

= lim (-*) lim f / ^ (ί, X 09 0) dtdX

x f cosltv+iX.XϊQdτdX,™

and for any continuity point r of v

(4.2) * ([0, τ]) - lim A ) lim f Rn (t, X 09 0) rfί J36

x f cos [it + (BE, Z) 3] Jr^X.

Proof Define the measures <V (Λf), <?2 (Λf) and ap (M) on /?4 (= I?,1 x R

by

= 0 if M Π (Cθ? °°)τ x (0, c»)p x S) is empty;

r* 2(A x {0>x) = p(Γτ),

ia2{M) = 0 if Λf'Π (CO, 00), x {0}z) is empty and

σp(M) = V ( M ) + c;2(M).

Then it follows from Theorem 1 that

, ae 09 0) = f cos [*r + (369 X)3]ap{dτdX) .

Hence, by Levy Ήaviland's inversion formula [3], for any continuity points

p, p'(0 < p < p7) and r of μ9 we have

(4.3) f (K{λ)-Π*9 μilQ, r ] x (p, p'])

= < j ^ ( ( - l , r ] X (p, p'] X Λ )

= - 4 l i m f Rpp(tsX; 0,0) dtdX

xf cos[ίr+ (ϊ

121 ««__i" j n the domain (—1, r] of the integral in the right-hand side has no particular
sense, and may te replaced by an arbitrary negative number, as will easily be seen
from the proof of this theorem.
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Since (κ(λ)->V>, μ{{0, r] x (p, p'J) K{l)-Πt>^ is continuous in λ, we get

(4. 4) ^ ( [ 0 , r] X (p, p'J) = (ί*. μ ([0, r] X (p, p'])

= ( ϊ t l 1 ) - ' ! ' , MHO, r] x (p, p']) KW)-1?

= lim 4 - Ϊ f (K{λ)-Ht>, μ (CO, r] x (p, p'])

where U»| =f dλ. From (4.4), (4.3) and the fact that lim(|ΛΛ | n2/π) =

we obtain (4.1)..

Next we put

(4.5) ψ(τ9 <9) = l i m ~ ί Λ,,(ί, ϊ O, 0)Λrf*

X f cos [fr -f (35,

then, by Levy-Haviland's inversion formula, we have

(4.6) ^ ( ( - l , : ) x ( 0 , p ) x s ) + ^ ( κ r ) x (0}Σ)έφ(τf p)

1, r ] x ( 0 , p]xS) + ^ ( ( - 1 , τ ] x {0

for any r and p. If r is a continuity point of v9 then <; 2 ί(-l, r) x (0

- cr2 ί( - 1 , r] x {0}*) = v ([0, r]) and hence, if p tend to 0 in (4.6), we obtain

(4.7) *([0, r]) = lim0(r, p).

Thus (4.2) follows from (4.5) and (4,7), q.e.d.
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