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ON A GENERALIZATION OF TEST IDEALS

NOBUO HARA and SHUNSUKE TAKAGI

Abstract. The test ideal τ (R) of a ring R of prime characteristic is an im-
portant object in the theory of tight closure. In this paper, we study a gener-
alization of the test ideal, which is the ideal τ (at) associated to a given ideal
a with rational exponent t ≥ 0. We first prove a key lemma of this paper
(Lemma 2.1), which gives a characterization of the ideal τ (at). As applications
of this key lemma, we generalize the preceding results on the behavior of the
test ideal τ (R). Moreover, we prove an analogue of so-called Skoda’s theorem,
which is formulated algebraically via adjoint ideals by Lipman in his proof of
the “modified Briançon–Skoda theorem.”

Introduction

Let R be a Noetherian commutative ring of characteristic p > 0. The

test ideal τ(R) of R, introduced by Hochster and Huneke [HH2], is defined

to be the annihilator ideal of all tight closure relations in R and plays an

important role in the theory of tight closure. In [HY], the first-named

author and Yoshida introduced a generalization of tight closure, which we

call a-tight closure associated to a given ideal a, and defined the ideal τ(a)

to be the annihilator ideal of all a-tight closure relations in R. We can

also consider at-tight closure and the ideal τ(at) with rational exponent

t ≥ 0 (or, rational coefficient in a sense), and even more, those with several

rational exponents.

The ideals τ(at) have several nice properties similar to those of mul-

tiplier ideals J (at) defined via resolution of singularities in characteristic

zero; see [La] for a systematic study of multiplier ideals. Among them, we

have an analogue of Lipman’s “modified Briançon–Skoda theorem” ([HY,

Theorem 2.1], cf. [Li]) and the subadditivity theorem in regular local rings

([HY, Theorem 4.5], cf. [DEL]). It is notable that the above properties of
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the ideals τ(at) are proved quite algebraically via characteristic p methods.

On the other hand, we can prove that the multiplier ideal J (at) in a nor-

mal Q-Gorenstein ring of characteristic zero coincides, after reduction to

characteristic p� 0, with the ideal τ(at); see [HY] and also [Ta].

In this paper, we study further properties of at-tight closure and the

ideal τ(at) in characteristic p > 0, improve results obtained in [HY], and

give some applications. To do this, we first prove a key lemma of this

paper (Lemma 2.1), which gives a characterization of (elements of) the

ideal τ(at). Precisely speaking, Lemma 2.1 characterizes the ideal τ̃(at)

given in Definition 1.4, which is contained in the ideal τ(at) and expected

to coincide with τ(at). The identification of the ideals τ(at) and τ̃(at) holds

true in some reasonable situations, e.g., in normal Q-Gorenstein rings; see

[AM], [HY] and [LS2].

Although the description of Lemma 2.1 is somewhat complicated, it

turns out to be very useful in studying various properties of the ideals

τ(at). As applications of this key lemma, we answer a question raised in

[HY] (Corollary 2.3) and consider the relationship of test elements and at-

test elements (Corollary 2.4). We also apply Lemma 2.1 to the study of the

behavior of the ideals τ(at) under localization (Proposition 3.1), completion

(Proposition 3.2) and finite morphisms which are étale in codimension one

(Theorem 3.3). These results generalize the preceding results [LS2] and

[BSm] on the behavior of the test ideal τ(R), and we hope that the proofs

become simpler with the use of Lemma 2.1.

Other ingredients of this paper are Theorems 4.1 and 4.2, which assert

that if a is an ideal with a reduction generated by l elements, then τ(al) =

τ(al−1)a. This is an analogue of so-called Skoda’s theorem [La], which is

formulated algebraically via adjoint ideals (or multiplier ideals) by Lipman

[Li] in his proof of the “modified Briançon–Skoda theorem.” Theorem 4.1

is a refinement of [HY, Theorem 2.1] and is proved by an easy observation

on the relationship of regular powers and Frobenius powers of ideals (cf.

[AH]). Theorem 4.2 is based on the same idea, but is proved under a

slightly different assumption with the aid of Lemma 2.1. We can find an

advantage of the ideal τ(a) in the simplicity of the proofs of Theorems 4.1

and 4.2, because the proof of Skoda’s theorem for multiplier ideals needs

a deep vanishing theorem which is proved only in characteristic zero [La],

[Li].
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§1. Preliminaries

In this paper, all rings are excellent reduced commutative rings with

unity. For a ring R, we denote by R◦ the set of elements of R which are

not in any minimal prime ideal. Let R be a ring of prime characteristic

p > 0 and F : R → R the Frobenius map which sends x ∈ R to xp ∈ R.

The ring R viewed as an R-module via the e-times iterated Frobenius map

F e : R → R is denoted by eR. Since R is assumed to be reduced, we can

identify F : R → eR with the natural inclusion map R ↪→ R1/pe

. We say

that R is F-finite if 1R (or R1/p) is a finitely generated R-module.

Let R be a ring of characteristic p > 0 and let M be an R-module. For

each e ∈ N, we denote Fe(M) = Fe
R(M) := eR ⊗R M and regard it as an

R-module by the action of R = eR from the left. Then we have the induced

e-times iterated Frobenius map F e : M → Fe(M). The image of z ∈M via

this map is denoted by zq := F e(z) ∈ Fe(M). For an R-submodule N of

M , we denote by N
[q]
M the image of the induced map Fe(N) → Fe(M).

Now we recall the definition of at-tight closure. See [HY] for details.

Definition 1.1. Let a be an ideal of a ring R of characteristic p > 0
such that a ∩ R◦ 6= ∅, and let N ⊆ M be R-modules. Given a rational
number t ≥ 0, the at-tight closure N ∗at

M of N in M is defined to be the
submodule of M consisting of all elements z ∈ M for which there exists
c ∈ R◦ such that

czqadtqe ⊆ N
[q]
M

for all large q = pe, where dtqe is the least integer which is greater than or
equal to tq. The at-tight closure I∗a

t

of an ideal I ⊆ R is just defined by
I∗a

t

= I∗a
t

R .

Remark 1.2. The rational exponent t for at-tight closure in Definition
1.1 is just a formal notation, but it is compatible with “real” powers of the
ideal. Namely, if b = an for n ∈ N, then at-tight closure is the same as bt/n-
tight closure. This allows us to extend the definition to several rational
exponents: Given ideals a1, . . . , ar ⊆ R with ai ∩ R◦ 6= ∅ and rational
numbers t1, . . . , tr ≥ 0, if ti = tni for nonnegative t ∈ Q and ni ∈ N with
i = 1, . . . , r, we can define at1

1 · · · atr
r -tight closure to be (an1

1 · · · anr
r )t-tight

closure. If N is a submodule of an R-module M , then an element z ∈M is

in the at1
1 · · · atr

r -tight closure N
∗a

t1
1 ···atr

r

M of N in M if and only if there exists

c ∈ R◦ such that czqa
dt1qe
1 · · · a

dtrqe
r ⊆ N

[q]
M for all q = pe � 0.
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Since N ∗at

M /N ∼= 0∗a
t

M/N for R-modules N ⊆ M ([HY, Proposition 1.3

(1)]), the case where N = 0 is essential. Using the at-tight closure of the

zero submodule, we can define two ideals τ(at) and τ̃(at).

Proposition-Definition 1.3. ([HY, Definition-Theorem 6.5]) Let R
be an excellent reduced ring of characteristic p > 0, a ⊆ R an ideal such

that a∩R◦ 6= ∅ and t ≥ 0 a rational number. Let E =
⊕

m
ER(R/m) be the

direct sum, taken over all maximal ideals m of R, of the injective envelopes

of the residue fields R/m. Then the following ideals are equal to each other

and we denote it by τ(at).

(i)
⋂

M

AnnR(0∗a
t

M ),where M runs through all finitely generated R-modules.

(ii)
⋂

M⊆E

AnnR(0∗a
t

M ), where M runs through all finitely generated submod-

ules of E.

(iii)
⋂

J⊆R

(J : J∗at

), where J runs through all ideals of R.

The description (ii) of τ(at) in Proposition-Definition 1.3 means that

τ(at) is the annihilator ideal of the “finitistic at-tight closure” of zero in E,

that is, the union of 0∗a
t

M in E taken over all finitely generated submodules

M of E. It would be natural to consider the at-tight closure of zero in E

instead of the finitistic tight closure.

Definition 1.4. Let E =
⊕

m
ER(R/m) be as in Proposition-Definition

1.3. Then we define the ideal τ̃(at) by

τ̃(at) = AnnR(0∗a
t

E ).

We have τ̃(at) ⊆ τ(at) in general, since 0∗a
t

M ⊆ 0∗a
t

E for all (finitely generated)
submodules M of E. We do not know any example in which the at-tight
closure of zero and the finitistic at-tight closure of zero disagree in E, and
it seems reasonable to assume the following condition.

(1.4.1) We say that condition (∗) is satisfied for at if τ(at) = τ̃(at).
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Condition (∗) is satisfied in many situations. For example, if R is a

graded ring, then condition (∗) is satisfied for the unit ideal R (see [LS1]),

and if R is an excellent Q-Gorenstein normal local ring, then condition (∗)

is satisfied for every rational number t ≥ 0 and every ideal a ⊆ R such that

a ∩R◦ 6= ∅ ([HY, Theorem 1.13]; see also [AM]).

In most part of this paper, we will assume condition (∗) to deduce

various properties of the ideal τ(at), because what we actually do is to

prove those properties for the ideal τ̃(at), which are translated into those

for τ(at) under condition (∗). So, we remark that most of our results do

hold true for τ̃(at) without assuming condition (∗).

Finally we recall the notion of an at-test element, which is quite useful

to handle the at-tight closure operation. See [HY, Theorems 1.7 and 6.4]

for the existence of at-test elements.

Definition 1.5. Let a be an ideal of a ring R of characteristic p > 0
such that a ∩ R◦ 6= ∅, and let t ≥ 0 be a rational number. An element
d ∈ R◦ is called an at-test element if for every finitely generated R-module
M and every element z ∈ M , the following holds: z ∈ 0∗a

t

M if and only if
dzqadtqe = 0 for all powers q = pe of p.

Remark 1.6. In the case where a = R is the unit ideal, the ideal τ(a) =
τ(R) is called the test ideal of R and an R-test element is nothing but a
test element as defined in [HH2]. In this case, τ(R) ∩ R◦ is exactly equal
to the set of test elements. However, τ(at) ∩ R◦ is not equal to the set of
at-test elements in general. The relationship between the ideal τ(at) and
at-test elements is not a priori clear, but we will see later in Corollary 2.4
that an element of τ(at) ∩R◦ is always an at-test element.

The reader is referred to [HY] for basic properties of at-tight closure

and the ideal τ(at). Among them, see especially Propositions 1.3 and 1.11

and Theorem 1.7, together with Section 6, of [HY].

All results in this paper are proved in characteristic p > 0. But it may

help better understanding of the results to keep in mind the correspon-

dence of the ideals τ(at) and the multiplier ideals defined via resolution of

singularities in characteristic zero ([HY]). Namely, given a rational number

t ≥ 0 and an ideal a of a normal Q-Gorenstein ring essentially of finite type

over a field of characteristic zero, the multiplier ideal J (at) coincides, after

reduction to characteristic p� 0, with the ideal τ(at).
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§2. A characterization of the ideal τ(at)

We first show a key lemma of this paper, which gives a characterization

of the ideal τ̃(at) and reveals the relationship between the ideal τ(at) and

at-test elements under condition (∗). Its essential idea is found in [Ta,

Theorem 3.13].

Lemma 2.1. Let (R,m) be an F-finite local ring of characteristic p > 0,
a ⊆ R an ideal such that a ∩ R◦ 6= ∅ and t ≥ 0 a rational number. Fix a

system of generators x
(e)
1 , . . . , x

(e)
re of adtqe for each q = pe. Then for any

element c ∈ R, the following four conditions are equivalent to each other.

(i) c ∈ τ̃(at).

(ii) For any element d ∈ R◦ and any integer e0 ≥ 0, there exist an integer

e1 ≥ e0 and R-homomorphisms φ
(e)
i ∈ HomR(R1/pe

, R) for e0 ≤ e ≤
e1 and 1 ≤ i ≤ re such that

c =

e1∑

e=e0

re∑

i=1

φ
(e)
i ((dx

(e)
i )1/pe

).

(iii) For an at-test element d ∈ R◦, there exist a positive integer e1 and

R-linear maps φ
(e)
i ∈ HomR(R1/pe

, R) for 0 ≤ e ≤ e1 and 1 ≤ i ≤ re
such that

c =

e1∑

e=0

re∑

i=1

φ
(e)
i ((dx

(e)
i )1/pe

).

(iii)′ For an at-test element d ∈ R◦, there exist a positive integer e1 and

R-linear maps φ
(e)
i ∈ HomR(R1/pe

, R) for 0 ≤ e ≤ e1 and 1 ≤ i ≤ re
such that

c ∈
e1∑

e=0

re∑

i=1

φ
(e)
i ((dadtp

ee)1/pe

).

Proof. We prove the equivalence of conditions (i) and (ii). Let F e : ER

→ eR⊗RER be the e-times iterated Frobenius map induced on the injective
envelope ER := ER(R/m) of the residue field R/m. For an element d ∈ R◦

and an integer e ≥ 0, we write

dx(e)F e := t(dx
(e)
1 F e, . . . , dx(e)

re
F e) : ER → (eR⊗R ER)⊕re .
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By definition and condition (∗), c ∈ τ(at) if and only if c·
⋂

e≥e0
Ker(dx(e)F e)

= 0 holds for every element d ∈ R◦ and every integer e0 ≥ 0. Since ER is an
Artinian R-module, there exists an integer e1 ≥ e0 (depending on d ∈ R◦

and e0 ≥ 0) such that

⋂

e≥e0

Ker(dx(e)F e) =

e1⋂

e=e0

Ker(dx(e)F e).

Therefore denoting

Φ = Φ
(e0,e1)
d := t(dx(e0)F e0 , . . . , dx(e1)F e1) : ER →

e1⊕

e=e0

(eR⊗R ER)⊕re ,

we see that c ∈ τ(at) if and only if for every d ∈ R◦ and e0 ≥ 0, there exists

e1 ≥ e0 such that c · Ker(Φ
(e0,e1)
d ) = 0.

Since R is F-finite, the map Φ = Φ
(e0,e1)
d : ER →

⊕e1
e=e0

(eR ⊗R ER)⊕re

is the Matlis dual of the map

Ψ = (ψ(e0), . . . , ψ(e1)) :

e1⊕

e=e0

HomR(R1/pe

, R)⊕re → R,

where the map ψ(e) : HomR(R1/pe

, R)⊕re → HomR(R,R) = R is induced by

the R-linear map R→ (R1/pe

)⊕re sending 1 to ((dx
(e)
1 )1/pe

, . . . , (dx
(e)
re )1/pe

).
It then follows that c · Ker(Φ) = 0 if and only if c ∈ Im(Ψ). By the
definition of Ψ, this is equivalent to saying that there exist R-linear maps

φ
(e)
i ∈ HomR(R1/pe

, R) for e0 ≤ e ≤ e1 and 1 ≤ i ≤ re such that

c =

e1∑

e=e0

re∑

i=1

φ
(e)
i ((dx

(e)
i )1/pe

).

The equivalence of conditions (i) and (iii) (resp. (iii)′) is obtained in
the same way.

Remark 2.2. An advantage of Lemma 2.1 is that it is applicable even in
the absense of the completeness of R. For example, compare the hypotheses
in Theorem 4.1 and Theorem 4.2.

As immediate consequences of Lemma 2.1, we have the following corol-

laries. First Lemma 2.1 gives an affirmative answer to a question raised in

[HY, Discussion 5.18].
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Corollary 2.3. Let (R,m) be an F-finite local ring of characteristic

p > 0, and suppose that condition (∗) is satisfied for the maximal ideal m.

Then τ(m) = R if and only if for every m-primary ideal a ⊂ R, we have a

strict containment τ(a) ) a. In particular, if R is a regular local ring with

dimR ≥ 2, then τ(a) ) a for every m-primary ideal a ⊂ R.

Proof. Suppose that τ(m) = R. We will show that τ(a) ⊇ (a : m) for
every ideal a ⊆ R such that a∩R◦ 6= ∅. By Lemma 2.1, for any element d ∈
R◦ and any integer e0 ≥ 0, there exist an integer e ≥ e0, an element x ∈ mpe

and an R-module homomorphism φ : R1/pe

→ R such that φ((dx)1/pe

) = 1.
Now fix any element y ∈ (a : m). Since φ((dxype

)1/pe

) = φ((dx)1/pe

)y = y
and xype

∈ ape

, we have y ∈ τ(a) by using Lemma 2.1 again. The converse
implication is trivial. The latter assertion follows from [HY, Theorem 2.15].

Corollary 2.4. Let (R,m) be an F-finite local ring of characteristic

p > 0. If condition (∗) is satisfied for the unit ideal R, then a test element

of R is an at-test element for all ideals a ⊆ R such that a ∩R◦ 6= ∅ and all

rational numbers t ≥ 0.

Proof. Let c be a test element of R, that is, an element of τ(R) ∩R◦.
Given any ideals a, J of R, any rational number t ≥ 0, any element z ∈ J ∗at

and any power q of p, it is enough to show that czqadtqe ⊆ J [q]. Since
z ∈ J∗at

, there exist d ∈ R◦ and e0 ∈ N such that dzQadtQe ⊆ J [Q] for
every power Q ≥ pe0 of p. Then by Lemma 2.1, there exist e1 ∈ N and
φe ∈ HomR(R1/pe

, R) for e0 ≤ e ≤ e1 such that c =
∑e1

e=e0
φe(d

1/pe

). Since

dzqpe

(adtqe)[p
e] ⊆ dzqpe

adtqpee ⊆ J [qpe] for every e0 ≤ e ≤ e1, we have

d1/pe

zqadtqeR1/pe

⊆ J [q]R1/pe

.

Applying φe and summing up, we obtain

czqadtqe =

e1∑

e=e0

φe(d
1/pe

)zqadtqe ⊆
e1∑

e=e0

φe(J
[q]R1/pe

) ⊆ J [q],

as required.

Remark 2.5. Since τ̃(at) ⊆ τ̃(R), we see from Corollary 2.4 that any
element of τ(at)∩R◦ is an at-test element as long as condition (∗) is satisfied
for at. Also, Corollary 2.4 is considered a refinement of [HY, Theorem 1.7],
which asserts that, if the localized ring Rc at an element c ∈ R◦ is strongly
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F-regular, then some power cn of c is an at-test element for all ideals a ⊆ R
such that a∩R◦ 6= ∅ and all rational numbers t ≥ 0. Indeed, if Rc is strongly
F-regular, then some power cn of c is a test element (precisely speaking, an
element of τ̃(R) ∩ R◦) by [HH1] (see also [HH3]), so that cn is an at-test
element for all a and t by Corollary 2.4.

§3. Behavior of τ(a) under localization, completion and finite

homomorphisms

Proposition 3.1. (cf. [LS2]) Let (R,m) be an F-finite local ring of

characteristic p > 0, a ⊆ R an ideal such that a ∩ R◦ 6= ∅ and t ≥ 0 a

rational number. Let W be a multiplicatively closed subset of R and suppose

that condition (∗) is satisfied for at and (aRW )t. Then

τ((aRW )t) = τ(at)RW .

Proof. Fix a system of generators x
(e)
1 , . . . , x

(e)
re of adtqe for each q = pe.

If an element c ∈ RW is contained in τ((aRW )t), then by Lemma 2.1,
for any element d ∈ R◦ and any nonnegative integer e0, there exist an

integer e1 ≥ e0 and RW -homomorphisms φ
(e)
i ∈ HomRW

(R
1/pe

W , RW ) for
e0 ≤ e ≤ e1 and 1 ≤ i ≤ re such that

c =

e1∑

e=e0

re∑

i=1

φ
(e)
i ((dx

(e)
i )1/pe

).

Since R is F-finite, there exists an element y ∈W such that we can regard

yφ
(e)
i as an element of HomR(R1/pe

, R) for all e0 ≤ e ≤ e1 and 1 ≤ i ≤
re. Therefore, thanks to Lemma 2.1 again, we have cy ∈ τ(at), that is,
c ∈ τ(at)RW . The converse argument just reverses this. The proposition is
proved.

Proposition 3.2. (cf. [LS2]) Let (R,m) be an F-finite local ring of

characteristic p > 0, a ⊆ R an ideal such that a ∩ R◦ 6= ∅ and t ≥ 0 a

rational number. Let R̂ denote the m-adic completion of R and suppose

that condition (∗) is satisfied for at and (aR̂)t. Then

τ((aR̂)t) = τ(at)R̂.

Proof. Fix a system of generators x
(e)
1 , . . . , x

(e)
re of adtqe for each q = pe.

Since R is F-finite, we can take an element d ∈ R◦ which is an at- and
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(aR̂)t-test element by [HY, Theorem 6.4]. If an element c ∈ R̂ is contained
in τ((aR̂)t), then by Lemma 2.1, there exist an integer e1 > 0 and R̂-

homomorphisms φ
(e)
i ∈ Hom bR(R̂1/pe

, R̂) for 0 ≤ e ≤ e1 and 1 ≤ i ≤ re such
that

c =

e1∑

e=0

re∑

i=1

φ
(e)
i ((dx

(e)
i )1/pe

).

Since R is F-finite, Hom bR
(R̂1/pe

, R̂) ∼= R̂⊗R HomR(R1/pe

, R), so that there

exist y
(e)
i,1 , . . . , y

(e)
i,se,i

∈ R̂ and ψ
(e)
i,1 , . . . , ψ

(e)
i,se,i

∈ HomR(R1/pe

, R) with φ
(e)
i =

∑se,i

j=1 y
(e)
i,j ⊗ ψ

(e)
i,j for all 0 ≤ e ≤ e1 and 1 ≤ i ≤ re. Then

c =

e1∑

e=0

re∑

i=1

se,i∑

j=1

y
(e)
i,j ψ

(e)
i,j ((dx

(e)
i )1/pe

).

Therefore, thanks to Lemma 2.1 again, we have c ∈ τ(at)R̂. The converse
argument just reverses this. The proposition is proved.

Our characterization is also applicable to the following situation; see

also [BSm].

Theorem 3.3. Let (R,m) ↪→ (S, n) be a pure finite local homomor-

phism of F-finite normal local rings of characteristic p > 0 which is étale in

codimension one. Let a be a nonzero ideal of R and let t be a nonnegative

rational number. Assume that condition (∗) is satisfied for at and (aS)t.

Then

τ((aS)t) ∩R = τ(at).

Moreover if R ↪→ S is flat, then

τ((aS)t) = τ(at)S.

Proof. Since R ↪→ S is pure, we have τ((aS)t) ∩ R ⊆ τ(at) by [HY,
Proposition 1.12]. We will prove the reverse inclusion. Fix a system of

generators x
(e)
1 , . . . , x

(e)
re of adtqe for every q = pe. Take an element d ∈ R◦

which is not only an at-test element but also an (aS)t-test element (cf.
Remark 2.5, [BSm, Remark 6.5]). If an element c belongs to τ(at), then

by Lemma 2.1, there exist an integer e1 > 0 and R-linear maps φ
(e)
i ∈

HomR(R1/pe

, R) for 0 ≤ e ≤ e1 and 1 ≤ i ≤ re such that

c =

e1∑

e=0

re∑

i=1

φ
(e)
i ((dx

(e)
i )1/pe

).
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Let ce,i = φ
(e)
i ((dx

(e)
i )1/pe

) and let ES = ES(S/n) be the injective envelope
of the residue field of S. Since R ↪→ S is étale in codimension one, by

tensoring φ
(e)
i with ES over R, we have the commutative diagram

ES

dx
(e)
i F e

S
//

ce,i
$$J

J

J

J

J

J

J

J

J

eS ⊗S ES

��

ES ,

where F e
S : ES → eS⊗SES is the induced e-times iterated Frobenius map on

ES (see the proof of [W, Theorem 2.7]). Hence Ker(dx
(e)
i F e

S) ⊆ (0 : ce,i)ES

for every 0 ≤ e ≤ e1 and 1 ≤ i ≤ re. Since
∑e1

e=0

∑re

i=1 ce,i = c, we

have c ·
⋂e1

e=0

⋂re

i=1 Ker(dx
(e)
i F e

S) = 0. By condition (∗), this implies that
c ∈ τ((aS)t).

Now we will show the latter assertion assuming that R ↪→ S is flat. By
the above argument, we already know that τ((aS)t) ⊇ τ(at)S. Suppose that
c ∈ τ((aS)t). Since S is a free R-module, we can choose a basis s1, . . . , sk

for S over R and write c =
∑k

j=1 cjsj for cj ∈ R. For any ideal I ⊆ R

and any z ∈ I∗a
t

, clearly z ∈ (IS)∗(aS)t

. By the definition of τ((aS)t), we
have

∑k
j=1 cjzsj = cz ∈ IS =

⊕k
j=1 Isj . It follows that cjz ∈ I, therefore

cj ∈ τ(at) for every j = 1, . . . , k. Thus c ∈ τ(at)S.

The following example shows that the last equality in Theorem 3.3

breaks down in the absence of the flatness, even for the case a = R.

Example 3.4. Let S = k[[x, y, z]]/(xn + yn + zn) be the Fermat hy-
persurface of degree n over a field of characteristic p ≥ n + 1, R = S (r)

the rth Veronese subring of S, and assume that n ≥ 3 and r ≥ 2 are
not divisible by p. Then τ(R) = R≥b1+(n−3)/rc = R≥d(n−2)/re (note that
b1+ (n− 3)/rc = b(n− 2)/r+(r− 1)/rc = d(n− 2)/re) and τ(S) = S≥n−2.
Hence τ(S)∩R = R≥d(n−2)/re = τ(R), but τ(R)S = S≥d(n−2)/rer ( S≥n−2 =
τ(S) if n− 2 is not divisible by r.

§4. Lipman-Skoda’s theorem

In [Li], Lipman proves under the Grauert–Riemenschneider vanishing

theorem that, if a is an ideal of a regular local ring with a reduction gen-

erated by l elements, then J (al) = J (al−1)a, where J (b) denotes the mul-

tiplier ideal (or adjoint ideal in the sense of [Li]) associated to an ideal b.
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This result is called Skoda’s theorem [La] and formulated algebraically by

Lipman in his proof of “modified Briançon–Skoda theorem.” We give a sim-

ple proof of the corresponding equality for the ideal τ(al). The following

version is just a refinement of [HY, Theorem 2.1]; see also Remark 1.2 for

the definition of the ideal τ(albt) with “bi-exponents.”

Theorem 4.1. Let (R,m) be a complete local ring of characteristic

p > 0 and let a ⊆ R be an ideal of positive height with a reduction generated

by l elements. Let b be an ideal of R such that b ∩ R◦ 6= ∅ and t ≥ 0 a

rational number. Then

τ(albt) = τ(al−1bt)a.

Proof. We will see that

0∗a
lbt

M = 0∗a
l−1bt

M : a in M

for any R-module M . By fundamental properties of at-tight closure [HY,

Proposition 1.3], the inclusion 0∗a
lbt

M ⊆ 0∗a
l−1bt

M : a is immediate, and to
prove the reverse inclusion, we may assume without loss of generality that
a itself is generated by l elements. Let z ∈ 0∗a

l−1bt

M : a, i.e., za ⊆ 0∗a
l−1bt

M .
Then there exists c ∈ R◦ such that czqa[q](al−1)qbdtqe = 0 in Fe(M) for all
q = pe � 0. Since a is generated by l elements, one has aql = aq(l−1)a[q], so
that czqalqbdtqe = 0 for all q = pe � 0, that is, z ∈ 0∗a

l
b

t

M . Thus we have

0∗a
lbt

M = 0∗a
l−1bt

M : a.
Now assume that (R,m) is a complete local ring and let E = ER(R/m),

the injective envelope of the R-module R/m. Then by the Matlis duality,

AnnE(τ(al−1bt)) is equal to the union of 0∗a
l−1bt

M taken over all finitely gen-
erated R-submodules M of E. Hence, if z ∈ AnnE(τ(al−1bt)a), then there

exists a finitely generated submodule M ⊂ E such that z ∈ (0∗al−1
b

t

M : a)E .

Replacing M by M +Rz ⊂ E, one has z ∈ (0∗a
l−1bt

M : a)M = 0∗a
lbt

M . Conse-

quently, AnnE(τ(al−1bt)a) is equal to the union of (0∗a
l−1bt

M : a)M = 0∗a
lbt

M

taken over all finitely generated submodules M ⊂ E. Therefore

τ(albt) =
⋂

M⊂E

AnnR(0∗a
lbt

M ) = AnnR(AnnE(τ(al−1bt)a)) = τ(al−1bt)a.

The characterization of the ideal τ(at) given in Lemma 2.1 enables us

to replace the completeness assumption in the above theorem by condition

(∗).
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Theorem 4.2. Let (R,m) be an F-finite local ring of characteristic

p > 0 and let a ⊆ R be an ideal of positive height with a reduction generated

by l elements. Let b be an ideal of R such that b∩R◦ 6= ∅ and t a nonnegative

rational number. If condition (∗) is satisfied for al−1bt and albt, then

τ(albt) = τ(al−1bt)a.

Proof. We may assume without loss of generality that a is generated
by l elements, so that aql = aq(l−1)a[q] for all q = pe. We fix an element
d ∈ R◦ such that Rd is regular. Then, thanks to Remark 2.5, some power
dn is an akbt-test element for all k ≥ 0.

By Lemma 2.1, an element c ∈ R is in τ(albt) if and only if there exist

finitely many R-homomorphisms φ
(e)
i ∈ HomR(R1/pe

, R) for 0 ≤ e ≤ e1 and
1 ≤ i ≤ re such that

c ∈
e1∑

e=0

re∑

i=1

φ
(e)
i ((dnapelbdtp

ee)1/pe

).

Since

φ
(e)
i ((dnapelbdtp

ee)1/pe

) = φ
(e)
i ((dnape(l−1)a[pe]bdtp

ee)1/pe

)

= φ
(e)
i ((dnape(l−1)bdtp

ee)1/pe

)a

⊆ τ(al−1bt)a

again by Lemma 2.1, this is equivalent to saying that c ∈ τ(al−1bt)a.

Corollary 4.3. (Modified Briançon–Skoda, cf. [BSk], [HY], [HH2],
[Li]) Let (R,m) and a ⊆ R be as in Theorem 4.1 or 4.2. Then

τ(an+l−1) ⊆ an

for all n ≥ 0. In particular, if R is weakly F-regular, then an+l−1 ⊆ an for

all n ≥ 0.

Corollary 4.4. Let (R,m) be a d-dimensional local ring of charac-

teristic p > 0 with infinite residue field R/m and a ⊆ R an ideal of positive

height. Let b be an ideal of R such that b ∩ R◦ 6= ∅ and t a nonnegative

rational number. We assume that (R,m) is complete or it is F-finite and
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condition (∗) is satisfied for an+d−1bt for every n ≥ 0. Then for any n ≥ 0
one has

τ(an+d−1bt) = τ(ad−1bt)an.

Proof. We can assume that a is a proper ideal of R. Since the residue
field R/m is infinite, by [NR], a has a reduction ideal generated by at most
d elements. Therefore the assertion immediately follows from Theorems 4.1
and 4.2.

Example 4.5. (cf. [HY, Theorem 2.15]) Let R be a d-dimensional reg-
ular local ring of characteristic p > 0 with the maximal ideal m. Then

τ(mn) =

{
R if n < d,

mn−d+1 if n ≥ d.

In particular, τ(md−1) ) τ(md−2)m. This shows that l ≥ d is the best
possible bound for the equality τ(ml) = τ(ml−1)m in this case.

Remark 4.6. Let (R,m) and a be as in Theorem 4.1 or 4.2 and let q

be any reduction of a. Then τ(al−1)a = τ(al−1)q. In particular, τ(al−1) =
τ(ql−1) is contained in the coefficient ideal c(a, q) of a with respect to q; cf.
[AH].

If R is Gorenstein, a is m-primary with minimal reduction q and if the
Rees algebra R[at] is F-rational, then the equality τ(ad−1) = c(a, q) holds;
see [HY] and Hyry [Hy].
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