A COMBINATORIAL IDENTITY FOR THE DERIVATIVE OF A THETA SERIES OF A FINITE TYPE ROOT LATTICE

SATOSHI NAITO

Abstract. Let \mathfrak{g} be a (not necessarily simply laced) finite-dimensional complex simple Lie algebra with \mathfrak{h} the Cartan subalgebra and $Q \subset \mathfrak{h}^*$ the root lattice. Denote by $\Theta_Q(q)$ the theta series of the root lattice Q of \mathfrak{g} . We prove a curious "combinatorial" identity for the derivative of $\Theta_Q(q)$, i.e. for $q \frac{d}{dq} \Theta_Q(q)$, by using the representation theory of an affine Lie algebra.

§1. Introduction

Let $\mathfrak{g} = \mathfrak{g}(X_N)$ be a finite-dimensional complex simple Lie algebra of type X_N , where X = A, D, E, C, B, F, G and $N \in \mathbb{Z}_{\geq 1}$. We fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} (note that $\dim_{\mathbb{C}} \mathfrak{h} = N$). Denote by $\Delta \subset \mathfrak{h}^*$ the set of roots, by Δ_+ (resp. Δ_-) the set of positive (resp. negative) roots, and by $\Pi = \{\alpha_i\}_{i=1}^N$ (resp. $\Pi^{\vee} = \{h_i\}_{i=1}^N$) the set of simple roots (resp. coroots). Also we set $\rho := (1/2) \cdot \sum_{\alpha \in \Delta_+} \alpha$ (the Weyl vector) and $Q := \sum_{i=1}^N \mathbb{Z}\alpha_i$ (the root lattice). For a dominant integral weight $\lambda \in P_+ := \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq N\}$, we denote by $L(\lambda)$ the irreducible highest weight \mathfrak{g} -module of highest weight λ , and set $d(\lambda) := \dim_{\mathbb{C}} L(\lambda)$.

Let us normalize the Killing form $(\cdot | \cdot)$ on \mathfrak{g} in such a way that $(\alpha | \alpha) = 2$ for all long roots $\alpha \in \Delta_{long}$. Then the theta series $\Theta_Q(q)$ of the root lattice $Q \subset \mathfrak{h}^*$ is defined by

$$\Theta_Q(q) := \sum_{\alpha \in Q} q^{\frac{r}{2}(\alpha \mid \alpha)},$$

where the number r is given by:

$$r = \begin{cases} 1 & \text{if } X = A, D, E, \\ 2 & \text{if } X = C, B, F, \\ 3 & \text{if } X = G. \end{cases}$$

Received April 1, 2002.

2000 Mathematics Subject Classification: Primary 05A15, 05A30, Secondary 17B67.

S. NAITO

Our main result in this paper is the following theorem.

THEOREM. Let $Q = \sum_{i=1}^{N} \mathbb{Z}\alpha_i \subset \mathfrak{h}^*$ be the root lattice of type X_N , $(\cdot | \cdot)$ the normalized Killing form on \mathfrak{h}^* , and $\Theta_Q(q) = \sum_{\alpha \in Q} q^{\frac{r}{2}(\alpha | \alpha)}$ the theta series of Q. Then we have

$$2r^{-1}(1+h^{\vee}) q \frac{d}{dq} \Theta_Q(q)$$

= $\sum_{\lambda \in Q \cap P_+} d(\lambda)(\lambda+2\rho|\lambda)q^{\frac{r}{2}(\lambda|\lambda)} \prod_{\alpha \in \Delta_+} \left(1-q^{r(\lambda+\rho|\alpha)}\right).$

Here r is as above and h^{\vee} is the dual Coxeter number given below.

The dual Coxeter number h^{\vee} (see [K4, Chap. 6]) is given by:

$$h^{\vee} = \begin{cases} N+1 & \text{if } X_N = A_N, r = 1, \\ 2N-2 & \text{if } X_N = D_N, r = 1, \\ 12 & \text{if } X_N = E_6, r = 1, \\ 18 & \text{if } X_N = E_7, r = 1, \\ 30 & \text{if } X_N = E_8, r = 1, \\ 2N & \text{if } X_N = C_N, B_N, r = 2, \\ 12 & \text{if } X_N = F_4, r = 2, \\ 6 & \text{if } X_N = G_2, r = 3. \end{cases}$$

We should note that in the cases where $X_N = A_N, D_N, E_N, h^{\vee}$ is the dual Coxeter number of the generalized Cartan matrix of type $X_N^{(1)}$, and in the cases where $X_N = C_L, B_L, F_4, G_2, h^{\vee}$ is the dual Coxeter number of the generalized Cartan matrix of type $A_{2L-1}^{(2)}, D_{L+1}^{(2)}, E_6^{(2)}, D_4^{(3)}$, respectively.

Remark. For $\lambda \in P_+$, the dimension $d(\lambda)$ of $L(\lambda)$ is given by the Weyl dimension formula:

$$d(\lambda) = \prod_{\alpha \in \Delta_+} \frac{(\lambda + \rho | \alpha)}{(\rho | \alpha)}.$$

Remark. We also have an expression for the theta series $\Theta_Q(q)$ itself of the root lattice Q (see Remark 3.4 and Proposition 4.4.3). However, this expression (at least) in the cases where X = A, D, E is already known, and similar identities can be found in [K2, Remark (d) below Proposition 2] and [KT, Remark 5.2], while the expression for the derivative of $\Theta_Q(q)$ given in Theorem is new. It seems to us that identities of this kind are, even in a special case, not reduced to well-known ones in the classical literature (cf. Example 3.3).

We prove our theorem by using the representation theory of affine Lie algebras. Let $\hat{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$ be the affine Lie algebra of type $X_N^{(r)}$, where $X_N^{(r)} = A_N^{(1)}, D_N^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, A_{2L-1}^{(2)}, D_{L+1}^{(2)}, E_6^{(2)}, D_4^{(3)}$, and let $\hat{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}c \oplus \mathbb{C}d$ be the Cartan subalgebra, where c is the canonical central element and d the scaling element. Denote by $V := \hat{L}(\hat{\Lambda}_0)$ the irreducible highest weight $\hat{\mathfrak{g}}$ -module (the basic representation) of highest weight $\hat{\Lambda}_0 \in (\hat{\mathfrak{h}})^*$, where $\hat{\Lambda}_0$ is the basic fundamental weight given by: $\hat{\Lambda}_0(\mathfrak{h}) := 0, \hat{\Lambda}_0(c) := 1$, and $\hat{\Lambda}_0(d) := 0$. We can give a \mathbb{Z} -gradation (called the basic gradation) of V by setting

$$V_m := \{ v \in V \mid dv = -mv \} \quad \text{for } m \in \mathbb{Z}.$$

Then our proof is carried out by calculating the graded trace

$$g(q) := \sum_{m \in \mathbb{Z}} \operatorname{Tr}(\Omega|_{V_m}) q^m$$

of the Casimir element $\Omega \in Z(U(\mathfrak{g}))$ on $V = \widehat{L}(\widehat{\Lambda}_0)$ in two different ways.

This paper is organized as follows. In Section 2, we calculate in one way the graded trace g(q) above on the (general) irreducible highest weight $\hat{\mathfrak{g}}$ -module $\hat{L}(\Lambda)$ of dominant integral highest weight Λ in the cases where X = A, D, E. In Section 3, we prove our main theorem in the cases where X = A, D, E by calculating g(q) in another way, using some well-known results of Kac. In Section 4, we prove our main theorem in the cases where X = C, B, F, G by arguments similar to those in the A, D, E cases.

Throughout this paper, we assume that the reader is familiar with most of Kac [K4], especially with Chapters 6, 7, 8, and 12.

§2. Graded trace of the Casimir element

2.1. Nontwisted affine Lie algebras

Here we recall from [K4, Chaps. 6 and 7] some standard notation and facts about nontwisted affine Lie algebras.

Let $\mathfrak{g} = \mathfrak{g}(X_N)$ be a finite-dimensional complex simple Lie algebra of type X_N , where X = A, D, E and $N \in \mathbb{Z}_{>1}$. Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} with $\dim_{\mathbb{C}} \mathfrak{h} = N$, and denote by $\Delta \subset \mathfrak{h}^* = \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$ the set of roots, by Δ_+ (resp. Δ_-) the set of positive (resp. negative) roots, and by $\Pi = \{\alpha_i\}_{i=1}^N$ (resp. $\Pi^{\vee} = \{h_i\}_{i=1}^N$) the set of simple roots (resp. coroots). We normalize the Killing form $(\cdot | \cdot)$ on \mathfrak{g} in such a way that

$$(\alpha | \alpha) = 2$$
 for all (long) roots $\alpha \in \Delta$.

Let us denote by $\widehat{\mathfrak{g}} = \mathfrak{g}(X_N^{(1)})$ a (nontwisted) affine Lie algebra of type $X_n^{(1)}$ over \mathbb{C} , i.e.,

$$\widehat{\mathfrak{g}} = \widehat{\mathcal{L}}(\mathfrak{g}) = (\mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathfrak{g}) \oplus \mathbb{C}c \oplus \mathbb{C}d,$$

where $\mathbb{C}[t, t^{-1}]$ is the algebra of Laurent polynomials in t, c the canonical central element, and d the scaling element. Notice that the Lie algebra \mathfrak{g} can be identified with the subalgebra $\mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g}$ of $\widehat{\mathfrak{g}}$.

We denote the Cartan subalgebra of $\widehat{\mathfrak{g}}$ by:

$$\widehat{\mathfrak{h}} = (\mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{h}) \oplus \mathbb{C}c \oplus \mathbb{C}d,$$

and introduce an element $\delta \in (\widehat{\mathfrak{h}})^*$ (the null root) defined by: $\delta(\mathfrak{h} \oplus \mathbb{C}c) = 0$, $\delta(d) = 1$. Then the set $\widehat{\Delta}_+ \subset (\widehat{\mathfrak{h}})^*$ of positive roots is described as:

 $\widehat{\Delta}_{+} = \{ j\delta \mid j \in \mathbb{Z}_{\geq 1} \} \sqcup \{ j\delta + \alpha \mid j \in \mathbb{Z}_{\geq 1}, \, \alpha \in \Delta \} \sqcup \Delta_{+},$

where an element $\alpha \in \mathfrak{h}^*$ is regarded as an element of $(\hat{\mathfrak{h}})^*$ by putting: $\alpha(c) = \alpha(d) = 0$. Moreover, the root spaces $\hat{\mathfrak{g}}_{\gamma}, \gamma \in \hat{\Delta}_+$, are written as:

$$\widehat{\mathfrak{g}}_{j\delta} = \mathbb{C}t^j \otimes_{\mathbb{C}} \mathfrak{h}, \ \widehat{\mathfrak{g}}_{j\delta+\alpha} = \mathbb{C}t^j \otimes_{\mathbb{C}} \mathfrak{g}_{\alpha}, \quad j \in \mathbb{Z}, \, \alpha \in \Delta_j$$

where \mathfrak{g}_{α} is the root space of \mathfrak{g} corresponding to a root $\alpha \in \Delta$. Also we denote by $\widehat{\Pi} = \{\widehat{\alpha}_i\}_{i=0}^N \subset \widehat{\Delta}_+$ the set of simple roots of $\widehat{\mathfrak{g}}$, and by $\widehat{\Pi}^{\vee} = \{\widehat{h}_i\}_{i=0}^N \subset \widehat{\mathfrak{h}}$ the set of simple coroots of $\widehat{\mathfrak{g}}$. (See [K4, Chap. 7] for the explicit construction of $\widehat{\Pi}$ and $\widehat{\Pi}^{\vee}$.)

The normalized Killing form $(\cdot | \cdot)$ on \mathfrak{g} can be extended to the normalized invariant form (see [K4, Chap. 6]) $(\cdot | \cdot)$ on $\widehat{\mathfrak{g}}$ by:

$$\begin{cases} (t^m \otimes x | t^n \otimes y) = \delta_{m+n,0}(x|y), & x, y \in \mathfrak{g}, m, n \in \mathbb{Z}; \\ (\mathbb{C}c \oplus \mathbb{C}d | \mathbb{C}[t, t^{-1}] \otimes_{\mathbb{C}} \mathfrak{g}) = 0; \\ (c|c) = (d|d) = 0; \\ (c|d) = 1. \end{cases}$$

The restriction of this bilinear form $(\cdot | \cdot)$ to the Cartan subalgebra $\hat{\mathfrak{h}}$ induces a nondegenerate symmetric bilinear form $(\cdot | \cdot)$ on \mathfrak{h}^* . Note that in this case, for every root $\alpha \in \Delta \subset \mathfrak{h}^* \subset (\hat{\mathfrak{h}})^*$, we have $(\alpha | \alpha) = 2$.

2.2. Casimir operators for \mathfrak{g} and $\hat{\mathfrak{g}}$

The Casimir element Ω for \mathfrak{g} is an element of the center $Z(U(\mathfrak{g}))$ of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} defined by:

$$\Omega = \sum_{i=1}^{M} u_i u^i,$$

where $\{u_i\}_{i=1}^M$ and $\{u^i\}_{i=1}^M$ with $M := \dim_{\mathbb{C}} \mathfrak{g}$ are arbitrary dual bases of \mathfrak{g} with respect to the normalized Killing form $(\cdot | \cdot)$ on \mathfrak{g} . Notice that the element $\Omega \in Z(U(\mathfrak{g}))$ is independent of the choice of dual bases, and that Ω acts on each irreducible highest weight \mathfrak{g} -module $L(\lambda)$ of highest weight $\lambda \in \mathfrak{h}^*$ by the scalar $(\lambda + 2\rho|\lambda)$, where $\rho = (1/2) \cdot \sum_{\alpha \in \Delta_+} \alpha \in \mathfrak{h}^*$ is the Weyl vector for \mathfrak{g} .

Recall from [K4, Chaps. 2 and 12] the definition and construction of the (generalized) Casimir operator $\widehat{\Omega}$ for $\widehat{\mathfrak{g}}$, which is a well-defined operator on a $\widehat{\mathfrak{g}}$ -module V such that for each $v \in V$, $\widehat{\mathfrak{g}}_{\gamma}v = 0$ for all but a finite number of positive roots $\gamma \in \widehat{\Delta}_+$. Then we know that the operator $\widehat{\Omega}$ can be expressed in the following form:

$$\widehat{\Omega} = \Omega + 2(c+h^{\vee})d + 2\sum_{i=1}^{M}\sum_{n\geq 1}(t^{-n}\otimes u_i)(t^n\otimes u^i),$$

where the scalar h^{\vee} , called the dual Coxeter number, is given by:

$$h^{\vee} = \begin{cases} N+1 & \text{if } X_N = A_N, \\ 2N-2 & \text{if } X_N = D_N, \\ 12 & \text{if } X_N = E_6, \\ 18 & \text{if } X_N = E_7, \\ 30 & \text{if } X_N = E_8. \end{cases}$$

Remark 2.2.1. It is easily checked that

$$M = \dim_{\mathbb{C}} \mathfrak{g} = N(1+h^{\vee})$$

in all the cases where X = A, D, E.

Moreover, we know that the operator $\widehat{\Omega}$ acts on the irreducible highest weight $\widehat{\mathfrak{g}}$ -module $\widehat{L}(\Lambda)$ of highest weight $\Lambda \in (\widehat{\mathfrak{h}})^*$ by the scalar $(\Lambda + 2\widehat{\rho}|\Lambda)$, where the element $\widehat{\rho} \in (\widehat{\mathfrak{h}})^*$ (the Weyl vector for $\widehat{\mathfrak{g}}$) is defined by: $\widehat{\rho}(\widehat{h}_i) = 1$ for all $0 \leq i \leq N$, and $\widehat{\rho}(d) = 0$.

2.3. Calculation of the graded trace of Ω

Let

$$\widehat{P}_{+} := \{ \Lambda \in (\widehat{\mathfrak{h}})^* \mid \Lambda(\widehat{h}_i) \in \mathbb{Z}_{\geq 0}, \, 0 \le i \le N \}$$

be the set of dominant integral weights. Fix $\Lambda \in \widehat{P}_+$ such that $\Lambda(d) = 0$, and put $k := \Lambda(c) \in \mathbb{Z}_{\geq 0}$ (the level of Λ). Let $V := \widehat{L}(\Lambda)$ be the irreducible highest weight $\widehat{\mathfrak{g}}$ -module of highest weight Λ . We give a \mathbb{Z} -gradation, called the basic gradation, of V by setting:

$$V_m = \{ v \in V \mid dv = -mv \} \text{ for } m \in \mathbb{Z}.$$

Then we have (see [K4, Chap. 12])

$$V = \bigoplus_{m \in \mathbb{Z}_{\ge 0}} V_m$$

with $V_{-m} = \{0\}$ for m > 0 and $\dim_{\mathbb{C}} V_m < +\infty$ for all $m \ge 0$. Note that each homogeneous subspace V_m for $m \in \mathbb{Z}_{\ge 0}$ is stable under the action of $\mathfrak{g} \cong \mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g} \hookrightarrow \widehat{\mathfrak{g}}$ since $[d, \mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g}] = 0$. In particular, we have

$$\Omega V_m \subset V_m$$
 for each $m \in \mathbb{Z}_{\geq 0}$.

Thus we can define a formal power series g(q), called the graded trace of Ω on $V = \hat{L}(\Lambda)$, by

$$g(q) := \sum_{m \in \mathbb{Z}_{\geq 0}} \operatorname{Tr}(\Omega|_{V_m}) q^m,$$

which is the generating function of the traces $\operatorname{Tr}(\Omega|_{V_m}), m \in \mathbb{Z}_{>0}$.

The following elementary fact in linear algebra will play an essential role in the calculation of the graded trace g(q) in this subsection.

LEMMA 2.3.1. Let X, Y be finite-dimensional vector spaces over \mathbb{C} , and let $A: X \to Y$, $B: Y \to X$ be linear maps. Then we have

$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA).$$

Set

$$c(k) := \frac{k(\dim_{\mathbb{C}} \mathfrak{g})}{k + h^{\vee}} \in \mathbb{Q}_{>0}.$$

We now define the following formal power series in q:

$$\phi(q) := \prod_{n=1}^{\infty} (1-q^n),$$

(2.3.1)
$$H(q) := -c(k) \cdot \sum_{n \ge 1} \log(1 - q^n),$$
$$h(q) := \exp(H(q)).$$

Remark 2.3.2. We often write $h(q) = \phi(q)^{-c(k)}$ and $H(q) = \log(h(q))$.

The following lemma immediately follows from the definition of h(q) above.

LEMMA 2.3.3. We have

$$\frac{d}{dq}h(q) = h(q) \cdot \frac{d}{dq}H(q).$$

Furthermore, we can show the following:

LEMMA 2.3.4. We have

$$q\frac{d}{dq}H(q) = c(k) \cdot \sum_{n \ge 1} n \sum_{j \ge 1} q^{nj}.$$

Proof. By differentiating the right-hand side of (2.3.1) by terms, we obtain

$$\frac{d}{dq}H(q) = c(k) \cdot \sum_{n \ge 1} \frac{nq^{n-1}}{1-q^n}.$$

Thus, multiplying both sides by q, we have

$$q\frac{d}{dq}H(q) = c(k) \cdot \sum_{n \ge 1} \frac{nq^n}{1-q^n}.$$

Since, for each $n \in \mathbb{Z}_{\geq 1}$,

$$\frac{q^n}{1-q^n} = \sum_{j\ge 1} q^{nj},$$

we deduce that

$$q\frac{d}{dq}H(q) = c(k) \cdot \sum_{n \ge 1} n \sum_{j \ge 1} q^{nj}.$$

This proves the lemma.

S. NAITO

Now we recall that the Casimir operator $\widehat{\Omega}$ for $\widehat{\mathfrak{g}}$ can be written in the form:

$$\widehat{\Omega} = \Omega + 2(c+h^{\vee})d + 2\sum_{i=1}^{M}\sum_{n\geq 1}(t^{-n}\otimes u_i)(t^n\otimes u^i),$$

as an operator on $V = \widehat{L}(\Lambda)$, and that $\widehat{\Omega}$ acts on $\widehat{L}(\Lambda)$ by the scalar $(\Lambda + 2\widehat{\rho}|\Lambda)$. Since $\widehat{L}(\Lambda)$ is a highest weight $\widehat{\mathfrak{g}}$ -module, we see that the canonical central element $c \in \widehat{\mathfrak{g}}$ acts on $\widehat{L}(\Lambda)$ by the scalar $k = \Lambda(c)$. Also, by definition, the scaling element $d \in \widehat{\mathfrak{g}}$ acts on each homogeneous subspace V_m by the scalar -m for $m \in \mathbb{Z}_{\geq 0}$. In addition, it follows from the commutation relation $[d, t^n \otimes x] = nt^n \otimes x$ for $x \in \mathfrak{g}$, $n \in \mathbb{Z}$ that

$$(t^{-n} \otimes u_i)(t^n \otimes u^i)V_m \subset (t^{-n} \otimes u_i)V_{m-n} \subset V_m$$

for $m \in \mathbb{Z}_{\geq 0}$, $n \in \mathbb{Z}_{\geq 1}$. Hence we deduce that for each $m \in \mathbb{Z}_{\geq 0}$,

(2.3.2)
$$\operatorname{Tr}(\Omega|_{V_m}) = (\Lambda + 2\widehat{\rho}|\Lambda)(\dim_{\mathbb{C}} V_m) + 2(k+h^{\vee})m(\dim_{\mathbb{C}} V_m)$$
$$-2\sum_{i=1}^{M}\sum_{n\geq 1}\operatorname{Tr}((t^{-n}\otimes u_i)(t^n\otimes u^i)|_{V_m}).$$

PROPOSITION 2.3.5. For each $1 \leq i \leq M$, $n \in \mathbb{Z}_{>1}$, we have

$$\operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_m}) = kn \cdot \sum_{j \ge 1} \dim_{\mathbb{C}} V_{m-nj}$$

Here we understand $\dim_{\mathbb{C}} V_{-m} = 0$ for m < 0. In particular, the trace above does not depend on $1 \le i \le M$.

Proof. First we note that for $1 \le i \le M$, $n \ge 1$,

$$(t^n \otimes u^i)V_m \subset V_{m-n}, \quad (t^{-n} \otimes u_i)V_{m-n} \subset V_m$$

by the commutation relation $[d, t^n \otimes x] = nt^n \otimes x$ for $x \in \mathfrak{g}, n \in \mathbb{Z}$. Thus we have

$$(t^{-n} \otimes u_i)(t^n \otimes u^i)V_m \subset V_m, \quad (t^n \otimes u^i)(t^{-n} \otimes u_i)V_{m-n} \subset V_{m-n}.$$

Hence, by Lemma 2.3.1, we see that

(2.3.3)
$$\operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_m}) = \operatorname{Tr}((t^n \otimes u^i)(t^{-n} \otimes u_i)|_{V_{m-n}}).$$

Here we recall the commutation relation:

$$\begin{aligned} [t^n \otimes u^i, t^{-n} \otimes u_i] &= t^0 \otimes [u^i, u_i] + n(u^i | u_i)c \\ &= t^0 \otimes [u^i, u_i] + nc. \end{aligned}$$

Therefore, we deduce that

$$\operatorname{Tr}((t^n \otimes u^i)(t^{-n} \otimes u_i)|_{V_{m-n}}) = \operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_{m-n}}) + \operatorname{Tr}([u^i, u_i]|_{V_{m-n}}) + kn(\operatorname{dim}_{\mathbb{C}} V_{m-n}).$$

Since

$$\operatorname{Tr}([u^{i}, u_{i}]|_{V_{m-n}}) = \operatorname{Tr}(u^{i}|_{V_{m-n}} \circ u_{i}|_{V_{m-n}} - u_{i}|_{V_{m-n}} \circ u^{i}|_{V_{m-n}})$$

=
$$\operatorname{Tr}(u^{i}|_{V_{m-n}} u_{i}|_{V_{m-n}}) - \operatorname{Tr}(u_{i}|_{V_{m-n}} u^{i}|_{V_{m-n}})$$

=
$$0$$

again by Lemma 2.3.1, we get

(2.3.4)
$$\operatorname{Tr}((t^n \otimes u^i)(t^{-n} \otimes u_i)|_{V_{m-n}}) = \operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_{m-n}}) + kn(\dim_{\mathbb{C}} V_{m-n}).$$

By combining (2.3.3) and (2.3.4), we obtain a recurrence relation:

$$\operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_m}) = \operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_{m-n}}) + kn(\operatorname{dim}_{\mathbb{C}} V_{m-n}).$$

Note that $V_{m-nj} = \{0\}$ for sufficiently large $j \in \mathbb{Z}_{\geq 1}$. Hence it follows from the recurrence relation above that

$$\operatorname{Tr}((t^{-n} \otimes u_i)(t^n \otimes u^i)|_{V_m}) = kn \cdot \sum_{j \ge 1} \dim_{\mathbb{C}} V_{m-nj}.$$

This proves the proposition.

By (2.3.2) and Proposition 2.3.5, we obtain

(2.3.5)
$$\operatorname{Tr}(\Omega|_{V_m}) = (\Lambda + 2\widehat{\rho}|\Lambda)(\dim_{\mathbb{C}} V_m) + 2(k+h^{\vee})m(\dim_{\mathbb{C}} V_m) - 2kM\sum_{n\geq 1}n\sum_{j\geq 1}\dim_{\mathbb{C}} V_{m-nj}.$$

Here we introduce the following formal power series, called the graded dimension of V,

$$f(q) := \sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m,$$

which is the generating function of the dimensions $\dim_{\mathbb{C}} V_m$, $m \in \mathbb{Z}_{\geq 0}$. If we set

$$F(q) := f(q) \cdot h(q)^{-1} = f(q) \cdot \phi(q)^{c(k)},$$

then we have

$$(2.3.6)$$

$$\frac{d}{dq}f(q) = \left(\frac{d}{dq}F(q)\right) \cdot h(q) + F(q) \cdot \left(\frac{d}{dq}h(q)\right)$$

$$= \left(\frac{d}{dq}F(q)\right) \cdot h(q) + F(q) \cdot \left(h(q) \cdot \frac{d}{dq}H(q)\right) \quad \text{by Lemma 2.3.3}$$

$$= \left(\frac{d}{dq}F(q)\right) \cdot h(q) + f(q) \cdot \frac{d}{dq}H(q).$$

Now we calculate the graded trace $g(q) = \sum_{m\geq 0} \operatorname{Tr}(\Omega|_{V_m}) q^m$. By (2.3.5), we have

$$g(q) = \sum_{m \ge 0} \operatorname{Tr}(\Omega|_{V_m}) q^m$$

= $(\Lambda + 2\widehat{\rho}|\Lambda)f(q) + 2(k+h^{\vee}) q \frac{d}{dq}f(q)$
 $- 2kM \sum_{m \ge 0} \left(\sum_{n \ge 1} n \sum_{j \ge 1} \dim_{\mathbb{C}} V_{m-nj}\right) q^m.$

We further deduce that

$$\sum_{m\geq 0} \left(\sum_{n\geq 1} n \sum_{j\geq 1} \dim_{\mathbb{C}} V_{m-nj} \right) q^m = \sum_{m\geq 0} \sum_{\substack{n\geq 1\\j\geq 1}} n(\dim_{\mathbb{C}} V_{m-nj}) q^m$$
$$= \sum_{\substack{n\geq 1\\j\geq 1}} \sum_{m\geq 0} n(\dim_{\mathbb{C}} V_{m-nj}) q^m$$
$$= \sum_{\substack{n\geq 1\\j\geq 1}} \sum_{m\geq 0} n(\dim_{\mathbb{C}} V_m) q^{m+nj}$$

$$= \sum_{m \ge 0} \sum_{\substack{n \ge 1 \\ j \ge 1}} n(\dim_{\mathbb{C}} V_m) q^m \cdot q^{nj}$$
$$= \left(\sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m \right) \cdot \left(\sum_{n \ge 1} n \sum_{j \ge 1} q^{nj} \right)$$
$$= f(q) \cdot c(k)^{-1} q \frac{d}{dq} H(q) \text{ by Lemma 2.3.4.}$$

Consequently, we obtain

$$\begin{split} &= (\Lambda + 2\widehat{\rho}|\Lambda)h(q)F(q) + 2(k+h^{\vee}) q \Big\{ h(q) \cdot \frac{d}{dq}F(q) \Big\} \quad \text{by (2.3.6)} \\ &= h(q) \cdot \Big\{ (\Lambda + 2\widehat{\rho}|\Lambda)F(q) + 2(k+h^{\vee}) q \frac{d}{dq}F(q) \Big\} \\ &= \frac{(\Lambda + 2\widehat{\rho}|\Lambda)F(q) + 2(k+h^{\vee}) q \frac{d}{dq}F(q)}{\prod_{n \ge 1} (1-q^n)^{c(k)}}. \end{split}$$

Thus we have proved the following.

THEOREM 2.3.6. Let $\widehat{\mathfrak{g}} = \mathfrak{g}(X_N^{(1)})$ be the affine Lie algebra of type $X_N^{(1)}$ with X = A, D, E, and let $V = \widehat{L}(\Lambda)$ be the irreducible highest weight $\widehat{\mathfrak{g}}$ module of dominant integral highest weight $\Lambda \in (\widehat{\mathfrak{h}})^*$ (such that $\Lambda(d) = 0$) given the basic gradation $V = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} V_m$. Then the graded trace $g(q) = \sum_{m \geq 0} \operatorname{Tr}(\Omega|_{V_m}) q^m$ of the Casimir element Ω for the finite-dimensional simple Lie algebra $\mathfrak{g} = \mathfrak{g}(X_N)$ of type X_N is expressed in the following form:

$$g(q) = \frac{(\Lambda + 2\widehat{\rho}|\Lambda)F(q) + 2(k+h^{\vee}) q \frac{d}{dq}F(q)}{\prod_{n \ge 1} (1-q^n)^{\frac{k(\dim_{\mathbb{C}}\mathfrak{g})}{k+h^{\vee}}}},$$

where

$$F(q) = \left(\prod_{n\geq 1} (1-q^n)^{\frac{k(\dim_{\mathbb{C}}\mathfrak{g})}{k+h^{\vee}}}\right) \cdot \sum_{m\geq 0} (\dim_{\mathbb{C}} V_m) q^m.$$

S. NAITO

Remark 2.3.7. If $\Lambda \in (\widehat{\mathfrak{h}})^*$ is a dominant integral weight such that $k = \Lambda(c) = 1$ and $\Lambda(d) = 0$, then we know from [K4, Chap. 12]

$$(\Lambda|\Lambda)h^{\vee} = 2(\widehat{\rho}|\Lambda).$$

So we have

$$(\Lambda + 2\widehat{\rho}|\Lambda) = (\Lambda|\Lambda) \cdot (1 + h^{\vee}).$$

Also, since $M = \dim_{\mathbb{C}} \mathfrak{g} = N(1 + h^{\vee})$ by Remark 2.2.1, we have

$$c(1) = \frac{\dim_{\mathbb{C}} \mathfrak{g}}{1+h^{\vee}} = N.$$

Hence we obtain

$$g(q) = \frac{(1+h^{\vee})\Big\{(\Lambda|\Lambda)F(q) + 2q\frac{d}{dq}F(q)\Big\}}{\prod_{n\geq 1}(1-q^n)^N}$$

In particular, if Λ is the basic fundamental weight $\widehat{\Lambda}_0 \in (\widehat{\mathfrak{h}})^*$ defined by $\widehat{\Lambda}_0(\mathfrak{h}) := 0, \ \widehat{\Lambda}_0(c) := 1, \ \widehat{\Lambda}_0(d) := 0$, then we have

$$g(q) = \frac{2(1+h^{\vee}) q \frac{d}{dq} F(q)}{\prod_{n \ge 1} (1-q^n)^N}$$

since $(\widehat{\Lambda}_0|\widehat{\Lambda}_0) = 0$.

Remark 2.3.8. Recall from [K4, Chap. 12] that a dominant integral weight $\Lambda \in (\hat{\mathfrak{h}})^*$ such that $k = \Lambda(c) = 1$ and $\Lambda(d) = 0$ is of the form $\Lambda = \hat{\Lambda}_0$ or $\Lambda = \hat{\Lambda}_0 + \bar{\Lambda}_i$ with $1 \leq i \leq N$ such that $\hat{a}_i^{\vee} = 1$, where $\{\bar{\Lambda}_i\}_{i=1}^N \subset \mathfrak{h}^* \subset (\hat{\mathfrak{h}})^*$ are the fundamental weights of $\mathfrak{g} = \mathfrak{g}(X_N)$ and $c = \sum_{i=0}^N \hat{a}_i^{\vee} \hat{h}_i$ is the canonical central element.

§3. Identity for the derivative of a theta series of type A, D, E

In this section, we assume that $\Lambda \in (\hat{\mathfrak{h}})^*$ is a dominant integral weight such that $k = \Lambda(c) = 1$ and $\Lambda(d) = 0$.

Recall from [K4, Chap. 6] that we have an orthogonal direct sum:

$$(\widehat{\mathfrak{h}})^* = \mathfrak{h}^* \oplus (\mathbb{C}\delta + \mathbb{C}\widehat{\Lambda}_0).$$

For an element $\Lambda \in (\hat{\mathfrak{h}})^*$, we denote by $\bar{\Lambda} \in \mathfrak{h}^*$ the orthogonal projection of Λ on \mathfrak{h}^* . Note that we have

$$\Lambda = \bar{\Lambda} + \Lambda(c)\widehat{\Lambda}_0 + \Lambda(d)\delta_0$$

and hence $\Lambda = \overline{\Lambda} + \widehat{\Lambda}_0$ (cf. Remark 2.3.8). In particular, $(\Lambda | \Lambda) = (\overline{\Lambda} | \overline{\Lambda})$ since $(\widehat{\Lambda}_0 | \widehat{\Lambda}_0) = 0$.

We know the following fact due to Kac (see [K4, Chap. 12]).

FACT 1. The graded dimension $f(q) = \sum_{m\geq 0} (\dim_{\mathbb{C}} V_m) q^m$ of the irreducible highest weight $\hat{\mathfrak{g}}$ -module $V = \hat{L}(\Lambda)$ of highest weight Λ with the basic gradation is given by:

$$f(q) = \sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m$$
$$= \frac{q^{-\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot \sum_{\alpha \in \bar{\Lambda} + Q} q^{\frac{1}{2}(\alpha|\alpha)}}{\prod_{n \ge 1} (1 - q^n)^N},$$

where $Q := \sum_{i=1}^{N} \mathbb{Z}\alpha_i \subset \mathfrak{h}^*$ is the root lattice of $\mathfrak{g} = \mathfrak{g}(X_N)$ and $(\cdot | \cdot)$ is the normalized Killing form on \mathfrak{h}^* .

By Fact 1, we have

$$F(q) = f(q) \cdot \prod_{n \ge 1} (1 - q^n)^N$$
$$= q^{-\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot \sum_{\alpha \in \bar{\Lambda} + Q} q^{\frac{1}{2}(\alpha|\alpha)}$$

since $c(1) = \frac{M}{1+h^{\vee}} = N$. We set

$$\Theta_{Q,\bar{\Lambda}}(q) := \sum_{\alpha \in \bar{\Lambda} + Q} q^{\frac{1}{2}(\alpha|\alpha)}.$$

Then we deduce that

$$q\frac{d}{dq}F(q) = -\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda}) \cdot F(q) + q^{-\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot q\frac{d}{dq}\Theta_{Q,\bar{\Lambda}}(q).$$

S. NAITO

Hence we obtain by Remark 2.3.7 that

(3.1)
$$g(q) = \frac{2(1+h^{\vee})q^{-\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot q\frac{d}{dq}\Theta_{Q,\bar{\Lambda}}(q)}{\prod_{n\geq 1} (1-q^n)^N}$$

since $(\Lambda|\Lambda) = (\bar{\Lambda}|\bar{\Lambda})$.

Here we recall that each homogeneous subspace V_m of V is a finitedimensional $\mathfrak{g} (\hookrightarrow \widehat{\mathfrak{g}})$ -module for $m \in \mathbb{Z}_{\geq 0}$. Hence it decomposes into a direct sum of irreducible highest weight \mathfrak{g} -modules $L(\lambda)$ with $\lambda \in P_+ :=$ $\{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq N\}$. For each $\lambda \in P_+$, we denote by $\Phi(\Lambda, \lambda)_m$ the multiplicity of $L(\lambda)$ in V_m :

(3.2)
$$V_m = \bigoplus_{\lambda \in P_+} \Phi(\Lambda, \lambda)_m L(\lambda),$$

and set

$$\Phi(\Lambda,\lambda)(q) := \sum_{m \ge 0} \Phi(\Lambda,\lambda)_m q^m.$$

Then we know the following fact due to Kac (see [K4, Chap. 12]).

FACT 2. Let $\lambda \in P_+$. If $\lambda \notin \overline{\Lambda} + Q$, then we have $\Phi(\Lambda, \lambda)(q) = 0$. If $\lambda \in \overline{\Lambda} + Q$, then we have

$$\Phi(\Lambda,\lambda)(q) = \frac{q^{\frac{1}{2}\{(\lambda|\lambda) - (\bar{\Lambda}|\bar{\Lambda})\}} \cdot \prod_{\alpha \in \Delta_+} \left(1 - q^{(\lambda+\rho|\alpha)}\right)}{\prod_{n \ge 1} (1 - q^n)^N}.$$

Since the Casimir element $\Omega \in Z(U(\mathfrak{g}))$ acts on $L(\lambda)$ by the scalar $(\lambda + 2\rho|\lambda)$, we see from the decomposition (3.2) that for each $m \in \mathbb{Z}_{\geq 0}$,

$$\operatorname{Tr}(\Omega|_{V_m}) = \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda)(\lambda + 2\rho|\lambda) \Phi(\Lambda, \lambda)_m,$$

where $d(\lambda) = \dim_{\mathbb{C}} L(\lambda)$. Therefore we deduce, by using Fact 2, that

$$\begin{split} g(q) &= \sum_{m \ge 0} \operatorname{Tr}(\Omega|_{V_m}) q^m \\ &= \sum_{m \ge 0} \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda)(\lambda + 2\rho|\lambda) \Phi(\Lambda, \lambda)_m q^m \\ &= \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda)(\lambda + 2\rho|\lambda) \left(\sum_{m \ge 0} \Phi(\Lambda, \lambda)_m q^m \right) \\ &= \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda)(\lambda + 2\rho|\lambda) \Phi(\Lambda, \lambda)(q) \\ &= \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda)(\lambda + 2\rho|\lambda) \left(h(q)q^{\frac{1}{2}\{(\lambda|\lambda) - (\bar{\Lambda}|\bar{\Lambda})\}} \prod_{\alpha \in \Delta_+} (1 - q^{(\lambda + \rho|\alpha)}) \right) \\ &= q^{-\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda})} h(q) \cdot \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda)(\lambda + 2\rho|\lambda)q^{\frac{1}{2}(\lambda|\lambda)} \prod_{\alpha \in \Delta_+} (1 - q^{(\lambda + \rho|\alpha)}), \end{split}$$

where $h(q) = \prod_{n \ge 1} (1 - q^n)^{-N}$. By comparing this equality with (3.1), we obtain

$$2(1+h^{\vee}) q \frac{d}{dq} \Theta_{Q,\bar{\Lambda}}(q) = \sum_{\lambda \in (\bar{\Lambda}+Q) \cap P_{+}} d(\lambda)(\lambda+2\rho|\lambda) q^{\frac{1}{2}(\lambda|\lambda)} \prod_{\alpha \in \Delta_{+}} \left(1-q^{(\lambda+\rho|\alpha)}\right).$$

Thus we have proved the following.

THEOREM 3.1. Let $\mathfrak{g} = \mathfrak{g}(X_N)$ be a finite-dimensional simple Lie algebra of type X_N with X = A, D, E, and let $\Lambda = \overline{\Lambda} + \widehat{\Lambda}_0 \in (\widehat{\mathfrak{h}})^*$ with $\overline{\Lambda} \in \mathfrak{h}^*$ be a dominant integral weight. Then we have

$$2(1+h^{\vee}) q \frac{d}{dq} \Theta_{Q,\bar{\Lambda}}(q) = \sum_{\lambda \in (\bar{\Lambda}+Q) \cap P_{+}} d(\lambda)(\lambda+2\rho|\lambda) q^{\frac{1}{2}(\lambda|\lambda)} \prod_{\alpha \in \Delta_{+}} \left(1-q^{(\lambda+\rho|\alpha)}\right),$$

where $\Theta_{Q,\bar{\Lambda}}(q) = \sum_{\alpha \in \bar{\Lambda}+Q} q^{\frac{1}{2}(\alpha|\alpha)}$ and $d(\lambda) = \dim_{\mathbb{C}} L(\lambda)$ for $\lambda \in P_+$.

Remark 3.2. For $\lambda \in P_+$, the dimension $d(\lambda) = \dim_{\mathbb{C}} L(\lambda)$ is given by the Weyl dimension formula:

$$d(\lambda) = \prod_{\alpha \in \Delta_+} \frac{(\lambda + \rho | \alpha)}{(\rho | \alpha)}.$$

EXAMPLE 3.3. Let \mathfrak{g} be a simple Lie algebra of type A_2 , i.e.,

 $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C}) = \{ X \in M(3,\mathbb{C}) \mid \operatorname{Tr}(X) = 0 \},\$

and $\bar{\Lambda} = 0$. Then we have

$$\Pi = \{\alpha_1, \alpha_2\}, \ \Delta_+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2\}, \ \rho = \alpha_1 + \alpha_2, \ h^{\vee} = 3, Q = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 = \{k\alpha_1 + m\alpha_2 \mid k, m \in \mathbb{Z}\}, (\alpha_1 | \alpha_1) = (\alpha_2 | \alpha_2) = 2, \ (\alpha_1 | \alpha_2) = -1, P_+ \cap Q = \{k\alpha_1 + m\alpha_2 \mid 2k \ge m \ge 0, \ 2m \ge k \ge 0, \ k, m \in \mathbb{Z}\}.$$

Also, for $\lambda = k\alpha_1 + m\alpha_2 \in P_+ \cap Q$, we have

$$d(\lambda) = \frac{1}{2}(2k - m + 1)(2m - k + 1)(k + m + 2)$$

by Remark 3.2. Thus we can write the identity in Theorem 3.1 as follows:

$$8 \cdot \sum_{\substack{k,m \in \mathbb{Z} \\ k,m \in \mathbb{Z}}} (k^2 - km + m^2) q^{k^2 - km + m^2}$$

=
$$\sum_{\substack{2k \ge m \ge 0 \\ 2m \ge k \ge 0 \\ k,m \in \mathbb{Z}}} (2k - m + 1)(2m - k + 1)(k + m + 2)(k^2 - km + m^2 + k + m)$$

$$\times q^{k^2 - km + m^2} (1 - q^{2k - m + 1})(1 - q^{2m - k + 1})(1 - q^{k + m + 2}).$$

Remark 3.4. It immediately follows from the decomposition (3.2) that for each $m \in \mathbb{Z}_{\geq 0}$,

$$\dim_{\mathbb{C}} V_m = \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_+} d(\lambda) \Phi(\Lambda, \lambda)_m.$$

Therefore, as above, we can easily deduce by using Fact 2 that

$$f(q) = \sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m$$

= $q^{-\frac{1}{2}(\bar{\Lambda}|\bar{\Lambda})} \prod_{n \ge 1} (1-q^n)^{-N} \cdot \sum_{\lambda \in (\bar{\Lambda}+Q) \cap P_+} d(\lambda) q^{\frac{1}{2}(\lambda|\lambda)} \prod_{\alpha \in \Delta_+} (1-q^{(\lambda+\rho|\alpha)}).$

By comparing this with Fact 1, we obtain

$$\Theta_{Q,\bar{\Lambda}}(q) = \sum_{\alpha \in \bar{\Lambda} + Q} q^{\frac{1}{2}(\alpha|\alpha)}$$
$$= \sum_{\lambda \in (\bar{\Lambda} + Q) \cap P_{+}} d(\lambda) q^{\frac{1}{2}(\lambda|\lambda)} \prod_{\alpha \in \Delta_{+}} \left(1 - q^{(\lambda + \rho|\alpha)}\right).$$

§4. Results in the C, B, F, G cases

4.1. Twisted affine Lie algebras

Here we recall from [K4, Chaps. 6 and 8] (and also [W]) some standard notation and facts about twisted affine Lie algebras.

Let $\mathfrak{g} = \mathfrak{g}(X_N)$ be a finite-dimensional complex simple Lie algebra of type X_N , where $X_N = A_{2L-1}$ $(L \ge 3)$, D_{L+1} $(L \ge 2)$, E_6 , or D_4 (recall the notation of Section 2.1). Also we denote by $\mu : \mathfrak{g} \to \mathfrak{g}$ the Lie algebra automorphism induced by a Dynkin diagram automorphism $\mu : \{1, \ldots, N\} \to \{1, \ldots, N\}$ of order r.

Remark 4.1.1. In the case where $X_N = D_4$ above, we take one of two Dynkin diagram automorphisms of order 3. In the case where $X_N = D_{L+1}$ with L = 3 above, we take one of three Dynkin diagram automorphisms of order 2. In each of other cases above, there is only one nontrivial Dynkin diagram automorphism, which is of order 2. Thus r = 2 if $X_N = A_{2L-1}$, D_{L+1} , E_6 , and r = 3 if $X_N = D_4$.

Let $\zeta := \exp\left(\frac{2\pi\sqrt{-1}}{r}\right) \in \mathbb{C}^*$ be a primitive *r*-th root of unity. Since $\mu^r = \text{id}$, we have μ -eigenspace decompositions of \mathfrak{g} and \mathfrak{h} :

$$\mathfrak{g} = \bigoplus_{\bar{k} \in \mathbb{Z}/r\mathbb{Z}} \mathfrak{g}_{\bar{k}}, \quad \mathfrak{g}_{\bar{l}} := \{ x \in \mathfrak{g} \mid \mu(x) = \zeta^{l} x \}.$$
$$\mathfrak{h} = \bigoplus_{\bar{l} \in \mathbb{Z}/r\mathbb{Z}} \mathfrak{h}_{\bar{l}}, \quad \mathfrak{h}_{\bar{l}} := \mathfrak{g}_{\bar{l}} \cap \mathfrak{h},$$

where $\overline{l} := l + r\mathbb{Z} \in \mathbb{Z}/r\mathbb{Z}$ denotes the residue class of $l \in \mathbb{Z}$. It is known (see [K4, Chap. 8]) that the fixed point subalgebra $\mathfrak{g}_{\bar{\mathfrak{g}}}$ of \mathfrak{g} is, in fact, a finitedimensional simple Lie algebra of type Y_L with Cartan subalgebra $\mathfrak{h}_{\bar{\mathfrak{g}}}$, where Y_L is given by:

$$Y_L = \begin{cases} C_L & \text{if } X_N = A_{2L-1}, r = 2, \\ B_L & \text{if } X_N = D_{L+1}, r = 2, \\ F_4 & \text{if } X_N = E_6, r = 2, \\ G_2 & \text{if } X_N = D_4, r = 3. \end{cases}$$

Furthermore, for each $\bar{l} \in \mathbb{Z}/r\mathbb{Z}$, $\mathfrak{g}_{\bar{l}}$ admits a weight space decomposition with respect to the Cartan subalgebra $\mathfrak{h}_{\bar{0}}$ of $\mathfrak{g}_{\bar{0}}$:

$$\mathfrak{g}_{ar{l}} = \mathfrak{h}_{ar{l}} \oplus igoplus_{lpha \in \Delta_{ar{l}}} \mathfrak{g}_{ar{l}}.$$

In particular, $\Delta_{\bar{0}} \subset (\mathfrak{h}_{\bar{0}})^*$ is the set of roots of $\mathfrak{g}_{\bar{0}} = \mathfrak{g}(Y_L)$.

Let $\tilde{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$ be a twisted affine Lie algebra of type $X_N^{(r)}$ over \mathbb{C} , where $X_N^{(r)} = A_{2L-1}^{(2)}, D_{L+1}^{(2)}, E_6^{(2)}, D_4^{(3)}$. Namely, $\tilde{\mathfrak{g}}$ is the following subalgebra of $\hat{\mathfrak{g}}$:

$$\widetilde{\mathfrak{g}} = \widehat{\mathcal{L}}(\mathfrak{g}, \mu, r) = \left(\bigoplus_{j \in \mathbb{Z}} \mathbb{C}t^j \otimes_{\mathbb{C}} \mathfrak{g}_{\overline{j}} \right) \oplus \mathbb{C}K \oplus \mathbb{C}D,$$

where K := rc is the canonical central element and D := d is the scaling element.

Remark 4.1.2. There are some misprints on the canonical central element and the scaling element of the twisted affine Lie algebra $\tilde{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$ in [K4, Section 8.3] and [W, Section 7.2]. Note also that $a_0 = 1$ in the notation therein unless $X_N^{(r)} = A_{2L}^{(2)}$.

The Cartan subalgebra of $\widetilde{\mathfrak{g}}$ is the following subalgebra of $\widehat{\mathfrak{h}}$:

$$\widetilde{\mathfrak{h}} = (\mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{h}_{\bar{0}}) \oplus \mathbb{C}K \oplus \mathbb{C}D.$$

The set $\widetilde{\Delta}_+ \subset (\widetilde{\mathfrak{h}})^*$ of positive roots of $\widetilde{\mathfrak{g}}$ is described as:

$$\widetilde{\Delta}_{+} = \{ j\delta \mid j \in \mathbb{Z}_{\geq 1} \} \sqcup \{ j\delta + \alpha \mid j \in \mathbb{Z}_{\geq 1}, \, \alpha \in \Delta_{\overline{j}} \} \sqcup (\Delta_{\overline{0}})_{+},$$

where $\delta \in (\widetilde{\mathfrak{h}})^*$ is the restriction of the null root $\delta \in (\widehat{\mathfrak{h}})^*$ of $\widehat{\mathfrak{g}}$ to the subalgebra $\widetilde{\mathfrak{h}} \subset \widehat{\mathfrak{h}}$ and $(\Delta_{\overline{0}})_+ \subset (\mathfrak{h}_{\overline{0}})^*$ is the set of positive roots of $\mathfrak{g}_{\overline{0}} = \mathfrak{g}(Y_L)$ regarded (as usual) as a subset of $(\widetilde{\mathfrak{h}})^*$. Moreover, the root spaces $\widetilde{\mathfrak{g}}_{\gamma}$, $\gamma \in \widetilde{\Delta}_+$, are written as:

$$\widetilde{\mathfrak{g}}_{j\delta} = \mathbb{C}t^j \otimes_{\mathbb{C}} \mathfrak{h}_{\bar{j}}, \ \widetilde{\mathfrak{g}}_{j\delta+\alpha} = \mathbb{C}t^j \otimes_{\mathbb{C}} \mathfrak{g}_{\bar{j},\alpha}, \quad j \in \mathbb{Z}, \, \alpha \in \Delta_{\bar{j}}.$$

Also we denote by $\widetilde{\Pi} = \{\widetilde{\alpha}_i\}_{i=0}^L \subset \widetilde{\Delta}_+$ the set of simple roots of $\widetilde{\mathfrak{g}}$, and by $\widetilde{\Pi}^{\vee} = \{\widetilde{h}_i\}_{i=0}^L \subset \widetilde{\mathfrak{h}}$ the set of simple coroots of $\widetilde{\mathfrak{g}}$. (See [K4, Chap. 8] for the explicit construction of $\widetilde{\Pi}$ and $\widetilde{\Pi}^{\vee}$.)

Remark 4.1.3. The finite-dimensional simple Lie algebra $\mathfrak{g}_{\overline{0}} = \mathfrak{g}(Y_L)$ of type Y_L can be identified with the subalgebra $\mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g}_{\overline{0}}$ of $\tilde{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$. In fact, the Dynkin diagram of $\mathfrak{g}(X_N^{(r)})$ with the 0-th vertex (enumerated as in [K4, Chap. 4]) removed is nothing but the Dynkin diagram of $\mathfrak{g}(Y_L)$. Thus the simple roots of $\mathfrak{g}(Y_L) = \mathfrak{g}_{\overline{0}}$ are the restrictions of the $\tilde{\alpha}_i$'s, $1 \leq i \leq L$, to $\mathfrak{h}_{\overline{0}} \subset \tilde{\mathfrak{h}}$. So

$$\dot{Q} := \sum_{i=1}^{L} \mathbb{Z} \widetilde{\alpha}_i \subset (\mathfrak{h}_{\bar{0}})^*$$

is the root lattice of $\mathfrak{g}_{\bar{0}} = \mathfrak{g}(Y_L)$.

The normalized Killing form $(\cdot | \cdot)$ on $\mathfrak{g} = \mathfrak{g}(X_N)$ can be extended to the normalized invariant form (see [K4, Chap. 6]) $\langle \cdot | \cdot \rangle$ on $\tilde{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$ by:

$$\begin{cases} \langle t^i \otimes x | t^j \otimes y \rangle = r^{-1} \delta_{i+j,0}(x|y), & i, j \in \mathbb{Z}, x \in \mathfrak{g}_{\bar{i}}, y \in \mathfrak{g}_{\bar{j}}; \\ \langle \mathbb{C}K \oplus \mathbb{C}D | \mathbb{C}t^j \otimes_{\mathbb{C}} \mathfrak{g}_{\bar{j}} \rangle = 0, & j \in \mathbb{Z}, x \in \mathfrak{g}_{\bar{j}}; \\ \langle K | K \rangle = \langle D | D \rangle = 0; \\ \langle K | D \rangle = r \langle c | d \rangle = 1. \end{cases}$$

(We note that there are misprints in [K4, Eq. (8.3.8) on p. 131] and in [W, Corollary 7.2E].) Namely, the normalized invariant form $\langle \cdot | \cdot \rangle$ on $\tilde{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$ is the restriction of the normalized invariant form $(\cdot | \cdot)$ on $\hat{\mathfrak{g}} = \mathfrak{g}(X_n^{(1)})$ multiplied by r^{-1} . Let $x, y \in \mathfrak{g}_{\bar{0}}$. Then (x|y) is defined since $\mathfrak{g}_{\bar{0}} \subset \mathfrak{g}$, and $\langle x|y \rangle$ is also defined since $\mathfrak{g}_{\bar{0}} \cong \mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g}_{\bar{0}} \subset \tilde{\mathfrak{g}}$. By the definition of $\langle \cdot | \cdot \rangle$ above, we have

$$\langle x|y\rangle = r^{-1}(x|y)$$

Hence, for $\lambda, \mu \in (\mathfrak{h}_{\bar{0}})^* \subset (\widetilde{\mathfrak{h}})^* \cap \mathfrak{h}^*$, we have

(4.1.1)
$$\langle \lambda | \mu \rangle = r(\lambda | \mu).$$

Remark 4.1.4. It is easily checked (see [K4, Chaps. 6 and 8]) that the restriction of the normalized Killing form $(\cdot | \cdot)$ on $\mathfrak{g} = \mathfrak{g}(X_N)$ satisfies the condition:

 $(\alpha | \alpha) = 2$ for all long roots $\alpha \in (\Delta_{\bar{0}})_{long} \subset (\mathfrak{h}_{\bar{0}})^* \subset \mathfrak{h}^*$.

Hence the restriction of the normalized Killing form $(\cdot | \cdot)$ on $\mathfrak{g} = \mathfrak{g}(X_N)$ to the fixed point subalgebra $\mathfrak{g}_{\bar{0}}$ coincides with the Killing form on $\mathfrak{g}_{\bar{0}} = \mathfrak{g}(Y_L)$ normalized in such a way that the square length of every long root is 2. So we denote this normalized Killing form on $\mathfrak{g}(Y_L) = \mathfrak{g}_{\bar{0}}$ also by $(\cdot | \cdot)$.

4.2. Casimir operators for $\mathfrak{g}_{\bar{0}}$ and $\tilde{\mathfrak{g}}$

The Casimir element $\dot{\Omega} \in Z(U(\mathfrak{g}_{\bar{0}}))$ for $\mathfrak{g}_{\bar{0}}$ and the Casimir operator $\widetilde{\Omega}$ for $\widetilde{\mathfrak{g}}$ are defined in the same way as Ω for \mathfrak{g} and $\widehat{\Omega}$ for $\widehat{\mathfrak{g}}$ in Section 2.2, respectively. Furthermore, using the explicit descriptions of the set of positive roots $\widetilde{\Delta}_+$ of $\widetilde{\mathfrak{g}}$ and the corresponding root spaces $\widetilde{\mathfrak{g}}_{\gamma}, \gamma \in \widetilde{\Delta}_+$, we can show that the Casimir operator $\widetilde{\Omega}$ can be expressed in the following form (we need to be careful about the normalizations of the bilinear forms $\langle \cdot | \cdot \rangle$ and $(\cdot | \cdot)$):

$$(4.2.1) \quad \widetilde{\Omega} = r\dot{\Omega} + 2(K+h^{\vee})D + 2r\sum_{\bar{l}\in\mathbb{Z}/r\mathbb{Z}}\sum_{\substack{n\geq 1\\\bar{n}=\bar{l}}}\sum_{i=1}^{\dim_{\mathbb{C}}}\sum_{i=1}^{dim_{\mathbb{C}}}(t^{-n}\otimes u(\bar{n})^{i})(t^{n}\otimes u(\bar{n})_{i}).$$

Here, for each $n \in \mathbb{Z}_{\geq 1}$, $\{u(\bar{n})_i \mid 1 \leq i \leq \dim_{\mathbb{C}} \mathfrak{g}_{\bar{n}}\}$ and $\{u(\bar{n})^i \mid 1 \leq i \leq \dim_{\mathbb{C}} \mathfrak{g}_{\bar{n}}\}$ are bases of $\mathfrak{g}_{\bar{n}}$ and $\mathfrak{g}_{-\bar{n}}$ consisting of weight vectors with respect to the adjoint action of $\mathfrak{h}_{\bar{0}}$ such that

(4.2.2)
$$\begin{cases} (u(\bar{n})_i | u(\bar{n})^j) = \delta_{ij}, \ 1 \le i, j \le \dim_{\mathbb{C}} \mathfrak{g}_{\bar{n}}, \\ \lim_{i=1}^{\dim_{\mathbb{C}}} \mathfrak{g}_{\bar{n}} [u(\bar{n})_i, u(\bar{n})^i] = 0 \in \mathfrak{h}_{\bar{0}}, \end{cases}$$

and the dual Coxeter number h^{\vee} is given by:

$$h^{\vee} = \begin{cases} 2L & \text{if } X_N = A_{2L-1}, \ r = 2, \\ 2L & \text{if } X_N = D_{L+1}, \ r = 2, \\ 12 & \text{if } X_N = E_6, \ r = 2, \\ 6 & \text{if } X_N = D_4, \ r = 3. \end{cases}$$

Remark 4.2.1. In all the cases where $X_N^{(r)} = A_{2L-1}^{(2)}, D_{L+1}^{(2)}, E_6^{(2)}, D_4^{(3)}$, we can check by direct computation that

$$\dim_{\mathbb{C}} \mathfrak{g}_{\bar{n}} = (1+h^{\vee}) \dim_{\mathbb{C}} \mathfrak{h}_{\bar{n}}$$

for all $n \in \mathbb{Z}_{\geq 0}$.

4.3. Graded trace of the Casimir element $\dot{\Omega}$ for $\mathfrak{g}_{\bar{\Omega}}$

Let $\Lambda \in (\tilde{\mathfrak{h}})^*$ be a dominant integral weight, i.e., $\Lambda(\tilde{h}_i) \in \mathbb{Z}_{\geq 0}$ for all $0 \leq i \leq L$. We assume that $\Lambda(D) = 0$. Put $k := \Lambda(K) \in \mathbb{Z}_{>0}$, and

$$c_l(k) := \frac{k(\dim_{\mathbb{C}} \mathfrak{g}_{\overline{l}})}{k+h^{\vee}} \in \mathbb{Q}_{>0} \quad \text{for } 0 \le l \le r-1.$$

Let $V := \widetilde{L}(\Lambda)$ be the ireducible highest weight $\widetilde{\mathfrak{g}}$ -module of highest weight $\Lambda \in (\widetilde{\mathfrak{h}})^*$ given the basic gradation:

$$V = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} V_m, \quad V_m := \{ v \in V \mid Dv = -mv \}.$$

Recall from [K4, Chap. 12] that $\dim_{\mathbb{C}} V_m < +\infty$ for all $m \in \mathbb{Z}_{\geq 0}$. Also note that each homogeneous subspace V_m for $m \in \mathbb{Z}_{\geq 0}$ is stable under the action of $\mathfrak{g}_{\bar{0}} \cong \mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g}_{\bar{0}} \hookrightarrow \widetilde{\mathfrak{g}}$ since $[D, \mathbb{C}t^0 \otimes_{\mathbb{C}} \mathfrak{g}_{\bar{0}}] = 0$, and hence that

$$\dot{\Omega}V_m \subset V_m$$
 for each $m \in \mathbb{Z}_{\geq 0}$.

We set

$$f(q) := \sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m,$$

$$g(q) := \sum_{m \ge 0} \operatorname{Tr}(\dot{\Omega}|_{V_m}) q^m.$$

Now we define the following formal power series in q for $0 \le l \le r - 1$:

$$\phi_l(q) := \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1 - q^n),$$
$$H_l(q) := -c_l(k) \cdot \sum_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} \log(1 - q^n),$$
$$h_l(q) := \exp(H_l(q)).$$

Remark 4.3.1. We often write

$$h_l(q) = \phi_l(q)^{-c_l(k)} = \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1 - q^n)^{-c_l(k)}$$

and $H_l(q) = \log(h_l(q))$.

We get the following lemmas in the same way as Lemmas 2.3.3 and 2.3.4.

LEMMA 4.3.2. For $0 \le l \le r - 1$, we have

$$\frac{d}{dq}h_l(q) = h_l(q) \cdot \frac{d}{dq}H_l(q).$$

LEMMA 4.3.3. For $0 \le l \le r - 1$, we have

$$q\frac{d}{dq}H_l(q) = c_l(k) \cdot \sum_{\substack{n \ge 1\\n \equiv l \pmod{r}}} n \sum_{j \ge 1} q^{nj}.$$

Furthermore, we can show the following proposition.

PROPOSITION 4.3.4. For $0 \leq l \leq r-1$ and $n \in \mathbb{Z}_{\geq 1}$ such that $n \equiv l \pmod{r}$, we have

$$\operatorname{Tr}\left(\sum_{i=1}^{\dim_{\mathbb{C}}} (t^{-n} \otimes u(\bar{n})^{i})(t^{n} \otimes u(\bar{n})_{i})|_{V_{m}}\right)$$
$$= r^{-1}(\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{\bar{l}})kn \cdot \sum_{j \geq 1} \operatorname{dim}_{\mathbb{C}} V_{m-nj}.$$

Proof. First we note that for $0 \leq l \leq r-1$, $n \in \mathbb{Z}_{\geq 1}$ such that $n \equiv l \pmod{r}$, and $1 \leq i \leq \dim_{\mathbb{C}} \mathfrak{g}_{\bar{l}}$, we have the following commutation relation (since $c = r^{-1}K$):

$$[t^{n} \otimes u(\bar{n})_{i}, t^{-n} \otimes u(\bar{n})^{i}] = t^{0} \otimes [u(\bar{n})_{i}, u(\bar{n})^{i}] + n(u(\bar{n})_{i}|u(\bar{n})^{i})c$$

= 1 \otimes [u(\bar{n})_{i}, u(\bar{n})^{i}] + r^{-1}nK.

Hence, by (4.2.2), we have

$$\sum_{i=1}^{\dim_{\mathbb{C}}} \mathfrak{g}_{\bar{l}}[t^n \otimes u(\bar{n})_i, t^{-n} \otimes u(\bar{n})^i] = r^{-1}(\dim_{\mathbb{C}} \mathfrak{g}_{\bar{l}})nK.$$

Using this equality, we obtain a recurrence relation by an argument similar to the one in the proof of Proposition 2.3.5:

$$\operatorname{Tr}\left(\sum_{i=1}^{\dim \mathfrak{g}_{\overline{l}}} (t^{-n} \otimes u(\overline{n})^{i})(t^{n} \otimes u(\overline{n})_{i})|_{V_{m}}\right)$$
$$= \operatorname{Tr}\left(\sum_{i=1}^{\dim \mathfrak{g}_{\overline{l}}} (t^{-n} \otimes u(\overline{n})^{i})(t^{n} \otimes u(\overline{n})_{i})|_{V_{m-n}}\right)$$
$$+ r^{-1}(\dim_{\mathbb{C}} \mathfrak{g}_{\overline{l}})kn(\dim_{\mathbb{C}} V_{m-n}).$$

Therefore, we deduce that

$$\operatorname{Tr}\left(\sum_{i=1}^{\dim_{\mathbb{C}}} \mathfrak{g}_{\bar{l}}(t^{-n} \otimes u(\bar{n})^{i})(t^{n} \otimes u(\bar{n})_{i})|_{V_{m}}\right) = r^{-1}(\dim_{\mathbb{C}}} \mathfrak{g}_{\bar{l}})kn \cdot \sum_{j \ge 1} \dim_{\mathbb{C}} V_{m-nj}.$$

This proves the proposition.

Here we recall that the Casimir operator $\widetilde{\Omega}$ acts on $\widetilde{L}(\Lambda)$ by the scalar $\langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle$, where $\widetilde{\rho}$ is an element (called the Weyl vector) of $(\widetilde{\mathfrak{h}})^*$ defined by: $\widetilde{\rho}(\widetilde{h}_i) = 1$ for all $0 \leq i \leq L$, and $\widetilde{\rho}(D) = 0$. Hence, from the expression (4.2.1) of the Casimir operator $\widetilde{\Omega}$, we deduce in the same way as in Section 2.3 that for each $m \in \mathbb{Z}_{\geq 0}$,

$$\begin{split} \langle \Lambda + 2\tilde{\rho} | \Lambda \rangle (\dim_{\mathbb{C}} V_m) \\ &= r \operatorname{Tr}(\dot{\Omega}|_{V_m}) - 2(k+h^{\vee}) m(\dim_{\mathbb{C}} V_m) \\ &+ 2r \sum_{l=0}^{r-1} \sum_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} \operatorname{Tr} \bigg(\sum_{i=1}^{\dim_{\mathbb{C}}} \mathfrak{g}_{\bar{l}}(t^{-n} \otimes u(\bar{n})^i) (t^n \otimes u(\bar{n})_i)|_{V_m} \bigg). \end{split}$$

Furthermore, by Proposition 4.3.4, we obtain

$$r \operatorname{Tr}(\hat{\Omega}|_{V_m}) = \langle \Lambda + 2\tilde{\rho}|\Lambda\rangle (\dim_{\mathbb{C}} V_m) + 2(k+h^{\vee})m(\dim_{\mathbb{C}} V_m) - 2k \sum_{l=0}^{r-1} (\dim_{\mathbb{C}} \mathfrak{g}_{\bar{l}}) \sum_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} n \sum_{j \ge 1} \dim_{\mathbb{C}} V_{m-nj}.$$

Consequently, the graded trace g(q) of the Casimir element $\dot{\Omega}$ on $V = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} V_m$ can be calculated as in Section 2.3:

$$g(q) = \sum_{m \ge 0} \operatorname{Tr}(\dot{\Omega}|_{V_m}) q^m$$

= $r^{-1} \langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle f(q) + 2r^{-1}(k+h^{\vee}) q \frac{d}{dq} f(q)$
 $- 2r^{-1}k \sum_{l=0}^{r-1} (\dim_{\mathbb{C}} \mathfrak{g}_{\bar{l}}) c_l(k)^{-1} f(q) \cdot q \frac{d}{dq} H_l(q) \quad \text{by Lemma 4.3.3}$
= $r^{-1} \langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle + 2r^{-1}(k+h^{\vee}) q \left\{ \frac{d}{dq} f(q) - f(q) \cdot \sum_{l=0}^{r-1} \frac{d}{dq} H_l(q) \right\}.$

If we set

$$F(q) := f(q) \cdot \prod_{l=0}^{r-1} h_l(q)^{-1} = f(q) \cdot \prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{c_l(k)},$$

then we have

$$\frac{d}{dq}f(q) = \left(\frac{d}{dq}F(q)\right) \cdot \prod_{l=0}^{r-1} h_l(q) + F(q) \cdot \left\{\sum_{i=0}^{r-1} \left(\frac{d}{dq}h_i(q)\right) \cdot \prod_{\substack{0 \le l \le r-1 \\ l \ne i}} h_l(q)\right\}$$
$$= \left(\frac{d}{dq}F(q)\right) \cdot \prod_{l=0}^{r-1} h_l(q) + F(q) \cdot \left\{\sum_{i=0}^{r-1} \left(\frac{d}{dq}H_i(q)\right) \cdot \prod_{l=0}^{r-1} h_l(q)\right\}$$
by Lemma 4.3.2

$$= \left(\frac{d}{dq}F(q)\right) \cdot \prod_{l=0}^{r-1} h_l(q) + f(q) \cdot \sum_{i=0}^{r-1} \frac{d}{dq} H_i(q)$$

by the definition of F(q).

Combining this equality with (4.3.1), we obtain

$$g(q) = r^{-1} \langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle f(q) + 2r^{-1} (k + h^{\vee}) q \left\{ \left(\frac{d}{dq} F(q) \right) \cdot \prod_{l=0}^{r-1} h_l(q) \right\}$$
$$= \frac{r^{-1} \langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle F(q) + 2r^{-1} (k + h^{\vee}) q \frac{d}{dq} F(q)}{\prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1 - q^n)^{c_l(k)}}.$$

Recall from [K4, Chap. 6] that we have an orthogonal direct sum:

$$(\widetilde{\mathfrak{h}})^* = (\mathfrak{h}_{\overline{0}})^* \oplus (\mathbb{C}\delta + \mathbb{C}\widetilde{\Lambda}_0),$$

where $\widetilde{\Lambda}_0 \in (\widetilde{\mathfrak{h}})^*$ is the basic fundamental weight defined by: $\widetilde{\Lambda}_0(\mathfrak{h}_{\bar{0}}) := 0$, $\widetilde{\Lambda}_0(K) := 1$, $\widetilde{\Lambda}_0(D) := 0$. For an element $\Lambda \in (\widetilde{\mathfrak{h}})^*$, we denote by $\bar{\Lambda} \in (\mathfrak{h}_{\bar{0}})^*$ the orthogonal projection of Λ on $(\mathfrak{h}_{\bar{0}})^*$. Since $\Lambda(D) = 0$, we have $\Lambda = \bar{\Lambda} + \Lambda(K)\widetilde{\Lambda}_0 = \bar{\Lambda} + k\widetilde{\Lambda}_0$. Also we know that $\tilde{\rho} = \dot{\rho} + h^{\vee}\widetilde{\Lambda}_0$, where

 $\dot{\rho} = (1/2) \cdot \sum_{\alpha \in (\Delta_{\bar{0}})_+} \alpha \in (\mathfrak{h}_{\bar{0}})^*$ is the Weyl vector for $\mathfrak{g}_{\bar{0}}$. Hence, by (4.1.1), we have

$$\langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle = \langle \bar{\Lambda} + 2\dot{\rho} | \bar{\Lambda} \rangle = r(\bar{\Lambda} + 2\dot{\rho} | \bar{\Lambda})$$

since $\langle \widetilde{\Lambda}_0 | \widetilde{\Lambda}_0 \rangle = 0$. Thus we have proved the following.

THEOREM 4.3.5. Let $\tilde{\mathfrak{g}} = \mathfrak{g}(X_N^{(r)})$ be the twisted affine Lie algebra of type $X_N^{(r)}$ with $X_N^{(r)} = A_{2L-1}^{(2)}, D_{L+1}^{(2)}, E_6^{(2)}, D_4^{(3)}$, and let $V = \tilde{L}(\Lambda)$ be the irreducible highest weight $\tilde{\mathfrak{g}}$ -module of dominant integral highest weight $\Lambda \in$ $(\tilde{\mathfrak{h}})^*$ (such that $\Lambda(D) = 0$) given the basic gradation $V = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} V_m$. Then the graded trace $g(q) = \sum_{m \geq 0} \operatorname{Tr}(\dot{\Omega}|_{V_m}) q^m$ of the Casimir element $\dot{\Omega}$ for the finite-dimensional simple Lie algebra $\mathfrak{g}_{\bar{0}} = \mathfrak{g}(Y_L)$ of type Y_L (with $Y_L = C_L, B_L, F_4, G_2$, respectively) is expressed in the following form:

$$g(q) = \frac{r^{-1} \langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle F(q) + 2r^{-1} (k+h^{\vee}) q \frac{d}{dq} F(q)}{\prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{\frac{k(\dim_{\mathbb{C}} \mathfrak{g}_{\overline{l}})}{k+h^{\vee}}}}$$

where

$$F(q) = \left(\prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{\frac{k(\dim_{\mathbb{C}}\mathfrak{g}_{\overline{l}})}{k+h^{\vee}}}\right) \cdot \sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m.$$

Remark 4.3.6. If $\Lambda \in (\tilde{\mathfrak{h}})^*$ is a dominant integral weight such that $k = \Lambda(K) = 1$ and $\Lambda(D) = 0$, then we know from [K4, Chap. 12] that $\langle \Lambda | \Lambda \rangle h^{\vee} = 2 \langle \tilde{\rho} | \Lambda \rangle$. So we have

$$\langle \Lambda + 2\widetilde{\rho} | \Lambda \rangle = \langle \Lambda | \Lambda \rangle \cdot (1 + h^{\vee}).$$

Also, since $\dim_{\mathbb{C}} \mathfrak{g}_{\bar{l}} = (1 + h^{\vee}) \dim_{\mathbb{C}} \mathfrak{h}_{\bar{l}}$ for $0 \leq l \leq r - 1$ by Remark 4.2.1, we have

$$c_l(k) = \frac{\dim_{\mathbb{C}} \mathfrak{g}_{\bar{l}}}{1+h^{\vee}} = \dim_{\mathbb{C}} \mathfrak{h}_{\bar{l}} \quad \text{for } 0 \le l \le r-1.$$

Hence we obtain

$$g(q) = \frac{r^{-1}(1+h^{\vee}) \left\{ \langle \Lambda | \Lambda \rangle F(q) + 2q \frac{d}{dq} F(q) \right\}}{\prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{\dim_{\mathbb{C}} \mathfrak{h}_{\overline{l}}}}.$$

In particular, if Λ is the basic fundamental weight $\widetilde{\Lambda}_0 \in (\widetilde{\mathfrak{h}})^*$, then we get

$$g(q) = \frac{2r^{-1}(1+h^{\vee}) q \frac{d}{dq} F(q)}{\prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{\dim_{\mathbb{C}} \mathfrak{h}_{\overline{l}}}}$$

since $\langle \widetilde{\Lambda}_0 | \widetilde{\Lambda}_0 \rangle = 0$.

Remark 4.3.7. Recall from [K4, Chap. 12] that a dominant integral weight $\Lambda \in (\tilde{\mathfrak{h}})^*$ such that $k = \Lambda(K) = 1$ and $\Lambda(D) = 0$ is of the form $\Lambda = \tilde{\Lambda}_0$ or $\Lambda = \tilde{\Lambda}_0 + \dot{\Lambda}_i$ with $1 \leq i \leq L$ such that $\tilde{a}_i^{\vee} = 1$, where $\{\dot{\Lambda}_i\}_{i=1}^L \subset (\mathfrak{h}_{\bar{0}})^* \subset (\tilde{\mathfrak{h}})^*$ are the fundamental weights of $\mathfrak{g}_{\bar{0}} = \mathfrak{g}(Y_L)$ and $K = \sum_{i=0}^L \tilde{a}_i^{\vee} \tilde{h}_i$ is the canonical central element.

4.4. Identity for the derivative of a theta series of type C, B, F, G

In this section, we assume that $\Lambda \in (\tilde{\mathfrak{h}})^*$ is a dominant integral weight such that $k = \Lambda(K) = 1$ and $\Lambda(D) = 0$. Hence we have $\Lambda = \bar{\Lambda} + \tilde{\Lambda}_0$ with $\bar{\Lambda} \in (\mathfrak{h}_{\bar{0}})^*$ (cf. Remark 4.3.7). In particular, $\langle \Lambda | \Lambda \rangle = \langle \bar{\Lambda} | \bar{\Lambda} \rangle = r(\bar{\Lambda} | \bar{\Lambda})$ by (4.1.1).

We know the following fact due to Kac (see [K4, Chap. 12]).

FACT 3. The graded dimension $f(q) = \sum_{m\geq 0} (\dim_{\mathbb{C}} V_m) q^m$ of the irreducible highest weight $\tilde{\mathfrak{g}}$ -module $V = \tilde{L}(\Lambda)$ of highest weight Λ with the basic gradation is given by:

$$f(q) = \sum_{m \ge 0} (\dim_{\mathbb{C}} V_m) q^m$$
$$= \frac{q^{-\frac{r}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot \sum_{\alpha \in \bar{\Lambda} + \dot{Q}} q^{\frac{r}{2}(\alpha|\alpha)}}{\prod_{l=1}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{\dim_{\mathbb{C}} \mathfrak{h}_{\bar{l}}}},$$

where $\dot{Q} = \sum_{i=1}^{L} \mathbb{Z} \widetilde{\alpha}_i \subset (\mathfrak{h}_{\bar{0}})^*$ is the root lattice of $\mathfrak{g}_{\bar{0}} = \mathfrak{g}(Y_L)$ and $(\cdot | \cdot)$ is the normalized Killing form on $(\mathfrak{h}_{\bar{0}})^*$.

By Fact 3, we have

$$F(q) = f(q) \cdot \prod_{l=0}^{r-1} \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1-q^n)^{c_l(k)}$$
$$= q^{-\frac{r}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot \sum_{\alpha \in \bar{\Lambda} + \dot{Q}} q^{\frac{r}{2}(\alpha|\alpha)}$$

since $c_l(1) = \dim_{\mathbb{C}} \mathfrak{h}_{\bar{l}}$ for $0 \leq l \leq r-1$. We set

$$\Theta_{\dot{Q},\bar{\Lambda}}(q):=\sum_{\alpha\in\bar{\Lambda}+\dot{Q}}q^{\frac{r}{2}(\alpha|\alpha)}.$$

Then we get

$$q\frac{d}{dq}F(q) = -\frac{r}{2}(\bar{\Lambda}|\bar{\Lambda}) \cdot F(q) + q^{-\frac{r}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot q\frac{d}{dq}\Theta_{\dot{Q},\bar{\Lambda}}(q),$$

and hence from Remark 4.3.6

(4.4.1)
$$g(q) = \frac{2r^{-1}(1+h^{\vee})q^{-\frac{r}{2}(\bar{\Lambda}|\bar{\Lambda})} \cdot q\frac{d}{dq}\Theta_{\dot{Q},\bar{\Lambda}}(q)}{\prod_{l=0}^{r-1}\prod_{\substack{n\geq 1\\n\equiv l \pmod{r}}} (1-q^n)^{\dim_{\mathbb{C}}\mathfrak{h}_{\bar{l}}}}$$

since $\langle \Lambda | \Lambda \rangle = r(\bar{\Lambda} | \bar{\Lambda})$ by (4.1.1).

Now, for $\lambda \in \dot{P}_+ := \{\lambda \in (\mathfrak{h}_{\bar{0}})^* \mid \lambda(\tilde{h}_i) \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq L\}$, we denote by $\dot{L}(\lambda)$ the irreducible highest weight $\mathfrak{g}_{\bar{0}}$ -module of highest weight λ , and by $\Phi(\Lambda, \lambda)_m$ the multiplicity of $\dot{L}(\lambda)$ in the homogeneous subspace V_m of Vviewed as a $\mathfrak{g}_{\bar{0}}$ -module:

$$V_m = \bigoplus_{\lambda \in \dot{P}_+} \Phi(\Lambda, \lambda)_m \dot{L}(\lambda).$$

Further we set

$$\Phi(\Lambda,\lambda)(q) := \sum_{m \ge 0} \Phi(\Lambda,\lambda)_m q^m.$$

Then we know the following fact due to Kac (see [K4, Chap. 12]).

FACT 4. Let $\lambda \in \dot{P}_+$. If $\lambda \notin \bar{\Lambda} + \dot{Q}$, then we have $\Phi(\Lambda, \lambda)(q) = 0$. If $\lambda \in \bar{\Lambda} + \dot{Q}$, then we have

$$\Phi(\Lambda,\lambda)(q) = \frac{q^{\frac{r}{2}\{(\lambda|\lambda) - (\bar{\Lambda}|\bar{\Lambda})\}} \cdot \prod_{\alpha \in (\Delta_{\bar{0}})_{+}} \left(1 - q^{r(\lambda+\dot{\rho}|\alpha)}\right)}{\prod_{l=0}^{r-1} \prod_{\substack{n \ge 1\\ n \equiv l \pmod{r}}} (1 - q^{n})^{\dim_{\mathbb{C}}\mathfrak{h}_{\bar{l}}}}.$$

Using Fact 4 instead of Fact 2, we deduce as in Section 3:

$$g(q) = \sum_{m \ge 0} \operatorname{Tr}(\dot{\Omega}|_{V_m}) q^m$$

= $\sum_{m \ge 0} \sum_{\lambda \in (\bar{\Lambda} + \dot{Q}) \cap \dot{P}_+} \dot{d}(\lambda)(\lambda + 2\dot{\rho}|\lambda) \Phi(\Lambda, \lambda)_m q^m$
= $q^{-\frac{r}{2}(\bar{\Lambda}|\bar{\Lambda})} \left(\prod_{l=0}^{r-1} h_l(q)\right)$
 $\times \sum_{\lambda \in (\bar{\Lambda} + \dot{Q}) \cap \dot{P}_+} \dot{d}(\lambda)(\lambda + 2\dot{\rho}|\lambda) q^{\frac{r}{2}(\lambda|\lambda)} \prod_{\alpha \in (\Delta_{\bar{0}})_+} \left(1 - q^{r(\lambda + \dot{\rho}|\alpha)}\right),$

where $\dot{d}(\lambda) := \dim_{\mathbb{C}} \dot{L}(\lambda)$ for $\lambda \in (\bar{\Lambda} + \dot{Q}) \cap \dot{P}_+$ and

$$h_l(q) = \prod_{\substack{n \ge 1 \\ n \equiv l \pmod{r}}} (1 - q^n)^{-\dim_{\mathbb{C}} \mathfrak{h}_{\overline{l}}}$$

for $0 \leq l \leq r - 1$. Comparing this equality with (4.4.1), we obtain the following.

THEOREM 4.4.1. Let $\mathfrak{g}_{\overline{0}} = \mathfrak{g}(Y_L)$ be a finite-dimensional simple Lie algebra of type Y_L with $Y_L = C_L, B_L, F_4, G_2$, and let $\Lambda = \overline{\Lambda} + \widetilde{\Lambda}_0 \in (\widetilde{\mathfrak{h}})^*$ with $\overline{\Lambda} \in (\mathfrak{h}_{\overline{0}})^*$ be a dominant integral weight. Then we have

$$2r^{-1}(1+h^{\vee}) q \frac{d}{dq} \Theta_{\dot{Q},\bar{\Lambda}}(q)$$

=
$$\sum_{\lambda \in (\bar{\Lambda}+\dot{Q}) \cap \dot{P}_{+}} \dot{d}(\lambda)(\lambda+2\dot{\rho}|\lambda) q^{\frac{r}{2}(\lambda|\lambda)} \prod_{\alpha \in (\Delta_{\bar{0}})_{+}} \left(1-q^{r(\lambda+\dot{\rho}|\alpha)}\right),$$

where $\Theta_{\dot{Q},\bar{\Lambda}}(q) = \sum_{\alpha \in \bar{\Lambda} + \dot{Q}} q^{\frac{r}{2}(\alpha|\alpha)}$. Here r = 2 if Y = C, B, F and r = 3 if Y = G.

Remark 4.4.2. For $\lambda \in \dot{P}_+$, the dimension $\dot{d}(\lambda) = \dim_{\mathbb{C}} \dot{L}(\lambda)$ is given by the Weyl dimension formula:

$$\dot{d}(\lambda) = \prod_{\alpha \in (\Delta_{\bar{0}})_+} \frac{(\lambda + \dot{\rho}|\alpha)}{(\dot{\rho}|\alpha)}.$$

By using Facts 3 and 4 instead of Facts 1 and 2, respectively, we can show the following proposition as in Remark 3.4 (this identity is new, while the identity in Remark 3.4 is already known).

PROPOSITION 4.4.3. We have the following identity.

$$\Theta_{\dot{Q},\bar{\Lambda}}(q) = \sum_{\alpha \in \bar{\Lambda} + \dot{Q}} q^{\frac{r}{2}(\alpha|\alpha)}$$
$$= \sum_{\lambda \in (\bar{\Lambda} + \dot{Q}) \cap \dot{P}_{+}} \dot{d}(\lambda) q^{\frac{r}{2}(\lambda|\lambda)} \prod_{\alpha \in (\Delta_{\bar{0}})_{+}} \left(1 - q^{r(\lambda + \dot{\rho}|\alpha)}\right),$$

where r = 2 if Y = C, B, F and r = 3 if Y = G.

References

- [FK] I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62 (1980), 23–66.
- [K1] V. G. Kac, Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Adv. Math., 30 (1978), 85–136.
- [K2] V. G. Kac, An elucidation of "Infinite-dimensional algebras ... and the very strange formula." $E_8^{(1)}$ and the cube root of the modular invariant j, Adv. Math., **35** (1980), 264–273.
- [K3] V. G. Kac, A remark on the Conway-Norton conjecture about the "Monster" simple group, Proc. Natl. Acad. Sci. U.S.A., 77 (1980), 5048–5049.
- [K4] V. G. Kac, Infinite Dimensional Lie Algebras (3rd ed.), Cambridge Univ. Press, Cambridge, 1990.
- [KP] V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., 53 (1984), 125–264.
- [KT] V. G. Kac and I. T. Todorov, Affine orbifolds and rational conformal field theory extensions of W_{1+∞}, Comm. Math. Phys., **190** (1997), 57–111.
- [KW] V. G. Kac and M. Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math., 70 (1988), 156–236.
- [W] Z.-X. Wan, Introduction to Kac-Moody Algebra, World Scientific, Singapore, 1991.

S. NAITO

Institute of Mathematics University of Tsukuba Tsukuba Ibaraki, 305-8571 Japan naito@math.tsukuba.ac.jp