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HILBERT-KUNZ MULTIPLICITY OF

THREE-DIMENSIONAL LOCAL RINGS

KEI-ICHI WATANABE and KEN-ICHI YOSHIDA

Abstract. In this paper, we investigate the lower bound sHK(p, d) of Hilbert-
Kunz multiplicities for non-regular unmixed local rings of Krull dimension d
containing a field of characteristic p > 0. Especially, we focus on three-
dimensional local rings. In fact, as a main result, we will prove that sHK(p, 3) =
4/3 and that a three-dimensional complete local ring of Hilbert-Kunz multi-
plicity 4/3 is isomorphic to the non-degenerate quadric hypersurface k[[X, Y,
Z, W ]]/(X2 + Y 2 + Z2 + W 2) under mild conditions.

Furthermore, we pose a generalization of the main theorem to the case of
dim A ≥ 4 as a conjecture, and show that it is also true in case dimA = 4 using
the similar method as in the proof of the main theorem.

Introduction

Let A be a commutative Noetherian ring containing an infinite field

of characteristic p > 0 with unity. In [15], Kunz proved the following

theorem, which gives a characterization of regular local rings of positive

characteristic.

Kunz’ Theorem. ([15]) Let (A,m, k) be a local ring of characteristic

p > 0. Then the following conditions are equivalent :

(1) A is a regular local ring.

(2) A is reduced and is flat over the subring Ap = {ap : a ∈ A}. In other

words, the Frobenius map F : A → A (a 7→ ap) is flat.

(3) lA(A/m[q]) = qd for any q = pe, e ≥ 1, where m[q] = (aq : a ∈ m) and

lA(M) denotes the length of an A-module M .
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Furthermore, in [16], Kunz observed that lA(A/m[q])/qd (q = pe) is a

reasonable measure for the singularity of a local ring. Based on the idea of

Kunz, Monsky [18] proved that there exists a constant c = c(A) such that

lA(A/m[q]) = cqd + O(qd−1)

and defined the notion of Hilbert-Kunz multiplicity by eHK(A) = c. In

1990’s, Han and Monsky [10] have given an algorism to compute the Hilbert-

Kunz multiplicity for any hypersurface of Briskorn-Fermat type

A = k[X0, . . . , Xn]/(Xd0
0 + · · · + Xdn

n ).

See e.g. [1], [2], [4], [24] about the other examples. Hochster and Huneke [11]

have given a “Length Criterion for Tight Closure” in terms of Hilbert-Kunz

multiplicity (see Theorem 1.8) and indicated the close relation between

tight closure and Hilbert-Kunz multiplicity. In [22], the authors proved a

theorem which gives a characterization of regular local rings in terms of

Hilbert-Kunz multiplicity:

Theorem A. ([22, Theorem 1.5]) Let (A,m, k) be an unmixed local

ring of positive characteristic. Then A is regular if and only if eHK(A) = 1.

Many researchers have tried to improve this theorem. For example,

Blickle and Enescu [3] recently proved the following theorem:

Theorem B. (Blickle-Enescu [3]) Let (A,m, k) be an unmixed local

ring of characteristic p > 0. Then the following statements hold :

(1) If eHK(A) < 1 + 1
d! , then A is Cohen-Macaulay and F -rational.

(2) If eHK(A) < 1 + 1
pdd!

, then A is regular.

So it is natural to consider the following problem:

Problem C. Let d ≥ 2 be any integer. Determine the lower bound

(sHK(p, d)) of Hilbert-Kunz multiplicities for d-dimensional non-regular un-

mixed local rings of characteristic p. Also, characterize the local rings A
for which eHK(A) = sHK(p, d) holds.

In case of one-dimensional local rings, it is easy to answer to this prob-

lem. In fact, sHK(p, 1) = 2; eHK(A) = 2 if and only if e(A) = 2. In case of

two-dimensional Cohen-Macaulay local rings, the authors [23] have given a

complete answer to this problem. Namely, we have sHK(p, 2) = 3
2 by the

theorem below.
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Theorem D. (see also Corollary 2.6) Let (A,m, k) be a two-dimen-

sional Cohen-Macaulay local ring of positive characteristic. Put e = e(A),
the multiplicity of A. Then the following statements hold :

(1) eHK(A) ≥ e+1
2 .

(2) Suppose that k = k. Then eHK(A) = e+1
2 holds if and only if the

associated graded ring grm(A) is isomorphic to the Veronese subring

k[X,Y ](e).

In the following, let us explain the organization of this paper. In Sec-

tion 1, we recall the notions of Hilbert-Kunz multiplicity and tight closure

etc. and gather several fundamental properties of them. In particular, Goto-

Nakamura’s theorem (Theorem 1.9) is important because it plays a central

role in the proof of the main result (Theorem 3.1).

In Section 2, we give a key result to estimate Hilbert-Kunz multiplicities

for local rings of lower dimension. Indeed, Theorem 2.2 is a refinement of

the argument in [23, Section 2]. Also, the point of our proof is to estimate

lA(m[q]/J [q]) (where J is a minimal reduction of m) using volumes in Rd.

In Section 3, we prove the following theorem as the main result in this

paper.

Theorem 3.1. Let (A,m, k) be a three-dimensional unmixed local ring

of characteristic p > 0. Then the following statements hold.

(1) If A is not regular, then eHK(A) ≥ 4
3 .

(2) Suppose that k = k and char k 6= 2. Then the following conditions are

equivalent :

(a) eHK(A) = 4
3 .

(b) Â ∼= k[[X,Y,Z,W ]]/(X2 + Y 2 + Z2 + W 2).

Also, we study lower bounds on eHK(A) for local rings A having a given

(small) multiplicity e. In particular, we will prove that any three-dimen-

sional unmixed local ring A with eHK(A) < 2 is F -rational.

In Section 4, we consider a generalization of Theorem 3.1 and pose the

following conjecture:

Conjecture 4.2. Let d ≥ 1 be an integer and p > 2 a prime number.

Put

Ap,d := Fp[[X0, X1, . . . , Xd]]/(X
2
0 + · · · + X2

d ).
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Let (A,m, k) be a d-dimensional unmixed local ring with k = Fp. Then the

following statements hold.

(1) If A is not regular, then eHK(A) ≥ eHK(Ap,d) ≥ 1 + cd

d! (see 4.2 for

the definition of cd). In particular, sHK(p, d) = eHK(Ap,d).

(2) If eHK(A) = eHK(Ap,d), then the m-adic completion Â of A is isomor-

phic to Ap,d as local rings.

Also, we prove that this is true in case of dimA = 4. Namely we will

prove the following theorem.

Theorem 4.3. Let (A,m, k) be a four-dimensional unmixed local ring

of characteristic p > 0. Also, suppose that k = k and char k 6= 2. Then

eHK(A) ≥ 5
4 if e(A) ≥ 3. Also, the following statements hold.

(1) If A is not regular, then eHK(A) ≥ eHK(Ap,4) = 29p2+15
24p2+12 .

(2) The following conditions are equivalent :

(a) Equality holds in (1).

(b) eHK(A) < 5
4 .

(c) Â is isomorphic to Ap,4.

§1. Preliminaries

Throughout this paper, let A be a commutative Noetherian ring with

unity. Furthermore, we assume that A has a positive characteristic p, that

is, it contains a prime field Fp = Z/pZ, unless otherwise specified. For every

positive integer e, let q = pe. If I is an ideal of A, then I [q] = (aq : a ∈ I)A.

Also, we fix the following notation: lA(M) (resp. µA(M)) denotes the length

(resp. the minimal number of generators) of M for any finitely generated

A-module M .

First, we recall the notion of Hilbert-Kunz multiplicity (see [15], [16],

[18]). Also, see [17] or [20] for usual multiplicity.

Definition 1.1. (multiplicity, Hilbert-Kunz multiplicity) Let (A,m, k)
be a local ring of characteristic p > 0 with dimA = d. Let I be an m-
primary ideal of A, and let M be a finitely generated A-module. The
(Hilbert-Samuel) multiplicity e(I,M) of I with respect to M is defined by

e(I,M) = lim
n→∞

d!

nd
lA(M/InM).
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The Hilbert-Kunz multiplicity eHK(I,M) of I with respect to M is defined
by

eHK(I,M) = lim
q→∞

lA(M/I [q]M)

qd
.

By definition, we put e(I) = e(I,A) (resp. eHK(I) = eHK(I,A)) and e(A) =
e(m) (resp. eHK(A) = eHK(m)).

We recall several basic results on Hilbert-Kunz multiplicity.

Proposition 1.2. (Fundamental properties (cf. [13], [15], [16], [18],
[22])) Let (A,m, k) be a local ring of positive characteristic. Let I, I ′ be

m-primary ideals of A, and let M be a finitely generated A-module. Then

the following statements hold.

(1) If I ⊆ I ′, then eHK(I) ≥ eHK(I ′).

(2) eHK(A) ≥ 1.

(3) dimM < d if and only if eHK(I,M) = 0.

(4) If 0 → L → M → N → 0 is a short exact sequence of finitely

generated A-modules, then

eHK(I,M) = eHK(I, L) + eHK(I,N).

(5) (Associative formula)

eHK(I,M) =
∑

p∈Assh(A)

eHK(I,A/p) · lAp(Mp),

where Assh(A) denotes the set of prime ideals p of A with dimA/p =
dimA.

(6) If J is a parameter ideal of A, then eHK(J) = e(J). In particular,

if J is a minimal reduction of I (i.e., J is a parameter ideal which

is contained in I and Ir+1 = JIr for some integer r ≥ 0), then

eHK(J) = e(I).

(7) If A is regular, then eHK(I) = lA(A/I).

(8) (Localization) eHK(Ap) ≤ eHK(A) holds for any prime ideal p such

that dimA/p + height p = dimA.

(9) If x ∈ I is A-regular, then eHK(I) ≤ eHK(I/xA).
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(10) If (A,m) → (B, n) is a flat local ring homomorphism such that B/mB
is a field, then eHK(I) = eHK(IB).

Remark 1. Also, the similar result as above (except (6), (7)) holds for
usual multiplicities.

Let (A,m, k) be any local ring of positive dimension. The associated

graded ring grm(A) of A with respect to m is defined as follows:

grm(A) :=
⊕

n≥0

mn/mn+1.

Then G = grm(A) is a homogeneous k-algebra such that M := G+ is the

unique homogeneous maximal ideal of G. If charA = p > 0 and dimA = d,

then GM is also a local ring of characteristic p with dimGM = d.

Proposition 1.3. ([22, Theorem (2.15)]) Let (A,m, k) be a local ring

of positive characteristic. Let G = grm(A) the associated graded ring of A
with respect m as above. Then eHK(A) ≤ eHK(GM) ≤ e(A).

Remark 2. We use the same notation as in the above proposition. Al-
though e(A) = e(GM) always holds, eHK(A) = eHK(GM) seldom holds.

Proposition 1.4. (cf. [13]) Let (A,m, k) be a local ring of positive

characteristic with d = dimA. Let I be an m-primary ideal of A. Then

e(I)

d!
≤ eHK(I) ≤ e(I).

Also, if d ≥ 2, then the inequality in the left-hand side is strict ; see [9].

We say that a local ring A is unmixed if dim Â/p = dim Â holds for

any associated prime ideal p of Â. The following theorem is an analogy of

Nagata’s theorem ([20, (40.6)]), which is a starting point in this article.

Theorem 1.5. ([22, Theorem (1.5)]) Let (A,m, k) be an unmixed local

ring of positive characteristic. Then A is regular if and only if eHK(A) = 1.

It is not so easy to compute Hilbert-Kunz multiplicities in general.

However, one has simple formulas for them in case of quotient singularities

and in case of binomial hypersurfaces; see below or [4, Theorem 3.1].
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Theorem 1.6. (cf. [22, Theorem (2.7)]) Let (A,m) ↪→ (B, n) be a mod-

ule-finite extension of local domains of positive characteristic. Then for

every m-primary ideal I of A, we have

eHK(I) =
eHK(IB)

[Q(B) : Q(A)]
· [B/n : A/m],

where Q(A) denotes the fraction field of A.

Now let us see some examples of Hilbert-Kunz multiplicities which are

given by the above formula. First, we consider the Veronese subring A

defined by

A = k[[X i1
1 · · ·X id

d : i1, . . . , id ≥ 0,
∑

ij = r]].

Applying Theorem 1.6 to A ↪→ B = k[[X1, . . . , Xd]], we get

(1.1) eHK(A) =
1

r

(
d + r − 1

r − 1

)
.

In particular, if d = 2, r = e(A), then eHK(A) = e(A)+1
2 .

Next, we consider the homogeneous coordinate rings of quadric hy-

persurfaces in P3
k. Let k be a field of characteristic p > 2, and let R

be the homogeneous coordinate ring of the hyperquadric Q defined by

q = q(X,Y,Z,W ). Put M = R+, the unique homogeneous maximal ideal

of R, and A = RM ⊗k k. By suitable coordinate transformation, we may

assume that Â is isomorphic to one of the following rings:

(1.2)





k[[X,Y,Z,W ]]/(X2), if rank(q) = 1,

k[[X,Y,Z,W ]]/(X2 − Y Z), if rank(q) = 2,

k[[X,Y,Z,W ]]/(XY − ZW ), if rank(q) = 3.

Then eHK(A) = 2, 3
2 , or 4

3 , respectively.

In order to state other important properties of Hilbert-Kunz multiplic-

ity, the notion of tight closure is very important. See [11], [12], [13] for

definition and the fundamental properties of tight closure. In particular,

the notion of F -rational ring is essential in our argument.

Definition 1.7. ([6], [11], [12]) Let (A,m, k) be a local ring of positive
characteristic. We say that A is weakly F -regular (resp. F -rational) if
every ideal (resp. every parameter ideal) is tightly closed. Also, A is F -

regular (resp. F -rational) if any local ring of A is weakly F -regular (resp.
F -rational).
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Note that an F -rational local ring is normal and Cohen-Macaulay.

Hochster and Huneke have given the following criterion of tight closure

in terms of Hilbert-Kunz multiplicity.

Theorem 1.8. (Length Criterion for Tight Closure (cf. [11, Theorem
8.17])) Let I ⊆ J be m-primary ideals of a local ring (A,m, k) of positive

characteristic.

(1) If I∗ = J∗, then eHK(I) = eHK(J).

(2) Suppose that A is excellent, reduced and equidimensional. Then the

converse of (1) is also true.

The following theorem plays an important role in studying Hilbert-

Kunz multiplicities for non-Cohen-Macaulay local rings.

Theorem 1.9. (Goto-Nakamura [8]) Let (A,m, k) be an equidimen-

sional local ring which is a homomorphic image of a Cohen-Macaulay local

ring of characteristic p > 0. Then

(1) If J is a parameter ideal of A, then e(J) ≥ lA(A/J∗).

(2) Suppose that A is unmixed. If e(J) = lA(A/J∗) for some parameter

ideal J , then A is F -rational (hence is Cohen-Macaulay).

The next corollary is well-known in case of Cohen-Macaulay local rings

(e.g. see [13]).

Corollary 1.10. Let (A,m, k) be an unmixed local ring of character-

istic p > 0. Suppose that e(A) = 2. Then Â is F -rational if and only if

eHK(A) < 2. When this is the case, A is an F -rational hypersurface.

Proof. Since any Cohen-Macaulay local ring of multiplicity 2 is a hy-
persurface, it suffices to prove the first statement.

We may assume that A is complete and k is infinite. We can take a
minimal reduction J of m. First, suppose that eHK(A) < 2. Then we show
that A is Cohen-Macaulay, F -rational. By Goto-Nakamura’s theorem, we
have 2 = e(J) ≥ lA(A/J∗). If equality does not hold, then lA(A/J∗) = 1,
that is, J∗ = m. Then eHK(A) = eHK(J∗) = eHK(J) = e(J) = 2 by
Proposition 1.2. This is a contradiction. Hence e(J) = lA(A/J∗). By
Goto-Nakamura’s theorem again, we obtain that A is Cohen-Macaulay, F -
rational.
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Conversely, suppose that A is a complete F -rational local ring. Then
since A is Cohen-Macaulay and J ∗ = J 6= m, we have eHK(A) < eHK(J) =
e(J) = 2 by the Length Criterion for Tight Closure.

The next question is open in general. However, we will show that it is

true for dimA ≤ 3; see Section 3.

Question 1.11. If A is an unmixed local ring with eHK(A) < 2, then

is it F -rational ?

§2. Estimate of Hilbert-Kunz multiplicities

In this section, we will prove the key result to find a lower bound on

Hilbert-Kunz multiplicities. Actually, it is a refinement of the argument

which appeared in [22, Section 5] or in [23, Section 2]. The point is to use

the tight closure J∗ instead of “a parameter ideal J itself”. This enables

us to investigate Hilbert-Kunz multiplicities of non-Cohen-Macaulay local

rings. In Sections 3, 4, we will apply our method to unmixed local rings

with dimA = 3, 4.

Before stating our theorem, we introduce the following notation: Fix

d > 0. For any positive real number s, we put

vs := vol

{
(x1, . . . , xd) ∈ [0, 1]d :

d∑

i=1

xi ≤ s

}
, v′s := 1 − vs,

where vol(W ) denotes the volume of W ⊆ Rd. Then it is easy to see the

following fact.

Fact 2.1. Let s be a positive real number. Using the same notation as

above, we have

(1) vs + v′s = 1.

(2) v′d−s = vs.

(3) vd/2 = v′d/2 = 1
2 .

(4) If 0 ≤ s ≤ 1, then vs = sd

d! .

Using the above notaion, the key result in this paper can be written as

follows:
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Theorem 2.2. Let (A,m, k) be an unmixed local ring of characteristic

p > 0. Put d = dimA ≥ 1. Let J be a minimal reduction of m, and let r
be an integer with r ≥ µA(m/J∗), where J∗ denotes the tight closure of J .

Also, let s ≥ 1 be a rational number. Then we have

(2.1) eHK(A) ≥ e(A)

{
vs − r · (s − 1)d

d!

}
.

Remark 3. When 1 ≤ s ≤ 2, the right-hand side in Equation (2.1) is
equal to e(A)(vs − r · vs−1).

Before proving the theorem, we need the following lemma. In what

follows, for any positive real number α, we define Iα := In, where n is the

minimum integer which does not exceed α.

Lemma 2.3. Let (A,m, k) be an unmixed local ring of characteristic

p > 0 with dimA = d ≥ 1. Let J be a parameter ideal of A. Using the same

notation as above, we have

lim
q→∞

lA(A/Jsq)

qd
=

e(J)sd

d!
, lim

q→∞
lA

(
Jsq + J [q]

J [q]

)
= e(J) · v′s.

Proof. First, note that our assertion holds if A is regular and J = m.
We may assume that A is complete. Let x1, . . . , xd be a system of param-
eters which generates J , and put R := k[[x1, . . . , xd]], n = (x1, . . . , xd)R.
Then R is a complete regular local ring and A is a finitely generated R-
module with A/m = R/n. Since the assertion is clear in case of regular
local rings, it suffices to show the following claim.

Claim. Let I = {Iq}q=pe be a set of ideals of A which satisfies the

following conditions:

(1) For each q = pe, Iq = JqA holds for some ideal Jq ⊆ R.

(2) There exists a positive integer t such that ntq ⊆ Jq for all q = pe.

(3) limq→∞ lR(R/Jq)/q
d exists.

Then

lim
q→∞

lA(A/Iq)

qd
= e(J) · lim

q→∞

lR(R/Jq)

qd
.
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In fact, since A is unmixed, it is a torsion-free R-module of rank e :=
e(J). Take a free R-module F of rank e such that AW

∼= FW , where
W = R\{0}. Since F and A are both torsion-free, there exist the following
short exact sequences of finitely generated R-modules:

0 → F → A → C1 → 0, 0 → A → F → C2 → 0,

where (C1)W = (C2)W = 0. In particular, dimC1 < d and dimC2 < d.
Applying the tensor product − ⊗R R/Jq to the above two exact se-

quences, respectively, we get

lA(A/Iq) ≤ lR(F/JqF ) + lR(C1/JqC1),

lR(F/JqF ) ≤ lA(A/Iq) + lR(C2/JqC2).

In general, if dimR C < d, then

lR(C/JqC)

qd
≤ lR(C/ntqC)

qd
→ 0 (q → ∞).

Thus the required assertion easily follows from the above observation.

Proof of Theorem 2.2. For simplicity, we put L = J ∗ and e = e(A).
We will give an upper bound of lA(m[q]/J [q]). First, we have the following
inequality:

lA(m[q]/J [q]) ≤ lA

(
m[q] + msq

J [q]

)

= lA

(
m[q] + msq

L[q] + msq

)
+ lA

(
L[q] + msq

L[q] + Jsq

)

+ lA

(
L[q] + Jsq

J [q] + Jsq

)
+ lA

(
J [q] + Jsq

J [q]

)

=: `1 + `2 + `3 + `4.

Next, we see that `1 ≤ r · lA(A/J (s−1)q)+O(qd−1). By our assumption,
we can write m = L+ Aa1 + · · ·+Aar. Since m(s−1)qaq

i ⊆ msq ⊆ msq + L[q],
we have

`1 = lA

(
m[q] + msq

L[q] + msq

)
≤

r∑

i=1

lA

(
Aaq

i + L[q] + msq

L[q] + msq

)

=

r∑

i=1

lA

(
A/(L[q] + msq) : aq

i

)

≤ r · lA(A/m(s−1)q).
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Since J is a minimal reduction of m, we have lA(m(s−1)q/J (s−1)q) = O(qd−1).
Thus we have the required inequality. Similarly, we get

`2 = lA

(
L[q] + msq

L[q] + Jsq

)
≤ lA(msq/Jsq) = O(qd−1).

Also, we have lA(L[q]/J [q]) = O(qd−1) by Length Criterion for Tight
Closure. Hence `3 = O(qd−1) and thus

lA(m[q]/J [q]) ≤ r · lA(A/J (s−1)q) + lA

(
J [q] + Jsq

J [q]

)
+ O(qd−1).

It follows from the above argument that

eHK(J) − eHK(m) ≤ r · lim
q→∞

lA(A/J (s−1)q)

qd
+ lim

q→∞

1

qd
lA

(
J [q] + Jsq

J [q]

)

= r · e · (s − 1)d

d!
+ e · v′s.

Since eHK(J) = e(J) = e, eHK(A) = eHK(m) and v′s = 1 − vs, we get the
required inequality.

The following fact is known, which gives a lower bound on Hilbert-Kunz

multiplicities for hypersurface local rings.

Fact 2.4. (cf. [1], [2], [22]) Let (A,m, k) be a hypersurface local ring of

characteristic p > 0 with d = dimA ≥ 1. Then

eHK(A) ≥ βd+1 · e(A),

where βd+1 is given by the following equivalent formulas:

(a)
1

π

∫ ∞

−∞

(
sin θ

θ

)d+1

dθ ;

(b)
1

2dd!

[ d
2

]∑

`=0

(−1)`(d + 1 − 2`)d

(
d + 1

`

)
;

(c) vol

{
x ∈ [0, 1]d :

d − 1

2
≤
∑

xi ≤
d + 1

2

}
= 1 − v d−1

2
− v′d+1

2

.
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Table 1.

d 0 1 2 3 4 5 6

βd+1 1 1 3
4

2
3

115
192

11
20

5633
11520

Remark 4. The above inequality is not best possible in general. In
case of d ≥ 4, one cannot prove the formula in the above fact as a corollary
of our theorem. See also Proposition 3.9 and Theorem 4.3.

The following lemma is an analogy of Sally’s theorem: If A is a Cohen-

Macaulay local ring, then µA(m/J) = µA(m) − dimA ≤ e(A) − 1.

Lemma 2.5. Let (A,m, k) be an unmixed local ring of positive charac-

teristic, and let J be a minimal reduction of m.

(1) µA(m/J∗) ≤ e(A) − 1.

(2) If A is not F -rational, then µA(m/J∗) ≤ e(A) − 2.

Proof. We may assume that A is complete and thus is a homomorphic
image of a Cohen-Macaulay local ring.

(1) By Goto-Nakamura’s Theorem, we have that µA(m/J∗) ≤ lA(m/J∗)
≤ e(J) − 1 = e − 1.

(2) If A is not F -rational, then lA(A/J∗) ≤ e(J) − 1 = e − 1. Thus
µA(m/J∗) ≤ e − 2, as required.

Using Theorem 2.2 and Lemma 2.5, one can prove the following corol-

lary, which has been already proved in [23] in the case of Cohen-Macaulay

local rings.

Corollary 2.6. (cf. [23]) Let (A,m, k) be a two-dimensional unmixed

local ring of characteristic p > 0. Put e = e(A). Then

(2.2) eHK(A) ≥ e + 1

2
.

Also, suppose k = k. Then the equality holds if and only if grm(A) is iso-

morphic to the Veronese subring k[X,Y ](e) = k[Xe, Xe−1Y, . . . ,XY e−1, Y e].
Moreover, if A is not F -rational, then we have

eHK(A) ≥ e2

2(e − 1)
.
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Example 2.7. (Fakhruddin-Trivedi [7, Corollary 3.19]) Let E be an
elliptic curve over a field k = k of characteristic p > 0, and let L be a
very ample line bundle on E of degree e ≥ 2. Let R be the homogeneous
coordinate ring (the section ring of L) defined by

R =
⊕

n≥0

H0(E,L⊗n).

Also, put A = RM, where M be the unique homogeneous maximal ideal of
R. Then we have eHK(A) = e2

2(e−1) .

§3. Lower bounds in the case of three-dimensional local rings

In this section, we prove the main theorem in this paper, which gives

the lower bound of Hilbert-Kunz multiplicities for non-regular unmixed

local rings of dimension 3.

Theorem 3.1. Let (A,m, k) be a three-dimensional unmixed local ring

of characteristic p > 0. Then

(1) If A is not regular, then eHK(A) ≥ 4
3 .

(2) Suppose that k = k and char k 6= 2. Then the following conditions are

equivalent :

(a) eHK(A) = 4
3 .

(b) Â ∼= k[[X,Y,Z,W ]]/(X2 + Y 2 + Z2 + W 2).

(c) grm(A) ∼= k[X,Y,Z,W ]/(X2 +Y 2+Z2+W 2). That is, grm(A) ∼=
k[X,Y,Z,W ]/(XY − ZW ).

Proposition 3.2. Let (A,m, k) be a three-dimensional unmixed local

ring of characteristic p > 0. If eHK(A) < 2, then A is F -rational.

From now on, we divide the proof of Theorem 3.1 and Proposition 3.2

into several steps. In the following, we assume the following condition.

(#): Let (A,m, k) be a three-dimensional unmixed local ring of character-

istic p > 0, and e(A) = e, the multiplicity of A. Also, suppose that m

has a minimal reduction J .

Suppose that A is not regular under the assumption (#). Then e =

e(A) is an integer with e ≥ 2. Thus the first assertion of Theorem 3.1

follows from the following lemma. Also, this implies that if eHK(A) = 4
3

then e(A) = 2 without extra assumptions.
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Lemma 3.3. Under the assumption (#), we have

(1) If e ≥ 5, then eHK(A) > 2.

(2) If e = 4, then eHK(A) ≥ 7
4 > 4

3 .

(3) If e = 3, then eHK(A) ≥ 13
8 > 4

3 .

(4) If e = 2, then eHK(A) ≥ 4
3 .

Remark 5. The lower bounds of eHK(A) in Lemma 3.3 are not best
possible.

Proof. We may assume that A is complete. By Lemma 2.5(1), we can
apply Theorem 2.2 with r = e − 1. Namely, if 1 ≤ s ≤ 2, then

(3.1) eHK(A) ≥ e(vs − (e − 1)vs−1) = e

(
s3

6
− (e + 2)

(s − 1)3

6

)
.

Define the real-valued function fe(s) by the right-hand side of Eq. (3.1).
Then one can easily calculate max1≤s≤2 fe(s). In fact, if e ≥ 2, then

max
1≤s≤2

fe(s) = f

(
e + 2 +

√
e + 2

e + 1

)
=

e

6

(
e + 2 +

√
e + 2

e + 1

)2

.

But, in order to prove the lemma, it is enough to use the following values
only:

s 3
2

7
4 2

fe(s)
e(25−e)

48
e(289−27e)

384
e(6−e)

6

(1) We show that eHK(A) > 2 if e ≥ 5. If e ≥ 13, then by Proposition 1.4,

eHK(A) ≥ e

3!
≥ 13

6
> 2.

So we may assume that 5 ≤ e ≤ 12. Applying Eq. (3.1) for s = 3
2 , we get

eHK(A) ≥ e(25 − e)

48
≥ 5(25 − 5)

48
=

25

12
> 2.

(2) Suppose that e = 4. Applying Eq. (3.1) for s = 3
2 , we get

eHK(A) ≥ e(25 − e)

48
=

7

4
.
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(3) Suppose that e = 3. Applying Eq. (3.1) for s = 7
4 , we get

eHK(A) ≥ e(289 − 27e)

384
=

13

8
.

(4) Suppose that e = 2. Applying Eq. (3.1) for s = 2,

eHK(A) ≥ e(6 − e)

6
=

4

3
,

as required.

Before proving the second assertion of Theorem 3.1, we prove Proposi-

tion 3.2. For that purpose, we now focus non-F -rational local rings.

Now suppose that A is not F -rational. If e = 2, then eHK(A) = 2 by

Lemma 1.10. On the other hand, if e ≥ 5, then eHK(A) > 2 by Lemma 3.3.

Thus in order to prove Proposition 3.2, it is enough to investigate the cases

of e = 3, 4. Namely, Proposition 3.2 follows from the following lemma.

Lemma 3.4. Suppose that A is not F -rational under the assumption

(#). Then

(1) If e = 3, then eHK(A) ≥ 2.

(2) If e = 4, then eHK(A) > 2.

Proof. By Lemma 2.5(2), we can apply Theorem 2.2 for r = e − 2.
Thus if 1 ≤ s ≤ 2, then

(3.2) eHK(A) ≥ e

(
s3

6
− (e + 1)

(s − 1)3

6

)
.

(1) Suppose that e = 3. Applying Eq. (3.2) for s = 2, we get

eHK(A) ≥ e(7 − e)

6
= 2.

(2) Suppose that e = 4. Applying Eq. (3.2) for s = 7
4 , we get

eHK(A) ≥ e(316 − 27e)

384
=

13

6
> 2,

as required.
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Example 3.5. Let R = k[T, xT, xyT, yT, x−1yT, x−2yT, . . . , x−nyT ]
be a rational normal scroll and put m = (T, xT, xyT, yT, x−1yT, . . . , x−nyT ).
Then A = Rm is a three-dimensional Cohen-Macaulay F -rational local do-
main with e(A) = n + 2, and

eHK(A) =
e(A)

2
+

e(A)

6(n + 1)
.

Proof. Let P ⊆ R be a convex polytope with vertex set

Γ = {(0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), . . . , (−n, 1)},
and put P̃ := {(α, 1) ∈ R3 : α ∈ P} and dP := {d · α : α ∈ P} for every
integer d ≥ 0. Also, if we define a cone C = C(P̃) := {rβ : β ∈ P̃, 0 ≤ r ∈
Q} and regard R as a homogeneous k-algebra with deg x = deg y = 0 and
deg T = 1, then the basis of Rd corresponds to the set {(α, d) ∈ Z3 : α ∈
Z2 ∩ dP} = {(α, d) ∈ Z3 : α ∈ Z2} ∩ C.

P =
P

P
P

P
P

P
P

PP•

•

•

••••
(−n, 1) (0, 1) (1, 1)

(0, 0) (1, 0)

If we put Γq = {(0, 0), (q, 0), (q, q), (0, q), (−q, q), . . . , (−nq, q)}, then
m[q] = (xaybT q : (a, b) ∈ Γq). Since [m[q]]d =

∑
(a,b)∈Γq

Rd−q xaybT q, we
have

eHK(A) = lim
q→∞

1

q3
lA(A/m[q])

= lim
q→∞

1

q3
#

{
Z3 ∩

(
C \

⋃

(a,b)∈Γq

(a, b, q) + C
)}

,

that is,

eHK(A) = lim
q→∞

1

q3

[
∞∑

d=0

#

{
Z2 ∩

(
dP \

⋃

(a,b)∈Γq

(a, b) + max{0, d − q}P
)}]

.

Also, if we define a real continuous function f : [0,∞) → R by

f(t) = the volume of

[
tP \

⋃

(a,b)∈Γ

(a, b) + max{0, t − 1}P
]

in R2,
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then eHK(A) =

∫ ∞

0
f(t) dt. Let us denote the volume of M ⊆ R2 by vol(M).

To calculate eHK(A), we need to determine f(t). Namely, we need to show
the following claim.

Claim.

f(t) =





vol(tP), 0 ≤ t < 1;

vol(tP) − (n + 4) vol((t − 1)P), 1 ≤ t < n+2
n+1 ;

(n+2)t(2−t)
2 + (n + 2) (2−t)2

2n , n+2
n+1 ≤ t < 2;

0, t ≥ 2.

To prove the claim, we may assume that t ≥ 1. For simplicity, we put
Ma,b = (a, b)+(t−1)P for every (a, b) ∈ Γ. First suppose that 1 ≤ t < n+2

n+1 .
Then since 1 − n(t − 1) > t − 1, M0,0 ∩ M1,0 = ∅. Similarly, one can easily
see that any two Ma,b do not intersect each other; see Figure 1. Thus
f(t) = vol(tP) − (n + 4) vol((t − 1)P).

Next suppose that n+2
n+1 ≤ t < 2. Then P ∩ {(x, y) ∈ R2 : 0 ≤ y ≤

t− 1} = M0,0 ∪M1,0∪T0, where T0 is a triangle with vertex (t− 1, 0), (1, 0)
and

(
t−1, 2−t

n

)
. Similarly, there exist (n+1)-triangles T1, . . . , Tn+1 having

the same volumes as T0 such that

P∩{(x, y) ∈ R2 : 1 ≤ y ≤ t} = M−n,1∪· · ·∪M1,1∪M0,1∪M1,1∪T1∪· · ·∪Tn+1

and any two Ti’s do not intersect each other; see Figure 2. Thus

f(t) = vol(P ∩ {(x, y) ∈ R2 : t − 1 ≤ y ≤ 1}) + (n + 2) vol(T0)

=
(n + 2)t(2 − t)

2
+ (n + 2)

(2 − t)2

2n
.

Finally, suppose that t ≥ 2. Then since P is covered by Ma,b’s, we have
f(t) = 0, as required.

Using the above claim, let us calculate eHK(A). Note that vol(tP) =
(n+2)t2

2 .

eHK(A) =

∫ n+2
n+1

0

(n + 2)t2

2
dt − (n + 4)

∫ n+2
n+1

1

(n + 2)(t − 1)2

2
dt

+

∫ 2

n+2
n+1

(n + 2)t(2 − t)

2
dt + (n + 2)

∫ 2

n+2
n+1

(2 − t)2

2n
dt

= (n + 2)

[
1

2
+

1

6(n + 1)

]
,
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H
H

H
H

H
H

H
HH

H
H

H
H

H
H

H
H

HH

◦
(1 − n(t − 1), t − 1)

(−nt, t) (t, t)

(t, t − 1)(−n, 1)

0 t − 1 1 t

M0,0 M1,0

M
−n,1 M1,1

• •

• •

Figure 1. The case where 1 ≤ t < n+2
n+1

H
H

H
H

H
H

H
HH

H
H

HH

H
H

H
H

H
H

HH

(−nt, t)

(−n, 1)
(−n(t − 1), t − 1)

(t, t)

(t, t − 1)

(t, 1)
· · ·

0 t − 1 1 t

T0

T1 T
n+1

M0,0 M1,0

M
−n,1 M1,1

• •

• ••

Figure 2. The case where n+2
n+1 ≤ t < 2

as required.

Discussion 3.6. Let A be a complete local ring which satisfies (#).
Also, suppose that e = 3. What is the smallest value of eHK(A) among such
rings?

The function fe(s) = 3
(

s3

6 − 5 (s−1)3

6

)
, which appeared in Eq. (3.1),

takes the maximal value

f

(
5 +

√
5

4

)
=

15 + 5
√

5

16
= 1.636 · · ·

in s ∈ [1, 2]. Hence eHK(A) ≥ 1.636 · · · . But we believe that this is not best
possible.

Suppose that eHK(A) < 2. Then A is F -rational by Lemma 3.4. Thus
it is Cohen-Macaulay and 3+1 ≤ v = emb(A) ≤ d+e−1 = 3+3−1 = 5. If
v 6= 5, then A is a hypersurface and eHK(A) ≥ 2

3 · e = 2 by Fact 2.4. Hence
we may assume that v = 5, that is, A has maximal embedding dimension.
If we write as A = R/I, where R is a complete regular local ring with
dimR = 5, then height I = 2. By Hilbert-Burch’s theorem, there exists a
2× 3-matrix M such that I = I2(M), the ideal generated by all 2-minors of
M. In particular, A can be written as A = B/aB, where B = k[X]/I2(X),
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X is a generic 2 × 3-matrix and a is a prime element of B. This implies
that

eHK(A) = eHK(B/aB) ≥ eHK(B) = 3

{
1

2
+

1

4!

}
=

13

8
= 1.625;

see [5, Section 3].
For example, if A = k[[T, xT, xyt, yT, x−1yT ]] is a rational normal

scroll, then eHK(A) = 7
4 = 1.75 by Example 3.5. Is this the smallest

value?

Discussion 3.7. Let A be a complete local ring which satisfies (#).
Also, suppose that e = 4. What is the smallest value of eHK(A) among such
rings?

As in Discussion 3.6, it suffices to consider F -rational local rings only.
For example, let A = k[[x, y, z]](2) be the Veronese subring. Then A is an
F -rational local domain with e(A) = 4 and eHK(A) = 2. Also, let A be the
completion of the Rees algebra R(n) over an F -rational double point (R, n)
of dimension 2. Then A is an F -rational local domain with e(A) = 4 and
eHK(A) ≥ 2 (we believe that this inequality is strict).

On the other hand, the function fe(s) which appeared in Eq. (3.1),
takes the maximal value

f

(
6 +

√
6

5

)
=

28 + 8
√

6

25
= 1.903 · · ·

in s ∈ [1, 2]. Hence the fact that we can prove now is “eHK(A) ≥ 1.903 · · · ”
only.

Based on Corollary 2.6 and Discussion 3.7, we pose the following con-

jecture.

Conjecture 3.8. Let A be a complete local ring which satisfies (#),
and let r ≥ 2 be an integer. If e(A) = r2, then

eHK(A) ≥ (r + 1)(r + 2)

6
.

Also, the equality holds if and only if A is isomorphic to k[[x, y, z]](r).

In the rest of this section, we prove the second statement of Theo-

rem 3.1. Let (A,m, k) be a complete local ring which satisfies (#). If



HILBERT-KUNZ MULTIPLICITY OF THREE-DIMENSIONAL LOCAL RINGS 67

eHK(A) = 4
3 , then A is an F -rational hypersurface with e(A) = 2 by the

above observation. Furthermore, suppose that k = k and char k 6= 2. Then

we may assume that A can be written as the form k[[X,Y,Z,W ]]/(X 2 −
ϕ(Y,Z,W )). To study Hilbert-Kunz multiplicities for these rings, we prove

the improved version of Theorem 2.2.

Proposition 3.9. Let k be an algebraically closed field of char k 6= 2,
and let A = k[[X,Y,Z,W ]]/(X2−ϕ(Y,Z,W )) be an F -rational hypersurface

local ring. Let a, b, c be integers with 2 ≤ a ≤ b ≤ c.
Suppose that there exists a function ord : A → Q∪ {∞} which satisfies

the following conditions:

(1) ord(α) ≥ 0; and ord(α) = ∞ ⇐⇒ α = 0.

(2) ord(x) = 1/2, ord y = 1/a, ord z = 1/b, and ordw = 1/c.

(3) ord(ϕ) ≥ 1.

(4) ord(α + β) ≥ min{ord(α), ord(β)}.
(5) ord(αβ) ≥ ord(α) + ord(β).

Then we have

eHK(A) ≥ 2 − abc

12
(N3 − n3),

where

N =
1

a
+

1

b
+

1

c
− 1

2
, n = max

{
0, N − 2

c

}
.

In particular, if (a, b, c) 6= (2, 2, 2), then eHK(A) > 4
3 .

Remark 6. The third condition ord(ϕ) ≥ 1 is important. For example,
if ϕ ≡ y2 mod (z, w)3, then one can take (a, b, c) = (2, 3, 3), but (a, b, c) =
(2, 3, 4).

Proof. First, we define a filtration {Fn}n∈Q as follows:

Fn := {α ∈ A : ord(α) ≥ n}.

Then every Fn is an ideal and FmFn ⊆ Fm+n holds for all m, n ∈ Q. Using
Fn instead of mn, we shall estimate lA(m[q]/J [q]).

Set J = (y, z, w)A and fix a sufficiently large power q = pe. Put

s =
1

a
+

1

b
+

1

c
, N =

1

a
+

1

b
+

1

c
− 1

2
.
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Since J is a minimal reduction of m and xyq−1zq−1wq−1 generates the socle
of A/J [q], we have that Fsq ⊆ J [q]. Also, since B = A/J [q] is an Artinian
Gorenstein local ring, we get

F (N+1)q
2

B ⊆ 0 :B F Nq

2
B ∼= KB/F Nq

2
B,

where KC denotes a canonical module of a local ring C. Hence, by the
Matlis duality theorem, we get

lA

(
F (N+1)q

2

+ J [q]

J [q]

)
≤ lB

(
F (N+1)q

2

)
≤ lB

(
KB/F Nq

2
B

)
= lB

(
B/F Nq

2
B
)
.

On the other hand, since xq ∈ F q

2
by the assumption, we have

xqF Nq

2
⊆ F (N+1)q

2

.

Therefore by a similar argument as in the proof of Theorem 2.2, we get

lA(m[q]/J [q]) ≤ lA

(
Axq + J [q] + F (N+1)q

2

F (N+1)q
2

+ J [q]

)
+ lA

(
F (N+1)q

2

+ J [q]

J [q]

)

≤ lA

(
A/
(
J [q] + F (N+1)q

2

)
: xq
)

+ lB

(
B/F Nq

2
B
)

≤ 2 · lA
(
A/J [q] + F N

2
q

)
.

In fact, since

lim
q→∞

1

q3
lA

(
A/J [q] + F Nq

2

)

= e(A) · lim
q→∞

1

q3
vol

{
(x, y, z) ∈ [0, q]3 :

y

a
+

z

b
+

w

c
≤ Nq

2

}

= 2 · vol
{

(x, y, z) ∈ [0, 1]3 :
y

a
+

z

b
+

w

c
≤ N

2

}

=
abc

24
(N3 − n3),

we get

eHK(A) ≥ 2 − 2 · abc

24
(N3 − n3) = 2 − abc

12
(N3 − n3),

as required.
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Example 3.10. Let k be an algebraically closed field of char k 6= 2,
and let (A,m, k) be a hypersurface. Put grm(A) = k[X,Y,Z,W ]/(g(X,Y,
Z,W )).

g(X,Y,Z,W ) = X2 + Y 3 + Z3 + W 3 =⇒ eHK(A) ≥ 55

32
;

g(X,Y,Z,W ) = X2 + Y 2 + Z3 + W 3 =⇒ eHK(A) ≥ 14

9
;

g(X,Y,Z,W ) = X2 + Y 2 + Z2 + W c =⇒ eHK(A) ≥ 3

2
− 2

3c2
.

Proof of Theorem 3.1(2). Put G = grm(A) and M = grm(A)+. The im-
plication (a) ⇒ (b) follows from Proposition 3.9. (b) ⇒ (c) is clear. Suppose
(c). Then eHK(GM) = 4

3 . Also, by Proposition 1.3 and Theorem 3.1(1), we
have that 4

3 ≤ eHK(A) ≤ eHK(GM) = 4
3 . Thus eHK(A) = 4

3 , as required.

Also, the following corollary follows from the proof of Proposition 3.9

and Example 3.10.

Corollary 3.11. Let A be a local ring which satisfies (#). Also,

assume that k = k and p 6= 2. Then the following conditions are equivalent :

(1) 4
3 < eHK(A) ≤ 3

2 .

(2) grm(A) ∼= k[X,Y,Z]/(X2 + Y 2 + Z2).

(3) A is isomorphic to a hypersurface k[[X,Y,Z,W ]]/(X 2 +Y 2+Z2+W c)
for some integer c ≥ 3.

When this is the case, eHK(A) ≥ 3
2 − 2

3c2
.

§4. A generalization of the main result to higher dimensional case

In this section, we want to generalize Theorem 3.1 to the case of

dimA ≥ 4. Let d ≥ 1 be an integer and p > 2 a prime number. If we

put

Ap,d := Fp[[X0, X1, . . . , Xd]]/(X
2
0 + · · · + X2

d ),

then we can guess that eHK(Ap,d) = sHK(p, d) holds according to the obser-

vations until the previous section. In the following, let us formulate this as

a conjecture and prove that it is also true in case of dimA = 4.
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In [10], Han and Monsky gave an algorism to calculate eHK(Ap,d), but

it is not so easy to represent eHK(Ap,d) as a quotient of two polynomials of

p for any fixed d ≥ 1.

d 1 2 3 4

eHK(Ap,d) 2 3
2

4
3

29p2+15
24p2+12

On the other hand, surprisingly, Monsky proved the following theorem:

Theorem 4.1. (Monsky [19]) Under the above notation, we have

(4.1) lim
p→∞

eHK(Ap,d) = 1 +
cd

d!
,

where

(4.2) sec x + tanx =

∞∑

d=0

cd

d!
xd

(
|x| <

π

2

)
.

Remark 7. It is known that the Taylor expansion of sec x (resp. tanx)
at origin can be written as follows:

sec x =

∞∑

i=0

E2i

(2i)!
x2i,

tan x =
∞∑

i=1

(−1)i−1 22i(22i − 1)B2i

(2i)!
x2i−1,

where E2i (resp. B2i) is said to be Euler number (resp. Bernoulli number).
Also, cd appeared in Eq. (4.1) is a positive integer since cos t is an unit

element in a ring H =
{∑∞

n=0 an
tn

n! : an ∈ Z for all n ≥ 0
}
.

Based on the above observation, we pose the following conjecture.

Conjecture 4.2. Let d ≥ 1 be an integer and p > 2 a prime number.

Put

Ap,d := Fp[[X0, X1, . . . , Xd]]/(X
2
0 + · · · + X2

d ).

Let (A,m, k) be a d-dimensional unmixed local ring with k = Fp. Then the

following statements hold.

(1) If A is not regular, then eHK(A) ≥ eHK(Ap,d) ≥ 1+ cd

d! . In particular,

sHK(p, d) = eHK(Ap,d).
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(2) If eHK(A) = eHK(Ap,d), then Â ∼= Ap,d as local rings.

In the following, we prove that this is true in case of dimA = 4. Note

that

lim
p→∞

eHK(Ap,4) = lim
p→∞

29p2 + 15

24p2 + 12
=

29

24
= 1 +

c4

4!
.

Theorem 4.3. Let (A,m, k) be an unmixed local ring of characteristic

p > 0 with dimA = 4. If e(A) ≥ 3, then eHK(A) ≥ 5
4 = 30

24 .

Suppose that k = k and char k 6= 2. Put

Ap,4 = Fp[[X0, X1, . . . , X4]]/(X
2
0 + · · · + X2

4 ).

Then the following statement holds.

(1) If A is not regular, then

eHK(A) ≥ eHK(Ap,4) =
29p2 + 15

24p2 + 12
.

(2) The following conditions are equivalent :

(a) Equality holds in (1).

(b) eHK(A) < 5
4 .

(c) The completion of A is isomorphic to Ap,4.

Proof. Put e = e(A), the multiplicity of A. We may assume that A is
complete with e ≥ 2 and k is infinite. In particular, A is a homomorphic
image of a Cohen-Macaulay local ring, and there exists a minimal reduction
J of m. Then µA(m/J∗) ≤ e − 1 by Lemma 2.5. We first show that
eHK(A) ≥ 5

4 if e ≥ 3.

Claim 1. If 3 ≤ e ≤ 10, then eHK(A) ≥ 5
4 .

Putting r = e − 1 and s = 2 in Theorem 2.2, since v2 = 1
2 , we have

eHK(A) ≥ e

{
v2 −

(e − 1)14

4!

}
=

(13 − e)e

24
≥ (13 − 3) · 3

24
=

30

24
,

as required.

Claim 2. If 11 ≤ e ≤ 29, then eHK(A) ≥ 737
384

(
> 5

4

)
.
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By Fact 2.4, we have v3/2 = 1−β4+1

2 = 77
384 . Putting r = e − 1 and

s = 3
2 in Theorem 2.2, we have

eHK(A) ≥ e

{
v3/2 −

e − 1

24
·
( 1

2

)4
}

=
(78 − e)e

384
≥ 11(78 − 11)

384
=

737

384
,

as required.

Claim 3. If e ≥ 30, then eHK(A) ≥ 5
4 .

By Proposition 1.4, we have eHK(A) ≥ e
4! ≥ 30

24 .

In the following, we assume that k = k, char k 6= 2 and e ≥ 2. To see
(1), (2), we may assume that e = 2 by the above argument. Then since
eHK(A) = 2 if A is not F -rational, we may also assume that A is F -rational
and thus is a hypersurface. Thus A can be written as the following form:

A = k[[X0, X1, . . . , X4]]/(X
2
0 − ϕ(X1, X2, X3, X4)).

If A is isomorphic to Ap,4, then by [10], it is known that eHK(A) = 29p2+15
24p2+12

.
Suppose that A is not isomorphic to Ap,4. Then one can take a minimal
numbers of generators x, y, z, w, u of m and one can define a function
ord : A → Q ∪ {∞} such that

ord(x) = ord(y) = ord(z) = ord(z) =
1

2
, ord(u) =

1

3
.

If we put J = (y, z, w, u)A and Fn = {α ∈ A : ord(α) ≥ n}, then by a
similar argument as in the proof of Proposition 3.9, we have

lA(m[q]/J [q]) ≤ 2 · lA(A/J [q] + F2q/3).

Divided the both-side by qd and taking a limit q → ∞, we get

e(A)−eHK(A) ≤ 2·e(A)·vol
{

(y, z, w, u) ∈ [0, 1]4 :
y

2
+

z

2
+

w

2
+

u

3
≤ 2

3

}
.

To calculate the volume in the right-hand side, we put

Fu =





1
6

(
4
3 − 2

3 u
)3 − 3 · 1

6

(
1
3 − 2

3 u
)3 (

0 ≤ u ≤ 1
2

)

1
6

(
4
3 − 2

3 u
)3 (

1
2 ≤ u ≤ 1

)
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Then one can easily calculate

the above volume =

∫ 1

0
Fu du =

237

2434
.

It follows that

eHK(A) ≥ 2 − 4 × 237

2434
=

411

324
>

5

4
.

The following conjecture also holds if dimA ≤ 4.

Conjecture 4.4. Under the same notation as in Conjecture 4.2, if

e(A) ≥ 3, then

eHK(A) ≥ 1 +
cd + 1

d!
.

Discussion 4.5. Let d ≥ 2 be an integer and fix a prime number
p � d. Assume that Conjectures 4.2 and 4.4 are true. Also, assume that
sHK(p, d) < sHK(p, d − 1) for all d ≥ 3. Let A = k[X0, . . . , Xv ]/I be a
d-dimensional homogeneous unmixed k-algebra with deg Xi = 1, and let
m be the unique homogeneous maximal ideal of A. Suppose that k is an
algebraically closed field of characteristic p > 0. Then eHK(A) = sHK(p, d)

implies that Âm
∼= Ap,d.

In fact, if eHK(A) = sHK(p, d), then we may assume that eHK(A) <
1 + cd+1

d! . Thus e(Am) = 2 if Conjecture 4.4 is true. For any prime ideal
PAm of Am such that P 6= m, we have eHK(AP ) ≤ eHK(Am) = sHK(p, d) <
sHK(p, n), where n = dimAP < d. Since AP is also unmixed, it is regular.
Thus Am has an isolated singularity. Hence A is a non-degenerate quadric
hypersurface In other words, Âm is isomorphic to Ap,d.
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