HILBERT-KUNZ MULTIPLICITY OF THREE-DIMENSIONAL LOCAL RINGS

KEI-ICHI WATANABE and KEN-ICHI YOSHIDA

Abstract

In this paper, we investigate the lower bound $s_{\mathrm{HK}}(p, d)$ of HilbertKunz multiplicities for non-regular unmixed local rings of Krull dimension d containing a field of characteristic $p>0$. Especially, we focus on threedimensional local rings. In fact, as a main result, we will prove that $s_{\mathrm{HK}}(p, 3)=$ $4 / 3$ and that a three-dimensional complete local ring of Hilbert-Kunz multiplicity $4 / 3$ is isomorphic to the non-degenerate quadric hypersurface $k[[X, Y$, $Z, W]] /\left(X^{2}+Y^{2}+Z^{2}+W^{2}\right)$ under mild conditions. Furthermore, we pose a generalization of the main theorem to the case of $\operatorname{dim} A \geq 4$ as a conjecture, and show that it is also true in case $\operatorname{dim} A=4$ using the similar method as in the proof of the main theorem.

Introduction

Let A be a commutative Noetherian ring containing an infinite field of characteristic $p>0$ with unity. In [15], Kunz proved the following theorem, which gives a characterization of regular local rings of positive characteristic.

Kunz' Theorem. ([15]) Let (A, \mathfrak{m}, k) be a local ring of characteristic $p>0$. Then the following conditions are equivalent:
(1) A is a regular local ring.
(2) A is reduced and is flat over the subring $A^{p}=\left\{a^{p}: a \in A\right\}$. In other words, the Frobenius map $F: A \rightarrow A\left(a \mapsto a^{p}\right)$ is flat.
(3) $l_{A}\left(A / \mathfrak{m}^{[q]}\right)=q^{d}$ for any $q=p^{e}, e \geq 1$, where $\mathfrak{m}^{[q]}=\left(a^{q}: a \in \mathfrak{m}\right)$ and $l_{A}(M)$ denotes the length of an A-module M.

[^0]Furthermore, in [16], Kunz observed that $l_{A}\left(A / \mathfrak{m}^{[q]}\right) / q^{d}\left(q=p^{e}\right)$ is a reasonable measure for the singularity of a local ring. Based on the idea of Kunz, Monsky [18] proved that there exists a constant $c=c(A)$ such that

$$
l_{A}\left(A / \mathfrak{m}^{[q]}\right)=c q^{d}+O\left(q^{d-1}\right)
$$

and defined the notion of Hilbert-Kunz multiplicity by $e_{\mathrm{HK}}(A)=c$. In 1990's, Han and Monsky [10] have given an algorism to compute the HilbertKunz multiplicity for any hypersurface of Briskorn-Fermat type

$$
A=k\left[X_{0}, \ldots, X_{n}\right] /\left(X_{0}^{d_{0}}+\cdots+X_{n}^{d_{n}}\right)
$$

See e.g. [1], [2], [4], [24] about the other examples. Hochster and Huneke [11] have given a "Length Criterion for Tight Closure" in terms of Hilbert-Kunz multiplicity (see Theorem 1.8) and indicated the close relation between tight closure and Hilbert-Kunz multiplicity. In [22], the authors proved a theorem which gives a characterization of regular local rings in terms of Hilbert-Kunz multiplicity:

Theorem A. ([22, Theorem 1.5]) Let (A, \mathfrak{m}, k) be an unmixed local ring of positive characteristic. Then A is regular if and only if $e_{\mathrm{HK}}(A)=1$.

Many researchers have tried to improve this theorem. For example, Blickle and Enescu [3] recently proved the following theorem:

Theorem B. (Blickle-Enescu [3]) Let (A, \mathfrak{m}, k) be an unmixed local ring of characteristic $p>0$. Then the following statements hold:
(1) If $e_{\mathrm{HK}}(A)<1+\frac{1}{d!}$, then A is Cohen-Macaulay and F-rational.
(2) If $e_{\mathrm{HK}}(A)<1+\frac{1}{p^{d} d!}$, then A is regular.

So it is natural to consider the following problem:
Problem C. Let $d \geq 2$ be any integer. Determine the lower bound $\left(s_{\mathrm{HK}}(p, d)\right)$ of Hilbert-Kunz multiplicities for d-dimensional non-regular unmixed local rings of characteristic p. Also, characterize the local rings A for which $e_{\mathrm{HK}}(A)=s_{\mathrm{HK}}(p, d)$ holds.

In case of one-dimensional local rings, it is easy to answer to this problem. In fact, $s_{\mathrm{HK}}(p, 1)=2$; $e_{\mathrm{HK}}(A)=2$ if and only if $e(A)=2$. In case of two-dimensional Cohen-Macaulay local rings, the authors [23] have given a complete answer to this problem. Namely, we have $s_{\mathrm{HK}}(p, 2)=\frac{3}{2}$ by the theorem below.

Theorem D. (see also Corollary 2.6) Let (A, \mathfrak{m}, k) be a two-dimensional Cohen-Macaulay local ring of positive characteristic. Put $e=e(A)$, the multiplicity of A. Then the following statements hold:
(1) $e_{\mathrm{HK}}(A) \geq \frac{e+1}{2}$.
(2) Suppose that $k=\bar{k}$. Then $e_{\mathrm{HK}}(A)=\frac{e+1}{2}$ holds if and only if the associated graded ring $\operatorname{gr}_{\mathfrak{m}}(A)$ is isomorphic to the Veronese subring $k[X, Y]^{(e)}$.

In the following, let us explain the organization of this paper. In Section 1, we recall the notions of Hilbert-Kunz multiplicity and tight closure etc. and gather several fundamental properties of them. In particular, GotoNakamura's theorem (Theorem 1.9) is important because it plays a central role in the proof of the main result (Theorem 3.1).

In Section 2, we give a key result to estimate Hilbert-Kunz multiplicities for local rings of lower dimension. Indeed, Theorem 2.2 is a refinement of the argument in [23, Section 2]. Also, the point of our proof is to estimate $l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right)$ (where J is a minimal reduction of \mathfrak{m}) using volumes in \mathbb{R}^{d}.

In Section 3, we prove the following theorem as the main result in this paper.

Theorem 3.1. Let (A, \mathfrak{m}, k) be a three-dimensional unmixed local ring of characteristic $p>0$. Then the following statements hold.
(1) If A is not regular, then $e_{\mathrm{HK}}(A) \geq \frac{4}{3}$.
(2) Suppose that $k=\bar{k}$ and char $k \neq 2$. Then the following conditions are equivalent:
(a) $e_{\mathrm{HK}}(A)=\frac{4}{3}$.
(b) $\widehat{A} \cong k[[X, Y, Z, W]] /\left(X^{2}+Y^{2}+Z^{2}+W^{2}\right)$.

Also, we study lower bounds on $e_{\mathrm{HK}}(A)$ for local rings A having a given (small) multiplicity e. In particular, we will prove that any three-dimensional unmixed local ring A with $e_{\mathrm{HK}}(A)<2$ is F-rational.

In Section 4, we consider a generalization of Theorem 3.1 and pose the following conjecture:

Conjecture 4.2. Let $d \geq 1$ be an integer and $p>2$ a prime number. Put

$$
A_{p, d}:=\overline{\mathbb{F}_{p}}\left[\left[X_{0}, X_{1}, \ldots, X_{d}\right]\right] /\left(X_{0}^{2}+\cdots+X_{d}^{2}\right)
$$

Let (A, \mathfrak{m}, k) be a d-dimensional unmixed local ring with $k=\overline{\mathbb{F}_{p}}$. Then the following statements hold.
(1) If A is not regular, then $e_{\mathrm{HK}}(A) \geq e_{\mathrm{HK}}\left(A_{p, d}\right) \geq 1+\frac{c_{d}}{d!}$ (see 4.2 for the definition of $\left.c_{d}\right)$. In particular, $s_{\mathrm{HK}}(p, d)=e_{\mathrm{HK}}\left(A_{p, d}\right)$.
(2) If $e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}\left(A_{p, d}\right)$, then the \mathfrak{m}-adic completion \widehat{A} of A is isomorphic to $A_{p, d}$ as local rings.

Also, we prove that this is true in case of $\operatorname{dim} A=4$. Namely we will prove the following theorem.

Theorem 4.3. Let (A, \mathfrak{m}, k) be a four-dimensional unmixed local ring of characteristic $p>0$. Also, suppose that $k=\bar{k}$ and char $k \neq 2$. Then $e_{\mathrm{HK}}(A) \geq \frac{5}{4}$ if $e(A) \geq 3$. Also, the following statements hold.
(1) If A is not regular, then $e_{\mathrm{HK}}(A) \geq e_{\mathrm{HK}}\left(A_{p, 4}\right)=\frac{29 p^{2}+15}{24 p^{2}+12}$.
(2) The following conditions are equivalent:
(a) Equality holds in (1).
(b) $e_{\mathrm{HK}}(A)<\frac{5}{4}$.
(c) \widehat{A} is isomorphic to $A_{p, 4}$.

§1. Preliminaries

Throughout this paper, let A be a commutative Noetherian ring with unity. Furthermore, we assume that A has a positive characteristic p, that is, it contains a prime field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, unless otherwise specified. For every positive integer e, let $q=p^{e}$. If I is an ideal of A, then $I^{[q]}=\left(a^{q}: a \in I\right) A$. Also, we fix the following notation: $l_{A}(M)$ (resp. $\left.\mu_{A}(M)\right)$ denotes the length (resp. the minimal number of generators) of M for any finitely generated A-module M.

First, we recall the notion of Hilbert-Kunz multiplicity (see [15], [16], [18]). Also, see [17] or [20] for usual multiplicity.

Definition 1.1. (multiplicity, Hilbert-Kunz multiplicity) Let (A, \mathfrak{m}, k) be a local ring of characteristic $p>0$ with $\operatorname{dim} A=d$. Let I be an \mathfrak{m} primary ideal of A, and let M be a finitely generated A-module. The (Hilbert-Samuel) multiplicity $e(I, M)$ of I with respect to M is defined by

$$
e(I, M)=\lim _{n \rightarrow \infty} \frac{d!}{n^{d}} l_{A}\left(M / I^{n} M\right)
$$

The Hilbert-Kunz multiplicity $e_{\mathrm{HK}}(I, M)$ of I with respect to M is defined by

$$
e_{\mathrm{HK}}(I, M)=\lim _{q \rightarrow \infty} \frac{l_{A}\left(M / I^{[q]} M\right)}{q^{d}} .
$$

By definition, we put $e(I)=e(I, A)\left(\right.$ resp. $\left.e_{\mathrm{HK}}(I)=e_{\mathrm{HK}}(I, A)\right)$ and $e(A)=$ $e(\mathfrak{m})\left(\operatorname{resp} . e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}(\mathfrak{m})\right)$.

We recall several basic results on Hilbert-Kunz multiplicity.
Proposition 1.2. (Fundamental properties (cf. [13], [15], [16], [18], [22])) Let (A, \mathfrak{m}, k) be a local ring of positive characteristic. Let I, I^{\prime} be \mathfrak{m}-primary ideals of A, and let M be a finitely generated A-module. Then the following statements hold.
(1) If $I \subseteq I^{\prime}$, then $e_{\mathrm{HK}}(I) \geq e_{\mathrm{HK}}\left(I^{\prime}\right)$.
(2) $e_{\mathrm{HK}}(A) \geq 1$.
(3) $\operatorname{dim} M<d$ if and only if $e_{\mathrm{HK}}(I, M)=0$.
(4) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence of finitely generated A-modules, then

$$
e_{\mathrm{HK}}(I, M)=e_{\mathrm{HK}}(I, L)+e_{\mathrm{HK}}(I, N) .
$$

(5) (Associative formula)

$$
e_{\mathrm{HK}}(I, M)=\sum_{\mathfrak{p} \in \operatorname{Assh}(A)} e_{\mathrm{HK}}(I, A / \mathfrak{p}) \cdot l_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right),
$$

where $\operatorname{Assh}(A)$ denotes the set of prime ideals \mathfrak{p} of A with $\operatorname{dim} A / \mathfrak{p}=$ $\operatorname{dim} A$.
(6) If J is a parameter ideal of A, then $e_{\mathrm{HK}}(J)=e(J)$. In particular, if J is a minimal reduction of I (i.e., J is a parameter ideal which is contained in I and $I^{r+1}=J I^{r}$ for some integer $r \geq 0$), then $e_{\mathrm{HK}}(J)=e(I)$.
(7) If A is regular, then $e_{\mathrm{HK}}(I)=l_{A}(A / I)$.
(8) (Localization) $e_{\mathrm{HK}}\left(A_{\mathfrak{p}}\right) \leq e_{\mathrm{HK}}(A)$ holds for any prime ideal \mathfrak{p} such that $\operatorname{dim} A / \mathfrak{p}+$ height $\mathfrak{p}=\operatorname{dim} A$.
(9) If $x \in I$ is A-regular, then $e_{\mathrm{HK}}(I) \leq e_{\mathrm{HK}}(I / x A)$.
(10) If $(A, \mathfrak{m}) \rightarrow(B, \mathfrak{n})$ is a flat local ring homomorphism such that $B / \mathfrak{m} B$ is a field, then $e_{\mathrm{HK}}(I)=e_{\mathrm{HK}}(I B)$.

Remark 1. Also, the similar result as above (except (6), (7)) holds for usual multiplicities.

Let (A, \mathfrak{m}, k) be any local ring of positive dimension. The associated graded ring $\operatorname{gr}_{\mathfrak{m}}(A)$ of A with respect to \mathfrak{m} is defined as follows:

$$
\operatorname{gr}_{\mathfrak{m}}(A):=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}
$$

Then $G=\operatorname{gr}_{\mathfrak{m}}(A)$ is a homogeneous k-algebra such that $\mathfrak{M}:=G_{+}$is the unique homogeneous maximal ideal of G. If $\operatorname{char} A=p>0$ and $\operatorname{dim} A=d$, then $G_{\mathfrak{M}}$ is also a local ring of characteristic p with $\operatorname{dim} G_{\mathfrak{M}}=d$.

Proposition 1.3. ([22, Theorem (2.15)]) Let (A, \mathfrak{m}, k) be a local ring of positive characteristic. Let $G=\operatorname{gr}_{\mathfrak{m}}(A)$ the associated graded ring of A with respect \mathfrak{m} as above. Then $e_{\mathrm{HK}}(A) \leq e_{\mathrm{HK}}\left(G_{\mathfrak{M}}\right) \leq e(A)$.

Remark 2. We use the same notation as in the above proposition. Although $e(A)=e\left(G_{\mathfrak{M}}\right)$ always holds, $e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}\left(G_{\mathfrak{M}}\right)$ seldom holds.

Proposition 1.4. (cf. [13]) Let (A, \mathfrak{m}, k) be a local ring of positive characteristic with $d=\operatorname{dim} A$. Let I be an \mathfrak{m}-primary ideal of A. Then

$$
\frac{e(I)}{d!} \leq e_{\mathrm{HK}}(I) \leq e(I)
$$

Also, if $d \geq 2$, then the inequality in the left-hand side is strict; see [9].
We say that a local ring A is unmixed if $\operatorname{dim} \widehat{A} / \mathfrak{p}=\operatorname{dim} \widehat{A}$ holds for any associated prime ideal \mathfrak{p} of \widehat{A}. The following theorem is an analogy of Nagata's theorem $([20,(40.6)])$, which is a starting point in this article.

Theorem 1.5. ([22, Theorem (1.5)]) Let (A, \mathfrak{m}, k) be an unmixed local ring of positive characteristic. Then A is regular if and only if $e_{\mathrm{HK}}(A)=1$.

It is not so easy to compute Hilbert-Kunz multiplicities in general. However, one has simple formulas for them in case of quotient singularities and in case of binomial hypersurfaces; see below or [4, Theorem 3.1].

Theorem 1.6. (cf. [22, Theorem (2.7)]) Let $(A, \mathfrak{m}) \hookrightarrow(B, \mathfrak{n})$ be a mod-ule-finite extension of local domains of positive characteristic. Then for every \mathfrak{m}-primary ideal I of A, we have

$$
e_{\mathrm{HK}}(I)=\frac{e_{\mathrm{HK}}(I B)}{[Q(B): Q(A)]} \cdot[B / \mathfrak{n}: A / \mathfrak{m}]
$$

where $Q(A)$ denotes the fraction field of A.
Now let us see some examples of Hilbert-Kunz multiplicities which are given by the above formula. First, we consider the Veronese subring A defined by

$$
A=k\left[\left[X_{1}^{i_{1}} \cdots X_{d}^{i_{d}}: i_{1}, \ldots, i_{d} \geq 0, \sum i_{j}=r\right]\right]
$$

Applying Theorem 1.6 to $A \hookrightarrow B=k\left[\left[X_{1}, \ldots, X_{d}\right]\right]$, we get

$$
\begin{equation*}
e_{\mathrm{HK}}(A)=\frac{1}{r}\binom{d+r-1}{r-1} . \tag{1.1}
\end{equation*}
$$

In particular, if $d=2, r=e(A)$, then $e_{\mathrm{HK}}(A)=\frac{e(A)+1}{2}$.
Next, we consider the homogeneous coordinate rings of quadric hypersurfaces in \mathbb{P}_{k}^{3}. Let k be a field of characteristic $p>2$, and let R be the homogeneous coordinate ring of the hyperquadric Q defined by $q=q(X, Y, Z, W)$. Put $\mathfrak{M}=R_{+}$, the unique homogeneous maximal ideal of R, and $A=R_{\mathfrak{M}} \otimes_{k} \bar{k}$. By suitable coordinate transformation, we may assume that \widehat{A} is isomorphic to one of the following rings:

$$
\begin{cases}k[[X, Y, Z, W]] /\left(X^{2}\right), & \text { if } \operatorname{rank}(q)=1 \tag{1.2}\\ k[[X, Y, Z, W]] /\left(X^{2}-Y Z\right), & \text { if } \operatorname{rank}(q)=2 \\ k[[X, Y, Z, W]] /(X Y-Z W), & \text { if } \operatorname{rank}(q)=3\end{cases}
$$

Then $e_{\text {HK }}(A)=2, \frac{3}{2}$, or $\frac{4}{3}$, respectively.
In order to state other important properties of Hilbert-Kunz multiplicity, the notion of tight closure is very important. See [11], [12], [13] for definition and the fundamental properties of tight closure. In particular, the notion of F-rational ring is essential in our argument.

Definition 1.7. ([6], [11], [12]) Let (A, \mathfrak{m}, k) be a local ring of positive characteristic. We say that A is weakly F-regular (resp. F-rational) if every ideal (resp. every parameter ideal) is tightly closed. Also, A is F regular (resp. F-rational) if any local ring of A is weakly F-regular (resp. F-rational).

Note that an F-rational local ring is normal and Cohen-Macaulay.
Hochster and Huneke have given the following criterion of tight closure in terms of Hilbert-Kunz multiplicity.

Theorem 1.8. (Length Criterion for Tight Closure (cf. [11, Theorem 8.17])) Let $I \subseteq J$ be \mathfrak{m}-primary ideals of a local ring (A, \mathfrak{m}, k) of positive characteristic.
(1) If $I^{*}=J^{*}$, then $e_{\mathrm{HK}}(I)=e_{\mathrm{HK}}(J)$.
(2) Suppose that A is excellent, reduced and equidimensional. Then the converse of (1) is also true.

The following theorem plays an important role in studying HilbertKunz multiplicities for non-Cohen-Macaulay local rings.

Theorem 1.9. (Goto-Nakamura [8]) Let (A, \mathfrak{m}, k) be an equidimensional local ring which is a homomorphic image of a Cohen-Macaulay local ring of characteristic $p>0$. Then
(1) If J is a parameter ideal of A, then $e(J) \geq l_{A}\left(A / J^{*}\right)$.
(2) Suppose that A is unmixed. If $e(J)=l_{A}\left(A / J^{*}\right)$ for some parameter ideal J, then A is F-rational (hence is Cohen-Macaulay).

The next corollary is well-known in case of Cohen-Macaulay local rings (e.g. see [13]).

Corollary 1.10. Let (A, \mathfrak{m}, k) be an unmixed local ring of characteristic $p>0$. Suppose that $e(A)=2$. Then \widehat{A} is F-rational if and only if $e_{\mathrm{HK}}(A)<2$. When this is the case, A is an F-rational hypersurface.

Proof. Since any Cohen-Macaulay local ring of multiplicity 2 is a hypersurface, it suffices to prove the first statement.

We may assume that A is complete and k is infinite. We can take a minimal reduction J of \mathfrak{m}. First, suppose that $e_{\mathrm{HK}}(A)<2$. Then we show that A is Cohen-Macaulay, F-rational. By Goto-Nakamura's theorem, we have $2=e(J) \geq l_{A}\left(A / J^{*}\right)$. If equality does not hold, then $l_{A}\left(A / J^{*}\right)=1$, that is, $J^{*}=\mathfrak{m}$. Then $e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}\left(J^{*}\right)=e_{\mathrm{HK}}(J)=e(J)=2$ by Proposition 1.2. This is a contradiction. Hence $e(J)=l_{A}\left(A / J^{*}\right)$. By Goto-Nakamura's theorem again, we obtain that A is Cohen-Macaulay, F rational.

Conversely, suppose that A is a complete F-rational local ring. Then since A is Cohen-Macaulay and $J^{*}=J \neq \mathfrak{m}$, we have $e_{\mathrm{HK}}(A)<e_{\mathrm{HK}}(J)=$ $e(J)=2$ by the Length Criterion for Tight Closure.

The next question is open in general. However, we will show that it is true for $\operatorname{dim} A \leq 3$; see Section 3 .

Question 1.11. If A is an unmixed local ring with $e_{\mathrm{HK}}(A)<2$, then is it F-rational?

§2. Estimate of Hilbert-Kunz multiplicities

In this section, we will prove the key result to find a lower bound on Hilbert-Kunz multiplicities. Actually, it is a refinement of the argument which appeared in [22, Section 5] or in [23, Section 2]. The point is to use the tight closure J^{*} instead of "a parameter ideal J itself". This enables us to investigate Hilbert-Kunz multiplicities of non-Cohen-Macaulay local rings. In Sections 3, 4, we will apply our method to unmixed local rings with $\operatorname{dim} A=3,4$.

Before stating our theorem, we introduce the following notation: Fix $d>0$. For any positive real number s, we put

$$
v_{s}:=\operatorname{vol}\left\{\left(x_{1}, \ldots, x_{d}\right) \in[0,1]^{d}: \sum_{i=1}^{d} x_{i} \leq s\right\}, \quad v_{s}^{\prime}:=1-v_{s},
$$

where $\operatorname{vol}(W)$ denotes the volume of $W \subseteq \mathbb{R}^{d}$. Then it is easy to see the following fact.

Fact 2.1. Let se a positive real number. Using the same notation as above, we have
(1) $v_{s}+v_{s}^{\prime}=1$.
(2) $v_{d-s}^{\prime}=v_{s}$.
(3) $v_{d / 2}=v_{d / 2}^{\prime}=\frac{1}{2}$.
(4) If $0 \leq s \leq 1$, then $v_{s}=\frac{s^{d}}{d!}$.

Using the above notaion, the key result in this paper can be written as follows:

Theorem 2.2. Let (A, \mathfrak{m}, k) be an unmixed local ring of characteristic $p>0$. Put $d=\operatorname{dim} A \geq 1$. Let J be a minimal reduction of \mathfrak{m}, and let r be an integer with $r \geq \mu_{A}\left(\mathfrak{m} / J^{*}\right)$, where J^{*} denotes the tight closure of J. Also, let $s \geq 1$ be a rational number. Then we have

$$
\begin{equation*}
e_{\mathrm{HK}}(A) \geq e(A)\left\{v_{s}-r \cdot \frac{(s-1)^{d}}{d!}\right\} \tag{2.1}
\end{equation*}
$$

Remark 3. When $1 \leq s \leq 2$, the right-hand side in Equation (2.1) is equal to $e(A)\left(v_{s}-r \cdot v_{s-1}\right)$.

Before proving the theorem, we need the following lemma. In what follows, for any positive real number α, we define $I^{\alpha}:=I^{n}$, where n is the minimum integer which does not exceed α.

Lemma 2.3. Let (A, \mathfrak{m}, k) be an unmixed local ring of characteristic $p>0$ with $\operatorname{dim} A=d \geq 1$. Let J be a parameter ideal of A. Using the same notation as above, we have

$$
\lim _{q \rightarrow \infty} \frac{l_{A}\left(A / J^{s q}\right)}{q^{d}}=\frac{e(J) s^{d}}{d!}, \quad \lim _{q \rightarrow \infty} l_{A}\left(\frac{J^{s q}+J^{[q]}}{J[q]}\right)=e(J) \cdot v_{s}^{\prime}
$$

Proof. First, note that our assertion holds if A is regular and $J=\mathfrak{m}$. We may assume that A is complete. Let x_{1}, \ldots, x_{d} be a system of parameters which generates J, and put $R:=k\left[\left[x_{1}, \ldots, x_{d}\right]\right], \mathfrak{n}=\left(x_{1}, \ldots, x_{d}\right) R$. Then R is a complete regular local ring and A is a finitely generated R module with $A / \mathfrak{m}=R / \mathfrak{n}$. Since the assertion is clear in case of regular local rings, it suffices to show the following claim.

Claim. Let $\mathcal{I}=\left\{I_{q}\right\}_{q=p^{e}}$ be a set of ideals of A which satisfies the following conditions:
(1) For each $q=p^{e}, I_{q}=J_{q} A$ holds for some ideal $J_{q} \subseteq R$.
(2) There exists a positive integer t such that $\mathfrak{n}^{t q} \subseteq J_{q}$ for all $q=p^{e}$.
(3) $\lim _{q \rightarrow \infty} l_{R}\left(R / J_{q}\right) / q^{d}$ exists.

Then

$$
\lim _{q \rightarrow \infty} \frac{l_{A}\left(A / I_{q}\right)}{q^{d}}=e(J) \cdot \lim _{q \rightarrow \infty} \frac{l_{R}\left(R / J_{q}\right)}{q^{d}}
$$

In fact, since A is unmixed, it is a torsion-free R-module of rank $e:=$ $e(J)$. Take a free R-module F of rank e such that $A_{W} \cong F_{W}$, where $W=R \backslash\{0\}$. Since F and A are both torsion-free, there exist the following short exact sequences of finitely generated R-modules:

$$
0 \rightarrow F \rightarrow A \rightarrow C_{1} \rightarrow 0, \quad 0 \rightarrow A \rightarrow F \rightarrow C_{2} \rightarrow 0
$$

where $\left(C_{1}\right)_{W}=\left(C_{2}\right)_{W}=0$. In particular, $\operatorname{dim} C_{1}<d$ and $\operatorname{dim} C_{2}<d$.
Applying the tensor product $-\otimes_{R} R / J_{q}$ to the above two exact sequences, respectively, we get

$$
\begin{aligned}
l_{A}\left(A / I_{q}\right) & \leq l_{R}\left(F / J_{q} F\right)+l_{R}\left(C_{1} / J_{q} C_{1}\right), \\
l_{R}\left(F / J_{q} F\right) & \leq l_{A}\left(A / I_{q}\right)+l_{R}\left(C_{2} / J_{q} C_{2}\right) .
\end{aligned}
$$

In general, if $\operatorname{dim}_{R} C<d$, then

$$
\frac{l_{R}\left(C / J_{q} C\right)}{q^{d}} \leq \frac{l_{R}\left(C / \mathfrak{n}^{t q} C\right)}{q^{d}} \rightarrow 0 \quad(q \rightarrow \infty)
$$

Thus the required assertion easily follows from the above observation.
Proof of Theorem 2.2. For simplicity, we put $L=J^{*}$ and $e=e(A)$. We will give an upper bound of $l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right)$. First, we have the following inequality:

$$
\begin{aligned}
l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right) \leq & l_{A}\left(\frac{\mathfrak{m}^{[q]}+\mathfrak{m}^{s q}}{J^{[q]}}\right) \\
= & l_{A}\left(\frac{\mathfrak{m}^{[q]}+\mathfrak{m}^{s q}}{L^{[q]}+\mathfrak{m}^{s q}}\right)+l_{A}\left(\frac{L^{[q]}+\mathfrak{m}^{s q}}{L^{[q]}+J^{s q}}\right) \\
& \quad+l_{A}\left(\frac{L^{[q]}+J^{s q}}{J^{[q]}+J^{s q}}\right)+l_{A}\left(\frac{J^{[q]}+J^{s q}}{J^{[q]}}\right) \\
= & \ell_{1}+\ell_{2}+\ell_{3}+\ell_{4} .
\end{aligned}
$$

Next, we see that $\ell_{1} \leq r \cdot l_{A}\left(A / J^{(s-1) q}\right)+O\left(q^{d-1}\right)$. By our assumption, we can write $\mathfrak{m}=L+A a_{1}+\cdots+A a_{r}$. Since $\mathfrak{m}^{(s-1) q} a_{i}^{q} \subseteq \mathfrak{m}^{s q} \subseteq \mathfrak{m}^{s q}+L^{[q]}$, we have

$$
\begin{aligned}
\ell_{1}=l_{A}\left(\frac{\mathfrak{m}^{[q]}+\mathfrak{m}^{s q}}{L^{[q]}+\mathfrak{m}^{s q}}\right) & \leq \sum_{i=1}^{r} l_{A}\left(\frac{A a_{i}^{q}+L^{[q]}+\mathfrak{m}^{s q}}{L^{[q]}+\mathfrak{m}^{s q}}\right) \\
& =\sum_{i=1}^{r} l_{A}\left(A /\left(L^{[q]}+\mathfrak{m}^{s q}\right): a_{i}^{q}\right) \\
& \leq r \cdot l_{A}\left(A / \mathfrak{m}^{(s-1) q}\right) .
\end{aligned}
$$

Since J is a minimal reduction of \mathfrak{m}, we have $l_{A}\left(\mathfrak{m}^{(s-1) q} / J^{(s-1) q}\right)=O\left(q^{d-1}\right)$. Thus we have the required inequality. Similarly, we get

$$
\ell_{2}=l_{A}\left(\frac{L^{[q]}+\mathfrak{m}^{s q}}{L^{[q]}+J^{s q}}\right) \leq l_{A}\left(\mathfrak{m}^{s q} / J^{s q}\right)=O\left(q^{d-1}\right)
$$

Also, we have $l_{A}\left(L^{[q]} / J^{[q]}\right)=O\left(q^{d-1}\right)$ by Length Criterion for Tight Closure. Hence $\ell_{3}=O\left(q^{d-1}\right)$ and thus

$$
l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right) \leq r \cdot l_{A}\left(A / J^{(s-1) q}\right)+l_{A}\left(\frac{J^{[q]}+J^{s q}}{J^{[q]}}\right)+O\left(q^{d-1}\right)
$$

It follows from the above argument that

$$
\begin{aligned}
e_{\mathrm{HK}}(J)-e_{\mathrm{HK}}(\mathfrak{m}) & \leq r \cdot \lim _{q \rightarrow \infty} \frac{l_{A}\left(A / J^{(s-1) q}\right)}{q^{d}}+\lim _{q \rightarrow \infty} \frac{1}{q^{d}} l_{A}\left(\frac{J^{[q]}+J^{s q}}{J^{[q]}}\right) \\
& =r \cdot e \cdot \frac{(s-1)^{d}}{d!}+e \cdot v_{s}^{\prime}
\end{aligned}
$$

Since $e_{\mathrm{HK}}(J)=e(J)=e, e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}(\mathfrak{m})$ and $v_{s}^{\prime}=1-v_{s}$, we get the required inequality.

The following fact is known, which gives a lower bound on Hilbert-Kunz multiplicities for hypersurface local rings.

FACT 2.4. (cf. [1], [2], [22]) Let (A, \mathfrak{m}, k) be a hypersurface local ring of characteristic $p>0$ with $d=\operatorname{dim} A \geq 1$. Then

$$
e_{\mathrm{HK}}(A) \geq \beta_{d+1} \cdot e(A)
$$

where β_{d+1} is given by the following equivalent formulas:
(a) $\frac{1}{\pi} \int_{-\infty}^{\infty}\left(\frac{\sin \theta}{\theta}\right)^{d+1} d \theta$;
(b) $\frac{1}{2^{d} d!} \sum_{\ell=0}^{\left[\frac{d}{2}\right]}(-1)^{\ell}(d+1-2 \ell)^{d}\binom{d+1}{\ell}$;
(c) $\operatorname{vol}\left\{\underline{x} \in[0,1]^{d}: \frac{d-1}{2} \leq \sum x_{i} \leq \frac{d+1}{2}\right\}=1-v_{\frac{d-1}{2}}-v_{\frac{d+1}{2}}^{\prime}$.

Table 1.

d	0	1	2	3	4	5	6
β_{d+1}	1	1	$\frac{3}{4}$	$\frac{2}{3}$	$\frac{115}{192}$	$\frac{11}{20}$	$\frac{5633}{11520}$

Remark 4. The above inequality is not best possible in general. In case of $d \geq 4$, one cannot prove the formula in the above fact as a corollary of our theorem. See also Proposition 3.9 and Theorem 4.3.

The following lemma is an analogy of Sally's theorem: If A is a CohenMacaulay local ring, then $\mu_{A}(\mathfrak{m} / J)=\mu_{A}(\mathfrak{m})-\operatorname{dim} A \leq e(A)-1$.

Lemma 2.5. Let (A, \mathfrak{m}, k) be an unmixed local ring of positive characteristic, and let J be a minimal reduction of \mathfrak{m}.
(1) $\mu_{A}\left(\mathfrak{m} / J^{*}\right) \leq e(A)-1$.
(2) If A is not F-rational, then $\mu_{A}\left(\mathfrak{m} / J^{*}\right) \leq e(A)-2$.

Proof. We may assume that A is complete and thus is a homomorphic image of a Cohen-Macaulay local ring.
(1) By Goto-Nakamura's Theorem, we have that $\mu_{A}\left(\mathfrak{m} / J^{*}\right) \leq l_{A}\left(\mathfrak{m} / J^{*}\right)$ $\leq e(J)-1=e-1$.
(2) If A is not F-rational, then $l_{A}\left(A / J^{*}\right) \leq e(J)-1=e-1$. Thus $\mu_{A}\left(\mathfrak{m} / J^{*}\right) \leq e-2$, as required.

Using Theorem 2.2 and Lemma 2.5, one can prove the following corollary, which has been already proved in [23] in the case of Cohen-Macaulay local rings.

Corollary 2.6. (cf. [23]) Let (A, \mathfrak{m}, k) be a two-dimensional unmixed local ring of characteristic $p>0$. Put $e=e(A)$. Then

$$
\begin{equation*}
e_{\mathrm{HK}}(A) \geq \frac{e+1}{2} \tag{2.2}
\end{equation*}
$$

Also, suppose $k=\bar{k}$. Then the equality holds if and only if $\operatorname{gr}_{\mathfrak{m}}(A)$ is isomorphic to the Veronese subring $k[X, Y]^{(e)}=k\left[X^{e}, X^{e-1} Y, \ldots, X Y^{e-1}, Y^{e}\right]$.

Moreover, if A is not F-rational, then we have

$$
e_{\mathrm{HK}}(A) \geq \frac{e^{2}}{2(e-1)}
$$

Example 2.7. (Fakhruddin-Trivedi [7, Corollary 3.19]) Let E be an elliptic curve over a field $k=\bar{k}$ of characteristic $p>0$, and let \mathcal{L} be a very ample line bundle on E of degree $e \geq 2$. Let R be the homogeneous coordinate ring (the section ring of \mathcal{L}) defined by

$$
R=\bigoplus_{n \geq 0} H^{0}\left(E, \mathcal{L}^{\otimes n}\right)
$$

Also, put $A=R_{\mathfrak{M}}$, where \mathfrak{M} be the unique homogeneous maximal ideal of R. Then we have $e_{\mathrm{HK}}(A)=\frac{e^{2}}{2(e-1)}$.

§3. Lower bounds in the case of three-dimensional local rings

In this section, we prove the main theorem in this paper, which gives the lower bound of Hilbert-Kunz multiplicities for non-regular unmixed local rings of dimension 3 .

Theorem 3.1. Let (A, \mathfrak{m}, k) be a three-dimensional unmixed local ring of characteristic $p>0$. Then
(1) If A is not regular, then $e_{\mathrm{HK}}(A) \geq \frac{4}{3}$.
(2) Suppose that $k=\bar{k}$ and char $k \neq 2$. Then the following conditions are equivalent:
(a) $e_{\mathrm{HK}}(A)=\frac{4}{3}$.
(b) $\widehat{A} \cong k[[X, Y, Z, W]] /\left(X^{2}+Y^{2}+Z^{2}+W^{2}\right)$.
(c) $\operatorname{gr}_{\mathfrak{m}}(A) \cong k[X, Y, Z, W] /\left(X^{2}+Y^{2}+Z^{2}+W^{2}\right)$. That is, $\operatorname{gr}_{\mathfrak{m}}(A) \cong$ $k[X, Y, Z, W] /(X Y-Z W)$.

Proposition 3.2. Let (A, \mathfrak{m}, k) be a three-dimensional unmixed local ring of characteristic $p>0$. If $e_{\mathrm{HK}}(A)<2$, then A is F-rational.

From now on, we divide the proof of Theorem 3.1 and Proposition 3.2 into several steps. In the following, we assume the following condition.
(\#): Let (A, \mathfrak{m}, k) be a three-dimensional unmixed local ring of characteristic $p>0$, and $e(A)=e$, the multiplicity of A. Also, suppose that \mathfrak{m} has a minimal reduction J.

Suppose that A is not regular under the assumption (\#). Then $e=$ $e(A)$ is an integer with $e \geq 2$. Thus the first assertion of Theorem 3.1 follows from the following lemma. Also, this implies that if $e_{\mathrm{HK}}(A)=\frac{4}{3}$ then $e(A)=2$ without extra assumptions.

LEmma 3.3. Under the assumption (\#), we have
(1) If $e \geq 5$, then $e_{\mathrm{HK}}(A)>2$.
(2) If $e=4$, then $e_{\mathrm{HK}}(A) \geq \frac{7}{4}>\frac{4}{3}$.
(3) If $e=3$, then $e_{\mathrm{HK}}(A) \geq \frac{13}{8}>\frac{4}{3}$.
(4) If $e=2$, then $e_{\mathrm{HK}}(A) \geq \frac{4}{3}$.

Remark 5. The lower bounds of $e_{\mathrm{HK}}(A)$ in Lemma 3.3 are not best possible.

Proof. We may assume that A is complete. By Lemma 2.5(1), we can apply Theorem 2.2 with $r=e-1$. Namely, if $1 \leq s \leq 2$, then

$$
\begin{equation*}
e_{\mathrm{HK}}(A) \geq e\left(v_{s}-(e-1) v_{s-1}\right)=e\left(\frac{s^{3}}{6}-(e+2) \frac{(s-1)^{3}}{6}\right) \tag{3.1}
\end{equation*}
$$

Define the real-valued function $f_{e}(s)$ by the right-hand side of Eq. (3.1). Then one can easily calculate $\max _{1 \leq s \leq 2} f_{e}(s)$. In fact, if $e \geq 2$, then

$$
\max _{1 \leq s \leq 2} f_{e}(s)=f\left(\frac{e+2+\sqrt{e+2}}{e+1}\right)=\frac{e}{6}\left(\frac{e+2+\sqrt{e+2}}{e+1}\right)^{2} .
$$

But, in order to prove the lemma, it is enough to use the following values only:

s	$\frac{3}{2}$	$\frac{7}{4}$	2
$f_{e}(s)$	$\frac{e(25-e)}{48}$	$\frac{e(289-27 e)}{384}$	$\frac{e(6-e)}{6}$

(1) We show that $e_{\mathrm{HK}}(A)>2$ if $e \geq 5$. If $e \geq 13$, then by Proposition 1.4,

$$
e_{\mathrm{HK}}(A) \geq \frac{e}{3!} \geq \frac{13}{6}>2
$$

So we may assume that $5 \leq e \leq 12$. Applying Eq. (3.1) for $s=\frac{3}{2}$, we get

$$
e_{\mathrm{HK}}(A) \geq \frac{e(25-e)}{48} \geq \frac{5(25-5)}{48}=\frac{25}{12}>2 .
$$

(2) Suppose that $e=4$. Applying Eq. (3.1) for $s=\frac{3}{2}$, we get

$$
e_{\mathrm{HK}}(A) \geq \frac{e(25-e)}{48}=\frac{7}{4} .
$$

(3) Suppose that $e=3$. Applying Eq. (3.1) for $s=\frac{7}{4}$, we get

$$
e_{\mathrm{HK}}(A) \geq \frac{e(289-27 e)}{384}=\frac{13}{8}
$$

(4) Suppose that $e=2$. Applying Eq. (3.1) for $s=2$,

$$
e_{\mathrm{HK}}(A) \geq \frac{e(6-e)}{6}=\frac{4}{3},
$$

as required.
Before proving the second assertion of Theorem 3.1, we prove Proposition 3.2. For that purpose, we now focus non- F-rational local rings.

Now suppose that A is not F-rational. If $e=2$, then $e_{\mathrm{HK}}(A)=2$ by Lemma 1.10. On the other hand, if $e \geq 5$, then $e_{\mathrm{HK}}(A)>2$ by Lemma 3.3. Thus in order to prove Proposition 3.2, it is enough to investigate the cases of $e=3,4$. Namely, Proposition 3.2 follows from the following lemma.

Lemma 3.4. Suppose that A is not F-rational under the assumption (\#). Then
(1) If $e=3$, then $e_{\mathrm{HK}}(A) \geq 2$.
(2) If $e=4$, then $e_{\mathrm{HK}}(A)>2$.

Proof. By Lemma 2.5(2), we can apply Theorem 2.2 for $r=e-2$. Thus if $1 \leq s \leq 2$, then

$$
\begin{equation*}
e_{\mathrm{HK}}(A) \geq e\left(\frac{s^{3}}{6}-(e+1) \frac{(s-1)^{3}}{6}\right) \tag{3.2}
\end{equation*}
$$

(1) Suppose that $e=3$. Applying Eq. (3.2) for $s=2$, we get

$$
e_{\mathrm{HK}}(A) \geq \frac{e(7-e)}{6}=2 .
$$

(2) Suppose that $e=4$. Applying Eq. (3.2) for $s=\frac{7}{4}$, we get

$$
e_{\mathrm{HK}}(A) \geq \frac{e(316-27 e)}{384}=\frac{13}{6}>2,
$$

as required.

ExAMPLE 3.5. Let $R=k\left[T, x T, x y T, y T, x^{-1} y T, x^{-2} y T, \ldots, x^{-n} y T\right]$ be a rational normal scroll and put $\mathfrak{m}=\left(T, x T, x y T, y T, x^{-1} y T, \ldots, x^{-n} y T\right)$. Then $A=R_{\mathfrak{m}}$ is a three-dimensional Cohen-Macaulay F-rational local domain with $e(A)=n+2$, and

$$
e_{\mathrm{HK}}(A)=\frac{e(A)}{2}+\frac{e(A)}{6(n+1)}
$$

Proof. Let $\mathcal{P} \subseteq \mathbb{R}$ be a convex polytope with vertex set

$$
\Gamma=\{(0,0),(1,0),(1,1),(0,1),(-1,1), \ldots,(-n, 1)\}
$$

and put $\widetilde{\mathcal{P}}:=\left\{(\alpha, 1) \in \mathbb{R}^{3}: \alpha \in \mathcal{P}\right\}$ and $d \mathcal{P}:=\{d \cdot \alpha: \alpha \in \mathcal{P}\}$ for every integer $d \geq 0$. Also, if we define a cone $\mathcal{C}=\mathcal{C}(\widetilde{\mathcal{P}}):=\{r \beta: \beta \in \widetilde{\mathcal{P}}, 0 \leq r \in$ $\mathbb{Q}\}$ and regard R as a homogeneous k-algebra with $\operatorname{deg} x=\operatorname{deg} y=0$ and $\operatorname{deg} T=1$, then the basis of R_{d} corresponds to the set $\left\{(\alpha, d) \in \mathbb{Z}^{3}: \alpha \in\right.$ $\left.\mathbb{Z}^{2} \cap d \mathcal{P}\right\}=\left\{(\alpha, d) \in \mathbb{Z}^{3}: \alpha \in \mathbb{Z}^{2}\right\} \cap \mathcal{C}$.

If we put $\Gamma_{q}=\{(0,0),(q, 0),(q, q),(0, q),(-q, q), \ldots,(-n q, q)\}$, then $\mathfrak{m}^{[q]}=\left(x^{a} y^{b} T^{q}:(a, b) \in \Gamma_{q}\right)$. Since $\left[\mathfrak{m}^{[q]}\right]_{d}=\sum_{(a, b) \in \Gamma_{q}} R_{d-q} x^{a} y^{b} T^{q}$, we have

$$
\begin{aligned}
e_{\mathrm{HK}}(A) & =\lim _{q \rightarrow \infty} \frac{1}{q^{3}} l_{A}\left(A / \mathfrak{m}^{[q]}\right) \\
& =\lim _{q \rightarrow \infty} \frac{1}{q^{3}} \#\left\{\mathbb{Z}^{3} \cap\left(\mathcal{C} \backslash \bigcup_{(a, b) \in \Gamma_{q}}(a, b, q)+\mathcal{C}\right)\right\}
\end{aligned}
$$

that is,

$$
e_{\mathrm{HK}}(A)=\lim _{q \rightarrow \infty} \frac{1}{q^{3}}\left[\sum_{d=0}^{\infty} \#\left\{\mathbb{Z}^{2} \cap\left(d \mathcal{P} \backslash \bigcup_{(a, b) \in \Gamma_{q}}(a, b)+\max \{0, d-q\} \mathcal{P}\right)\right\}\right]
$$

Also, if we define a real continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ by

$$
f(t)=\text { the volume of }\left[t \mathcal{P} \backslash \bigcup_{(a, b) \in \Gamma}(a, b)+\max \{0, t-1\} \mathcal{P}\right] \text { in } \mathbb{R}^{2}
$$

then $e_{\mathrm{HK}}(A)=\int_{0}^{\infty} f(t) d t$. Let us denote the volume of $M \subseteq \mathbb{R}^{2}$ by $\operatorname{vol}(M)$. To calculate $e_{\mathrm{HK}}(A)$, we need to determine $f(t)$. Namely, we need to show the following claim.

Claim.

$$
f(t)= \begin{cases}\operatorname{vol}(t \mathcal{P}), & 0 \leq t<1 \\ \operatorname{vol}(t \mathcal{P})-(n+4) \operatorname{vol}((t-1) \mathcal{P}), & 1 \leq t<\frac{n+2}{n+1} \\ \frac{(n+2) t(2-t)}{2}+(n+2) \frac{(2-t)^{2}}{2 n}, & \frac{n+2}{n+1} \leq t<2 \\ 0, & t \geq 2\end{cases}
$$

To prove the claim, we may assume that $t \geq 1$. For simplicity, we put $M_{a, b}=(a, b)+(t-1) \mathcal{P}$ for every $(a, b) \in \Gamma$. First suppose that $1 \leq t<\frac{n+2}{n+1}$. Then since $1-n(t-1)>t-1, M_{0,0} \cap M_{1,0}=\emptyset$. Similarly, one can easily see that any two $M_{a, b}$ do not intersect each other; see Figure 1. Thus $f(t)=\operatorname{vol}(t \mathcal{P})-(n+4) \operatorname{vol}((t-1) \mathcal{P})$.

Next suppose that $\frac{n+2}{n+1} \leq t<2$. Then $\mathcal{P} \cap\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq\right.$ $t-1\}=M_{0,0} \cup M_{1,0} \cup T_{0}$, where T_{0} is a triangle with vertex $(t-1,0),(1,0)$ and $\left(t-1, \frac{2-t}{n}\right)$. Similarly, there exist $(n+1)$-triangles T_{1}, \ldots, T_{n+1} having the same volumes as T_{0} such that

$$
\mathcal{P} \cap\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq y \leq t\right\}=M_{-n, 1} \cup \cdots \cup M_{1,1} \cup M_{0,1} \cup M_{1,1} \cup T_{1} \cup \cdots \cup T_{n+1}
$$ and any two T_{i} 's do not intersect each other; see Figure 2. Thus

$$
\begin{aligned}
f(t) & =\operatorname{vol}\left(\mathcal{P} \cap\left\{(x, y) \in \mathbb{R}^{2}: t-1 \leq y \leq 1\right\}\right)+(n+2) \operatorname{vol}\left(T_{0}\right) \\
& =\frac{(n+2) t(2-t)}{2}+(n+2) \frac{(2-t)^{2}}{2 n}
\end{aligned}
$$

Finally, suppose that $t \geq 2$. Then since \mathcal{P} is covered by $M_{a, b}$'s, we have $f(t)=0$, as required.

Using the above claim, let us calculate $e_{\mathrm{HK}}(A)$. Note that $\operatorname{vol}(t \mathcal{P})=$ $\frac{(n+2) t^{2}}{2}$.

$$
\begin{aligned}
e_{\mathrm{HK}}(A)= & \int_{0}^{\frac{n+2}{n+1}} \frac{(n+2) t^{2}}{2} d t-(n+4) \int_{1}^{\frac{n+2}{n+1}} \frac{(n+2)(t-1)^{2}}{2} d t \\
& +\int_{\frac{n+2}{n+1}}^{2} \frac{(n+2) t(2-t)}{2} d t+(n+2) \int_{\frac{n+2}{n+1}}^{2} \frac{(2-t)^{2}}{2 n} d t \\
= & (n+2)\left[\frac{1}{2}+\frac{1}{6(n+1)}\right]
\end{aligned}
$$

Figure 1. The case where $1 \leq t<\frac{n+2}{n+1}$

Figure 2. The case where $\frac{n+2}{n+1} \leq t<2$
as required.

Discussion 3.6. Let A be a complete local ring which satisfies (\#). Also, suppose that $e=3$. What is the smallest value of $e_{\mathrm{HK}}(A)$ among such rings?

The function $f_{e}(s)=3\left(\frac{s^{3}}{6}-5 \frac{(s-1)^{3}}{6}\right)$, which appeared in Eq. (3.1), takes the maximal value

$$
f\left(\frac{5+\sqrt{5}}{4}\right)=\frac{15+5 \sqrt{5}}{16}=1.636 \cdots
$$

in $s \in[1,2]$. Hence $e_{\mathrm{HK}}(A) \geq 1.636 \cdots$. But we believe that this is not best possible.

Suppose that $e_{\mathrm{HK}}(A)<2$. Then A is F-rational by Lemma 3.4. Thus it is Cohen-Macaulay and $3+1 \leq v=\operatorname{emb}(A) \leq d+e-1=3+3-1=5$. If $v \neq 5$, then A is a hypersurface and $e_{\mathrm{HK}}(A) \geq \frac{2}{3} \cdot e=2$ by Fact 2.4. Hence we may assume that $v=5$, that is, A has maximal embedding dimension. If we write as $A=R / I$, where R is a complete regular local ring with $\operatorname{dim} R=5$, then height $I=2$. By Hilbert-Burch's theorem, there exists a 2×3-matrix \mathbb{M} such that $I=I_{2}(\mathbb{M})$, the ideal generated by all 2-minors of \mathbb{M}. In particular, A can be written as $A=B / a B$, where $B=k[X] / I_{2}(X)$,
X is a generic 2×3-matrix and a is a prime element of B. This implies that

$$
e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}(B / a B) \geq e_{\mathrm{HK}}(B)=3\left\{\frac{1}{2}+\frac{1}{4!}\right\}=\frac{13}{8}=1.625
$$

see [5, Section 3].
For example, if $A=k\left[\left[T, x T, x y t, y T, x^{-1} y T\right]\right]$ is a rational normal scroll, then $e_{\mathrm{HK}}(A)=\frac{7}{4}=1.75$ by Example 3.5. Is this the smallest value?

Discussion 3.7. Let A be a complete local ring which satisfies (\#). Also, suppose that $e=4$. What is the smallest value of $e_{\mathrm{HK}}(A)$ among such rings?

As in Discussion 3.6, it suffices to consider F-rational local rings only. For example, let $A=k[[x, y, z]]^{(2)}$ be the Veronese subring. Then A is an F-rational local domain with $e(A)=4$ and $e_{\mathrm{HK}}(A)=2$. Also, let A be the completion of the Rees algebra $R(\mathfrak{n})$ over an F-rational double point (R, \mathfrak{n}) of dimension 2. Then A is an F-rational local domain with $e(A)=4$ and $e_{\mathrm{HK}}(A) \geq 2$ (we believe that this inequality is strict).

On the other hand, the function $f_{e}(s)$ which appeared in Eq. (3.1), takes the maximal value

$$
f\left(\frac{6+\sqrt{6}}{5}\right)=\frac{28+8 \sqrt{6}}{25}=1.903 \cdots
$$

in $s \in[1,2]$. Hence the fact that we can prove now is " $e_{\mathrm{HK}}(A) \geq 1.903 \ldots$ " only.

Based on Corollary 2.6 and Discussion 3.7 , we pose the following conjecture.

Conjecture 3.8. Let A be a complete local ring which satisfies (\#), and let $r \geq 2$ be an integer. If $e(A)=r^{2}$, then

$$
e_{\mathrm{HK}}(A) \geq \frac{(r+1)(r+2)}{6}
$$

Also, the equality holds if and only if A is isomorphic to $k[[x, y, z]]^{(r)}$.
In the rest of this section, we prove the second statement of Theorem 3.1. Let (A, \mathfrak{m}, k) be a complete local ring which satisfies (\#). If
$e_{\mathrm{HK}}(A)=\frac{4}{3}$, then A is an F-rational hypersurface with $e(A)=2$ by the above observation. Furthermore, suppose that $k=\bar{k}$ and char $k \neq 2$. Then we may assume that A can be written as the form $k[[X, Y, Z, W]] /\left(X^{2}-\right.$ $\varphi(Y, Z, W))$. To study Hilbert-Kunz multiplicities for these rings, we prove the improved version of Theorem 2.2.

Proposition 3.9. Let k be an algebraically closed field of char $k \neq 2$, and let $A=k[[X, Y, Z, W]] /\left(X^{2}-\varphi(Y, Z, W)\right)$ be an F-rational hypersurface local ring. Let a, b, c be integers with $2 \leq a \leq b \leq c$.

Suppose that there exists a function ord : $A \rightarrow \mathbb{Q} \cup\{\infty\}$ which satisfies the following conditions:
(1) $\operatorname{ord}(\alpha) \geq 0$; and $\operatorname{ord}(\alpha)=\infty \Longleftrightarrow \alpha=0$.
(2) $\operatorname{ord}(x)=1 / 2$, ord $y=1 / a$, ord $z=1 / b$, and ord $w=1 / c$.
(3) $\operatorname{ord}(\varphi) \geq 1$.
(4) $\operatorname{ord}(\alpha+\beta) \geq \min \{\operatorname{ord}(\alpha), \operatorname{ord}(\beta)\}$.
(5) $\operatorname{ord}(\alpha \beta) \geq \operatorname{ord}(\alpha)+\operatorname{ord}(\beta)$.

Then we have

$$
e_{\mathrm{HK}}(A) \geq 2-\frac{a b c}{12}\left(N^{3}-n^{3}\right)
$$

where

$$
N=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}, \quad n=\max \left\{0, N-\frac{2}{c}\right\} .
$$

In particular, if $(a, b, c) \neq(2,2,2)$, then $e_{\mathrm{HK}}(A)>\frac{4}{3}$.
Remark 6. The third condition $\operatorname{ord}(\varphi) \geq 1$ is important. For example, if $\varphi \equiv y^{2} \bmod (z, w)^{3}$, then one can take $(a, b, c)=(2,3,3)$, but $(a, b, c)=$ $(2,3,4)$.

Proof. First, we define a filtration $\left\{F_{n}\right\}_{n \in \mathbb{Q}}$ as follows:

$$
F_{n}:=\{\alpha \in A: \operatorname{ord}(\alpha) \geq n\}
$$

Then every F_{n} is an ideal and $F_{m} F_{n} \subseteq F_{m+n}$ holds for all $m, n \in \mathbb{Q}$. Using F_{n} instead of \mathfrak{m}^{n}, we shall estimate $l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right)$.

Set $J=(y, z, w) A$ and fix a sufficiently large power $q=p^{e}$. Put

$$
s=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}, \quad N=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2} .
$$

Since J is a minimal reduction of \mathfrak{m} and $x y^{q-1} z^{q-1} w^{q-1}$ generates the socle of $A / J^{[q]}$, we have that $F_{s q} \subseteq J^{[q]}$. Also, since $B=A / J^{[q]}$ is an Artinian Gorenstein local ring, we get

$$
F_{\frac{(N+1) q}{2}} B \subseteq 0:_{B} F_{\frac{N q}{2}} B \cong K_{B / F_{\frac{N q}{2}} B},
$$

where K_{C} denotes a canonical module of a local ring C. Hence, by the Matlis duality theorem, we get

$$
l_{A}\left(\frac{F_{\frac{(N+1) q}{2}}^{2}+J^{[q]}}{J[q]}\right) \leq l_{B}\left(F_{\frac{(N+1) q}{2}}\right) \leq l_{B}\left(K_{B / F_{\frac{N q}{2} B} B}\right)=l_{B}\left(B / F_{\frac{N q}{2}} B\right)
$$

On the other hand, since $x^{q} \in F_{\frac{q}{2}}$ by the assumption, we have

$$
x^{q} F_{\frac{N q}{2}} \subseteq F_{\frac{(N+1) q}{2}}
$$

Therefore by a similar argument as in the proof of Theorem 2.2, we get

$$
\begin{aligned}
l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right) & \leq l_{A}\left(\frac{A x^{q}+J^{[q]}+F_{\frac{(N+1) q}{2}}^{2}}{F_{\frac{(N+1) q}{2}}^{2}+J^{[q]}}\right)+l_{A}\left(\frac{F_{\frac{(N+1) q}{2}}+J^{[q]}}{J^{[q]}}\right) \\
& \leq l_{A}\left(A /\left(J^{[q]}+F_{\frac{(N+1) q}{2}}\right): x^{q}\right)+l_{B}\left(B / F_{\frac{N q}{2}} B\right) \\
& \leq 2 \cdot l_{A}\left(A / J^{[q]}+F_{\frac{N}{2} q}\right) .
\end{aligned}
$$

In fact, since

$$
\begin{aligned}
& \lim _{q \rightarrow \infty} \frac{1}{q^{3}} l_{A}\left(A / J^{[q]}+F_{\frac{N q}{2}}\right) \\
& \quad=e(A) \cdot \lim _{q \rightarrow \infty} \frac{1}{q^{3}} \operatorname{vol}\left\{(x, y, z) \in[0, q]^{3}: \frac{y}{a}+\frac{z}{b}+\frac{w}{c} \leq \frac{N q}{2}\right\} \\
& \quad=2 \cdot \operatorname{vol}\left\{(x, y, z) \in[0,1]^{3}: \frac{y}{a}+\frac{z}{b}+\frac{w}{c} \leq \frac{N}{2}\right\} \\
& \quad=\frac{a b c}{24}\left(N^{3}-n^{3}\right)
\end{aligned}
$$

we get

$$
e_{\mathrm{HK}}(A) \geq 2-2 \cdot \frac{a b c}{24}\left(N^{3}-n^{3}\right)=2-\frac{a b c}{12}\left(N^{3}-n^{3}\right)
$$

as required.

Example 3.10. Let k be an algebraically closed field of char $k \neq 2$, and let (A, \mathfrak{m}, k) be a hypersurface. Put $\operatorname{gr}_{\mathfrak{m}}(A)=k[X, Y, Z, W] /(g(X, Y$, $Z, W)$).

$$
\begin{aligned}
& g(X, Y, Z, W)=X^{2}+Y^{3}+Z^{3}+W^{3} \Longrightarrow e_{\mathrm{HK}}(A) \geq \frac{55}{32} \\
& g(X, Y, Z, W)=X^{2}+Y^{2}+Z^{3}+W^{3} \Longrightarrow e_{\mathrm{HK}}(A) \geq \frac{14}{9} \\
& g(X, Y, Z, W)=X^{2}+Y^{2}+Z^{2}+W^{c} \Longrightarrow e_{\mathrm{HK}}(A) \geq \frac{3}{2}-\frac{2}{3 c^{2}}
\end{aligned}
$$

Proof of Theorem 3.1(2). Put $G=\operatorname{gr}_{\mathfrak{m}}(A)$ and $\mathfrak{M}=\operatorname{gr}_{\mathfrak{m}}(A)_{+}$. The implication $(a) \Rightarrow(b)$ follows from Proposition 3.9. $(b) \Rightarrow(c)$ is clear. Suppose (c). Then $e_{\mathrm{HK}}\left(G_{\mathfrak{M}}\right)=\frac{4}{3}$. Also, by Proposition 1.3 and Theorem 3.1(1), we have that $\frac{4}{3} \leq e_{\mathrm{HK}}(A) \leq e_{\mathrm{HK}}\left(G_{\mathfrak{M}}\right)=\frac{4}{3}$. Thus $e_{\mathrm{HK}}(A)=\frac{4}{3}$, as required.

Also, the following corollary follows from the proof of Proposition 3.9 and Example 3.10.

Corollary 3.11. Let A be a local ring which satisfies (\#). Also, assume that $k=\bar{k}$ and $p \neq 2$. Then the following conditions are equivalent:
(1) $\frac{4}{3}<e_{\mathrm{HK}}(A) \leq \frac{3}{2}$.
(2) $\operatorname{gr}_{\mathfrak{m}}(A) \cong k[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}\right)$.
(3) A is isomorphic to a hypersurface $k[[X, Y, Z, W]] /\left(X^{2}+Y^{2}+Z^{2}+W^{c}\right)$ for some integer $c \geq 3$.

When this is the case, $e_{\mathrm{HK}}(A) \geq \frac{3}{2}-\frac{2}{3 c^{2}}$.

§4. A generalization of the main result to higher dimensional case

In this section, we want to generalize Theorem 3.1 to the case of $\operatorname{dim} A \geq 4$. Let $d \geq 1$ be an integer and $p>2$ a prime number. If we put

$$
A_{p, d}:=\overline{\mathbb{F}_{p}}\left[\left[X_{0}, X_{1}, \ldots, X_{d}\right]\right] /\left(X_{0}^{2}+\cdots+X_{d}^{2}\right)
$$

then we can guess that $e_{\mathrm{HK}}\left(A_{p, d}\right)=s_{\mathrm{HK}}(p, d)$ holds according to the observations until the previous section. In the following, let us formulate this as a conjecture and prove that it is also true in case of $\operatorname{dim} A=4$.

In [10], Han and Monsky gave an algorism to calculate $e_{\mathrm{HK}}\left(A_{p, d}\right)$, but it is not so easy to represent $e_{\mathrm{HK}}\left(A_{p, d}\right)$ as a quotient of two polynomials of p for any fixed $d \geq 1$.

d	1	2	3	4
$e_{\mathrm{HK}}\left(A_{p, d}\right)$	2	$\frac{3}{2}$	$\frac{4}{3}$	$\frac{29 p^{2}+15}{24 p^{2}+12}$

On the other hand, surprisingly, Monsky proved the following theorem:
Theorem 4.1. (Monsky [19]) Under the above notation, we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty} e_{\mathrm{HK}}\left(A_{p, d}\right)=1+\frac{c_{d}}{d!} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sec x+\tan x=\sum_{d=0}^{\infty} \frac{c_{d}}{d!} x^{d} \quad\left(|x|<\frac{\pi}{2}\right) \tag{4.2}
\end{equation*}
$$

Remark 7. It is known that the Taylor expansion of $\sec x($ resp. $\tan x)$ at origin can be written as follows:

$$
\begin{aligned}
& \sec x=\sum_{i=0}^{\infty} \frac{E_{2 i}}{(2 i)!} x^{2 i}, \\
& \tan x=\sum_{i=1}^{\infty}(-1)^{i-1} \frac{2^{2 i}\left(2^{2 i}-1\right) B_{2 i}}{(2 i)!} x^{2 i-1},
\end{aligned}
$$

where $E_{2 i}$ (resp. $B_{2 i}$) is said to be Euler number (resp. Bernoulli number).
Also, c_{d} appeared in Eq. (4.1) is a positive integer since $\cos t$ is an unit element in a ring $\mathcal{H}=\left\{\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}: a_{n} \in \mathbb{Z}\right.$ for all $\left.n \geq 0\right\}$.

Based on the above observation, we pose the following conjecture.
Conjecture 4.2. Let $d \geq 1$ be an integer and $p>2$ a prime number. Put

$$
A_{p, d}:=\overline{\mathbb{F}_{p}}\left[\left[X_{0}, X_{1}, \ldots, X_{d}\right]\right] /\left(X_{0}^{2}+\cdots+X_{d}^{2}\right)
$$

Let (A, \mathfrak{m}, k) be a d-dimensional unmixed local ring with $k=\overline{\mathbb{F}_{p}}$. Then the following statements hold.
(1) If A is not regular, then $e_{\mathrm{HK}}(A) \geq e_{\mathrm{HK}}\left(A_{p, d}\right) \geq 1+\frac{c_{d}}{d!}$. In particular, $s_{\mathrm{HK}}(p, d)=e_{\mathrm{HK}}\left(A_{p, d}\right)$.
(2) If $e_{\mathrm{HK}}(A)=e_{\mathrm{HK}}\left(A_{p, d}\right)$, then $\widehat{A} \cong A_{p, d}$ as local rings.

In the following, we prove that this is true in case of $\operatorname{dim} A=4$. Note that

$$
\lim _{p \rightarrow \infty} e_{\mathrm{HK}}\left(A_{p, 4}\right)=\lim _{p \rightarrow \infty} \frac{29 p^{2}+15}{24 p^{2}+12}=\frac{29}{24}=1+\frac{c_{4}}{4!}
$$

TheOrem 4.3. Let (A, \mathfrak{m}, k) be an unmixed local ring of characteristic $p>0$ with $\operatorname{dim} A=4$. If $e(A) \geq 3$, then $e_{\mathrm{HK}}(A) \geq \frac{5}{4}=\frac{30}{24}$.

Suppose that $k=\bar{k}$ and char $k \neq 2$. Put

$$
A_{p, 4}=\overline{\mathbb{F}_{p}}\left[\left[X_{0}, X_{1}, \ldots, X_{4}\right]\right] /\left(X_{0}^{2}+\cdots+X_{4}^{2}\right)
$$

Then the following statement holds.
(1) If A is not regular, then

$$
e_{\mathrm{HK}}(A) \geq e_{\mathrm{HK}}\left(A_{p, 4}\right)=\frac{29 p^{2}+15}{24 p^{2}+12}
$$

(2) The following conditions are equivalent:
(a) Equality holds in (1).
(b) $e_{\mathrm{HK}}(A)<\frac{5}{4}$.
(c) The completion of A is isomorphic to $A_{p, 4}$.

Proof. Put $e=e(A)$, the multiplicity of A. We may assume that A is complete with $e \geq 2$ and k is infinite. In particular, A is a homomorphic image of a Cohen-Macaulay local ring, and there exists a minimal reduction J of \mathfrak{m}. Then $\mu_{A}\left(\mathfrak{m} / J^{*}\right) \leq e-1$ by Lemma 2.5. We first show that $e_{\mathrm{HK}}(A) \geq \frac{5}{4}$ if $e \geq 3$.

Claim 1. If $3 \leq e \leq 10$, then $e_{\mathrm{HK}}(A) \geq \frac{5}{4}$.
Putting $r=e-1$ and $s=2$ in Theorem 2.2, since $v_{2}=\frac{1}{2}$, we have

$$
e_{\mathrm{HK}}(A) \geq e\left\{v_{2}-\frac{(e-1) 1^{4}}{4!}\right\}=\frac{(13-e) e}{24} \geq \frac{(13-3) \cdot 3}{24}=\frac{30}{24},
$$

as required.
CLAIm 2. If $11 \leq e \leq 29$, then $e_{\mathrm{HK}}(A) \geq \frac{737}{384}\left(>\frac{5}{4}\right)$.

By Fact 2.4, we have $v_{3 / 2}=\frac{1-\beta_{4+1}}{2}=\frac{77}{384}$. Putting $r=e-1$ and $s=\frac{3}{2}$ in Theorem 2.2, we have

$$
e_{\mathrm{HK}}(A) \geq e\left\{v_{3 / 2}-\frac{e-1}{24} \cdot\left(\frac{1}{2}\right)^{4}\right\}=\frac{(78-e) e}{384} \geq \frac{11(78-11)}{384}=\frac{737}{384},
$$

as required.
CLaim 3. If $e \geq 30$, then $e_{\mathrm{HK}}(A) \geq \frac{5}{4}$.
By Proposition 1.4, we have $e_{\mathrm{HK}}(A) \geq \frac{e}{4!} \geq \frac{30}{24}$.
In the following, we assume that $k=\bar{k}$, char $k \neq 2$ and $e \geq 2$. To see (1), (2), we may assume that $e=2$ by the above argument. Then since $e_{\mathrm{HK}}(A)=2$ if A is not F-rational, we may also assume that A is F-rational and thus is a hypersurface. Thus A can be written as the following form:

$$
A=k\left[\left[X_{0}, X_{1}, \ldots, X_{4}\right]\right] /\left(X_{0}^{2}-\varphi\left(X_{1}, X_{2}, X_{3}, X_{4}\right)\right)
$$

If A is isomorphic to $A_{p, 4}$, then by [10], it is known that $e_{\mathrm{HK}}(A)=\frac{29 p^{2}+15}{24 p^{2}+12}$. Suppose that A is not isomorphic to $A_{p, 4}$. Then one can take a minimal numbers of generators x, y, z, w, u of \mathfrak{m} and one can define a function ord : $A \rightarrow \mathbb{Q} \cup\{\infty\}$ such that

$$
\operatorname{ord}(x)=\operatorname{ord}(y)=\operatorname{ord}(z)=\operatorname{ord}(z)=\frac{1}{2}, \quad \operatorname{ord}(u)=\frac{1}{3}
$$

If we put $J=(y, z, w, u) A$ and $F_{n}=\{\alpha \in A: \operatorname{ord}(\alpha) \geq n\}$, then by a similar argument as in the proof of Proposition 3.9, we have

$$
l_{A}\left(\mathfrak{m}^{[q]} / J^{[q]}\right) \leq 2 \cdot l_{A}\left(A / J^{[q]}+F_{2 q / 3}\right)
$$

Divided the both-side by q^{d} and taking a limit $q \rightarrow \infty$, we get

$$
e(A)-e_{\mathrm{HK}}(A) \leq 2 \cdot e(A) \cdot \operatorname{vol}\left\{(y, z, w, u) \in[0,1]^{4}: \frac{y}{2}+\frac{z}{2}+\frac{w}{2}+\frac{u}{3} \leq \frac{2}{3}\right\}
$$

To calculate the volume in the right-hand side, we put

$$
F_{u}= \begin{cases}\frac{1}{6}\left(\frac{4}{3}-\frac{2}{3} u\right)^{3}-3 \cdot \frac{1}{6}\left(\frac{1}{3}-\frac{2}{3} u\right)^{3} & \left(0 \leq u \leq \frac{1}{2}\right) \\ \frac{1}{6}\left(\frac{4}{3}-\frac{2}{3} u\right)^{3} & \left(\frac{1}{2} \leq u \leq 1\right)\end{cases}
$$

Then one can easily calculate

$$
\text { the above volume }=\int_{0}^{1} F_{u} d u=\frac{237}{2^{4} 3^{4}} .
$$

It follows that

$$
e_{\mathrm{HK}}(A) \geq 2-4 \times \frac{237}{2^{4} 3^{4}}=\frac{411}{324}>\frac{5}{4} .
$$

The following conjecture also holds if $\operatorname{dim} A \leq 4$.
Conjecture 4.4. Under the same notation as in Conjecture 4.2, if $e(A) \geq 3$, then

$$
e_{\mathrm{HK}}(A) \geq 1+\frac{c_{d}+1}{d!} .
$$

Discussion 4.5. Let $d \geq 2$ be an integer and fix a prime number $p \gg d$. Assume that Conjectures 4.2 and 4.4 are true. Also, assume that $s_{\mathrm{HK}}(p, d)<s_{\mathrm{HK}}(p, d-1)$ for all $d \geq 3$. Let $A=k\left[X_{0}, \ldots, X_{v}\right] / I$ be a d-dimensional homogeneous unmixed k-algebra with $\operatorname{deg} X_{i}=1$, and let \mathfrak{m} be the unique homogeneous maximal ideal of A. Suppose that k is an algebraically closed field of characteristic $p>0$. Then $e_{\mathrm{HK}}(A)=s_{\mathrm{HK}}(p, d)$ implies that $\widehat{A_{\mathfrak{m}}} \cong A_{p, d}$.

In fact, if $e_{\mathrm{HK}}(A)=s_{\mathrm{HK}}(p, d)$, then we may assume that $e_{\mathrm{HK}}(A)<$ $1+\frac{c_{d}+1}{d!}$. Thus $e\left(A_{\mathfrak{m}}\right)=2$ if Conjecture 4.4 is true. For any prime ideal $P A_{\mathfrak{m}}$ of $A_{\mathfrak{m}}$ such that $P \neq \mathfrak{m}$, we have $e_{\mathrm{HK}}\left(A_{P}\right) \leq e_{\mathrm{HK}}\left(A_{\mathfrak{m}}\right)=s_{\mathrm{HK}}(p, d)<$ $s_{\mathrm{HK}}(p, n)$, where $n=\operatorname{dim} A_{P}<d$. Since A_{P} is also unmixed, it is regular. Thus $A_{\mathfrak{m}}$ has an isolated singularity. Hence A is a non-degenerate quadric hypersurface In other words, $\widehat{A_{\mathfrak{m}}}$ is isomorphic to $A_{p, d}$.

References

[1] R. O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra, 197 (1997), 246-267.
[2] R. O. Buchweitz, Q. Chen and K. Pardue, Hilbert-Kunz functions, preprint.
[3] M. Blickle and F. Enescu, On rings with small Hilbert-Kunz multiplicity, Proc. Amer. Math. Soc., 132 (2004), 2505-2509.
[4] A. Conca, Hilbert-Kunz functions of monomials and binomial hypersurfaces, Manuscripta Math., 90 (1996), 287-300.
[5] K. Eto and K. Yoshida, Notes on Hilbert-Kunz multiplicity of Rees algebras, Comm. Algebra, 31 (2003), 5943-5976.
[6] R. Fedder and K.-i. Watanabe, A characterization of F-regularity in terms of F-purity, Commutative algebra (Berkeley, CA, 1987), Math. Sci. Research Inst. Publ., vol. 15, Springer-Verlag, New York (1989), pp. 227-245.
[7] N. Fakhruddin and V. Trivedi, Hilbert-Kunz functions and multiplicities for full flag varieties and elliptic curves, J. Pure Appl. Algebra, 181 (2003), 23-52.
[8] S. Goto and Y. Nakamura, Multiplicity and tight closures of parameters, J. Algebra, 244 (2001), 302-311.
[9] D. Hanes, Notes on the Hilbert-Kunz function, Comm. Algebra, 30 (2002), 3789-3812.
[10] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z., 214 (1993), 119-135.
[11] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc., 3 (1990), 31-116.
[12] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc., 346 (1994), 1-62.
[13] C. Huneke, Tight closure and its applications, American Mathematical Society, 1996.
[14] C. Huneke and Y. Yao, Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular, Proc. Amer. Math. Soc., 130 (2002), 661-665.
[15] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math., 41 (1969), 772-784.
[16] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math., 88 (1976), 999-1013.
[17] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
[18] P. Monsky, The Hilbert-Kunz function, Math. Ann., 263 (1983), 43-49.
[19] P. Monsky, A personal letter from Monsky to K.-i. Watanabe.
[20] M. Nagata, Local rings, Interscience, 1962.
[21] D. Rees, A note on analytically unramified local rings, J. London Math. Soc., 36 (1961), 24-28.
[22] K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra., 230 (2000), 295-317.
[23] K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity of two-dimensional local rings, Nagoya Math. J., 162 (2001), 87-110.
[24] K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity, McKay correspondence and good ideals in two-dimensional rational singularities, Manuscripta Math., 104 (2001), 275-294.

Kei-ichi Watanabe
Department of Mathematics
College of Humanities and Sciences
Nihon University
Setagaya-ku
Tokyo 156-0045
Japan
watanabe@math.chs.nihon-u.ac.jp
Ken-ichi Yoshida
Graduate School of Mathematics
Nagoya University
Chikusa-ku
Nagoya 464-8602
Japan
yoshida@math.nagoya-u.ac.jp

[^0]: Received August 25, 2003.
 2000 Mathematics Subject Classification: Primary 13D40, 13A35; Secondary 13H05, $13 \mathrm{H} 10,13 \mathrm{H} 15$.

 The first author was supported in part by Grant aid in Scientific Researches, \#13440015 and \#13874006.

 The second author was supported in part by NSF Grant \#14540020.

