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BERGMAN COMPLETENESS OF

HYPERCONVEX MANIFOLDS

BO-YONG CHEN∗

Abstract. We proved that any hyperconvex manifold has a complete Bergman
metric.

§1. Introduction

Let M be an n−dimensional complex manifold. Let H denote the

Hilbert space of holomorphic n−forms on M such that |
∫

M
f ∧ f̄ | < ∞.

Let h0, h1, · · · be a complete orthonormal basis for H. Then the 2n−form

defined on M × M given by KM =
∑∞

j=0
hj ∧ h̄j is called the Bergman

kernel form of M . Let z = (z1, · · · , zn) be a local coordinate system in M

and let KM (z) = K∗
M (z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n where K∗

M is a

locally defined function. Then β := ∂∂̄ log K∗
M is a well-defined Hermitian

form of bidegree (1,1), whenever K∗
M is nonzero. We call β the Bergman

metric if it is everywhere positive definite. Let us recall

Definition. A complex manifold M is called hyperconvex if there
exists a strictly plurisubharmonic (psh) function ρ : M → [−1, 0) such that
{x ∈ M : ρ(x) < c} is relatively compact in M for every c < 0.

The purpose of this note is to show the following

Theorem 1. Every hyperconvex manifold has a complete Bergman

metric.

Theorem 1 was conjectured by S. Kobayashi [11]. In the special case of

bounded hyperconvex domains Ω ⊂ C
n, it suffices to show that the volume

of {gΩ(·, y) < −1} tends to zero as y → ∂Ω, where gΩ(·, y) denotes the
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pluricomplex Green function of Ω (cf. Chen [3] and Herbort [8] indepen-

dently), and this property was verified by Blocki-Pflug [2] (independently

Herbort [8]). The case of hyperconvex Riemann surfaces was shown in [4].

Combining with a theorem of Ohsawa-Sibony [13], we obtain

Corollary 2. Every bounded pseudoconvex domain with C 2 bound-

ary in a complex manifold with positive holomorphic bisectional curvature

(eg.Pn) is Bergman complete.

Greene-Wu [7] proved the the existence of a bounded smooth strictly

psh exhaustion function under the following curvature condition. Hence

Corollary 3. Let M be a complete Kähler manifold with a pole o
such that its sectional curvature K is non-positive and in addition satisfies

K ≤ −
1 + ε

r2 log r

for some constant ε > 0 outside a compact subset of M , where r denotes

the distance function based at o. Then M has a complete Bergman metric.

In [7], Bergman completeness has been shown in the case when M is a

simply-connected complete Kähler manifold such that the sectional curva-

ture is suitably negatively pinched, for instance, pinched between negative

constants. Their result was extended in [4] by only assuming that the cur-

vature is bounded from above by −A/r2.

This work was done during the author’s stay at Nagoya University. He

would like to thank the Department of Mathematics for their hospitality,

especially to Professor Takeo Ohsawa for his constant encouragement and

discussion. The author also thanks the referee for valuable suggestions.

§2. Proof of Theorem 1

Let gM (·, y) be the pluricomplex Green function on M , i.e.,

gM (x, y) = sup{u(x)}

where the superum is taken over all negative functions u ∈ PSH(M) sat-

isfying the property that the function u − log |z| is bounded from above in

a deleted neighborhood of y for some holomorphic local coordinates z cen-

tered at y, that is, z(y) = 0. Since M is hyperconvex, gM (·, y) is non-trivial

(cf. [4]). Set d = ∂ + ∂̄, dc = i(∂̄ − ∂). It is easy to see that ddc = 2i∂∂̄. As

in [2], the following inequality of Blocki is again crucial.
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Proposition 4. (cf.[1]) Let Ω be a smooth bounded domain in a com-

plex manifold M . Assume that u, v ∈ C∞(Ω) are non-positive psh functions

such that u = 0 on ∂Ω. Then
∫

Ω

|u|n(ddcv)n ≤ n!‖v‖n−1
∞

∫

Ω

|v|(ddcu)n.

Proof. Note that

∫

Ω

(−u)n(ddcv)n = n

∫

Ω

(−u)n−1du ∧ dcv ∧ (ddcv)n−1

= n

∫

Ω

(−u)n−1dv ∧ dcu ∧ (ddcv)n−1

= n

∫

Ω

(−u)n−1(−v)ddcu ∧ (ddcv)n−1

+n(n − 1)

∫

Ω

(−u)n−2vdu ∧ dcu ∧ (ddcv)n−1

≤ n‖v‖∞

∫

Ω

(−u)n−1ddcu ∧ (ddcv)n−1

where the first and third equalities follow from Stokes’ theorem and the
second one from the fact that the (1, 1) parts of du ∧ dcv and dv ∧ dcu
coincide, the inequality follows from du∧dcu = 2i∂u∧ ∂̄u ≥ 0. The desired
inequality is obtained by repeating the argument n − 1 times.

Lemma 5. Let M be a hyperconvex manifold. For any y ∈ M , the

following inequality holds:

∫

M

|gM (·, y)|n(ddcρ)n ≤ n!(2π)n|ρ(y)|.

Proof. For any positive integer j, we set Mj = {x ∈ M : ρ(x) < 1/j}.
Let y ∈ M and let gMj

(·, y) denote the pluricomplex Green function on
Mj for all sufficiently large j. Since Mj is hyperconvex, for any fixed j,
the function max{gMj

(·, y),−k} + 1

k
(ρ − 1/j) is a continuous strictly psh

function and approaches to zero at ∂Mj for each integer k > 0 (cf. [6]).
According to a well-known theorem of Richberg [14], there is a smooth psh
function {gj,k} on Mj such that

∣

∣

∣

∣

gj,k − max{gMj
(·, y),−k} −

1

k
(ρ − 1/j)

∣

∣

∣

∣

<
1

2k
|ρ − 1/j|,
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which implies gj,k < 0, gj,k(x) → 0 as x → ∂Mj and gj,k → gMj
(·, y) as

k → ∞. Hence we can take a sequence of positive numbers {λk} with
λk → 0 as k → ∞ such that

Mj−1 ⊂⊂ Mj,k := {x ∈ Mj : gj,k(x) < −λk} ⊂⊂ Mj

and Mj,k has a smooth boundary by Sard’s theorem. By Proposition 4, we
have

∫

Mj−1

|gj,k + λk|
n(ddcρ)n ≤

∫

Mj,k

|gj,k + λk|
n(ddcρ)n

≤ n!

∫

Mj,k

|ρ|(ddcgj,k)
n

≤ n!

∫

Mj

|ρ|(ddcgj,k)
n.

According to [6], letting k → ∞, we obtain

∫

Mj−1

|gMj
(·, y)|n(ddcρ)n ≤ n!

∫

Mj

|ρ|(ddcgMj
(·, y))n

= n!(2π)n|ρ(y)|

where the equality follows from (ddcgMj
(·, y))n = (2π)nδy on Mj. The

desired inequality is then obtained by letting j → ∞ since gMj
(·, y) ↘

gM (·, y).

—

Proof of Theorem 1. The existence of the Bergman metric of a hyper-
convex manifold was shown in [4]. Take a smooth function χ on R such
that χ = 1 on (−∞,−1] and χ = 0 on [0,∞). Let f ∈H and {yk}

∞
k=1

be a
sequence of points which has no adherent point in M . Set

ηk = χ (− log(−gM (·, yk) + 1) + log 2) f.

ϕk = 2ngM (·, yk) − log(−gM (·, yk) + 1)

Let us first proceed the proof under the assumption that ηk, ϕk are smooth
and ϕk is strictly psh. By the well-known L2 estimates (cf. [5], [12]), we
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can solve the equation ∂uk = ∂ηk in such a way that
∣

∣

∣

∣

∫

M

uk ∧ ūke
−ϕk

∣

∣

∣

∣

≤

∫

M

|∂ηk|
2

∂∂̄ϕk
e−ϕkdVϕk

≤ C1

∣

∣

∣

∣

∫

Ak

f ∧ f

∣

∣

∣

∣

since

∂∂̄ϕk ≥
∂gM (·, yk)∂̄gM (·, yk)

(−gM (·, yk) + 1)2
.

Here C1 is a constant depending only on sup |χ′| and Ak = {x ∈ M :
gM (·, yk) < −1}. The general case follows from a standard limiting proce-
dure as follows: By a similar argument as in the proof of Lemma 5, one
can approximate gM (·, yk) by a sequence of negative smooth strictly psh
functions on M and solve the ∂̄−equation with gM (·, yk) replaced by such
functions, then take a limit.

Hence the function Fk = ηk − uk is holomorphic on M which satisfies

Fk(yk) = f(yk) and
∣

∣

∫

M
Fk ∧ F k

∣

∣ ≤ C2

∣

∣

∣

∫

Ak
f ∧ f

∣

∣

∣

. It follows that

(1)
f(yk) ∧ f̄(yk)

KM (yk)
≤ C2

∣

∣

∣

∣

∫

Ak

f ∧ f

∣

∣

∣

∣

.

For any ε > 0, there is a relative compact subset Mε so that

(2)

∣

∣

∣

∣

∣

∫

M\Mε

f ∧ f̄

∣

∣

∣

∣

∣

< ε.

By Lemma 5, we have
∫

Mε∩Ak

(ddcρ)n ≤

∫

M

|gM (·, yk)|
n(ddcρ)n

≤ n!(2π)n|ρ(yk)|.

This shows that one can choose a kε such that for all k > kε,

(3)

∣

∣

∣

∣

∫

Mε∩Ak

f ∧ f̄

∣

∣

∣

∣

≤ sup
Mε

∣

∣

∣

∣

f ∧ f̄

(ddcρ)n

∣

∣

∣

∣

·

∫

Mε∩Ak

(ddcρ)n < ε

since ρ(yk) → 0 as k → ∞. By (1)–(3) and the well-known Kobayashi’s
criterion [10], the Bergman metric on M is complete.
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