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FIBER CONES OF IDEALS WITH ALMOST MINIMAL

MULTIPLICITY

A. V. JAYANTHAN∗ and J. K. VERMA†

Abstract. Fiber cones of 0-dimensional ideals with almost minimal multiplic-
ity in Cohen-Macaulay local rings are studied. Ratliff-Rush closure of filtration
of ideals with respect to another ideal is introduced. This is used to find a bound
on the reduction number with respect to an ideal. Rossi’s bound on reduction
number in terms of Hilbert coefficients is obtained as a consequence. Sufficient
conditions are provided for the fiber cone of 0-dimensional ideals to have almost
maximal depth. Hilbert series of such fiber cones are also computed.

§1. Introduction

Let (R,m) be a Cohen-Macaulay local ring having infinite residue field.
Let I be an m-primary ideal of R and K an ideal containing I. The
fiber cone of I with respect to K is the standard graded algebra FK(I) =⊕

n≥0 I
n/KIn. The graded algebra FK(I) for K = m is called the fiber

cone F (I) of I. For K = I, FK(I) = G(I), the associated graded ring of I.
The objective of this paper is to study the depth of the ring FK(I) subject
to certain conditions imposed on the coefficients of the Hilbert polynomial
P (I, n) corresponding to the Hilbert function H(I, n) = λ(R/In), where
λ denotes the length function. This theme has been studied for the asso-
ciated graded rings by Elias [8], Goto [10], Huckaba [15], Huckaba-Marley
[17], Jayanthan-Singh-Verma [19], Rossi [25], Rossi-Valla [26], [27], Sally
[28], [29], Wang [34], [35] and for the fiber cones by Cortadellas-Zarzuela
[5], D’Cruz-Raghavan-Verma [6], D’Cruz-Verma [7], Jayanthan-Verma [20],
Shah [30].

The form ring G(I) and the fiber cone F (I) have been studied sepa-
rately. By studying the ring FK(I) we hope to unify the results obtained for
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G(I) and F (I). An initial motivation for this paper was to find conditions
on Hilbert coefficients which will ensure high depth for FK(I), thereby ob-
taining the results known for G(I) and F (I). We have not been completely
successful in providing a unified approach. However, techniques developed
to study the two rings separately can be unified in the hope of obtaining
results for FK(I).

We now point out a few results in the literature which indicate the
importance of a systematic study of fiber cones. We begin with the clas-
sic paper [22] of Northcott and Rees. Throughout this section, let (R,m)
be a local ring of dimension d and let I be an R-ideal. Let k = R/m

be infinite. The analytic spread, l := `(I), of I is defined to be the di-
mension of the fiber cone F (I). By Noether normalization lemma, there
exist elements a1, a2, . . . , al ∈ I such that their images b1, b2, . . . , bl in I/mI
are algebraically independent over k and F (I) is an integral extension of
k[b1, b2, . . . , bl]. It follows that there exists an n ≥ 0 so that JIn = In+1

where J = (a1, a2, . . . , al). The ideal J is called a minimal reduction of I
and the smallest n so that JIn = In+1 is called the reduction number, rJ(I),
of I with respect to J . Minimal reductions have played an important role in
the study of many problems in commutative algebra, e.g. Hilbert functions,
Rees algebras and associated graded rings, to name a few.

The fiber cone F (I) is the fiber over the closed point of the blowup

Spec

( ∞⊕

n=0

In/In+1

)
−→ Spec(R).

Thus it plays an important role in resolutions of singularities of algebraic
varieties. Hironaka, in his paper [16] on resolution of singularities, intro-
duced the concept of permissibility of I as a center of blowing-up. Recall
that I is called permissible in R, if R/I is regular and the associated graded
ring G(I) is R/I-flat. Put

H(G(m), λ) =
∞∑

n=0

dim
(

mn

mn+1

)
λn and H(F (I), λ) =

∞∑

n=0

dim
(
In

mIn

)
λn.

Let e denote the embedding dimension of R/I. In 1976, B. Singh [31],
proved that I is a permissible center of blowing-up if and only if the Hilbert
series of G(m) and that of F (I) are related by the equation:

H(G(m), λ)(1− λ)e = H(F (I), λ).
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In the same year 1976, Cowsik and Nori [4] used fiber cones to characterize
complete intersections. They showed that in a regular local ring R, a radical
ideal I is a complete intersection if and only if `(I) = ht(I).

Let R be a commutative ring. An element x ∈ R is called integrally
dependent on an R-ideal I if it satisfies an equation of the form

xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an = 0

where ai ∈ Ii for i = 1, 2, . . . , n. Elements of R that are integrally de-
pendent on I form an ideal denoted by I. We say that I is complete if
I = I.

Recently, the work on fiber cones has been inspired by their usefulness
in detecting evolutionary stability of local algebras. Let A be a ring and let
T be a local A-algebra essentially of finite type over A, i.e. T is a localization
of a finitely generated A-algebra. An evolution of T over A is a local A-
algebra essentially of finite type over A, and a surjection R → T of A-
algebras inducing an isomorphism ΩR/A ⊗R T ' ΩT/A. The evolution R of
T is called trivial if R → T is an isomorphism. We say T is evolutionarily
stable if all its evolutions are trivial. Eisenbud and Mazur remarked in [9]
that they have been unable to find any nontrivial evolution of any reduced
k-algebra in equicharacteristic zero or of any reduced algebra which is flat
over a discrete valuation ring of mixed characteristic. Hübl [12] observed
that if I is a complete ideal in a local domain (R,m) and F (I) is reduced in
degree one then mI is complete. He also proved that if (R,m) is a smooth
k-algebra where k is a field of characteristic zero with [R/m : k] < ∞
and I is a reduced, equidimensional ideal with mI complete, then R/I is
evolutionarily stable.

Therefore it becomes important to know when mI is complete. Huneke
and Hübl provided sufficient conditions in [13] for completeness of mI. An
ideal is called normal if all its powers are complete. Let I be a normal ideal
in a normal local domain (R,m) with R/m infinite and `(I) = dimR. If
F (I) is equidimensional and has no embedded components, e.g. when F (I)
is Cohen-Macaulay, then mIn is complete for all n ∈ N.

Therefore we observe that it becomes important to know when F (I) is
Cohen-Macaulay or what exactly is its depth. Once we know that F (I) is
Cohen-Macaulay, it becomes easy to determine its Hilbert series, provided
we have access to a minimal reduction of J of I. The images of minimal
generators of J in I/mI form a homogeneous system of parameters in F (I).
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Hence they form a regular sequence, whence

H(F (I), t) =
∑rJ (I)

n=0 λ
(
In/(JIn−1 + mIn)

)
tn

(1− t)`(I) .

We now describe the contents of the paper. For a Cohen-Macaulay
local ring (R,m) the ‘Abhyankar-Sally’ equality gives that

µ(m) + λ(m2/(y1, . . . , yd)m) = e0(m) + d− 1,

where (y1, . . . , yd) is a minimal reduction of m. J. D. Sally studied the
associated graded rings of the maximal ideal with µ(m) = e0(m) + d − 1
and showed that G(m) is Cohen-Macaulay in such cases. She conjectured
that if µ(m) = e0(m) + d− 2 then depthG(m) ≥ d− 1. This conjecture was
settled in affirmative by M. E. Rossi and G. Valla [26] and independently
by H.-S. Wang, [34]. Later M. E. Rossi generalized this to the case of m-
primary ideals to prove that if λ(I/I2) = e0(I) − (1 − d)λ(R/I) − 1, then
depthG(I) ≥ d − 1. She further generalized this to prove that if there
exists an integer k such that In ∩ J = JIn−1 for all n = 1, . . . , k and
λ(Ik+1/JIk) ≤ 1, then depthG(I) ≥ d− 1.

The Abhyankar-Sally equality was generalized by J. Chuai to m-primary
ideals I. It was shown in [3] that for an m-primary ideal I in a Cohen-
Macaulay local ring R µ(I) + λ(mI/mJ) = e0(I) − λ(R/I) + d. Hence
µ(I) ≤ e0(I)− λ(R/I) + d and the equality occurs if and only if mI = mJ .
S. Goto defined an ideal to have minimal multiplicity if mI = mJ . He
characterized various properties of the associated graded rings, the Rees
algebras and fiber cones of such ideals.

In Section 4 we prove the main result of the paper, Theorem 4.4. Let
γ(I) denote depthG(I). We prove that if I is an m-primary ideal such that
there exists an integer k > 0 such that mIn∩J = mJIn−1 for all n = 1, . . . , k
and λ(mIk+1/mJIk) ≤ 1 for any minimal reduction J of I and γ(I) ≥ d−2,
then F (I) has almost maximal depth. The method of the proof is inspired
by the methods employed in [25]. The first main ingredient of the proof is
a bound on the K-reduction number rKJ (I) = min{n | KIn+1 = KJIn}.
Such a bound for the usual reduction number r(I) was provided in [25].
This bound played a crucial role in the solution to an analogue of Sally’s
conjecture for m-primary ideals by M. E. Rossi. By specializing the bound
on the reduction number rKJ (I) for K = m, we are able to use it for the
fiber cone F (I).
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The second main ingredient of the main theorem is the notion of Ratliff-
Rush closure, rrK(In) =

⋃
n≥0KIn+k : Ik1 , of a filtration, F = {In}n≥0 of

ideals with respect to an ideal K containing I1. We will develop the basic
properties of rrK(In) in Section 2. We shall find an analogue of Huneke’s
fundamental lemma [18] for the Hilbert function λ(R/rrK(In)). As a con-
sequence of this generalization, we shall provide formulas, in dimension 2,
for the coefficients of the Hilbert polynomial, PK(F , n) corresponding to
the Hilbert function HK(F , n) = λ(R/KIn). These formulas are crucial for
obtaining the bound on the reduction number rKJ (I) in Corollary 3.6. We
shall recover Rossi’s bound [25] for r(I) as a consequence of our bound for
rKJ (I).

One of the motivations for finding numerical conditions which ensure
high depth for G(I) and F (I) is to compute the Hilbert series. Because
of high depth one can work in dimension 1 or 2 where computation of
Hilbert series is relatively easy. As a result, by imposing conditions on
the multiplicity and minimum number of generators, one can predict the
Hilbert series. In the final section of this paper, we obtain a formula for the
generating function,

∑
n≥0HK(I, n)tn, where I is an m-primary ideal with

almost minimal multiplicity with respect to K. This formula generalizes
results of Sally and Rossi-Valla.

§2. Ratliff-Rush closure of a filtration of ideals with respect to
an ideal

Let (R,m) be a Noetherian local ring of dimension d > 0. A filtration
of ideals F = {In}n≥0 is said to be a Hilbert filtration if

(i) InIm ⊆ In+m for all n,m ≥ 0,

(ii) there exists p ≥ 0 such that I1In = In+1 for all n ≥ p and

(iii) I1 is m-primary.

For a Hilbert filtration F , let H(F , n) = λ(R/In) denote the Hilbert
function of F and

P (F , n) = e0(F)
(
n+ d− 1

d

)
− e1(F)

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)ded(F)

denote the corresponding polynomial.
Let K be an ideal such that In+1 ⊆ KIn for all n ≥ 0. Let HK(F , n) =

λ(R/KIn) be the Hilbert function of F with respect toK. SinceHK(F , n) =
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λ(R/In) + λ(In/KIn), HK(F , n) coincides with a polynomial for n � 0.
Let the corresponding polynomial be denoted by

PK(F , n) = g0

(
n+ d− 1

d

)
− g1

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)dgd.

Let (R,m) be a Noetherian local ring and F an I1-good filtration of R.
Let K be an ideal of R such that I1 ⊆ K. Let FK(F) =

⊕
n≥0 In/KIn be

the fiber cone of F with respect to K. For x ∈ I1\KI1, let x∗ denote its
initial form in the associated graded ring, G(F) =

⊕
n≥0 In/In+1, of F and

xo denote its initial form in the fiber cone FK(F).

We begin by recalling some of the properties of superficial elements in
FK(F) proved in [20].

Proposition 2.1. Let (R,m) be a Noetherian local ring of dimension
d with R/m infinite. Let F = {In} be a Hilbert filtration of R, K an ideal
such that In+1 ⊆ KIn for all n ≥ 0. Then

1. There exists an x ∈ I1\KI1 such that xo is superficial in FK(F) and
x∗ is superficial in G(F).

2. If, for x ∈ I1\KI1, xo is superficial in FK(F) and x∗ is superficial in
G(F), then there exists a c > 0 such that (KIn : x) ∩ Ic = KIn−1 for
all n > c. Moreover if x is regular in R, then KIn : x = KIn−1 for
all n� 0.

3. If xo is regular in FK(F) and x∗ is regular in G(F), then KIn : x =
KIn−1 for all n ≥ 1.

4. Let x ∈ I1 be such that x∗ is superficial in G(F) and xo ∈ FK(F) is
superficial in FK(F). Let F̄ = {In + xR/xR}n≥0 and K̄ = K/xR. If
depthFK̄(F̄) > 0, then xo is regular in FK(F).

5. Let x1, . . . , xk ∈ I1. Assume that

(i) x1, . . . , xk is a regular sequence in R.

(ii) x∗1, . . . , x
∗
k ∈ G(F) is a regular sequence.

(iii) xo1, . . . , x
o
k ∈ FK(F) is a superficial sequence.

Then depth(xo1,...,x
o
k) FK(F) = k if and only if (x1, . . . , xk) ∩ KIn =

(x1, . . . , xk)KIn−1 for all n ≥ 1.
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Definition 2.2. The Ratliff-Rush closure of F = {In} with respect
to K is the sequence of ideals rrK(F) = {rrK(In)}n≥0 given by

rrK(In) =
⋃

k≥1

(KIn+k : Ik1 ).

The Ratliff-Rush closure of a filtration of ideals with respect to an ideal
behaves quite similar to the Ratliff-Rush closure of an ideal. We summarize
some of its properties.

Proposition 2.3. 1. rrK(In) =
⋃
k≥1(KInk+n : Ikn).

2. If grade I1 > 0, then rrK(In) = KIn for n� 0.

3. If J = (x1, . . . , xs) is a reduction of I1, then rrK(In) =
⋃
k≥1(KIn+k :

(xk1, . . . , x
k
s)).

4. If J is a reduction of I1, then rrK(In) =
⋃
k≥1(KIn+k : Jk).

5. If J is a minimal reduction of I1, then rrK(In) : J = rrK(In−1) for
all n ≥ 1.

Proof. 1. Note that KIn+1 : I1 ⊆ KIn+2 : I2
1 ⊆ · · · is an increasing

chain of ideals in R. Hence rrK(In) = KIn+k : Ik1 for k � 0. Since the
chain KIn+n : In ⊆ KIn+2n : I2

n ⊆ · · · also terminates, it is enough to
show that rrK(In) = KInk+n : Ikn for k � 0. Suppose x ∈ KInk+n : Ikn.
Since Ink1 ⊆ Ikn, xInk1 ⊆ KInk+n. Therefore for k � 0, x ∈ KInk+n : Ink1 =
rrK(In). Conversely, let xIk1 ⊆ KIn+k for k � 0. Since F is an I1-good
filtration, there exists p0 such that I1Ip = Ip+1 for p ≥ p0. Choose k � 0.
Then

xIkn ⊆ xInk ⊆ xIp0I
nk−p0
1 ⊆ Ip0KInk−p0+n ⊆ KInk+n.

Therefore x ∈ KInk+n : Ikn, so that rrK(In) = KInk+n : Ikn for k � 0.

2. Let x ∈ I1 be such that x is regular in R and xo is superficial in FK(F)
and x∗ is superficial in G(F). Then, by Proposition 2.1(2), KIn : x =
KIn−1 for n � 0. Therefore KIn ⊆ KIn+1 : I1 ⊆ KIn+1 : x = KIn for
n� 0. Thus KIn+1 : I1 = KIn for n� 0. We show that KIn+k : Ik1 = KIn
for all k ≥ 1. Apply induction on k. The result is proved for k = 1. Assume
that the result is true for k − 1. Then

KIn+k : Ik1 = (KIn+k : Ik−1
1 ) : I1

= KIn+1 : I1 (by induction)
= KIn for n� 0.
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Therefore rrK(In) = KIn for n� 0.

3. Let (x) = (x1, . . . , xs) and (x)[k] = (xk1, . . . , x
k
s). Clearly KIn+k : Ik1 ⊆

KIn+k : (x)[k]. Since (x) is a reduction of I1, there exists an integer r such
that (x)mIn1 = In+m

1 for all n ≥ r and m ≥ 1. Let z ∈ KIn+k : (x)[k] for
k � 0. Then

zIr+sk1 = z(x)skIr1

=

( ∑

|α|=sk
zxα1

1 · · ·xαss
)
Ir1

⊆
∑

|α|=sk
KIn+αix

α1
1 · · · x̂αii · · ·xαss Ir1 where αi ≥ k

⊆ KIn+r+sk.

Therefore z ∈ KIn+r+sk : Isk+r
1 = rrK(In).

4. Let J = (x1, . . . , xs). Since KIn+k : Ik1 ⊆ KIn+k : Jk ⊆ KIn+k :
(xk1, . . . , x

k
s) for all k, the assertion follows.

5. For k � 0, we have

rrK(In) : J = (KIn+k : Jk) : J

= KIn+k : Jk+1 = rrK(In−1).

The next lemma inspired the definition of Ratliff-Rush closure of a
filtration of ideals with respect to another ideal.

Proposition 2.4. Let F = FK(F) and let [H0
F+

(F )]n denote the n-
th graded component of the local cohomology module H0

F+
(F ). Suppose

grade I1 > 0. Then for all n ≥ 0,

[H0
F+

(F )]n =
rrK(In) ∩ In

KIn
.

If grade(I1) > 0 and γ(F) > 0, then gradeF+ > 0 if and only if rrK(In) =
KIn for all n ≥ 0.
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Proof. Let y ∈ In and yo ∈ [H0
F+

(F )]n = 0 :Fn F k+ for k � 0. Then
yoF k+ = 0. Therefore yIk1 ⊆ KIn+k. Hence y ∈ (KIn+k : Ik1 ) ∩ In =
rrK(In) ∩ In. Therefore [H0

F+
(F )]n ⊆ (rrK(In) ∩ In)/KIn. Suppose yo ∈

(In ∩ rrK(In))/KIn. Then for k � 0, yIk1 ⊆ KIn+k. Therefore yoF k+ = 0
so that yo ∈ 0 :Fn F k+ = [H0

F+
(F )]n.

Suppose rrK(In) = KIn for all n ≥ 0. Then H0
F+

(F ) =
⊕

n≥0 In ∩
rrK(In)/KIn = 0. Therefore gradeF+ > 0. Conversely, suppose
gradeF+ > 0. Then rrK(In) ∩ In = KIn for all n ≥ 0. Suppose y ∈
rrK(In) = KIn+k : Ik1 . Choose a regular element x1 ∈ I1 such that xo1 is
regular in F and x∗1 is regular in G(F). Then yxk1 ∈ KIn+k so that yxk1 ∈
KIn+k ∩ (xk1) = xk1KIn. Therefore y ∈ KIn and hence rrK(In) = KIn.

In the next proposition we obtain a generalization of Huneke’s fundamental
lemma [18] for the function HK(F , n). It also shows that once we know
a minimal reduction of I1, we can compute the coefficients g1 and g2 and
hence the Hilbert polynomial of FK(F) can be completely determined.

Proposition 2.5. Let (R,m) be a 2-dimensional Cohen-Macaulay lo-
cal ring. Let F = {In} be a Hilbert filtration of R. Let J = (x, y) be a
minimal reduction of I1. Then λ(R/rrK(In)) coincides with the polynomial
PK(F , n), for n� 0 and the following are true:
1. For n ≥ 2,

∆2[PK(F , n)− λ(R/rrK(In))] = λ

(
rrK(In)

JrrK(In−1)

)
.

2. Set

vn =




e0(F)− λ(R/rrK(I0)) if n = 0

λ
(

rrK(In)
JrrK(In−1)

)
if n ≥ 1.

Then, g1 =
∑

n≥1 vn − λ(R/rrK(I0)) and g2 =
∑

n≥1(n − 1)vn −
λ(R/rrK(I0)).

Proof. 1. Since rrK(In) = KIn for n � 0, λ(R/rrK(In)) =
HK(F , n) = PK(F , n) for n� 0. Consider the exact sequence:

0 −→ R
rrK(In−1):J

β−→
(

R
rrK(In−1)

)2 α−→ J
JrrK(In−1) −→ 0,
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where the maps α and β are defined as, α(r̄, s̄) = xr + ys and β(r̄) =
(ȳr̄,−x̄r̄). It follows that for all n ≥ 2,

2λ(R/rrK(In−1)) = λ(R/(rrK(In−1) : J)) + λ(J/JrrK(In−1))
= λ(R/(rrK(In−1) : J)) + λ(R/JrrK(In−1))− λ(R/J).

Therefore e0(F)+2λ(R/rrK(In−1)) = λ(R/JrrK(In−1))+λ(R/(rrK(In−1) :
J)). Hence

e0(F)− λ(R/rrK(In)) + 2λ(R/rrK(In−1))− λ(R/rrK(In−2))
= λ(R/JrrK(In−1))− λ(R/rrK(In)) + λ(R/(rrK(In−1) : J))
− λ(R/rrK(In−2))

= λ(rrK(In)/JrrK(In−1))− λ(rrK(In−1) : J/rrK(In−2)).

Since ∆2PK(F , n) = e0(F),

∆2[PK(F , n)−HK(F , n)] = λ

(
rrK(In)

JrrK(In−1)

)
− λ
(
rrK(In−1) : J
rrK(In−2)

)
.

By Proposition 2.3(5), we have rrK(In) : J = rrK(In−1) for all n ≥ 1.
Therefore for all n ≥ 2,

∆2[PK(F , n)− λ(R/rrK(In))] = λ

(
rrK(In)

JrrK(In−1)

)
.

2. Define a filtration of ideals F = {Fn} in R as follows:

Fn =

{
R if n = 0
rrK(In−1) if n ≥ 1.

Then it can be seen that F is a Hilbert Fitration. Since R is Cohen-
Macaulay, grade I1 ≥ 0 and hence by Proposition 2.3(2), the Hilbert polyno-
mial corresponding to the functions HK(F , n) and λ(R/rrK(In)) are equal.
Also, Proposition 2.3(5) shows that γ(F ) ≥ 1. Let H(F, n) = λ(R/Fn) and
P (F, n) denote the Hilbert function and Hilbert polynomial corresponding
to the filtration F . Then it can be seen that

P (F, n) = PK(F , n− 1) = g0

(
n

d

)
− g1

(
n− 1
d− 1

)
+ g2

= g0

(
n+ 1
d

)
− (g0 + g1)

(
n

d− 1

)
+ (g1 + g2).
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Applying Proposition 1.9 of [11], we get that

g0 + g1 =
∑

j≥0

λ(Fj+1/JFj) and g1 + g2 =
∑

j≥1

(
n

1

)
λ(Fj+1/JFj).

Therefore

g1 = λ(rrK(I0)/J) +
∑

n≥1

λ(rrK(In)/JrrK(In−1))− g0

=
∑

n≥1

vn − λ(R/rrK(I0)).

Substituting the value of g1, we obtain g2 =
∑

n≥1(n−1)vn−λ(R/rrK(I0)).

As a consequence we derive formulas for the Hilbert coefficients obtained
by Huneke for the I-adic filtration in [18].

Corollary 2.6. Let (R,m) be a 2-dimensional Cohen-Macaulay local
ring and F be a Hilbert filtration. Then e1(F) =

∑
n≥1 vn and e2(F) =∑

n≥1(n− 1)vn.

Proof. Put K = R in Proposition 2.5(2) and note that, for K = R,
rrK(I0) = R.

§3. Bounds on reduction numbers

In this section we obtain a bound on the K-reduction number of an
m-primary ideal (see Definition 3.3) from which we derive Rossi’s bound
([25, Corollary 1.5]) for the reduction number. We use this bound to prove
the almost maximal depth condition for the fiber cone. We set the following
notation for the rest of the section. Let (R,m) denote a Cohen-Macaulay
local ring with infinite residue field. Let I be an m-primary ideal of R
and let J be its minimal reduction. Let K be an ideal containing I and
let rrK(In) denote the Ratliff-Rush closure of In with respect to K. For
n ≥ 0, set

ρKn = λ(rrK(In+1)/JrrK(In)) and νKn = λ(KIn+1/KJIn).

Lemma 3.1. If KIn+1 ∩ J = KJIn for some n, then ρKn − νKn =
λ(rrK(In+1)/JrrK(In) +KIn+1).
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Proof. Since JrrK(In) ⊆ JrrK(In) +KIn+1 ⊆ rrK(In+1), we have

λ

(
rrK(In+1)

JrrK(In) +KIn+1

)
= ρKn − λ

(
JrrK(In) +KIn+1

JrrK(In)

)

= ρKn − λ
(

KIn+1

KIn+1 ∩ JrrK(In)

)
.

Since KJIn ⊆ JrrK(In) ∩ KIn+1 ⊆ J ∩ KIn+1 ⊆ KJIn, KJIn =
JrrK(In) ∩KIn+1.

The next proposition, due to M. E. Rossi, played a crucial role in solving
the conjecture of Sally [26] and its generalization to case of m-primary ideals
[25]. For an ideal I in R, let R(I) =

⊕
n≥0 I

ntn denote the Rees algebra of
I. For an R(I)-module M , put AnnIν (M) = {x ∈ Iν | xtνM = 0}.

Proposition 3.2. Let I be an ideal of a Noetherian local ring R and
let J be a minimal reduction of I. Let M be an R(I)-module of finite length
as R-module. Let ν be the minimum number of generators of M/R(J)+M
as an R-module. Then

Iν = JIν−1 + AnnIν (M).

Definition 3.3. Let J be a minimal reduction of an ideal I. Put

rKJ (I) := min{n | KIn+1 = KJIn}.

The integer rKJ (I) is called the K-reduction number of I with respect to J .

We now give a bound for the K-reduction number of an m-primary
ideal. Put

SKJ (I) := {n ∈ N | KIj+1 ∩ J = KJIj for all j ≤ n}.

Theorem 3.4. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion d > 0. Let I be an m-primary ideal of R and let J be a minimal
reduction of I. Let K be an ideal containing I and let n ∈ SKJ (I). Then

rKJ (I) ≤
∑

i≥0

ρKi + n+ 1−
n∑

i=0

νKi .
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Proof. Let M :=
⊕

n≥1 rrK(In)/KIn. Then M is a finitely generated
R(I)-module and λR(M) < ∞, by 2.3(2). For j ≥ 0, (M/R(J)+M)j+1 =
Mj+1/(J j+1M0 +J jM1 + · · ·+JMj). For 1 ≤ i ≤ j+1 and k � 0, we have

J iMj−i+1 = JJ i−1Mj−i+1 ⊆ JIi−1Mj−i+1

=
JIi−1(KIj+1−i+k : Ik) +KIj+1

KIj+1

⊆ JrrK(Ij) +KIj+1

KIj+1

= JMj .

Therefore [M/R(J)+M ]j+1
∼= rrK(Ij+1)/JrrK(Ij) +KIj+1. We have

λ(rrK(Ij+1)/JrrK(Ij) +KIj+1) ≤ λ(rrK(Ij+1)/JrrK(Ij))

and equality occurs if and only if KIj+1 ⊆ JrrK(Ij). Since J is a reduction
of I and rrK(In) = KIn for n � 0, there exists a j such that KIj+1 ⊆
JrrK(Ij). Let k = min{j | KIj+1 ⊆ JrrK(Ij)}. Let µj be the minimal
number of generators of rrK(Ij+1)/JrrK(Ij) + KIj+1 as an R-module.
Then µj ≤ λ(rrK(Ij+1)/JrrK(Ij) + KIj+1). Let µ =

∑
j≥0 µj . Then by

the previous proposition Iµ = JIµ−1 + AnnIµ(M). Therefore

KIµ+k+1 = KIk+1(JIµ−1 + AnnIµ(M))

= KJIµ+k +KIk+1 AnnIµ(M)

⊆ KJIµ+k + JrrK(Ik) AnnIµ(M).

Since JrrK(Ik) AnnIµ(M) ⊆ KJIµ+k, KIµ+k+1 = KJIµ+k. Therefore

rKJ (I) ≤ µ+ k =
∑

j≥0

µj + k ≤
∑

j≥0

λ

(
rrK(Ij+1)

JrrK(Ij) +KIj+1

)
+ k.

Since n ∈ SKJ (I), by Lemma 3.1, λ(rrK(Ij+1)/JrrK(Ij) +KIj+1) = ρKj −
νKj for j ≤ n. Hence

rKJ (I) ≤
n∑

j=0

(ρKj − νKj ) +
∑

j≥n+1

λ

(
rrK(Ij+1)

JrrK(Ij) +KIj+1

)
+ k.

If k ≤ n+ 1, then λ(rrK(Ij+1)/JrrK(Ij) +KIj+1) = ρKj for all j ≥ n+ 1
so that

rKj (I) ≤
∑

j≥0

ρKj + k −
n∑

j=0

νKj ≤
∑

j≥0

ρKj + n+ 1−
n∑

j=0

νKj .
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Suppose k ≥ n+ 2. Then for n+ 1 ≤ j ≤ k − 1,

λ(rrK(Ij+1)/JrrK(Ij) +KIj+1) = ρKj − λ(JrrK(Ij) +KIj+1/JrrK(Ij))

≤ ρKj − 1.

Therefore

rKJ (I) ≤
n∑

j=0

(ρKj − νKj ) +
k−1∑

j=n+1

(ρKj − 1) +
∑

j≥k
ρKj + k

=
∑

j≥0

ρKj −
n∑

j=0

νKj + n+ 1.

The following lemma is quite well-known. We include it for the sake of
completeness.

Lemma 3.5. Let (R,m) be a Noetherian local ring and let J = (x1, . . . ,
xs) be an ideal generated by a regular sequence in R. Then for any ideal K
containing J , J/KJ ∼= (R/K)s.

Proof. Consider the map φ : (R/K)s → J/KJ , defined as

φ(r̄1, . . . , r̄s) = r1x1 + · · ·+ rsxs.

The map φ is clearly surjective. Suppose for some r1, . . . , rs ∈ R, r1x1+· · ·+
rsxs ∈ KJ . Write r1x1+· · ·+rsxs = t1x1+· · ·+tsxs for some t1, . . . , ts ∈ K.
Then (r1−t1)x1 = (t2−r2)x2 + · · ·+(ts−rs)xs. Since x1, . . . , xs is a regular
sequence, r1 − t1 ∈ (x2, . . . , xs) ⊆ K and hence r1 ∈ K. Similarly ri ∈ K
for all i = 1, . . . , s. Therefore φ is an isomorphism.

We obtain a bound on the reduction number rKJ (I) in terms of the
Hilbert coefficient g1.

Corollary 3.6. Let (R,m) be a 2-dimensional Cohen-Macaulay local
ring, I an m-primary ideal, K an ideal containing I and J a minimal
reduction of I. If n ∈ SKJ (I), then

rKJ (I) ≤ g1 −
n∑

j=0

νKj + n+ 1 + λ(R/K).
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Proof. By Theorem 3.4, we get

rKJ (I) ≤ λ(rrK(I)/JrrK(I0)) +
∑

j≥1

ρKj + n+ 1−
n∑

j=0

νKj

= λ(R/JrrK(I0))− λ(R/rrK(I)) +
∑

j≥1

ρKj + n+ 1−
n∑

j=0

νKj

= λ(R/J) + λ(J/JrrK(I0))− λ(R/rrK(I))

+
∑

j≥1

ρKj + n+ 1−
n∑

j=0

νKj

= e0(I) + 2λ(R/rrK(I0))− λ(R/rrK(I)) +
∑

j≥1

ρKj + n+ 1−
n∑

j=0

νKj

≤ e0(I) + λ(R/rrK(I0)) + λ(R/K)− λ(R/rrK(I))

+
∑

j≥1

ρKj + n+ 1−
n∑

j=0

νKj .

The last equality follows from Lemma 3.5 and the inequality follows since
K ⊆ rrK(I0). By Lemma 2.5, g1 = e0(I) +λ(R/rrK(I0))−λ(R/rrK(I)) +∑

j≥1 ρ
K
j . Therefore

rKJ (I) ≤ g1 −
n∑

j=0

νKj + n+ 1 + λ(R/K).

Corollary 3.7. (Rossi’s bound) Let (R,m) be a Cohen-Macaulay lo-
cal ring of dimension 2. Let I be an m-primary ideal of R and J be a
minimal reduction of I. Then

rJ(I) ≤ e1(I)− e0(I) + λ(R/I) + 1.

Proof. For K = R, we have 0 ∈ SKJ (I) and note that gi = ei for
all i = 0, . . . , d. Hence from Corollary 3.6 it follows that r(I) ≤ e1(I) −
λ(I/J) + 1 = e1(I)− e0(I) + λ(R/I) + 1.

Our objective in introducing rKJ (I) is to obtain bounds for rmJ (I) which in
turn is used to study the depth of fiber cones of ideals with almost minimal
multiplicity.
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Corollary 3.8. Let (R,m) be a 2-dimensional Cohen-Macaulay local
ring, I an m-primary ideal and J a minimal reduction of I. If n ∈ Sm

J (I),
then

rmJ (I) ≤ g1 + n+ 2−
n∑

j=0

νmj .

Proof. The assertion follows directly from Corollary 3.6 by puttting
K = m.

If I is an m-primary ideal, J is a minimal reduction of I and x∗ is regular
in G(I), then rJ(I) = rJ̄(Ī), [14]. In the following lemma we prove that a
similar result holds for the K-reduction number also.

Lemma 3.9. Let (R,m) be a Noetherian local ring of dimension d >
0. Let I be an m-primary ideal of R, K an ideal containing I and J a
minimal reduction of I. Let x ∈ I\KI be such that x∗ is regular in G(I)
and xo is regular in FK(I). Then rK̄

J̄
(Ī) = rKJ (I), where “−” denote images

modulo(x).

Proof. Clearly rK̄
J̄

(Ī) ≤ rKJ (I). Suppose for some n, K̄Īn = K̄J̄ Īn−1.
Then KIn+xR = KJIn−1 +xR and hence KIn = KIn∩(KJIn−1 +xR) =
KJIn−1 + (xR ∩ KIn). Since x∗ is regular in G(I) and xo is regular in
FK(I), by Proposition 2.1(5), xR∩KIn = xKIn−1. Hence KIn = KJIn−1.
Therefore rK̄

J̄
(Ī) = rKJ (I).

§4. Ideals with almost minimal multiplicity

Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0. Let I
be an m-primary ideal and J a minimal reduction of I.

Definition 4.1. An ideal I is said to have almost minimal multi-
plicity with respect to an ideal K ⊇ I if for any minimal reduction J
of I, λ(KI/KJ) = 1. We say that I has almost minimal multiplicity if
λ(mI/mJ) = 1.

Remark. For any m-primary ideal I, an ideal K ⊇ I and a minimal
reduction J of I, λ(KI/KJ) = 1 if and only if λ(I/KI) = e0(I)−λ(R/I)+
λ(J/KJ)− 1 = e0(I)− λ(R/I) + dλ(R/K)− 1, by Lemma 3.5. Hence the
definition of almost minimal multiplicity with respect to K is independent
of the minimal reduction J chosen for I.
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For K = I, the almost minimal multiplicity condition is equivalent to
λ(I/I2) = e0(I) − (d − 1)λ(R/I) − 1, which was the condition imposed
on the ideal in [25] to obtain the almost maximal depth for the associated
graded ring.

In this section we actually consider a more general class of ideals, de-
scribed as follows. Let I be an m-primary ideal, J a minimal reduction
of I and K an ideal containing I. Suppose that there exists an integer k
such that mIn ∩ J = mJIn−1 for all n = 1, . . . , k and λ(mIk+1/mJIk) ≤ 1.
We prove that the fiber cones of such ideals have almost maximal depth
provided the associated graded rings have high depth. The method of the
proof is analogous to the method employed by M. E. Rossi in [25] to prove
the almost maximal depth condition for the associated graded ring. We
begin with the following lemma.

Lemma 4.2. Let (R,m) be a Cohen-Macaulay local ring, I an m-pri-
mary ideal, J a minimal reduction of I and K an ideal containing I. If
λ(KIr/KJIr−1) = 1, for some r ≥ 1, then λ(KIn/KJIn−1) ≤ 1 for all
n ≥ r.

Proof. Since λ(KIr/KJIr−1) = 1, there exists a ∈ K, b ∈ I such that
KIr = KJIr−1 +(abr) and mabr ⊆ KJIr−1. Then it can easily be seen, by
induction, that KIn = KJIn−1 + (abn) with mabn ⊆ KJIn−1 for all n ≥ r.
Hence λ(KIn/KJIn−1) ≤ 1 for all n = 1, . . . , rKJ (I).

Lemma 4.3. 1. Let (R,m) be a 2-dimensional Cohen-Macaulay local
ring. Let I be an m-primary ideal and let J be a minimal reduction of I. If
for some k, mIk∩J = mJIk−1 for all n = 1, . . . , k and λ(mIk+1/mJIk) = 1,
then rmJ (I) ≤ g1 + k + 1−∑k−1

j=0 ν
m
j .

2. Let x ∈ I\mI be such that xo is superficial in F (I) and x∗ is superficial
in G(I). Let “−” denote images modulo(x). If there exists k such that
m̄Īn ∩ J̄ = m̄J̄ Īn−1 for all n = 1, . . . , k and λ(m̄Īk+1/m̄J̄ Īk) = 1, then
rm̄
J̄

(Ī) = rmJ (I) = g1 + k + 1−∑k−1
j=0 ν

m
j .

Proof. 1. The inequality directly follows from Corollary 3.8.

2. Set s = rm̄
J̄

(Ī). Clearly s ≤ rmJ (I). As xo is superficial in F (I) and
x∗ is superficial in G(I), g1 = ḡ1, where ḡi denote coefficients of the poly-
nomial corresponding to λ(R̄/m̄Īn). Since dim R̄ = 1, by Theorem 5.3 of
[20], ḡ1 =

∑
n≥1 λ(m̄Īn/m̄J̄ Īn−1) − λ(R̄/m̄). From the hypothesis it fol-

lows that λ(m̄Īj+1/m̄J̄ Īj) = 1 for all j = k, . . . , s − 1. Therefore, ḡ1 =
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∑k
j=0 λ(m̄Īj+1/m̄J̄ Īj)+s−k−1. Hence rmJ (I) ≤ g1 +k+1−∑k−1

j=0 ν
m
j = s.

We now prove the main result of this section.

Theorem 4.4. Let (R,m) be a d-dimensional Cohen-Macaulay local
ring, d ≥ 2, I an m-primary ideal such that γ(I) ≥ d− 2 and J a minimal
reduction of I. If there exists an integer k, such that

mIn ∩ J = mJIn−1 for all n = 1, . . . , k and λ(mIk+1/mJIk) ≤ 1,

then depthF (I) ≥ d− 1.

Proof. Induct on d. Let d = 2 and J = (x, y) such that (xo, yo),
(x∗, y∗) are superficial sequences in F (I) and G(I) respectively. Let “−”
denote images modulo(x).
Case I: mIk+1 = mJIk.
Then we have, m̄Īn ∩ (ȳ) = m̄(ȳ)Īn−1 for all n ≥ 1. Since ȳ is regular in R̄,
the above condition is equivalent to saying that m̄Īn : (ȳ) = m̄Īn−1 for all
n ≥ 1. Therefore, ȳo is regular in F (Ī). Hence Sally machine for fiber cone,
[20, Lemma 2.7], yields that xo ∈ F (I) is regular and hence depthF (I) ≥ 1.

Case II: λ(mIk+1/mJIk) = 1.
Then for all n = k + 1, . . . , rmJ (I) = r, we have λ(mIn/mJIn−1) = 1. If
m̄Īk+1 = m̄J̄ Īk, then proceeding as in Case I, we get that xo is regular in
F (I) and hence depthF (I) ≥ 1. Therefore assume that λ

(
m̄Īk+1/m̄J̄ Īk

)
=

1. Set s = rm̄
J̄

(Ī). Then by Lemma 4.3(2), we have r = s = g1 + k + 1 −∑k−1
j=0 ν

m
j .

Since mIn ∩J = mJIn−1 for all n = 1, . . . , k, from [20, Lemma 5.2], we
get mIn ∩ (x) = m(x)In−1 for all n = 1, . . . , k.

For j ≥ k, consider the following exact sequence:

0 −→ mIj :x
mIj :J

·y−→ mIj+1:x
mIj

·x−→ mIj+1

mJIj −→ m̄Īj+1

m̄J̄ Īj −→ 0.

For j = k, . . . , r− 1, λ(mIk+1/mJIk) = 1 = λ
(
m̄Īk+1/m̄J̄ Īk

)
and for j ≥ r,

these two modules are zero. Therefore, for j ≥ k, the last two modules
in the above exact sequence have equal length. For j = k we know that
mIj : x = mIj−1 = mIj : J , hence by induction, mIj+1 : x = mIj for all
j ≥ k. Therefore mIj+1 : x = mIj for all j ≥ 0 and hence xo is regular in
F (I).
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Now assume that d > 2. Let J = (x1, . . . , xd) be such that (xo1, . . . , x
o
d−2)

is a superficial sequence in F (I) and (x∗1, . . . , x
∗
d−2) is a regular sequence in

G(I). Let “−” denote images modulo(x1, . . . , xd−2). Then we have,

m̄Īn ∩ J̄ = m̄J̄ Īn−1 for all n = 1, . . . , k and λ
(
m̄Īk+1/m̄J̄ Īk

) ≤ 1.

Therefore, by the first part, depthF (Ī) ≥ 1. Since (x∗1, . . . , x
∗
d−2) is a

regular sequence in G(I), F (Ī) ∼= F (I)/(xo1, . . . , x
o
d−2) and hence by Sally

machine, depthF (I) ≥ d− 1.

Corollary 4.5. Let I be an m-primary ideal in a Cohen-Macaulay
local ring (R,m) such that γ(I) ≥ d−2. If I has almost minimal multiplicity,
then depthF (I) ≥ d− 1.

Proof. By Lemma 4.2 we have λ(mI2/mJI) ≤ 1. We also have mI∩J =
mJ . Now the assertion directly follows from Theorem 4.4.

We end this section with an example to show that the depth assumption on
the associated graded ring in the above theorem is necessary. This example
was provided to us by M. E. Rossi.

Example 4.6. Let R = k[[x, y, z]], where k is any field. Let I = (−x2+
y2,−y2 + z2, xy, yz, zx) and J = (−x2 + y2,−y2 + z2, xy). Then I3 = JI2.
Hence J is a minimal reduction of I. Let m = (x, y, z). Then it can be seen
that mI = mJ + (z3) and m(z3) ⊂ mJ . Hence λ(mI/mJ) = 1. Therefore I
has almost minimal multiplicity. It can be easily seen that x2I ⊂ I2, but
x2 /∈ I. This shows that the Ratliff-Rush closure Ĩ is not equal to I. Hence,
γ(I) = 0.

Now we show that depthF (I) = 1. Since I is generated by homoge-
neous elements of same degree (equal to 2), F (I) ∼= k[−x2 + y2,−y2 +
z2, xy, yz, zx]. Therefore depthF (I) ≥ 1. Set F = k[−x2 + y2,−y2 +
z2, xy, yz, zx]. Consider F = F/(−x2 + y2)F . Let N denote the graded
maximal ideal of F and let N be the graded maximal ideal of F . Then, it
can be easily checked that N(−x2z2 + y2z2) = 0. Note that, since z2 /∈ F ,
−x2z2 + y2z2 6= 0 ∈ F . Therefore we have produced a nonzero element in
F which is killed by the maximal ideal of F and hence depthF = 0. This
shows that depthF = depthF (I) = 1.
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§5. Cohen-Macaulay FK(I) when I has almost minimal multiplic-
ity

In this section, we characterize Cohen-Macaulay property of FK(I)
when I has almost minimal multiplicity. For this purpose, we find the
generating function of the function HK(I, n), first in dimension 1 and then
in arbitrary dimension. A formula of Rossi and Valla for the Hilbert se-
ries of G(m) when λ(m2/Jm) = 1 is generalized for m-primary ideals with
almost minimal multiplicity.

Lemma 5.1. Let (R,m) be a 1-dimensional Cohen-Macaulay local ring
and let I be an m-primary ideal of R with almost minimal multiplicity with
respect to K ⊇ I. Let s = rKJ (I). Then

1. PK(I, n) = e0(I)n− (s− λ(R/K)).

2.
∑

n≥0HK(I, n)tn =
[
λ(R/K)+(e0(I)−1−λ(R/K))t+ts+1

]
/(1−t)2.

Proof. 1. From the following diagram,

R oo h
OO

e0(I)

KIn oo ln

OO

e0(I)

KIn+1::

c
uuuuuuuuu

(x) oo
h

xKIn

it follows that

λ(KIn/KIn+1) =

{
e0(I)− 1 for n = 0, . . . , s− 1
e0(I) for n ≥ s.

Therefore,

λ(R/KIn) = λ(R/K) +
n−1∑

i=0

λ(KIn/KIn+1)

=

{
n(e0(I)− 1) + λ(R/K) for 1 ≤ n ≤ s
ne0(I)− (s− λ(R/K)) for n > s.

Therefore PK(I, n) = ne0(I)− (s− λ(R/K)).
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2. Substituting the values of HK(I, n) from (1) we get,
∑

n≥0

HK(I, n)tn

=
s∑

n=0

[n(e0(I)− 1) + λ(R/K)]tn +
∞∑

n=s+1

[e0(I)n− (s− λ(R/K))]tn

= e0(I)
∞∑

n=0

ntn −
s∑

n=0

ntn + λ(R/K)
∞∑

n=0

tn − s
∞∑

n=s+1

tn

=
e0(I)

(1− t)2
− e0(I)

(1− t) +
λ(R/K)− sts+1

(1− t) −
s∑

n=0

ntn

=
e0(I)

(1− t)2
− e0(I)− λ(R/K) + sts+1 +

(∑s
n=0 nt

n
)
(1− t)

(1− t)

=
e0(I)

(1− t)2
− e0(I)− λ(R/K) + sts+1 + t(1 + t+ · · ·+ ts−1)− sts+1

(1− t)
=
e0(I)− e0(I)(1− t) + λ(R/K)(1− t)− t(1− ts)

(1− t)2

=
λ(R/K) + (e0(I)− 1− λ(R/K))t+ ts+1

(1− t)2
.

Proposition 5.2. Let (R,m) be a Cohen-Macaulay local ring of di-
mension d. Let I be an m-primary ideal with almost minimal multiplicity
with respect to K such that γ(I) ≥ d− 1. Let s = rKJ (I). Then

∑

n≥0

HK(I, n)tn =
λ(R/K) + (e0(I)− 1− λ(R/K))t+ ts+1

(1− t)d+1
.

Proof. We induct on d. The case d = 1 is proved in Lemma 5.1(2).
Let d > 1. Let x ∈ I\KI, such that x∗ is a regular element in G(I) and xo

is a regular element in FK(I). Let “−” denote images modulo (x). Then Ī
is an m̄-primary ideal with almost minimal multiplicity with respect to K̄
in R̄. For n ≥ 1, consider the exact sequence

0 −→ KIn+1 : x/KIn −→ R/KIn
x−→ R/KIn+1 −→ R/(KIn+1 +xR) −→ 0.

Since x∗ is regular in G(I) and xo is regular in FK(I), KIn+1 : x = KIn

for all n ≥ 0, by Proposition 2.1(3). Therefore HK̄(Ī , n) = ∆HK(I, n) for
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all n ≥ 1. By induction

∑

n≥0

HK̄(Ī , n)tn =
λ(R̄/K̄) + (e0(Ī)− 1− λ(R̄/K̄))t+ ts+1

(1− t)d ,

where s = rK̄
J̄

(Ī) = rKJ (I). Therefore

∑

n≥0

HK(I, n)tn =
λ(R/K) + (e0(I)− 1− λ(R/K))t+ ts+1

(1− t)d+1
.

As a corollary, we recover a result of Rossi, [24, Corollary 3.8(2)].

Corollary 5.3. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion d > 0. Let I be an m-primary ideal with λ(I2/JI) = 1 for some
minimal reduction J of I with reduction number r. Then

H(G(I), t) :=
∑

n≥0

λ(In/In+1)tn =
λ(R/I) + (e0(I)− 1− λ(R/I))t+ tr

(1− t)d .

Proof. By Corollary 1.7 of [25], γ(I) ≥ d − 1. Put K = I in Proposi-
tion 5.2. Then we get

∑

n≥0

λ(R/In+1)tn =
λ(R/I) + (e0(I)− 1− λ(R/I))t+ tr

(1− t)d+1
.

Multiplying both sides by (1− t), we get

∑

n≥0

λ(In/In+1)tn =
λ(R/I) + (e0(I)− 1− λ(R/I))t+ tr

(1− t)d .

We end this paper by characterizing the Cohen-Macaulay fiber cones of
ideals with almost minimal multiplicity in the following proposition.

Proposition 5.4. Let (R,m) be a d-dimensional Cohen-Macaulay lo-
cal ring and I be an m-primary ideal with almost minimal multiplicity with
respect to K ⊇ I and γ(I) ≥ d− 1. Let s = rKJ (I). Then FK(I) is Cohen-
Macaulay if and only if λ(KIn + JIn−1/JIn−1) = 1 for all n = 1, . . . , s.
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Proof. Since γ(I) ≥ d−1, by Theorem 4.2 of [20], we know that FK(I)
is Cohen-Macaulay if and only if g1 =

∑
n≥1 λ(KIn + JIn−1/JIn−1) −

λ(R/K). From Proposition 4.1.9 of [2] and Proposition 5.2, we get that
g1 = rKJ (I)− λ(R/K). Therefore, FK(I) is Cohen-Macaulay if and only if

rKJ (I)− λ(R/K) =
∑

n≥1

λ(KIn + JIn−1/JIn−1)− λ(R/K).

From Lemma 4.2, it follows that λ(KIn + JIn−1/JIn−1) ≤ 1 for all n ≥ 1.
Therefore FK(I) is Cohen-Macaulay if and only if rKJ (I) =

∑
n≥1 λ(KIn +

JIn−1/JIn−1) if and only if λ(KIn + JIn−1/JIn−1) = 1 for all n =
1, . . . , rKJ (I).
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