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DIRICHLET SERIES AND AUTOMORPHIC

FUNCTIONS ASSOCIATED TO A QUADRATIC FORM

MANFRED PETER

Abstract. Starting from the reciprocity law for Gaussian sums attached to
an integral quadratic form we prove functional equations for a new kind of
Dirichlet series in two variables. For special values of one variable they are of
Hecke type with respect to the other variable. With Weil’s converse theorem
we derive automorphic functions which generalize Siegel’s genus invariant and
the automorphic functions of Cohen and Zagier.

§1. Introduction

Several methods are known how to associate a Dirichlet series or a

modular form to a quadratic form Q. If Q is positive definite we have the

Epstein zeta function and Jacobi’s theta series. For Q not positive definite

there are also theta series but they require a more elaborate construction.

If Q is integral these functions contain “global” information on Q since the

coefficients of the Epstein zeta function (seen as an ordinary Dirichlet series)

and the Fourier coefficients of the theta series are representation numbers

of natural numbers by Q. On the other hand, a suitable linear combination

of the theta series associated to representatives of the classes in the genus

of Q gives Siegel’s genus invariant. Its Fourier coefficients can be expressed

via the mass formula by the local representation densities of Q.

In this paper Dirichlet series and automorphic functions are constructed

which contain “local” information on Q. Among them is Siegel’s genus

invariant. It turns out — maybe not surprisingly — that the reciprocity

law for quadratic Gaussian sums lies at the heart of both the functional

equation and the automorphic transformation law.

We continue the investigation in [5], where a pair of Dirichlet series

in two variables was attached to every positive definite integral quadratic

form Q and their meromorphic continuation and functional equation were

proved. Then two particular cases were considered:
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(1) The first variable was specialized to certain values so that the resulting

Dirichlet series in the second variable has a functional equation of

Hecke type. For the corresponding holomorphic Fourier series on the

upper half plane a transformation law under z 7→ −1/z was derived

by Mellin inversion. Since only one functional equation for every

Dirichlet series was available a transformation law for a congruence

subgroup could not be proved. Among the Fourier series which we

got in this way is Siegel’s genus invariant which indeed is a modular

form. Thus an immediate conjecture is that all the Fourier series are

modular forms.

(2) For the quadratic form Q(x) = x2, the corresponding Dirichlet series

are — up to easily computed factors — Shintani’s zeta functions for

the prehomogeneous vector space of binary quadratic forms (see [7]).

The present paper generalizes [5] in two aspects: Arbitrary non-degenerate

integral quadratic forms Q are allowed, and the associated Dirichlet series

in two variables are twisted by Dirichlet characters with prime modulus.

Thus the two applications above can be developed further:

(1) With Weil’s converse theorem it turns out that the holomorphic

Fourier series attached to Q are indeed modular forms of half-integral

or integral weight (Theorem 1.1). For the special case Q(x) = x2 they

are — up to a constant factor — Cohen’s modular forms [2] which

have “generalized Hurwitz class numbers” as Fourier coefficients.

(2) For another special choice of the first variable the resulting Dirichlet

series in the second variable has a functional equation which is not of

Hecke type but with some care the proof of Weil’s converse theorem

still works. Thus a non-analytic C∞ function on the upper half plane

is constructed which transforms like a modular form (Theorem 1.2).

In the special case Q(x) = x2 this function coincides with Zagier’s

automorphic function [13] whose holomorphic part of the Fourier ex-

pansion has Hurwitz class numbers as coefficients. This connection

between Zagier’s automorphic function and Shintani’s zeta function

gives a possible answer to a question of Datskovsky [3].

There is another connection between the Dirichlet series in two variables

considered here and modular forms. In [8] Siegel constructs a vector valued

function of two arguments τ and s where τ lies in the upper half plane
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and, after meromorphic continuation, s can take arbitrary complex values

outside a finite set of poles. This function has a functional equation in s

and shows automorphic behaviour in τ . Its Mellin transform with respect

to τ is a Dirichlet series in two variables with two functional equations.

In the present paper this approach is reversed. First Dirichlet series are

constructed and then automorphic functions are derived from them. Nev-

ertheless the function φ defined in Section 3 shows great similarity with

Siegel’s — with one exception: The summation is unsymmetric in both

summation parameters whereas in Siegel’s case it is symmetric in one pa-

rameter. This means for example that here we can treat class numbers for

positive and negative discriminants separately whereas in Siegel’s case they

always appear together. It also means that here we have certain convergence

problems which do not appear in Siegel’s case.

T. Ueno [10], [11] investigated essentially the same Dirichlet series as

in the present paper but within the framework of prehomogeneous vector

spaces. The main Theorem 4.5 in [11] is essentially equivalent to Theo-

rem 1.1 below but is proved for the wider class of half integral matrices

T. Besides this result the papers are of conceptual interest since they give

a connection between such diverse fields as the theory of prehomogeneous

vector spaces and modular forms.

Denote the complex upper half plane by H. For z ∈ C, set e(z) := e2πiz .

For an arbitrary Dirichlet character χ, let L(s, χ) be the associated Dirichlet

L-series. For an odd prime q, let
(
·
q

)
be the Legendre character modulo q

and χ0 the principal character modulo q. For a Dirichlet character χ 6= χ0

modulo q, let τ(χ) be the Gaussian sum attached to χ. Set εq := 1 if

q ≡ 1 mod 4 and εq := i otherwise. For a discriminant D 6= 0, let χD

be the corresponding Jacobi character. Let Zm×m
∗ be the set of regular

symmetric integral m × m matrices. For T ∈ Zm×m
∗ , there is a regular

matrix X ∈ Rm×m such that tXTX is a diagonal matrix with, say, p entries

1 and q entries −1. Then sign(T) := p − q is independent of X and called

the signature of T. For x ∈ Rm, define T[x] := txTx. For h ∈ Z, k ∈ N,

define the Gaussian sum

G(h, k;T) :=
∑

x mod k

e
(h
k

T[x]
)
.

For b ∈ N, n ∈ Z, define the ”Singular Series”

S(s, n; b,T) :=
∑

k≥1

1

ks

( ∑

h mod bk: (h,k)=1

G(h, bk;T) e
(−hn
bk

))
, <s > m+ 2.
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It can be continued to a meromorphic function on C. For b = 1, n > 0,

the value at s = m is the “Singular Series” of Hardy and Littlewood and

appears also in the mass formula as the product of the local representation

densities over all primes. As a Dirichlet series in s it obviously contains

local data about Q(x) := T[x] which only depends on the genus of Q. The

following theorem constructs modular forms out of this local data.

Theorem 1.1. Let T ∈ Zm×m
∗ , T := detT, α ∈ {1, 2} and l ∈ Z, such

that

sαl :=
m

2
+

1

2
(−1)α−1 sign(T) + 2l > σ(m),

where σ(m) := (m + 3)/2 for m odd and σ(m) := (m + 2)/2 for m even.

Set καl := 2sαl −m. Set b := 1, S := T, or b := 4|T |, S := |T |T−1. Set

S := detS. For z ∈ H, define

Θαl(z; b,S) := bsαl |S|1/22m/2−καl/2π−καl/2(−1)lΓ
(καl

2

)

+
∑

n≥1

nκαl/2−1S(sαl, (−1)α−1n; b,S) e(nz).

Then Θαl(z; b,S) is a modular form of weight καl/2 with respect to Γ0(4|T |)
and

a) the theta multiplier system and the character χ4|S| if m is odd,

b) the character χ(−1)m/24T if m is even.

The smaller sαl is the more interesting are the values of S. For m odd,

(m + 3)/2 is a critical value. The following theorem states automorphic

behaviour in this case.

Theorem 1.2. Let m be odd, T ∈ Zm×m
∗ and T := detT. Set λ :=

(1± sign(T))/4, where the sign is chosen so that λ ∈ Z. Set b := 1, S := T,

or b := 4|T |, S := |T |T−1. Set S := detS. For z = x+ iy ∈ H, define

F(z; b,S) :=π−12(m−5)/2b(m+3)/2|S|1/2(−1)λ+1

+
∑

n≥1

S
(m+ 3

2
, (−1)(m+1)/2 sign(T )n; b,S

)
n1/2e(nz)

+
3

(2π)2
b(m+3)/2y−1/2
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×
[ ∏

p|2T

(1 − p−2)−1Tp(1; b,S) +
∑

n≥1

an(b,S)γ(4π|S∗|n2y) e(−|S∗|n2z)

]
,

where the polynomials Tp, numbers an and the function γ are defined in

Lemma 6.2, (7.8) and (7.4) respectively. Then F(z; b,S) transforms like a

modular form of weight 3/2 with respect to Γ0(4|T |), the theta multiplier

system and the character χ4|S|.

Here is an overview of the proof. In Section 3, Dirichlet series

ρα(s, w; b,T, χ) and Eisenstein-type series φα,µ,ν(τ, s; b,T, χ) are defined.

Both have Gaussian sums as coefficients. The function ρα is a Mellin

transform of φα,µ,ν , see equation (3.1). For technical reasons, the series

ψα,µ,ν(τ, s; a, b,T, χ) is introduced. It is similar to φα,µ,ν but one of the two

summations is symmetric. In Lemma 3.1 it is shown that the φs are linear

combinations of the ψs. In Section 4, the Dirichlet series τα(s, w; b,T, χ)

are introduced. Their coefficients are numbers of solutions of quadratic con-

gruences. The functional equation of the Hurwitz zeta function shows that

τα is a linear combination of the ρs (see equation (4.1)). In Section 5 the

Dirichlet series Dα(s, w; b,T, χ) are introduced whose coefficients are values

of Singular Series at complex arguments. Equations (5.1) and (5.2) show

that in essence, Dα is the quotient of τα and the Riemann zeta function.

The Mellin transform of Θα,l is Dα at a special value of s. Thus Weil’s

converse theorem can be applied to prove Theorem 1.1. The proof of The-

orem 1.2 is along similar lines but a component τ ∗α of τα must be isolated

to avoid singularities of this function.

Acknowledgements. I would like to thank Prof. H. Klingen for sev-
eral useful discussions on the topic of this paper, and the referee for his
suggestions for improvements.

§2. A reciprocity law

For an odd prime q and a Dirichlet character χ mod q, define

λ(h, χ) :=
∑

a mod q

χ(a) e
(
− ha

q

)
, h ∈ Z.

A simple calculation shows that

(2.1) λ(h, χ) = χ(−1)λ(h, χ), λ(bh, χ) = χ(b)λ(h, χ) if (b, q) = 1.
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The properties of Gaussian sums imply

λ(h, χ) =





τ(χ)χ(h) , χ 6= χ0 mod q,
q − 1 , χ = χ0 mod q, q|h,
−1 , χ = χ0 mod q, q 6 | h.

The following Gaussian sums are central to this paper: For T ∈ Zm×m
∗ ,

T := detT, q 6 | 2T a prime, χ a Dirichlet character modulo q, α ∈ {1, 2}
and h ∈ Z, k ∈ N, define

Gα(h, k;T, χ) :=
∑

a mod k, b mod q:kb+(−1)αaq≡h mod kq

G(a, k;T)χ(b).

An immediate consequence is

Gα(−h, k;T, χ) = χ(−1)Gα(h, k;T, χ).(2.2)

Lemma 2.1. For T ∈ Zm×m
∗ , T := detT, q 6 | 2T a prime, χ a Dirichlet

character modulo q and y ∈ Zm, we have

∑

x mod q

λ(T[x], χ) e
( tyx

q

)
= qm/2εmq

( (−1)mT

q

)
λ
(
(̃4T)[y], χ

( ·
q

)m)
,

where (̃ ) denotes inversion modulo q.

Proof. From [4], § 62, it follows that there is some X ∈ GL(m,Fq) with

(2.3) tXTX ≡ diag(d1, . . . , dm) mod q.

In particular, T (detX)2 ≡ d1 · · · dm mod q. Thus the left hand term Σ in
the lemma equals

Σ =
∑

a mod q

χ(a)
m∏

µ=1

( ∑

xµ mod q

e
(
− a

q
dµx

2
µ +

1

q
y′µxµ

))
,

where tXy =: y′ = t(y′1, . . . , y
′
m). From the properties of the Gaussian sum

associated to Legendre’s character it follows that for (a, q) = 1, the µ-th
factor equals

e
(1

q
(̃4dµa)(y

′
µ)2

)(−adµ

q

)
q1/2εq.
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Since (̃T) ≡ Xdiag((̃d1), . . . , (̃dm)) tX mod q, we have

Σ = qm/2εmq

((−1)mT

q

) ∑

a mod q

χ(a)
(a
q

)m
e
( (̃4a)

q
(̃T)[y]

)
,

which is the right hand term in the lemma.

Lemma 2.2. For T ∈ Zm×m
∗ , T := detT, q 6 |2T a prime, χ a Dirichlet

character modulo q and h, k ∈ N, we have

∑

x mod qk

λ(T[x], χ) e
(h
k

T[x]
)

= 2−3m/2q−m/2εmq e
πi sign(T)/4|T |1/2−mh−m/2km/2

( |T |mT
q

)
χ(−4|T |)

×
∑

z mod 4q2h|T |

λ(|T |T−1[z], χ
( ·
q

)m)
e
(
− k

4q2h
T−1[z]

)
.

Proof. The lemma rests essentially on Satz 2 in [9] which is a general
reciprocity law for quadratic Gaussian sums associated to quadratic forms.
Let y ∈ Z. Setting

A := kE, B := 2q2hT, t :=
1

q
y,

the theorem gives

∑

z mod k

e
(h
k

T[qz + y]
)

= 2−3m/2q−meπi sign(T)/4|T |1/2−mh−m/2km/2

×
∑

z mod 4q2h|T |

e
(
− k

4q2h
T−1[z] +

1

q
tyz

)
.

Thus the left hand term in the lemma equals

∑

y mod q

λ(T[y], χ)
∑

z mod k

e
(h
k

T[qz + y]
)

= 2−3m/2q−meπi sign(T)/4|T |1/2−mh−m/2km/2

×
∑

z mod 4q2h|T |

e
(
− k

4q2h
T−1[z]

) ∑

y mod q

λ(T[y], χ) e
(1

q
tyz

)
.



8 M. PETER

Applying Lemma 2.1 to the innermost sum and using (2.1) proves the
lemma.

The following reciprocity law can be regarded as the nucleus of this

paper.

Proposition 2.3. For T ∈ Zm×m
∗ , T := detT, q 6 | 2T a prime, χ a

Dirichlet character modulo q, α ∈ {1, 2} and h, k ∈ N, we have

Gα(h, k;T, χ) = 2−3m/2|T |1/2−meπi(−1)α sign(T)/4h−m/2km/2

×C(χ, α,T)Gα−1

(
k, 4|T |h; |T |T−1, χ

( ·
q

)m)
,

where

C(χ, α,T) := εmq χ(4|T |)
( (−1)(α−1)mT |T |m

q

)
.

Proof. We distinguish three cases.

Case 1. q 6 | hk. A simple calculation shows that, since q 6 | k,

(2.4) Gα(h, k;T, χ) = G((−1)αhq, k;T)χ(h)χ(k).

Satz 2 in [9] gives for u, v ∈ N the identity

G(u, v;T) =(2.5)

eπi sign(T)/4|T |1/2−m2−3m/2u−m/2vm/2G(−v, 4|T |u; |T |T−1).

Therefore

Gα(h, k;T, χ)

= eπi(−1)α sign(T)/4|T |1/2−m2−3m/2(hq)−m/2km/2

×G((−1)α−1k, 4|T |hq; |T |T−1)χ(h)χ(k).

Since q 6 | 4Th,

G((−1)α−1k, 4|T |hq; |T |T−1)

= G((−1)α−1qk, 4|T |h; |T |T−1)
∑

x mod q

e
(1

q
(−1)α−14hkT 2T−1[x]

)
.

Using a representation of type (2.3) for TT−1 shows that the right hand
sum equals ( (−1)α−1hk

q

)m
qm/2εmq

(T
q

)
.
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Putting everything together gives

Gα(h, k;T, χ)

= eπi(−1)α sign(T)/4|T |1/2−m2−3m/2h−m/2km/2χ(h)χ(k)

×
((−1)α−1hk

q

)m
εmq

(T
q

)
G((−1)α−1qk, 4|T |h; |T |T−1).

Replacing h, k, α,T, χ in (2.4) by k, 4|T |h, α − 1, |T |T−1, χ
(
·
q

)m
gives

Gα−1

(
k, 4|T |h; |T |T−1, χ

( ·
q

)m)

= G((−1)α−1kq, 4|T |h; |T |T−1)χ(k)
(k
q

)m
χ(4|T |h)

(4|T |h
q

)m
.

The last two equations give the statement of the proposition in Case 1.

Case 2. q|k, q|h. Then

Gα(h, k;T, χ) =
∑

b mod q

χ(b)G
(
(−1)α

(h
q
− k

q
b
)
, k;T

)
(2.6)

= q−mχ((−1)α)
∑

x mod qk

λ(T[x], χ) e
( (−1)αh

qk
T[x]

)
.

Lemma 2.2 gives

Gα(h, k;T, χ)(2.7)

= q−m2−3m/2εmq

(−1

q

)mα
eπi(−1)α sign(T)/4|T |1/2−m

×h−m/2km/2
((−1)mT

q

)
χ((−1)α−1)

(−1

q

)m(α−1)
χ(4|T |)

( |T |
q

)m

×
∑

x mod 4qh|T |

λ
(
|T |T−1[z], χ

( ·
q

)m)
e
( (−1)α−1k

4qh|T | |T |T−1[z]
)
.

Replacing h, k, α,T, χ in (2.6) by k, 4|T |h, α − 1, |T |T−1, χ
(
·
q

)m
and using

(2.8) gives the statement of the proposition in Case 2.

Case 3. q|h, q 6 | k or q|k, q 6 | h. Then Gα(h, k;T, χ) = 0. In order to
see this we assume the contrary. Then there are a and b with χ(b) 6= 0 and
kb+ (−1)αaq ≡ h mod kq. This implies q 6 | b and kb ≡ h mod q. Therefore
q|k, q|h or q 6 | k, q 6 | h which contradicts the conditions of Case 3. In the
same way it follows that the right hand term in the proposition vanishes.
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§3. Meromorphic continuation of ρ

For T ∈ Zm×m
∗ , T := detT, b ∈ N, q 6 | 2Tb a prime, χ a Dirichlet

character modulo q and α ∈ {1, 2}, define

ρα(s, w; b,T, χ) :=
∑

h,k≥1

Gα(h, bk;T, χ)

kshw
, <s > m+ 2, <w > 1.

For µ, ν ∈ {0, 1}, define

φα,µ,ν(τ, s; b,T, χ) :=
∑

h,k≥1

kν−m/2hµGα(h, bk;T, χ)

(h2 + τk2)s
, τ > 0, <s > m

4
+ 3.

Functions of this type were already considered in [5]. The method of that

paper will be used here again. First ρ is written as a Mellin transform of

φ. For <s > m+ 2, <w > 1,

ρα(s, w; b,T, χ) =

(3.1)

Γ
(s+ ν

2
− m

4

)−1
Γ
(w + µ

2

)−1
Γ
(s+ w + µ+ ν

2
− m

4

)

×
∫ ∞

0
φα,µ,ν

(
τ,
s+ w + µ+ ν

2
− m

4
; b,T, χ

)
τ (s+ν)/2−m/4−1dτ.

This identity will be used at the end to derive the continuation of ρ from

that of φ. In order to get the latter the following simplified version of φ is

introduced. For a ∈ N, define

ψα,µ,ν(τ, s; a, b,T, χ) :=
∑

h6=0, k≥1

kν−m/2hµGα(ah, bk;T, χ)

(h2 + τk2)s
,

τ > 0, <s > m

4
+ 3.

Lemma 3.1. For T ∈ Zm×m
∗ , T := det T, b ∈ N, q 6 | 2Tb a prime, χ a

Dirichlet character modulo q, α ∈ {1, 2} and µ, ν ∈ {0, 1}, we have
(
1 + (−1)µ+ν+1e(−1)α+1πi sign(T)/2

)
φα,µ,ν(τ, s; b,T, χ)

= ψα,µ,ν(τ, s; 1, b,T, χ)

+ (−1)µ+ν+1bm/2e(−1)α+1πi sign(T)/4|T |1/2−m2−3m/2C(χ, α,T)τ−s

×ψα−1,ν,µ

(
τ−1, s; b, 4|T |, |T |T−1, χ

( ·
q

)m)
.
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Proof. From the reciprocity law in Proposition 2.3 and (2.2) it follows
that the second summand on the right hand side equals

(−1)µ+ν+1bm/2e(−1)α+1πi sign(T)/4|T |1/2−m2−3m/2C(χ, α,T)

×
∑

h6=0, k≥1

kµ−m/2hνGα−1

(
bh, 4|T |k; |T |T−1, χ

(
·
q

)m)

(h2τ + k2)s

= (−1)µ+ν+1e(−1)α+1πi sign(T)/2
∑

h,k≥1

kµhν−m/2Gα(k, bh;T, χ)

(h2τ + k2)s

+(−1)µ+1
∑

h,k≥1

kµhν−m/2Gα(−k, bh;T, χ)

(h2τ + k2)s
.

Adding ψα,µ,ν(τ, s; 1, b,T, χ) gives the statement of the lemma.

For the analytic continuation of ψ the following facts are needed. For

T ∈ Zm×m
∗ , T := det T, h ∈ Z, k ∈ N, define

A(h, k;T) := #{x mod k | T[x] ≡ h mod k},

and for b ∈ N,

L(s, h; b,T) :=
∑

k≥1

A(h, bk;T)

ks
, <s > m+ 1.

Define

P ∗(s; b,T) := ζ(s−m+ 1)−1L
(
s− m

2
+ 1, χ(−1)m/24Tb2

)
,

P (s; b,T) := P ∗(s; b,T)
∏

p|2Tb

(1 − pm−2s) (2s−m− 2),

if m is even and

P ∗(s; b,T) := P (s; b,T) :=

ζ(s−m+ 1)−1ζ(2s−m+ 1)
∏

p|2Tb

(1 − pm−1−2s) (2s−m− 1),

if m is odd.

Lemma 3.2. Let T ∈ Zm×m
∗ , T := detT, b ∈ N.
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a) For h ∈ Z \ {0}, the function L(s, h; b,T)P ∗(s; b,T) is entire and for

−∞ < c1 < c2 <∞, there is some c > 0 such that

|L(s, h; b,T)P ∗(s; b,T)| � (|h|(|=s| + 1))c, c1 ≤ <s ≤ c2.

If m is odd and (−1)(m−1)/2Th is not a perfect square, then already

the function L(s, h; b,T)P ∗(s; b,T)(2s−m− 1)−1 is entire.

b) The function L(s, 0; b,T)P (s; b,T) is entire and for −∞ < c1 < c2 <
∞, we have

|L(s, 0; b,T)P (s; b,T)| � 1.

Proof. This is a restatement of Lemmas 3.8 and 3.9 from [5]. The
assumption that T is positive definite was never used in their proofs. Ob-
serve that for m odd and (−1)(m−1)/2Th not a perfect square, the character
χ(−1)(m−1)/24h̃ιTb2 is not the principal character. Here h̃ι is defined as in [5],

proof of Lemma 3.8. Thus the factor (s− (m+ 1)/2) in the equation after
(3.17) of [5] is not needed to get an entire function.

The following lemma gives the meromorphic continuation of ψ in certain

cases.

Lemma 3.3. Let T ∈ Zm×m
∗ , b ∈ N, α ∈ {1, 2}, µ, ν ∈ {0, 1}, q 6 | 2Tb

a prime and χ a Dirichlet character modulo q. Then

ψα,µ,ν(τ, s+µ; 1, b,T, χ)P
(
2s+µ−ν+

m

2
−1; b,T

)
Γ(2s−max{0, ν−µ}−1)−1

is continuous on R+ × C and entire in s for τ > 0 fixed.

Proof. The following method is borrowed from the theory of real ana-
lytic Eisenstein series. Let τ > 0, <s > m/4+3. Dividing the h-summation
into complete residue systems modulo kbq gives

ψα,µ,ν(τ, s+ µ; 1, b,T, χ)

= (bq)−µ−2s
∑

k≥1

1

k2s+µ−ν+m/2

∑

1≤a≤bqk

Gα(a, bk;T, χ)

×
∑

l∈Z

(a(bqk)−1 + l)µ
(
(a(bqk)−1 + l)2 + τ(bq)−2

)s+µ − τ−s−µ0µ
∑

k≥1

Gα(0, bk;T, χ)

k2s+2µ−ν+m/2
.
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Now the l-sum is transformed with Poisson’s summation formula (see [5],
Lemma 3.4, which is a reformulation of a result of [8]). This gives

ψ = (bq)−µ−2s(2π)2sΓ(s)−2
(−πi

s

)µ

×
∑

l 6=0

lµ|l|2s−1σ
(4π|l|
bq

τ1/2, s, s
)
e−2π|l|τ1/2/(bq)

×
∑

k≥1

1

k2s+µ−ν+m/2

∑

1≤a≤bqk

Gα(a, bk;T, χ) e
( al

bqk

)

+(1 − µ)(bq)−2sπ22−2sΓ(2s− 1)Γ(s)−2
( τ

(bq)2

)1/2−s ∑

k≥1

1

k2s−ν+m/2

×
∑

1≤a≤bqk

Gα(a, bk;T, χ)

− (1 − µ)τ−s
∑

k≥1

Gα(0, bk;T, χ)

k2s−ν+m/2
,

where σ is the confluent hypergeometric function. Since

∑

1≤a≤bqk

Gα(a, bk;T, χ) e
( al

bqk

)
= bkλ(−l, χ)A((−1)α−1l, bk;T)

and

Gα(0, bk;T, χ) =
(bk
q

)m ∑

c mod q

χ(c)G((−1)α−1c, q;T)

if q|k and Gα(0, bk;T, χ) = 0 otherwise, it follows that

ψ = b(bq)−µ−2s(2π)2sΓ(s)−2
(−πi

s

)µ ∑

l 6=0

lµ|l|2s−1σ
(4π|l|
bq

τ1/2, s, s
)

×λ(−l, χ)L
(
2s+ µ− ν +

m

2
− 1, (−1)α−1l; b,T

)
e−2π|l|τ1/2/(bq)

+(1 − µ)b(bq)−2sπ22−2sΓ(2s− 1)Γ(s)−2
( τ

(bq)2

)1/2−s
λ(0, χ)

×L
(
2s− ν +

m

2
− 1, 0; b,T

)

− (1 − µ)τ−sbmqν−m/2−2sζ
(
2s− ν − m

2

) ∑

c mod q

χ(c)G((−1)α−1c, q;T).

Multiplying both sides with P (2s+µ− ν+m/2− 1; b,T)Γ(2s−max{0, ν−
µ} − 1)−1 and using Lemma 3.2 finishes the proof.
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Now the meromorphic continuation of φ can be proved.

Lemma 3.4. Let T ∈ Zm×m
∗ , T := detT, α ∈ {1, 2} and µ, ν ∈ {0, 1}

such that 2(µ + ν) + (−1)α+1 sign(T) 6≡ 0 mod 4. Let q 6 | 2T be prime

and χ a Dirichlet character modulo q. Set b := 1, S := T or b := 4|T |,
S := |T |T−1. Then

φα,µ,ν(τ, s; b,S, χ)P
(
2s− µ− ν +

m

2
− 1; 1,T

)
Γ(2s− 2max{µ, ν} − 1)−1

is continuous on R+ × C and entire in s for fixed τ > 0.

Proof. Notice that by the assumption the prefactor of φ in Lemma 3.1
does not vanish. Therefore Lemmas 3.1 and 3.3 give the statement in case
b = 1, S = T. On the other hand, the reciprocity law in Proposition 2.3
shows that for <s > m/4 + 3, τ > 0, we have

φα,µ,ν(τ, s; 1,T, χ)(3.2)

= 2−3m/2|T |1/2−meπi(−1)α sign(T)/4C(χ, α,T)τ−s

×φα−1,ν,µ

(
τ−1, s; 4|T |, |T |T−1, χ

( ·
q

)m)
.

With this identity the statement for b = 4|T |, S = |T |T−1 can be deduced
from that for b = 1, S = T.

The following lemma gives an asymptotic development for φ. It is very

similar to the one given for ψ in the proof of Lemma 3.3, with one exception.

Since the exponentially decreasing factor is missing in the l-sum one cannot

derive the meromorphic continuation of φ from this development. Therefore

the continuation of φ was first proved by using ψ. Once this is known, the

meromorphic continuation of the terms in the asymptotic development of

φ can be deduced.

Lemma 3.5. Let T ∈ Zm×m
∗ , T := detT, α ∈ {1, 2} and µ, ν ∈ {0, 1}

such that 2(µ + ν) + (−1)α+1 sign(T) 6≡ 0 mod 4. Let q 6 | 2T be a prime

and χ a Dirichlet character modulo q. Set b := 1, S := T or b := 4|T |,
S := |T |T−1. There are entire functions

D∗
α,ν(s; b,T,S, χ), D∗∗

µ,ν(s; b,T,S), Dα,µ,ν,ρ(s; b,T,S, χ), ρ ≥ 0,

with the property: For every σ1 ∈ R− there is some r(σ1) ∈ N such that
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Rα,µ,ν,r(τ, s; b,T,S, χ)

:= φα,µ,ν(τ, s; b,S, χ)P
(
2s− µ− ν +

m

2
− 1; 1,T

)

×Γ(2s− 2max{µ, ν} − 1)−1

−
r−1∑

ρ=µ

τµ−s−ρDα,µ,ν,ρ(s; b,T,S, χ)

− τµ−sD∗
α,ν(s; b,T,S, χ)(1 − µ)

−τ (1+µ)/2−sD∗∗
µ,ν(s; b,T,S)λ(0, χ)

is continuous on R+ × C and entire in s for fixed τ > 0. For <s ≥ σ1,

|s| ≤ K, τ > 0 and r ≥ r(σ1), we have

Rα,µ,ν,r(τ, s; b,S,T, χ) �r,K,σ1 τ
−r+1−<s+µ.

Proof. Again the h-summation is divided into complete residue sys-
tems modulo kbq and Poisson’s summation formula is applied (see [5],
Lemma 3.1). This gives for <s > m/4 + 3, τ > 0, the identity

φα,µ,ν(τ, s+ µ; b,S, χ)

= b(bq)−2s−µ
∑

k≥1

1

k2s+µ−ν+m/2−1

×
∑

l∈Z

λ(l, χ)hµ

(
l, s,

τ

(bq)2

)
A((−1)αl, bk;S)

− 1 − µ

2
bmq−2s+ν−m/2τ−sζ

(
2s− ν − m

2

)

×
∑

c mod q

χ(c)G((−1)α−1c, q;S),

where hµ(l, s, τ) is the one-sided exponential Fourier transform of xµ(τ +
x2)−s−µ. Its asymptotic behaviour is given in Lemmas 3.2 and 3.3 of [5]. If
terms for l and l− [l(bqk)−1]2bqk are grouped together, the l-sum becomes
absolutely convergent and the value of this absolute sum is O(km+1). Plug-
ging in the asymptotic representation for hµ(l, s, τ) gives for the l-sum the
expression

λ(0, χ)hµ

(
0, s,

τ

(bq)2

)
A(0, bk;S)
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+s−µ
( τ

(bq)2

)−s
r−1∑

ρ=µ

τ−ρpρ(s)cα,µ,ρ(k, b;S, χ)

+ s−µ
∑

l 6=0

λ(l, χ)A((−1)αl, bk;S)R∗
µ,r

(
l, s;

τ

(bq)2

)
,

where

cα,µ,ρ(k, b;S, χ) �µ,b,q,ρ k
m+1, pρ(s) ∈ Q[s],

R∗
µ,r �r,q,µ |l|−2r+1+µτ−r+1−<s

if r ∈ N \ {1}, <s ≥ 2 − r, τ > 0, |s| ≤ K. Define

D∗
α,ν(s+ µ; b,T,S, χ) := −1

2
bmq−2s+ν−m/2

∑

c mod q

χ(c)G((−1)α−1c, q;S)

× ζ
(
2s− ν − m

2

)
P

(
2s− ν +

m

2
− 1; 1,T

)
Γ(2s− 2ν − 1)−1,

D∗∗
µ,ν(s+ µ; b,T,S)

:= q−1L
(
2s+ µ− ν +

m

2
− 1, 0; b,S

)
P

(
2s+ µ− ν +

m

2
− 1; 1,T

)

×Γ(2s− 2max{0, ν − µ} − 1)−1

{
π21−2sΓ(2s− 1)Γ(s)−2 , µ = 0

(2s)−1 , µ = 1

}
,

Dα,µ,ν,ρ(s+ µ; b,T,S, χ) := b(bq)−µs−µpρ(s)
∑

k≥1

cα,µ,ρ(k, b;S, χ)

k2s+µ−ν+m/2−1

×P
(
2s+ µ− ν +

m

2
− 1; 1,T

)
Γ(2s− 2max{0, ν − µ} − 1)−1.

Then D∗ and D∗∗ are entire and, if r ≥ r(σ1),

Rα,µ,ν,r(τ, s+ µ; b,T,S, χ)

= b(bq)−2s−µ
∑

l 6=0

λ(l, χ)R∗
µ,r

(
l, s;

τ

(bq)2

)
s−µ

×L
(
2s+ µ− ν +

m

2
− 1, (−1)αl; b,S

)

×P
(
2s+ µ− ν +

m

2
− 1; 1,T

)
Γ(2s− 2max{0, ν − µ} − 1)−1
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is continuous for <s > σ1, τ > 0 and holomorphic in s for τ fixed. If
|s| ≤ K, <s > σ1, the value of this function is Or,K,σ1(τ

−r+1−<s). Finally,
since D∗, D∗∗ and the term in R which contains φ as a factor are entire by
Lemma 3.4, it follows that for fixed τ > 0, the function

r−1∑

ρ=µ

τ−s−ρDα,µ,ν,ρ(s+ µ; b,T,S, χ)

is holomorphic on <s > σ1. Choosing r − µ different values for τ and
solving the corresponding linear system for the functions D shows that
Dα,µ,ν,ρ(s+µ; b,T,S, χ), ρ ≤ µ ≤ r−1, are holomorphic on <s > σ1. Since
σ1 ∈ R− is arbitrary the functions D are in fact entire.

Now the functions ρ can be continued meromorphically.

Theorem 3.6. Let T ∈ Zm×m
∗ , T := detT, q 6 | 2T prime, χ a

Dirichlet character modulo q, α ∈ {0, 1} and β ∈ {0, 1} such that 2β 6≡
sign(T) mod 4. Let a(χ) = 1 for χ = χ0 and a(χ) = 0 otherwise. Set

b := 1, S := T or b := 4|T |, S := |T |T−1. Then

ρα(s, w; b,S, χ)Γ
(1

2

(
s+ w + β − m

2

))−1
Γ
(
s+ w − β − m

2
− 1

)−1

×P
(
s+ w − 1; 1,T)(w − 1)a(χ)

(
s− 1 − m

2

)a(χ( ·

q
)m)

is entire in s and w and O
(
(|=w| + 1)ceπ|=w|/2

)
on every set of the form

(3.3) {(s, w) ∈ C2 | c1 ≤ <s,<w ≤ c2, |s+ w| ≤ c3},

where c1, c2, c3 and c = c(c1, c2, c3) are constants. Furthermore, we have

the functional equation

ρα(s, w; 1,T, χ) = 2−3m/2|T |1/2−meπi(−1)α sign(T)/4C(χ, α,T)(3.4)

× ρα−1

(
w +

m

2
, s− m

2
; 4|T |, |T |T−1, χ

( ·
q

)m)
.

Proof. Choose µ, ν ∈ {0, 1} such that µ+ν = β. From (3.1), (3.2) and
Lemma 3.5 it follows that, for <s > m+ 5, <w > 1 and s∗ := (s+w+ µ+
ν)/2 −m/4, we have

ρα(s, w; 1,T, χ)Γ
(1

2

(
s+ w + β − m

2

))−1
Γ
(
s+ w − β − m

2
− 1

)−1
(3.5)
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×P (s+ w − 1; 1,T)(w − 1)a(χ)
(
s− 1 − m

2

)a(χ( ·

q
)m)

=

Γ
(s+ ν

2
− m

4

)−1
Γ
(w + µ

2

)−1
(w − 1)a(χ)

(
s− 1 − m

2

)a(χ( ·

q
)m)

×
{[ ∫ ∞

1
τ (s+ν)/2−m/4−1Rα,µ,ν,r(τ, s

∗; 1,T,T, χ) dτ

+

r−1∑

ρ=µ

−1

(s+ ν)/2 −m/4 − s∗ − ρ+ µ
Dα,µ,ν,ρ(s

∗; 1,T,T, χ)

+
−1

(s+ ν)/2 −m/4 − s∗ + µ
D∗

α,ν(s
∗; 1,T,T, χ)(1 − µ)

+
−1

(s+ ν)/2 −m/4 + (1 − µ)/2 − s∗ + µ
D∗∗

µ,ν(s
∗; 1,T,T)λ(0, χ)

]

+2−3m/2|T |1/2−meπi(−1)α sign(T)/4C(χ, α,T)

×
[ ∫ ∞

1
τ−(s+ν)/2+m/4−1+s∗Rα−1,ν,µ,r

(
τ, s∗; 4|T |,T, |T |T−1, χ

( ·
q

)m)
dτ

+

r−1∑

ρ=ν

−1

−(s+ ν)/2 +m/4 − ρ+ ν
Dα−1,ν,µ,ρ

(
s∗; 4|T |,T, |T |T−1, χ

( ·
q

)m)

+
−1

−(s+ ν)/2 +m/4 + ν
D∗

α−1,µ

(
s∗; 4|T |,T, |T |T−1, χ

( ·
q

)m)
(1 − ν)

+
−1

−(s+ ν)/2 +m/4 + (1 − ν)/2 + ν

×D∗∗
ν,µ(s∗; 4|T |,T, |T |T−1)λ

(
0, χ

( ·
q

)m)]}
.

The factor in front of the curly brackets cancels the denominators therein.
The estimate for R in Lemma 3.5 shows that the integrals define holomor-
phic functions on

{
(s, w) ∈ C2 | <s > 2 − 2r +

m

2
+ ν,(3.6)

<w > 2 − 2r + µ, <s+ <w > 2σ1 +
m

2
− µ− ν

}

if σ1 ∈ R− and r ≥ r(σ1). Thus the left hand side of (3.5) can be continued
holomorphically to the region (3.6). Since σ1 ∈ R− is arbitrary the left
hand side of (3.5) is entire. Its growth on sets of the form (3.3) can be
estimated using Stirling’s formula. This establishes the case b = 1, S = T.
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The reciprocity law in Proposition 2.3 immediately gives (3.4) for <s >
m + 2, <w > m/2 + 2. From this identity the case b = 4|T |, S = |T |T−1

follows easily.

Somewhat more can be deduced from the representation (3.5). The

factors (w − 1)a(χ) and (s − 1 −m/2)
a(χ( ·

q
)m)

are necessary only to cancel

the poles of the terms which contain D∗∗
µ,ν and D∗∗

ν,µ as a factor. This gives

Lemma 3.7. Under the assumptions of Theorem 3.6 there are entire

functions fβ(s, w; b,S,T, q) and gβ(s, w; b,S,T, q) independent of α such

that

ρα(s, w; b,S, χ)Γ
(1

2

(
s+ w + β − m

2

))−1

× Γ
(
s+ w − β − m

2
− 1

)−1
P (s+ w − 1; 1,T) − a(χ)

w − 1
fβ(s, w; b,S,T, q)

−eπi(−1)α sign(T)/4em(2α−1)
q

(T
q

) a(χ( ·
q )m)

s− 1 −m/2
gβ(s, w; b,S,T, q)

is entire on C2.

This lemma will be useful in the next section when the number of

possible poles of the function τ is reduced.

§4. Meromorphic continuation of τ

For T ∈ Zm×m
∗ , T := detT, α ∈ {1, 2}, b ∈ N, q 6 | 2Tb a prime and χ a

Dirichlet character modulo q, define

τα(s, w; b,T, χ) :=
∑

h,k≥1

A((−1)α−1h, bk;T)λ(h, χ)

hwks−1
, <s > m+ 2, <w > 1.

Next a connection between τ and ρ will be established (cf. [5], Section 6).

Let <s > m+ 2, <w > 1. Dividing the h-summation into complete residue

systems modulo bqk gives

(w − 1)ρα(s, w; b,T, χ) =

(bq)−w(w − 1)
∑

k≥1

1

ks+w

∑

1≤a≤bqk

Gα(a, bk;T, χ)ζ
(
w,

a

bqk

)
,
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where ζ(w, κ) denotes Hurwitz’ zeta function. The right hand side converges

uniformly on every compact subset of

UR := {(s, w) ∈ C2 | <s > R+m+ 4, <w > −R} (R ≥ 1)

and therefore defines a holomorphic function FR(s, w) on UR. On UR ∩
{<w < 0} the functional equation of ζ(w, κ) gives

FR(s, w) = q−1
(2π

bq

)w−1
Γ(1 − w)(w − 1)

×
(
eiπ(1−w)/2τα+1(s+ w, 1 −w; b,T, χ)

+ e−iπ(1−w)/2χ(−1)τα(s+ w, 1 − w; b,T, χ)

)
.

Solving this linear system for τα gives

τα(s+ w, 1 − w; b,T, χ)(4.1)

=
1

b

(2π

bq

)−w
Γ(w)

(
eiπw/2χ(−1)ρα(s, w; b,T, χ)

+ e−iπw/2ρα+1(s, w; b,T, χ)

)

on UR ∩ {<w < 0}. Since the ρα are meromorphic on C2 the same follows

for τα, and consequently (4.1) holds on C2. More precise information is

given in

Proposition 4.1. Let T ∈ Zm×m
∗ , T := detT, q 6 | 2T a prime, χ a

Dirichlet character modulo q, α ∈ {1, 2} and β ∈ {0, 1} such that 2β 6≡
sign(T) mod 4. Set b := 1, S := T or b := 4|T |, S := |T |T−1. Then

τα(s, w; b,S, χ)Γ(1 − w)−1Γ
(1

2

(
s+ β − m

2

))−1
(4.2)

× Γ
(
s− β − m

2
− 1

)−1
P (s− 1; 1,T)

(
s+ w − 2 − m

2

)a(χ( ·

q
)m)

is an entire function of s and w. It is bounded by O
(
(|=w|+ 1)ceπ|=w|

)
on

every set of the form

{
(s, w) ∈ C2

∣∣ |s| ≤ c3, c1 ≤ <w ≤ c2
}

where c1, c2, c3, c = c(c1, c2, c3) are constants.
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Proof. The statements follow immediately from (4.1) and Theorem 3.6.
Note that by Lemma 3.7 the possible poles of ρα and ρα+1 at w = 1 cancel
each other.

Next we will reduce the set of possible poles of τ considerably. This is

done with the following simple tools.

Lemma 4.2. Let (s0, w0) ∈ C2, U an open neighbourhood of this point,

f(s, w) holomorphic on U and f(s, w)(s− s0) entire. Then f(s, w) itself is

entire.

Proof. The entire function F (s, w) := f(s, w)(s − s0) has a Taylor
development

F (s, w) =
∑

k,l≥0

akl(s− s0)
k(w − w0)

l

about (s0, w0). Since it converges everywhere, |akl| �R R−k−l for k, l ≥ 0
and R > 0. For w close to w0, we have (s0, w) ∈ U and therefore

∑

l≥0

a0l(w − w0)
l = F (s0, w) = 0.

Thus for (s, w) ∈ U , s 6= s0,

f(s, w) = (s− s0)
−1F (s, w) = (s− s0)

−1
∑

k≥1, l≥0

akl(s− s0)
k(w − w0)

l

=
∑

k≥1, l≥0

akl(s− s0)
k−1(w − w0)

l.

Since the right hand power series converges on C2, the function f can be
extended to an entire function on C2.

Lemma 4.3. Let T ∈ Zm×m
∗ , T := detT, b ∈ N, q 6 | 2Tb a prime, χ a

Dirichlet character modulo q, k ∈ N and α ∈ {1, 2}. Then

∑

h mod bqk

A((−1)α−1h, bk;T)λ(h, χ)

= (bk)mq1−m/2 ·





(
(−1)m/2T

q

)
λ(0, χ) , q|k, m even,

εq

(
(−1)(m−1)/2+αT

q

)
(q − 1) , q|k, m odd, χ =

(
·
q

)
,

0 , otherwise.
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Proof. Case 1. q 6 | k. Then the left hand term in the lemma equals

∑

h1 mod q

λ(h1, χ)
∑

h2 mod bk

A((−1)α−1h2, bk;T).

Since the first sum vanishes, the lemma follows.

Case 2. q|k. Then a simple calculation shows that the left hand term
in the lemma equals

(4.3) (bk)mq1−m
∑

h mod q

λ(h, χ)A((−1)α−1h, q;T).

Case 2.1. m even. From [5], Lemma 3.5, it follows that

A((−1)α−1h, q;T) = qm−1 + qm/2−1
((−1)m/2T

q

)
(qδq(h) − 1),

where δq(h) = 1 if q|h and δq(h) = 0 otherwise. Thus the sum in (4.3)
equals

qm/2
((−1)m/2T

q

)
λ(0, χ)

and the lemma follows.

Case 2.2. m odd. Then [5], Lemma 3.5, gives

A((−1)α−1h, q;T) = qm−1 + q(m−1)/2
((−1)(m−1)/2T (−1)α−1h

q

)
,

and the sum in (4.3) equals

q(m−1)/2
((−1)(m−1)/2+α−1T

q

) ∑

h mod q

λ(h, χ)
(h
q

)

= q(m−1)/2
( (−1)(m−1)/2+α−1T

q

)
q1/2εq

∑

a mod q

χ(−a)
(a
q

)
.

If χ =
(
·
q

)
, the last sum equals

(
−1
q

)
(q − 1). If χ 6=

(
·
q

)
, it equals 0. Thus

the lemma follows.

Define

∆α(s; b, S, q) :=
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bm−1(q − 1)qm/2−sζ(s−m) ·





(
(−1)m/2S

q

)
, m even, χ = χ0

εq

(
(−1)(m−1)/2+αS

q

)
, m odd, χ =

(
·
q

)
,

0 , otherwise.

The central result of this section is

Theorem 4.4. Let T ∈ Zm×m
∗ , T := detT, q 6 | 2T a prime, χ a

Dirichlet character modulo q and α ∈ {1, 2}. Set b := 1, S := T or b :=
4|T |, S := |T |T−1. Set S := det S. Then

(
τα(s, w; b,S, χ) − (w − 1)−1∆α(s; b, S, q)

)
(4.4)

×P ∗(s− 1; 1,T)
(
s+ w − 2 − m

2

)a(χ( ·

q
)m)(

s− m

2
− 1

)a(χ( ·

q
)m)

is entire. Furthermore, we have the functional equation

τα(s, w; 1,T, χ)

= C(χ, α,T)
(2π

q

)s+2w−2−m/2
(4|T |)2+m/2−s−wχ(−1)2−3m/2

× |T |1/2−mπ−1Γ(1 − w)Γ
(
2 +

m

2
− s− w

)

×
[

sin
π

2

(
s+ 2w − 2 − m

2
+

1

2
(−1)α+1 sign(T)

)

×τα
(
s, 2 +

m

2
− s− w; 4|T |, |T |T−1, χ

( ·
q

)m)

+χ(−1)
(−1

q

)m
sin

π

2

(
s− m

2
+

1

2
(−1)α sign(T)

)

× τα+1

(
s, 2 +

m

2
− s− w; 4|T |, |T |T−1, χ

( ·
q

)m)]
.

Proof. First we get rid of most of the possible poles. Choose β ∈ {0, 1}
such that 2β 6≡ sign(T) mod 4. By definition, τα(s, w; b,S, χ) is holomor-
phic on U := {<s > m+ 2, <w > 1}. Consequently, the function

τα(s, w; b,S, χ)(w − 1)Γ
(1

2

(
s+ β − m

2

))−1
Γ
(
s− β − m

2
− 1

)−1
(4.5)

×P (s− 1; 1,T)
(
s+ w − 2 − m

2

)a(χ( ·

q
)m)

is also holomorphic in this region. According to Proposition 4.1, the func-
tion (4.5) becomes entire after multiplication with (w − 1)−1Γ(1 − w)−1.
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Lemma 4.2 now shows that in fact (4.5) is already entire. On U , we have

(4.6) τα(s, w; b,S, χ) =
∑

h≥1

λ(h, χ)

hw
L(s− 1, (−1)α−1h; b,S).

Let σ1 ∈ R−. Lemma 3.2 shows that there is some c = c(σ1) > 0 such that
after multiplication by P ∗(s− 1; 1,T), the series (4.6) converges uniformly
on every compact subset of U(σ1) := {<s > σ1 +1, <w > c(σ1)+ 1}. Thus
the function

(4.7) τα(s, w; b,S, χ)P ∗(s− 1; 1,T)
(
s+ w − 2 − m

2

)a(χ( ·

q
)m)

(w − 1)

is holomorphic on U(σ1) and, after multiplication with the entire function

Γ
(1

2

(
s+ β − m

2

))−1
Γ
(
s− β − m

2
− 1

)−1
P (s− 1; 1,T)P ∗(s− 1; 1,T)−1,

it becomes entire itself (see (4.5)). Again by Lemma 4.2 it follows that (4.7)
is already entire.

For 0 < κ ≤ 1, the function h(w, κ) := ζ(w, κ) − (w − 1)−1 is entire in
w. Expanding ζ(w, κ) − ζ(w) into a Dirichlet series for <w > 0 shows that
|h(w, κ)| � κ−3/2 for 0 < κ ≤ 1, |w − 1| ≤ 1/2. Thus the double series

H(s, w) :=
∑

k≥1

1

ks+w−1

∑

1≤a≤bkq

A((−1)α−1a, bk;S)λ(a, χ)h
(
w,

a

bkq

)

converges uniformly on every compact subset of V := {<s + <w > 9/2 +
m, |w − 1| < 1/2} and therefore defines a holomorphic function on V . On
V ′ := {<s > 9/2 +m, |w − 1| < 1/2, <w > 1}, we have

∆(s, w) := τα(s, w; b,S, χ) − (bq)−wH(s, w)

= (w − 1)−1bm−wqm/2+2−s−2w(q − 1)ζ(s+ w −m− 1)

×





(
(−1)m/2S

q

)
, m even, χ = χ0,

εq

(
(−1)(m−1)/2+αS

q

)
, m odd, χ =

(
·
q

)
,

0 , otherwise.

Since (w − 1)∆(s, w)|w=1 = ∆α(s; b,S, q), we have

τα(s, w; b,S, χ) − (w − 1)−1∆α(s; b, S, q)
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= (bq)−wH(s, w) + (w − 1)−1
(
(w − 1)∆(s, w) − ∆α(s; b, S, q)

)

on V ′, and the right hand side is even holomorphic on V . Thus (4.4) is
holomorphic on V . Since (4.7) is entire, (4.4) becomes so after multipli-

cation with (w − 1) (note that the factor (s −m/2 − 1)
a(χ( ·

q
)m)

is needed
to cancel a pole of P ∗(s− 1; 1,T)). Applying Lemma 4.2 again shows that
(4.4) is entire.

Finally, the functional equation for τα follows from that for ρα (see
Theorem 3.6) by means of (4.1).

Finally, the analogue of Theorem 4.4 for untwisted Dirichlet series is

needed. Define

τα(s, w; b,T) :=
∑

h,k≥1

A((−1)α−1h, bk;T)

hwks−1
, <s > m+ 2, <w > 1.

Theorem 4.5. Let T ∈ Zm×m
∗ , T := detT, α ∈ {1, 2}. Set b := 1,

S := T or b := 4|T |, S := |T |T−1. Then

(
τ(s, w; b,S) − bm−1ζ(s−m)

1

w − 1

)
(4.8)

×P ∗(s− 1; 1,T)
(
s+ w − 2 − m

2

)(
s− m

2
− 1

)

is entire. Furthermore,

τα(s, w; 1,T)

= (2π)s+2w−2−m/2(4|T |)2+m/2−s−wΓ(1 − w)

×Γ
(
2 +

m

2
− s− w

)
2−3m/2|T |1/2−mπ−1

×
[

sin
π

2

(
s+ 2w − 2 − m

2
+

1

2
(−1)α+1 sign(T)

)

×τα
(
s, 2 +

m

2
− s− w; 4|T |, |T |T−1

)

+ sin
π

2

(
s− m

2
+

1

2
(−1)α sign(T)

)

×τα+1

(
s, 2 +

m

2
− s− w; 4|T |, |T |T−1

)]
.

Proof. From [5], Lemmas 6.1 and 6.2, it follows that

τα(s, w; b,S)Γ(1 − w)−1
(
s+ w − m

2
− 2

)
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×Γ
(s

2
− m

4
+
β

2

)−1
Γ
(
s− m

2
− β − 1

)−1
P (s− 1; 1,T)

is entire if 2β 6≡ sign(T) mod 4. Furthermore, Theorem 1.4 in [5] immedi-
ately gives the functional equation. Exactly as in the proof of Theorem 4.4
it can be shown that already the function

τα(s, w; b,S)(w − 1)
(
s+w − m

2
− 2

)
P ∗(s− 1; 1,T)

is entire. The remainder of the theorem is proved as there.

§5. Construction of modular forms

For T ∈ Zm×m
∗ , T := det T, b ∈ N, α ∈ {1, 2}, q 6 | 2Tb a prime and χ a

Dirichlet character modulo q, define

Dα(s, w; b,T, χ) :=
∑

n≥1

1

nw
S(s, (−1)α−1n; b,T)λ(n, χ),

Dα(s, w; b,T) :=
∑

n≥1

1

nw
S(s, (−1)α−1n; b,T), <s > m+ 2, <w > 1.

For n ∈ Z \ {0} and <s > m+ 2, a simple calculation shows that

ζ(s−m)S(s, n; b,T) = bL(s− 1, n; b,T).

From Lemma 3.2 it follows that S(s, n; b,T) can be continued to a mero-

morphic function on C. There are no poles to the right of σ(m), where

σ(m) := (m + 2)/2 if m is even and σ(m) := (m + 3)/2 if m is odd. The

same lemma shows that there is some c > 0 such that

(5.1) Dα(s, w; b,T, χ) = b τα(s, w; b,T, χ)ζ(s −m)−1

converges uniformly as a Dirichlet series in w on every compact subset of

{<s > σ(m), <w > c}; in particular it defines a holomorphic function there.

The same holds true for

(5.2) Dα(s, w; b,T) = b τα(s, w; b,T)ζ(s −m)−1.

Proposition 5.1. Let T ∈ Zm×m
∗ , T := det T, α ∈ {1, 2}, q 6 | 2T

a prime and χ a Dirichlet character modulo q. Set b := 1, S := T or

b := 4|T |, S := |T |T−1. Set S := det S and let l ∈ Z be such that

sαl :=
m

2
+

1

2
(−1)α−1 sign(T) + 2l > σ(m).
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Then Dα(sαl, w; b,S, χ) is meromorphic on C. If χ
(
·
q

)m 6= χ0 then it is

entire. If χ
(
·
q

)m
= χ0 then it has one pole at w = 1 which is simple and

has the residue

rαl(b,S, q) := bm(q−1)qm/2−sαl ·





(
(−1)m/2S

q

)
, m even, χ = χ0,

εq

(
(−1)(m−1)/2+αS

q

)
, m odd, χ =

(
·
q

)
.





Furthermore, Dα(sαl, w; b,S) is meromorphic on C with a simple pole at

w = 1 with residue bm. If sαl 6= m/2 + 2 then there are no further poles of

Dα(sαl, w; b,S, χ) and Dα(sαl, w; b,S). If sαl = m/2+2 then there may be

another simple pole at w = 0.
We have the functional equations

Dα(sαl, w; 1,T, χ)

= C(χ, α,T)2−3m/2−2 |T |−1/2−mπ−1χ(−1)
(2π

q

)sαl+2w−2−m/2

× (4|T |)2+m/2−sαl−wΓ(1 − w)Γ
(
2 +

m

2
− sαl − w

)

× sin
π

2

(
sαl + 2w − 2 − m

2
+

1

2
(−1)α+1 sign(T)

)

×Dα

(
sαl, 2 +

m

2
− sαl − w; 4|T |, |T |T−1, χ

( ·
q

)m)
,

Dα(sαl, w; 1,T)

= 2−3m/2−2|T |−1/2−mπ−1(2π)sαl+2w−2−m/2(4|T |)2+m/2−sαl−wΓ(1 −w)

×Γ
(
2 +

m

2
− sαl − w

)
sin

π

2

(
sαl + 2w − 2 − m

2
+

1

2
(−1)α+1 sign(T)

)

×Dα

(
sαl, 2 +

m

2
− sαl − w; 4|T |, |T |T−1

)
.

Finally, on every vertical strip of finite width {c1 ≤ <w ≤ c2, |=w| ≥
1}, we have

Dα(sαl, w; b,S, χ) � |=w|ceπ|=w|/2

where c = c(c1, c2) > 0 is a constant. The same holds for Dα(sαl, w; b,S).

Proof. We only have to compile the results so far. From (5.1), (5.2)
and Theorems 4.4 and 4.5 it follows that
(
Dα(s, w; b,S, χ) − (w − 1)−1b ζ(s−m)−1∆α(s, b;S, q)

)
ζ(s−m)
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×P ∗(s− 1; 1,T)
(
s+ w − 2 − m

2

)a(χ( ·

q
)m)(

s− m

2
− 1

)a(χ( ·

q
)m)

and

(
Dα(s, w; b,S) − bm(w − 1)−1

)
ζ(s−m)P ∗(s− 1; 1,T)

×
(
s+ w − 2 − m

2

)(
s− m

2
− 1

)

are entire. Since the factors depending on s have no zero or pole at s = sαl

it follows that

(
Dα(sαl, w; b,S, χ) − (w − 1)−1b ζ(s−m)−1∆α(s; b, S, q)|s=sαl

)

×
(
sαl +w − 2 − m

2

)a(χ( ·

q
)m)

and (
Dα(sαl, w; b,S) − bm(w − 1)−1

)(
sαl +w − 2 − m

2

)

are entire. If χ
(
·
q

)m 6= χ0 then Dα(sαl, w; b,S, χ) is entire. If χ
(
·
q

)m
= χ0

then

(
Dα(sαl, w; b,S, χ) − (w − 1)−1rαl(b,S, q)

)(
sαl + w − 2 − m

2

)

is entire. This means thatDα(sαl, w; b,S, χ) has a simple pole at w = 1 with
residue rαl(b,S, q), and at most another pole at w = 2 +m/2 − sαl < 1 of
order 1. Similarly, Dα(sαl, w; b,S) has a simple pole at w = 1 with residue
bm, and at most another pole at 2 +m/2 − sαl of order 1.

The functional equations for Dα follow immediately from those in The-
orems 4.4 and 4.5 with the help of (5.1) and (5.2) since the second sum-
mands on the right hand sides are holomorphic and vanish at s = sαl. Now if
Dα(sαl, w; b,S, χ) has a pole at 2+m/2−sαl thenDα

(
sαl,w; 4|T |b−1, |T |S−1,

χ
(
·
q

)m)
has a pole at 0 by the functional equation. Thus 2+m/2−sαl = 0.

The same holds for Dα(sαl, w; b,S).

Finally, the growth estimates in vertical strips of finite width follow im-
mediately from those in Proposition 4.1. If in (4.2) the functions depending
only on s vanish at s = sαl then divide by a suitable power of (s− sαl) and
integrate along a small circle about sαl with respect to s.

Now Theorem 1.1 can be proved by applying Weil’s converse theorem.

We introduce some standard notation. For a sequence (an)n≥0 in C with
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an = O(nc) as n → ∞ with a constant c > 0, set f(z) :=
∑

n≥0 ane(nz),

z ∈ H. For a Dirichlet character χ modulo q, set

L(w; f, χ) :=
∑

n≥1

anχ(n)

nw
, L(w; f) :=

∑

n≥1

an

nw
.

For A > 0, set

ΛA(w; f, χ) :=
( 2π

qA1/2

)−w
Γ(w)L(w; f, χ),

ΛA(w; f) :=
( 2π

A1/2

)−w
Γ(w)L(w; f).

Furthermore, define

f(z)q := q1/2
∑

n≥0

aqne(qnz) − q−1/2f(z), f(z)χ :=
∑

n≥0

anχ(n)e(nz).

Now let the assumptions of Theorem 1.1 be fulfilled. Define λαl :=

(καl − 1)/2. For q 6 | 2T a prime and χ a Dirichlet character modulo q,

we have

Λ4|T |(w; Θαl(·; b,S), χ) =

π−wqw|T |w/2Γ(w)τ(χ)
−1
Dα

(
sαl, w + 1 − καl

2
; b,S, χ

)

for χ 6= χ0,

Λ4|T |q2(w; Θαl(·; b,S)q) =

π−wqw|T |w/2Γ(w)q−1/2Dα

(
sαl, w + 1 − καl

2
; b,S, χ0

)

for χ = χ0,

Λ4|T |q2(w; Θαl(·; b,S)( ·

q
)) =

π−wqw|T |w/2Γ(w)τ
(( ·

q

))−1

Dα

(
sαl, w + 1 − καl

2
; b,S,

( ·
q

))

for χ =
(
·
q

)
, and

Λ4|T |(w; Θαl(·; b,S)) = π−w|T |w/2Γ(w)Dα

(
sαl, w + 1 − καl

2
; b,S

)
.



30 M. PETER

It follows from Proposition 5.1 that all these functions are meromorphic on

C and grow at most polynomially in vertical strips of finite width.

Case 1. m odd. Proposition 5.1 shows that for χ 6= χ0,
(
·
q

)
,

Λ4|T |(w; Θαl(·; 1,T), χ) =

C(1)
χ Cαl Λ4|T |

(καl

2
− w; Θαl(·; 4|T |, |T |T−1), χ

( ·
q

))
,

where

Cαl := (−1)l|T |1/2−m−καl/42−καl/2−3m/2,

C(1)
χ :=

τ(χ( ·
q ))

τ(χ)
ε−1
q χ(−4|T |)

(4|T |
q

)(−1

q

)λαl

χ4|T |(q),

and both sides of the equation are entire. For χ = ( ·
q ),

Λ4|T |q2(w; Θαl(·; 1,T)( ·

q
)) = C(2)

χ Cαl Λ4|T |q2

(καl

2
−w; Θαl(·; 4|T |, |T |T−1)q

)
,

where

C(2)
χ :=

(−1

q

)λαl

χ4|T |(q).

Proposition 5.1 and this functional equation show that the left hand side

has a single pole at w = καl/2 which is simple and has the residue

π−καl/2|T |καl/4Γ
(καl

2

)
(q1/2 − q−1/2)C(2)

χ .

Finally,

Λ4|T |(w; Θαl(·; 1,T)) = Cαl Λ4|T |

(καl

2
− w; Θαl(·; 4|T |, |T |T−1)).

Proposition 5.1 and this functional equation show that the left hand side

has only poles at w = καl/2 and w = 0; both are simple and have residues

π−καl/2|T |καl/4Γ
(καl

2

)
resp. − π−καl/2|T |καl/4Γ

(καl

2

)
(4|T |)mCαl.

Now a version of Weil’s converse theorem for modular forms of half integral

weight can be applied ([12]; the case of half integral weight was scetched in

[6] and worked out in [1]). This gives case a) of Theorem 1.1.
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Case 2. m even. Proposition 5.1 shows that for χ 6= χ0,

Λ4|T |(w; Θαl(·; 1,T), χ) = CχCαl Λ4|T |

(καl

2
− w; Θαl(·; 4|T |, |T |T−1), χ

)
,

where

Cχ :=
1

q
τ(χ)2χ(4|T |)χ(−1)m/24T (q),

and both sides are entire. Weil’s converse theorem now gives case b) of

Theorem 1.1.

For a comparison between Theorem 1.1 and Cohen’s result [2], Theo-

rem 3.1, set m = 1, T = (1). Let r ∈ N, r ≥ 2. There is exactly one pair

(α, l) ∈ {1, 2} ×Z with sαl = r+ 1. For this pair, we have α ≡ r+ 1 mod 2

and καl/2 = r+ 1/2. Furthermore, sαl > σ(1) = 2. In [5], Section 8, it was

shown that, for <s,<w > 1,

8ζ(2(s+ w) − 1)
∑

D(−1)α−1>0,D a discr.

L(s, χD)

|D|w = 4
ζ(2s)

ζ(s)
τα(s+ 1, w; 4, (1))

= ζ(2s)Dα(s+ 1, w; 4, (1)).

Comparing coefficients with respect to w gives
∑

d≥1, D(−1)α−1>0:D a discr., d2|D|=n

8

d2s−1
L(s, χD) =

ζ(2s)S(s+ 1, (−1)α−1n; 4, (1))

for n ∈ N, s ∈ C not a pole. Plugging in s = r gives

ζ(2r)S(sαl, (−1)α−1n; 4, (1)) =

πr2r+2n1/2−r 1

(r − 1)!
(−1)[r/2]H(r, n), n ∈ N,

where the “generalized Hurwitz class numbers” H(r, n) are defined in [2],

Definitions 2.1 and 2.2. Furthermore,

π−καl/2(−1)lΓ
(καl

2

)
ζ(2r) = πrζ(1 − 2r)

1

(r − 1)!
(−1)[r/2].

As in [2], we set H(r, 0) := ζ(1 − 2r). Thus for z ∈ H,

Hr(z) :=
∑

n≥0

H(r, n)e(nz) = ζ(2r)π−r2−2−r(r − 1)!(−1)[r/2]Θαl(z; 4, (1)).

It now follows from Theorem 1.1 that Hr(z) is a modular form of weight

r + 1/2 with respect to Γ0(4), the theta multiplier system and character

χ0 mod 4. This is Theorem 3.1 in [2].
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§6. Calculation of a singular component of τ

From now on let m be odd. In Proposition 5.1 only values sαl >

(m + 3)/2 were allowed in the first argument of Dα. This was to ensure

that we would not fall into a pole of S(s, n; b,T). This procedure is in

fact over-cautious. For one value of α, depending on m and the sign of T ,

there is no pole at (m + 3)/2. For the other value of α the terms in the

series development of τα which contribute to the pole at (m+ 3)/2 can be

precisely identified. Thus — excerting some care — the value (m+3)/2 can

be plugged in the functional equation of τα. For one value of α this gives

a functional equation for polynomials occuring in the singular component

of τα. For the other value of α it gives a functional equation of τα with an

additional term.

For a ∈ Z \ {0}, let a∗ denote the squarefree kernel of a including the

sign.

Lemma 6.1. Let m ∈ N be odd, T ∈ Zm×m
∗ , T := det T and α ∈ {1, 2}

such that α ≡ (m + 1)/2 + (1 − sign(T ))/2 mod 2. Let b ∈ N. For p|2Tb
prime, there are polynomials Rp(x, y) ∈ Q[x, y] depending only on T, b and

p, with the properties :

a) For q 6 | 2Tb a prime and χ a Dirichlet character modulo q, define

τ∗α(s, w; b,T, χ) :=
∑

h≥1:h∗=|T ∗|

λ(h, χ)

hw
L(s− 1, (−1)α−1h; b,T), <s > m+ 1, <w > 1.

If χ 6= χ0 then

τ∗α(s+ 1, w; b,T, χ) = τ(χ)χ(|T ∗|)bs|T ∗|−wL(2s+ 2w −m,χ2)L(2w,χ2)

× ζ(s−m+ 1)ζ(2s−m+ 1)−1ζ
(
s− m− 1

2

)
L

(
s+ 2w − m− 1

2
, χ2

)−1

×
∏

p|2Tb

Rp(p
−s, χ2(p)p−2w)

(1 + p(m−1)/2−s)(1 − χ2(p)p(m−1)/2−s−2w)
.

If χ = χ0 then

τ∗α(s+ 1, w; b,T, χ0) = bs|T ∗|−wζ(2s+ 2w −m)ζ(2w)

× ζ(s−m+ 1)ζ(2s−m+ 1)−1ζ
(
s− m− 1

2

)
ζ
(
s+ 2w − m− 1

2

)−1
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×
∏

p|2Tb

Rp(p
−s, p−2w)

(1 + p(m−1)/2−s)(1 − p(m−1)/2−s−2w)

×q
1−2w+qm+1−2s−2w+q(m−1)/2−s−2w−q(m+1)/2−s−2w−qm+1−2s−4w−1

1 − q(m−1)/2−s−2w
.

b) If χ is the principal character modulo 1, define

τ∗α(s, w; b,T) :=
∑

h≥1:h∗=|T ∗|

1

hw
L(s− 1, (−1)α−1h; b,T), <s > m+ 1, <w > 1.

Then

τ∗α(s+ 1, w; b,T) = bs|T ∗|−wζ(2s+ 2w −m)ζ(2w)

× ζ(s−m+ 1)ζ(2s−m+ 1)−1ζ
(
s− m− 1

2

)
ζ
(
s+ 2w − m− 1

2

)−1

×
∏

p|2Tb

Rp(p
−s, p−2w)

(1 + p(m−1)/2−s)(1 − p(m−1)/2−s−2w)
.

Proof. Let r ∈ N, e ∈ N0 and ψ a Dirichlet character modulo r. Define

f(s, w; qe, ψ) :=
∑

n≥1

ψ(n)

nw
L(s, (−1)α−1|T ∗|n2q2e; b,T), <s > m+1, <w > 1.

Let b =
∏

p p
ap be the prime factorisation of b. The Chinese Remainder

Theorem shows that

b−sL(s, (−1)α−1|T ∗|n2q2e; b,T) =
∏

p

Lp(s, nq
e), <s > m+ 1,

where
Lp(s, n) :=

∑

a≥ap

p−asA((−1)α−1|T ∗|n2, pa;T).

Let plp‖n2. Then A((−1)α−1|T ∗|n2q2e, pa;T)=A((−1)α−1|T ∗|p2lpq2e, pa;T).
If q 6= p the factor q2e on the right hand side may be omitted. Thus

(6.1) b−sf(s, w; qe, ψ) =
∏

p

( ∑

lp≥0

ψ(plp)

plpw
Lp(s, p

lpqeδpq)

)
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for <s, <w sufficiently large.
Let p 6 | 2Tb. Since α has been chosen appropriately, (3.16) in [5] gives

Lp(s, p
l)(1 − pm−1−s)(1 − pm−1−2s)−1(6.2)

= 1 + pm−2s + · · · + p(m−2s)(l−1) + p(m−2s)l(1 − p(m−1)/2−s)−1.

Thus for <s > m+ 1, <w > 1, we have

∑

lp≥0

ψ(plp)

plpw
Lp(s, p

lp) =(6.3)

(1 − pm−1−2s)(1 − ψ(p)p(m−1)/2−s−w)

(1 − pm−1−s)(1 − ψ(p)pm−2s−w)(1 − p(m−1)/2−s)(1 − ψ(p)p−w)
.

Our goal now is to show that for p|2Tb the left hand side is still a rational
function in p−s and ψ(p)p−w. The same proof as for (3.13) in [5] works for
the following more general statement: There are κ ∈ Q and a∗p ∈ N such
that for c ∈ N0, a ≥ a∗p and d ∈ Z \ {0}, we have

(6.4) A(d pc, pa;T) = κ(c, d)p(m−1)a +A(d pc−2, pa−2;T)pm,

where κ(c, d) ∈ Q depends only on c and d, and κ(c, d) = κ for c ≥ a∗p.
Denote the left hand side of (6.3) by fp(s, w;ψ). Then for <s > m + 1,
<w > 1, we have

fp(s, w;ψ)(6.5)

=
∑

lp≥a∗

p, a≥max{ap,a∗

p}

+
∑

0≤lp<a∗

p, a≥max{ap,a∗

p}

+
∑

lp≥0, ap≤a<max{ap,a∗

p}

=: Σ1 + Σ2 + Σ3,

where the summands are always p−as−lpwψ(p)lpA((−1)α−1|T ∗|p2lp , pa;T).
Equation (6.4) now shows that

Σ1 =κψ(p)a∗

pp−a∗

pw−(s−m+1) max{ap,a∗

p}
(
1 − ψ(p)

pw

)−1
(1 − pm−1−s)−1

(6.6)

+ ψ(p)pm−2s−w

×
(

Σ1 +
∑

lp=a∗

p−1, a≥max{ap,a∗

p}

+
∑

lp≥a∗

p−1,max{ap,a∗

p}−2≤a<max{ap,a∗

p}

)
.
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The second and third sum are of the same type as Σ2 and Σ3, i.e. the lp-
resp. a-summation is finite. With the same reasoning as in [5], bottom
of p. 39, it follows that sums of type Σ2 become polynomials in p−s and
ψ(p)p−w after multiplication with (1 − pm−1−s). With the exception of
finitely many terms sums of type Σ3 are geometric sums. Thus they become
polynomials in p−s and ψ(p)p−w after multiplication with (1 − ψ(p)p−w).
Thus (6.6) and (6.5) show that

fp(s, w;ψ)(1 − pm−1−s)(1 − ψ(p)p−w)(1 − ψ(p)pm−2s−w)(6.7)

= Rp(p
−s, ψ(p)p−w)

with Rp(x, y) ∈ Q[x, y] depending only on p, b and T. Obviously for p 6 | 2Tb,
we have Rp(x, y) = (1 + p(m−1)/2x)(1 − p(m−1)/2xy).

a) For q 6 | 2Tb a prime, χ 6= χ0 a Dirichlet character modulo q and <s,
<w sufficiently large,

τ∗α(s+ 1, w; b,T, χ) = τ(χ)|T ∗|−wχ(|T ∗|)f(s, 2w; 1, χ2).

Now (6.1), (6.3) and (6.7) prove the statement of the theorem in this case.
If χ = χ0 mod q,

τ∗α(s+ 1, w; b,T, χ0 mod q)

= |T ∗|−wq1−2wf(s, 2w; q, χ0 mod 1) − |T ∗|−wf(s, 2w; 1, χ0 mod 1).

It follows from (6.3) and (6.2) that
∑

lq≥0

q−lqwLq(s, q
lq+1)

= qw(fq(s, w;χ0 mod 1) − Lq(s, 1))

=
(1 + q(m−1)/2−s)(1 + qm−2s − q(m−1)/2−s − qm−2s−w)

(1 − qm−1−s)(1 − qm−2s−w)(1 − q−w)
.

Again (6.1), (6.3) and (6.7) give the statement of the theorem.
b) For χ = χ0 mod 1, we have

τ∗α(s+ 1, w; b,T) = |T ∗|−wf(s, 2w; 1, χ0 mod 1),

and the statement follows as in a).

Lemma 6.2. Let m ∈ N be odd, T ∈ Zm×m
∗ , T := detT and α ∈ {1, 2}

such that α ≡ (m + 1)/2 + (1 − sign(T ))/2 mod 2. Set b := 1, S := T or

b := 4|T |, S := |T |T−1. Set S := det S. There are polynomials Tp(·; b,S) ∈
Q[x] for p|2T with the following properties :
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a) If q 6 | 2T is a prime and χ a Dirichlet character modulo q, then

h(s, w; b,S, χ) := τα(s, w; b,S, χ)P ∗(s− 1; 1,T)(w − 1)
a(χ( ·

q
))

×
(
s+ w − 2 − m

2

)a(χ( ·

q
))(
s− m

2
− 1

)a(χ( ·

q
))

is entire with respect to s and w, and

h
(m+ 3

2
, w; b,S, χ

)

= 2
1−a(χ( ·

q
))
τ(χ)b(m+1)/2χ(|S∗|)|S∗|−wL(2w,χ2)

×
∏

p|2T

Tp(χ
2(p)p−2w; b,S)(w − 1)

a(χ( ·

q
))
(
w − 1

2

)a(χ( ·

q
))

for χ 6= χ0, and

h
(m+ 3

2
, w; b,S, χ0

)
=

2b(m+1)/2|S∗|−wζ(2w)(q1−2w − 1)
∏

p|2T

Tp(p
−2w; b,S)

for χ = χ0.

b) The function

h(s, w; b,S) :=

τα(s, w; b,S)P ∗(s− 1; 1,T)(w − 1)
(
s+ w − 2 − m

2

)(
s− m

2
− 1

)

is entire, and

h
(m+ 3

2
, w; b,S) =

b(m+1)/2|S∗|−wζ(2w)
∏

p|2T

Tp(p
−2w; b,S)(w − 1)

(
w − 1

2

)
.

Proof. It follows immediately from Theorems 4.4 and 4.5 that
h(s, w; b,S, χ) and h(s, w; b,S) are entire. From the definition of τ ∗α and
Lemma 3.2a) it follows that there is some c > 0 such that

(τα(s, w; b,S, χ) − τ ∗α(s, w; b,S, χ))P ∗(s− 1; 1,T)(2s −m− 3)−1
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=
∑

h≥1:h∗ 6=|S∗|

λ(h, χ)

hw
L(s− 1, (−1)α−1h; b,S)P ∗(s− 1; 1,T)(2s −m− 3)−1

converges uniformly on every compact subset of {<s > m/2 + 1, <w > c}.
Therefore it defines a holomorphic function f(s, w) on this set, and

h(s, w; b,S, χ)

= τ∗α(s, w; b,S, χ)P ∗(s− 1; 1,T)(w − 1)
a(χ( ·

q
))

×
(
s+ w − 2 − m

2

)a(χ( ·

q
))(
s− m

2
− 1

)a(χ( ·

q
))

+ f(s, w)(2s−m− 3)(w − 1)
a(χ( ·

q
))

×
(
s+ w − 2 − m

2

)a(χ( ·

q
))(
s− m

2
− 1

)a(χ( ·

q
))
.

Thus for <w > c,

h
(m+ 3

2
, w; b,S, χ

)

= τ∗α(s, w; b,S, χ)P ∗(s− 1; 1,T)|s=(m+3)/2(w − 1)
a(χ( ·

q
))

×
(
w − 1

2

)a(χ( ·

q
))
2−a(χ( ·

q
)).

Analogously, for <s > c,

h
(m+ 3

2
, w; b,S

)
=

τ∗α(s, w; b,S, χ)P ∗(s− 1; 1,T)|s=(m+3)/2(w − 1)
(
w − 1

2

)
2−1.

Now the formulae in the lemma follow from Lemma 6.1 if we define

Tp(x; b,S) := (1 − p−1)(1 − p−1x)−1Rp(p
−(m+1)/2, x) ∈ Q(x).

The formulae hold for all w since the left hand sides are entire. It remains to
prove that the Tp are polynomials. Assume Tp 6≡ 0 for all p|2T . Otherwise
we could set Tp ≡ 0 for all p|2T . The formula in b) gives

h
(m+ 3

2
, w; b,S

)
b−(m+1)/2|S∗|wζ(2w)−1(w−1)−1

(
w − 1

2

)−1

=
∏

p|2T

Tp(p
−2w; b,S).
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The right hand side has poles at most at the points

−1

2
+ i

πn

log p
, n ∈ Z, p|2T prime,

where the left hand side has no poles. Therefore both sides are entire.
Let p0|2T be a prime. Since {1, log p/ log p0 | p|2T, p 6= p0} is linearly
independent over Q the sequence

n 7→ (n log p/ log p0)p|2T, p6=p0

is uniformly distributed modulo 1. Thus there is some n0 ∈ Z such that, for
p|2T, p 6= p0, the function Tp(p

−2w; b,S) is holomorphic and has no zero at
−1/2 + iπn0/ log p0. Thus Tp0(p

−2w
0 ; b,S) is holomorphic at this point and

therefore all Tp(x; b,S) are polynomials.

Now we show that, for the other possible choice of α, the function τα

has no pole at s = (m+ 3)/2.

Lemma 6.3. Let m ∈ N be odd, T ∈ Zm×m
∗ , T := det T and α ∈ {1, 2}

such that α ≡ (m − 1)/2 + (1 − sign(T ))/2 mod 2. Set b := 1, S := T or

b := 4|T |, S := |T |T−1. Set S := det S.

a) For q 6 | 2T a prime and χ a Dirichlet character modulo q, the function

(4.4) is still entire after division by (s− (m+ 3)/2).

b) The function (4.8) is still entire after division by (s− (m+ 3)/2).

Proof. From the special choice of α and Lemma 3.2a) it follows that
there is some c > 0 such that

τα(s, w; b,S, χ)P ∗(s− 1; 1,T)
(
s− m+ 3

2

)−1

=
∑

h≥1

λ(h, χ)

hw
L(s− 1, (−1)α−1h; b,S)P ∗(s− 1; 1,T)

(
s− m+ 3

2

)−1

converges uniformly on every compact subset of {<s > m/2 + 1, <w >
c}. Therefore it defines a holomorphic function on this set. Consequently
(4.4), after division by (s − (m + 3)/2), is still holomorphic on this set.
An application of Lemma 4.2 finishes the proof of a). The proof of b) is
completely analogous.
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The next lemma contains some sort of functional equation which con-

nects the polynomials Tp(x; 1,T) and Tp(x; 4|T |, |T |T−1).

Lemma 6.4. Let m ∈ N be odd, T ∈ Zm×m
∗ and T := detT. Set

λ := (1± sign(T ))/4 where the sign is chosen so that λ ∈ Z. Then for p|2T
prime,

Tp(x; 1,T) = cpx
dpTp(p

−1x−1; 4|T |, |T |T−1), dp := ordp |T/T ∗|1/2

where ∏

p|2T

cp = (−1)λ(2|T |)(3−m)/2.

Proof. Choose α ∈ {1, 2} with α ≡ (m+1)/2+(1− sign(T ))/2 mod 2.
Multiply both sides of the functional equation in Theorem 4.5 with

P ∗(s− 1; 1,T)(w − 1)
(
s+ w − 2 − m

2

)(
s− m

2
− 1

)(
s+ w − m

2
− 1

)
w

and plug s = (m+ 3)/2 in. Lemmas 6.2b) and 6.3 give

h
(m+ 3

2
, w; 1,T

)(
w +

1

2

)
w =

(2π)2w−1/2(4|T |)1/2−wΓ(1 − w)Γ
(1

2
− w

)
2−3m/2|T |1/2−mπ−1

× sinπ(w − λ)h
(m+ 3

2
,
1

2
− w; 4|T |, |T |T−1

)
(w − 1)

(
w − 1

2

)

and consequently

(6.8)
∏

p|2T

Tp(p
−2w; 1,T)

Tp(p2w−1; 4|T |, |T |T−1)
= (−1)λ

∣∣∣T
∗

T

∣∣∣
w
(2|T |)(3−m)/2 .

In the last step the functional equation of the Riemann zeta function was
used and it was assumed that none of the Tp vanishes identically. Otherwise
we could set Tp :≡ 0 for all p|2T . Since the right hand side is entire and has
no zeros, an argument similar to that in the proof of Lemma 6.2 shows that
each single factor on the left hand side is entire without zeros. Therefore

Tp(x; 1,T)

Tp(p−1x−1; 4|T |, |T |T−1)
= cpx

dp
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with cp ∈ C\{0} and dp ∈ Z for all p|2T . Plugging this representation back
into (6.8) gives

∏

p|2T

cp

( ∏

p|2T

p−2dp

)w
= (−1)λ(2|T |)(3−m)/2

∣∣∣T
∗

T

∣∣∣
w
,

from which the lemma follows.

The functional equation of τα is now contained in

Proposition 6.5. Let m ∈ N be odd, T ∈ Zm×m
∗ , T := detT and

α ∈ {1, 2} such that α ≡ (m − 1)/2 + (1 − sign(T ))/2 mod 2. Set b := 1,
S := T or b := 4|T |, S := |T |T−1. Set S := det S and λ := (1± sign(T))/4
where the sign is chosen so that λ ∈ Z.

a) Let q 6 | 2T be a prime and χ a Dirichlet character modulo q. Then

the function

Dα

(m+ 3

2
, w; b,S, χ

)

is meromorphic on C. If χ 6=
(
·
q

)
then it is entire. If χ =

(
·
q

)
then

it has only a simple pole at w = 1 with residue bm(q − 1)q−3/2εq
( |S|

q

)

and a simple pole at w = 1/2 with residue

−
( |S|
q

) 3

2π
|S∗|−1/2b(m+3)/2εqq

−1/2(q−1)
∏

p|2T

(1−p−2)−1Tp(p
−1; b,S).

Furthermore,

Dα

(m+ 3

2
, w; 1,T, χ

)
= C(χ, α,T)2−3m/2−2|T |−1/2−mπ−1χ(−1)

×
(2π

q

)2w−1/2
(4|T |)1/2−wΓ(1 − w)Γ

(1

2
− w

)
(−1)λ

×
[

sinπ
(
w − 1

2

)
Dα

(m+ 3

2
,
1

2
− w; 4|T |, |T |T−1, χ

( ·
q

))

− 3

π
(4|T |)(m+3)/2

∏

p|2T

(1 − p−2)−1Tp(χ
2(p)p2w−1; 4|T |, |T |T−1)

×L
(1

2
− w,χ

( ·
q

))]
,
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where

L(w,χ) :=
∑

n≥1

λ(−n2, χ)

n2w
=

{
τ(χ)L(2w,χ2) , χ 6= χ0,
(q1−2w − 1)ζ(2w) , χ = χ0.

}
.

b) The function Dα((m+3)/2, w; b,S) is meromorphic on C. It has only

one simple pole at w = 1 with residue bm and another simple pole at

w = 1/2 with residue

− 3

2π
|S∗|−1/2b(m+3)/2

∏

p|2T

(1 − p−2)−1Tp(p
−1; b,S).

Furthermore,

Dα

(m+ 3

2
, w; 1,T

)
=

2−3(m+1)/2|T |−m−wπ−3/2+2wΓ(1 − w)Γ
(1

2
−w

)
(−1)λ

×
[

sinπ
(
w − 1

2

)
Dα

(m+ 3

2
,
1

2
− w; 4|T |, |T |T−1

)

− 3

π
(4|T |)(m+3)/2

∏

p|2T

(1 − p−2)−1Tp(p
2w−1; 4|T |, |T |T−1) ζ(1 − 2w)

]
.

Finally, both Dα((m+3)/2, w; b,S, χ) and Dα((m+3)/2, w; b,S) are subject

to the growth estimates in Proposition 5.1.

Proof. From Lemma 6.3 it follows that
(6.9)
(
Dα

(m+ 3

2
, w; b,S, χ

)
−
a(χ( ·

q ))

w − 1
bm(q − 1)q−3/2εq

( |S|
q

))(
w − 1

2

)a(χ( ·

q
))

and (
Dα

(m+ 3

2
, w; b,S

)
− 1

w − 1
bm

)(
w − 1

2

)

are entire. We multiply both sides of the functional equation in Theorem 4.4
with

P ∗(s− 1; 1,T)(2s −m− 3)−1

×
[
(w − 1)

(
s+ w − 2 − m

2

)(
s− m

2
− 1

)(
s+ w − m

2
− 1

)
w

]a(χ)
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and plug s = (m+3)/2 in. After dividing both sides by common factors in
w we get

Dα

(m+ 3

2
, w; 1,T, χ

)
=

C(χ, α,T)
(2π

q

)2w−1/2
(4|T |)1/2−wΓ(1 − w)Γ

(1

2
− w

)

×χ(−1)2−3m/2|T |1/2−mπ−1(−1)λ

×
[

sinπ
(
w − 1

2

) 1

4|T | Dα

(m+ 3

2
,
1

2
− w; 4|T |, |T |T−1, χ

( ·
q

))

−χ(−1)
(−1

q

) 3

2π
h
(m+ 3

2
,
1

2
− w; 4|T |, |T |T−1, χ

( ·
q

))

×
∏

p|2T

(1 − p−2)−1
(1

2

(
w +

1

2

)
w

)−a(χ)
]
.

From Lemma 6.2a) the first functional equation now follows. For χ 6=
(
·
q

)
,

the function Dα((m + 3)/2, w; b,S, χ) is entire. For χ =
(
·
q

)
it has only

poles at w = 1 and w = 1/2 which are simple. Since the function (6.9) is
entire the residues can be computed from the functional equation.

The proof of b) is similar and uses Theorem 4.5. The growth estimates
follow as in Proposition 5.1.

§7. Construction of an automorphic function

Now the procedure basically is as in Section 5 with Proposition 5.1

replaced by Proposition 6.5. Since the functional equations now have an

additional term Weil’s converse theorem cannot be applied directly. The

idea is to bring part of the additional term to the left hand side in order to

get a more symmetric functional equation. The following lemma is essential

in this procedure.

On {<s > 0}, the function

(7.1) F (s) :=

∫ ∞

1
u−3/2(2u− 1)1/2−sdu

is holomorphic.

Lemma 7.1. F (s) can be continued meromorphically to C and has the

functional equation

F (s) + F
(3

2
− s

)
=

√
8

π
Γ(s)Γ

(3

2
− s

)
.
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In particular, F (1/2) = 2 and F (1) =
√

8 − 2.

Proof. Let 0 < <s < 3/2. Substituting u−1 for u in (7.1) gives

(7.2) F (s) =

∫ 1

0
us−1(2 − u)1/2−sdu.

Substituting 2 − u for u and 3/2 − s for s gives

(7.3) F
(3

2
− s

)
=

∫ 2

1
us−1(2 − u)1/2−sdu.

Adding (7.2) and (7.3) and using the relation between the Beta and the
Gamma function gives the functional equation for 0 < <s < 3/2. This in
turn proves that F can be continued meromorphically to C.

For t ≥ 0, define

(7.4) γ(t) :=

∫ ∞

1
u−3/2e−utdu.

Lemma 7.2. The function γ is C∞ on R+, continuous on R+
0 and it

solves the initial value problem

γ′(t) − 1

2t
γ(t) +

1

t
e−t = 0, γ(0) = 2.

For δ, y > 0, we have

1

2πi

∫ δ+i∞

δ−i∞
y−wF

(
w +

1

2

)
Γ(w) dw = eyγ(2y).

Proof. The differential equation follows by integration by parts. The
second formula follows from Fubini’s theorem and Mellin’s inversion formula
for the Gamma function.

Now we can prove Theorem 1.2. Under the assumptions of this theorem,

choose α ∈ {1, 2} with α ≡ (m − 1)/2 + (1 − sign(T ))/2 mod 2. The

functional equation of the zeta- and L-functions and Proposition 5.2 in

[6] show that for all primes q 6 | 2T and Dirichlet characters χ modulo q, we

have the functional equation

(π
q

)−(1−w)
Γ(1 − w)L

(
1 − w,χ

( ·
q

))
=(7.5)
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χ(−4)εq

(π
q

)−(w−1/2)
Γ
(
w − 1

2

)
L

(
w − 1

2
, χ

)
.

Define

Λ(w; b,S, χ) :=
( π

q|T |1/2

)−w
(

Γ(w)Dα

(m+ 3

2
, w − 1

2
; b,S, χ

)

+
3b(m+3)/2

(2π)3/2
χ(|S∗|)|S∗|1/2−wF (w)Γ

(
w − 1

2

)
L

(
w − 1

2
, χ

)

×
∏

p|2T

(1 − p−2)−1Tp(χ
2(p)p1−2w; b,S)

)
.

Then Proposition 6.5a), Lemmas 6.4 and 7.1 and (7.5) give the functional

equation

Λ(w; 1,T, χ) = |T |−1/4−m2−3(m+1)/2(−1)λ+1χ(−1)C(χ, α,T)(7.6)

×Λ
(3

2
− w; 4|T |, |T |T−1, χ

( ·
q

))
.

If χ 6= χ0,
(
·
q

)
, both sides of the equation are entire. If χ =

(
·
q

)
, the left

hand side has a simple pole at w = 3/2 with residue

1

2π
|T |3/4(q − 1)εq

( |T |
q

)

and a simple pole at w = 1 with residue

− 3√
8π2

q1/2εq(q − 1)
∣∣∣ T
T ∗

∣∣∣
1/2( |T |

q

) ∏

p|2T

(1 − p−2)−1Tp(p
−1; 1,T).

If χ = χ0, the left hand side has a simple pole at w = 1/2 with residue

3

π2
2−m/2|T |−m/2+7/4(−1)λ+1q1/2(q−1)

∏

p|2T

(1−p−2)−1Tp(p
−1; 4|T |, |T |T−1)

and a simple pole at w = 0 with residue

1

π
2(m−5)/2|T |1/2(−1)λ(q − 1).
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Furthermore, the function Λ(w; 1,T, χ) grows at most polynomially in ver-

tical strips of finite width.

Similarly, define

Λ(w; b,S) :=
( π

|T |1/2

)−w
(

Γ(w)Dα

(m+ 3

2
, w − 1

2
; b,S

)

+
3b(m+3)/2

(2π)3/2
|S∗|1/2−wF (w)Γ

(
w − 1

2

)
ζ(2w − 1)

×
∏

p|2T

(1 − p−2)−1Tp(p
1−2w; b,S)

)
.

Then

(7.7) Λ(w; 1,T) = |T |−1/4−m2−3(m+1)/2(−1)λ+1Λ
(3

2
− w; 4|T |, |T |T−1

)
.

The left hand side is meromorphic on C and has only simple poles at w =

3/2, 1, 1/2, 0 with the respective residues

1

2π
|T |3/4, − 3√

8π2

∣∣∣ T
T ∗

∣∣∣
1/2 ∏

p|2T

(1 − p−2)−1Tp(p
−1; 1,T),

3

π2
2−m/2|T |−m/2+7/4(−1)λ+1

∏

p|2T

(1 − p−2)−1Tp(p
−1; 4|T |, |T |T−1),

1

π
2(m−5)/2|T |1/2(−1)λ.

It grows at most polynomially in vertical strips of finite width. Define the

numbers an(b,S), n ≥ 1, implicitly by

(7.8)
∑

n≥1

an(b,S)

ns
= ζ(s)

∏

p|2T

(1 − p−2)−1Tp(p
−s; b,S).

For z = x+ iy ∈ H, define

H(z; b,S) := π−12(m−5)/2b(m+3)/2|S|1/2(−1)λ+1

+
∑

n≥1

S
(m+ 3

2
, (−1)(m+1)/2 sign(T )n; b,S

)
n1/2e2πinz,

K(z; b,S) :=
3

(2π)2
b(m+3)/2y−1/2

∏

p|2T

(1 − p−2)−1Tp(1; b,S)



46 M. PETER

+
3b(m+3)/2

(2π)2
y−1/2

∑

n≥1

an(b,S)γ(4π|S∗|n2y)e−2πi|S∗|n2z.

Since the functions Λ(w; b,S) and Λ(w; b,S, χ) contain the additional func-

tion F (w) we cannot apply Weil’s converse theorem directly. But its proof

can be imitated. The first step is to compute

1

2πi

∫ δ+i∞

δ−i∞
(2|T |1/2y)−wΛ(w; 1,T) dw

for δ > 3/2, y > 0, in two ways. Firstly the defining series for Λ(w; 1,T)

is plugged in and Mellin’s inversion formula and Lemma 7.2 are used. Sec-

ondly the line of integration is moved to <w = κ < 0 with the help of the

Phragmen-Lindelöf principle. Here the residues are taken into account and

the functional equation (7.7) is used. Thus the defining series can be used

again. Equating both expressions one gets

H(iy; 1,T) + K(iy; 1,T) = |T |−m−12−3m/2−3(−1)λ+1y−3/2(7.9)

×
[
H

(
− 1

4|T |iy ; 4|T |, |T |T−1
)

+ K
(
− 1

4|T |iy ; 4|T |, |T |T−1
)]

for y > 0. From (7.8) it follows that for q 6 | 2T a prime and χ a Dirichlet

character modulo q,

∑

n≥1

an(b,S)λ(−n2, χ)

n2w−1
=(7.10)

L
(
w − 1

2
, χ

) ∏

p|2T

(1 − p−2)−1Tp(χ
2(p)p1−2w; b,S).

For z ∈ H, define

H(z; b,S, χ) :=

π−12(m−5)/2b(m+3)/2|S|1/2(−1)λ+1λ(0, χ)

+
∑

n≥1

S
(m+ 3

2
, (−1)(m+1)/2 sign(T )n; b,S

)
n1/2λ(n, χ)e2πinz ,

K(z; b,S, χ) :=

3

(2π)2
b(m+3)/2y−1/2

∏

p|2T

(1 − p−2)−1Tp(1; b,S)λ(0, χ)
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+
3b(m+3)/2

(2π)2
y−1/2

∑

n≥1

an(b,S)γ(4π|S∗ |n2y)λ(−|S∗|n2, χ)e−2πi|S∗|n2z.

The same procedure as above gives

H(iq−1y; 1,T, χ) + K(iq−1y; 1,T, χ)(7.11)

= |T |−m−12−3m/2−3(−1)λ+1χ(−1)C(χ, α,T)y−3/2

×
[
H

(
− 1

4|T |qiy ; 4|T |, |T |T−1, χ
( ·
q

))

+ K
(
− 1

4|T |qiy ; 4|T |, |T |T−1, χ
( ·
q

))]
.

We would like to conclude now that similar relations hold for arbitrary

z ∈ H instead of iy ∈ iR+. In the case of holomorphic modular forms this

is done with the identity principle. In the case of Maaß wave forms the

hyperbolic Laplace equation is used. Here we need the lemma below. For

z ∈ H, define

Θ(z; b,S) :=
3b(m+3)/2

(2π)2

( ∑

n≥1

an(b,S)e2πi|S∗ |n2z

+
1

2

∏

p|2T

(1 − p−2)−1Tp(1; b,S)

)
,

Θ(z; b,S, χ) :=
3b(m+3)/2

(2π)2

( ∑

n≥1

an(b,S)λ(−|S∗|n2, χ)e2πi|S∗|n2z

+
1

2

∏

p|2T

(1 − p−2)−1Tp(1; b,S)λ(0, χ)

)
.

Lemma 7.3. Θ(z; b,S) is a modular form of weight 1/2 on Γ0(4|T |)
with respect to the theta multiplier system and character χ4|S∗|. Further-

more,

|T |−m(−1)λ2−3m/2−1Θ(z; 4|T |, |T |T−1) = (−iz)−1/2Θ
(
− 1

4|T |z ; 1,T
)
,

|T |−m(−1)λ2−3m/2−1χ(−1)C(χ, α,T)Θ
(
z; 4|T |, |T |T−1, χ

( ·
q

))

= (−iqz)−1/2Θ
(
− 1

4|T |q2z
; 1,T, χ

)
,
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∂

∂z
K(z; b,S) =

1

2i
y−3/2Θ(−z; b,S),

∂

∂z
K(z; b,S, χ) =

1

2i
y−3/2Θ(−z; b,S, χ).

Proof. With the notations from Section 5 (where καl and λαl are re-
placed by 1 and 0), Lemma 6.4 and the equations (7.5) and (7.10) give

Λ4|T |(w; Θ(·; 1,T), χ)

= |T |−m−1/4(−1)λ2−3(m+1)/2C(1)
χ Λ4|T |

(1

2
− w; Θ(·; 4|T |, |T |T−1), χ

( ·
q

))

for q 6 | 2T a prime and χ 6= χ0,
(
·
q

)
a Dirichlet character modulo q; both

sides are entire. For χ =
(
·
q

)
, we have

Λ4|T |q2(w; Θ(·; 1,T)( ·

q
))

= |T |−m−1/4(−1)λ2−3(m+1)/2C(2)
χ Λ4|T |q2

(1

2
− w; Θ(·; 4|T |, |T |T−1)q

)
,

where the left hand side has only a simple pole at w = 1/2 with the residue

|T |−m−1/42−3(m+1)/2(−1)λ 3

(2π)2
(4|T |)(m+3)/2C(2)

χ (q1/2 − q−1/2)

× 1

2

∏

p|2T

(1 − p−2)−1Tp(1; 4|T |, |T |T−1).

Furthermore,

Λ4|T |(w; Θ(·; 1,T)) =

|T |−m−1/4(−1)λ2−3(m+1)/2Λ4|T |

(1

2
− w; Θ(·; 4|T |, |T |T−1)

)
,

where the left hand side has only simple poles at w = 1/2 and w = 0 with
residues

|T |−m−1/42−3(m+1)/2(−1)λ 3

(2π)2
(4|T |)(m+3)/2

× 1

2

∏

p|2T

(1 − p−2)−1Tp(1; 4|T |, |T |T−1)

and

− 3

(2π)2
1

2

∏

p|2T

(1 − p−2)−1Tp(1; 1,T).
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Now the first statement follows from Weil’s converse theorem for half in-
tegral weights. The transformation formulae under inversion follow from
Hecke’s theorem. Since the termwise differentiated series for K(z; b,S) and
K(z; b,S, χ) converge uniformly on every compact subset of H, these series
define C∞ functions. The equations for the partial derivatives now follows
from Lemma 7.2.

We also need to know how Möbius transformations and differentiating

with respect to z interchange. The following lemma follows by a simple

computation.

Lemma 7.4. Let f : H → C be C∞ and A =

(
a b
c d

)
∈ GL+

2 (R). Then

∂

∂z
(f(A〈z〉)) =

detA

(cz + d)2
∂f

∂z
(A〈z〉).

Now set F(·; b,S, χ) = (H + K)(·; b,S, χ). From (7.11) it follows that

G(z) := F(z; 1,T, χ)

− |T |−m−12−3m/2−3(−1)λ+1χ(−1)C(χ, α,T)(−iqz)−3/2

×F
(
− 1

4|T |q2z
; 4|T |, |T |T−1, χ

( ·
q

))

vanishes for z = iy ∈ iR+. On the other hand, from Lemmas 7.3 and 7.4 it

follows that ∂G/∂z ≡ 0 on H. Thus G is holomorphic on H, and the identity

principle gives G ≡ 0 on H. Consequently,

F(z; 1,T, χ) = |T |−m−12−3m/2−3(−1)λ+1χ(−1)C(χ, α,T)

× (−iqz)−3/2F
(
− 1

4|T |q2z
; 4|T |, |T |T−1, χ

( ·
q

))
, z ∈ H.

Similarly, from (7.9) it follows that for F(·; b,S) = (H+K)(·; b,S), we have

F(z; 1,T) = |T |−m−12−3m/2−3(−1)λ+1(−iz)−3/2F
(
− 1

4|T |z ; 4|T |, |T |T−1
)
,

z ∈ H.

The last two relations are the essential ingredients in the proof of Weil’s

converse theorem. From this point on everything works as in the case of
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holomorphic Fourier expansions. There is one further situation in which

holomorphy is needed. If A =

(
a b
c d

)
∈ Γ0(4|T |), then

F(·; b,S)|3/2A(z) − χ4|S∗|(d)F(z; b,S)

is holomorphic on H. This can be shown again with Lemmas 7.3 and 7.4.

Thus Theorem 1.2 is proved.
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