M. Peter
Nagoya Math. J.
Vol. 171 (2003), 1-50

DIRICHLET SERIES AND AUTOMORPHIC
FUNCTIONS ASSOCIATED TO A QUADRATIC FORM

MANFRED PETER

Abstract. Starting from the reciprocity law for Gaussian sums attached to
an integral quadratic form we prove functional equations for a new kind of
Dirichlet series in two variables. For special values of one variable they are of
Hecke type with respect to the other variable. With Weil’s converse theorem
we derive automorphic functions which generalize Siegel’s genus invariant and
the automorphic functions of Cohen and Zagier.

§1. Introduction

Several methods are known how to associate a Dirichlet series or a
modular form to a quadratic form . If () is positive definite we have the
Epstein zeta function and Jacobi’s theta series. For () not positive definite
there are also theta series but they require a more elaborate construction.
If @ is integral these functions contain “global” information on () since the
coefficients of the Epstein zeta function (seen as an ordinary Dirichlet series)
and the Fourier coefficients of the theta series are representation numbers
of natural numbers by ). On the other hand, a suitable linear combination
of the theta series associated to representatives of the classes in the genus
of @ gives Siegel’s genus invariant. Its Fourier coefficients can be expressed
via the mass formula by the local representation densities of ().

In this paper Dirichlet series and automorphic functions are constructed
which contain “local” information on (. Among them is Siegel’s genus
invariant. It turns out — maybe not surprisingly — that the reciprocity
law for quadratic Gaussian sums lies at the heart of both the functional
equation and the automorphic transformation law.

We continue the investigation in [5], where a pair of Dirichlet series
in two variables was attached to every positive definite integral quadratic
form ) and their meromorphic continuation and functional equation were
proved. Then two particular cases were considered:

Received April 23, 2001.
2000 Mathematics Subject Classification: 11F37 (11F66, 11E45).



(1)

(2)

M. PETER

The first variable was specialized to certain values so that the resulting
Dirichlet series in the second variable has a functional equation of
Hecke type. For the corresponding holomorphic Fourier series on the
upper half plane a transformation law under z — —1/z was derived
by Mellin inversion. Since only one functional equation for every
Dirichlet series was available a transformation law for a congruence
subgroup could not be proved. Among the Fourier series which we
got in this way is Siegel’s genus invariant which indeed is a modular
form. Thus an immediate conjecture is that all the Fourier series are
modular forms.

For the quadratic form Q(z) = 22, the corresponding Dirichlet series
are — up to easily computed factors — Shintani’s zeta functions for
the prehomogeneous vector space of binary quadratic forms (see [7]).

The present paper generalizes [5] in two aspects: Arbitrary non-degenerate

integral quadratic forms () are allowed, and the associated Dirichlet series
in two variables are twisted by Dirichlet characters with prime modulus.
Thus the two applications above can be developed further:

(1)

With Weil’s converse theorem it turns out that the holomorphic
Fourier series attached to () are indeed modular forms of half-integral
or integral weight (Theorem 1.1). For the special case Q(x) = 2 they
are — up to a constant factor — Cohen’s modular forms [2] which
have “generalized Hurwitz class numbers” as Fourier coefficients.

For another special choice of the first variable the resulting Dirichlet
series in the second variable has a functional equation which is not of
Hecke type but with some care the proof of Weil’s converse theorem
still works. Thus a non-analytic C'*° function on the upper half plane
is constructed which transforms like a modular form (Theorem 1.2).
In the special case Q(x) = z? this function coincides with Zagier’s
automorphic function [13] whose holomorphic part of the Fourier ex-
pansion has Hurwitz class numbers as coefficients. This connection
between Zagier’s automorphic function and Shintani’s zeta function
gives a possible answer to a question of Datskovsky [3].

There is another connection between the Dirichlet series in two variables
considered here and modular forms. In [8] Siegel constructs a vector valued

function of two arguments 7 and s where 7 lies in the upper half plane
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and, after meromorphic continuation, s can take arbitrary complex values
outside a finite set of poles. This function has a functional equation in s
and shows automorphic behaviour in 7. Its Mellin transform with respect
to 7 is a Dirichlet series in two variables with two functional equations.
In the present paper this approach is reversed. First Dirichlet series are
constructed and then automorphic functions are derived from them. Nev-
ertheless the function ¢ defined in Section 3 shows great similarity with
Siegel’s — with one exception: The summation is unsymmetric in both
summation parameters whereas in Siegel’s case it is symmetric in one pa-
rameter. This means for example that here we can treat class numbers for
positive and negative discriminants separately whereas in Siegel’s case they
always appear together. It also means that here we have certain convergence
problems which do not appear in Siegel’s case.

T. Ueno [10], [11] investigated essentially the same Dirichlet series as
in the present paper but within the framework of prehomogeneous vector
spaces. The main Theorem 4.5 in [11] is essentially equivalent to Theo-
rem 1.1 below but is proved for the wider class of half integral matrices
T. Besides this result the papers are of conceptual interest since they give
a connection between such diverse fields as the theory of prehomogeneous
vector spaces and modular forms.

Denote the complex upper half plane by H. For z € C, set e(z) := 27,
For an arbitrary Dirichlet character x, let L(s, x) be the associated Dirichlet
L-series. For an odd prime g, let (5) be the Legendre character modulo ¢
and xo the principal character modulo ¢q. For a Dirichlet character x # xo
modulo ¢, let 7(x) be the Gaussian sum attached to x. Set ¢, := 1 if
¢ =1 mod 4 and ¢, := 7 otherwise. For a discriminant D # 0, let xp
be the corresponding Jacobi character. Let ZJ"*™ be the set of regular
symmetric integral m X m matrices. For T € Z7**™, there is a regular
matrix X € R™*™ such that 'XTX is a diagonal matrix with, say, p entries
1 and ¢ entries —1. Then sign(¥) := p — ¢ is independent of X and called
the signature of T. For r € R™, define Tft] := xTr. For h € Z, k € N,
define the Gaussian sum

Gl k%) = Y e(%z[;]).

r mod k
For b € N, n € Z, define the ”Singular Series”

S(s,m:b,%) ::Z%( 3 G(h,bk;‘I)e(_b};n)), Rs > m + 2.
k>1 h mod bk: (h,k)=1
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It can be continued to a meromorphic function on C. For b = 1, n > 0,
the value at s = m is the “Singular Series” of Hardy and Littlewood and
appears also in the mass formula as the product of the local representation
densities over all primes. As a Dirichlet series in s it obviously contains
local data about Q(r) := %[r] which only depends on the genus of ). The
following theorem constructs modular forms out of this local data.

THEOREM 1.1. Let T € Z"™, T :=det %, a € {1,2} andl € Z, such

that 1

Sal i= % + 5(—1)0‘*1 sign(¥) + 21 > o(m),
where o(m) = (m + 3)/2 for m odd and o(m) := (m + 2)/2 for m even.
Set kg = 254 —m. Setb:=1, 6 :=F, orb:=4|T|, & := |T|T~!. Set
S :=det&. For z € H, define

Ouilz:b, ) 1= brot|[22m/ et 2ot (1) (S

+ Z nfet/2718 (500, (1) tn; b, &) e(nz).
n>1

Then ©4(z; b, &) is a modular form of weight k4 /2 with respect to T'o(4|T|)
and

a) the theta multiplier system and the character x4 5| if m is odd,
b) the character X _jym/24p if m is even.

The smaller s,; is the more interesting are the values of S. For m odd,
(m + 3)/2 is a critical value. The following theorem states automorphic
behaviour in this case.

THEOREM 1.2. Let m be odd, T € Z7*™ and T := det¥. Set )\ :=
(1+tsign(%))/4, where the sign is chosen so that A € Z. Setb:=1, & := %,
orb:=4|T|, & :=|T|T~L. Set S:=detS. For z = x + iy € H, define

.7:(2, b, 6) I:7T_12(m_5)/2b(m+3)/2‘5‘1/2(—1)>\+1

m+3 m .
+ Z S(T’ (=1) D2 5ign (T n; b, 6) n'?e(nz)

n>1

3
42 pm)/2, 172

(2m)?
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x [ T =02 T(1:5.6) + 3 an(b, &) (4]S*[n%y) e(—|5* [n%2) .

p|2T n>1

where the polynomials T),, numbers a, and the function v are defined in
Lemma 6.2, (7.8) and (7.4) respectively. Then F(z;b, &) transforms like a
modular form of weight 3/2 with respect to T'g(4|T|), the theta multiplier
system and the character x4s)-

Here is an overview of the proof. In Section 3, Dirichlet series
pa(s,w;b, T, x) and Eisenstein-type series ¢q .. (7,5;0,%, x) are defined.
Both have Gaussian sums as coefficients. The function p, is a Mellin
transform of ¢ ., see equation (3.1). For technical reasons, the series
Ya,uu(T, 80,0, %, x) is introduced. It is similar to ¢4, but one of the two
summations is symmetric. In Lemma 3.1 it is shown that the ¢s are linear
combinations of the ¢s. In Section 4, the Dirichlet series 74(s,w;b, %, x)
are introduced. Their coefficients are numbers of solutions of quadratic con-
gruences. The functional equation of the Hurwitz zeta function shows that
To is a linear combination of the ps (see equation (4.1)). In Section 5 the
Dirichlet series Dy (s, w;b, T, x) are introduced whose coefficients are values
of Singular Series at complex arguments. Equations (5.1) and (5.2) show
that in essence, D, is the quotient of 7, and the Riemann zeta function.
The Mellin transform of ©,; is D, at a special value of s. Thus Weil’s
converse theorem can be applied to prove Theorem 1.1. The proof of The-
orem 1.2 is along similar lines but a component 7. of 7, must be isolated
to avoid singularities of this function.

Acknowledgements. I would like to thank Prof. H. Klingen for sev-
eral useful discussions on the topic of this paper, and the referee for his
suggestions for improvements.

82. A reciprocity law

For an odd prime ¢ and a Dirichlet character y mod ¢, define

_
q

Ahy) =Y Xa)e(

a mod ¢

), heZ.

A simple calculation shows that

(2.1)  Ah,x) = x(=DAR,X), A(h,x) = x(0)A(h, x) if (b,q) = 1.
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The properties of Gaussian sums imply

T(x)x(h) , X # xo mod g,
)‘(h’X) = q— 1 , X = X0 mod Q7q|h7
-1 . X =xo0 mod q,q [ h.

The following Gaussian sums are central to this paper: For ¥ € Z7*™
T :=det%, ¢ f 2T a prime, x a Dirichlet character modulo ¢, a € {1,2}
and h € Z, k € N, define

Ga(hak;ga X) = Z G(a?kafz)X(b)
a mod k,b mod g¢: kb+(—1)*ag=h mod kq

An immediate consequence is
(2'2) Ga(—h,k;‘l, X) = X(—l)Ga(h,k;‘I,Y).

LEMMA 2.1. For® e Z"™, T :=det%, q f2T a prime, x a Dirichlet
character modulo q and vy € Z™, we have

> () = (CEE @)

r mod ¢

where () denotes inversion modulo q.
Proof. From [4], § 62, it follows that there is some X € GL(m,F,) with
(2.3) txTX = diag(dy,...,dn) mod q.

In particular, T(det X)2 = dy - - - d,,, mod ¢. Thus the left hand term ¥ in
the lemma equals

SIS w)ﬁ( > e(—gdﬂxiJr%nyu)),

where !Xy =: 9 = Y(y},...,y.,). From the properties of the Gaussian sum
associated to Legendre’s character it follows that for (a,q) = 1, the p-th
factor equals

(G ada)?) (<5 )a e,
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Since (%) = X diag((dy),- .., (dm)) X mod ¢, we have

s (CEL) Y x@ () (B @),

a mod ¢

which is the right hand term in the lemma.

LEMMA 2.2. For T € Z"™, T :=det¥, q [2T a prime, x a Dirichlet
character modulo q and h,k € N, we have

> Al e 7 Tl)

r mod gk

= 2—3m/2q—m/2€gmem'sign(‘zj/4‘Tyl/g_mh_m/ka/Q(
x MTIEGLx(=) )e(— =% 713]).
3modz4;;2hT| (q) ) ( 4q2h )

Proof. The lemma rests essentially on Satz 2 in [9] which is a general
reciprocity law for quadratic Gaussian sums associated to quadratic forms.
Let y € Z. Setting

1
A= k€, B = 2¢°hT, t == 50’

the theorem gives

> e iz )

3 mod k
_ 273m/2q7me7risign(‘I)/4‘Tll/mehfm/2k,m/2

ko ___ 1
x ) 6(— P TR 1[3]+—t03)-
4q°h q
3 mod 4q2h|T|
Thus the left hand term in the lemma equals

S Ay Y ekl + o)

n mod ¢ 3 mod k
_ 2—3m/2q—m€7ri sign(‘l')/él’T‘I/Z—mh—m/ka/Q

<Y (T W) X AEbloe(; ).

3 mod 4¢2h|T| n mod ¢q
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Applying Lemma 2.1 to the innermost sum and using (2.1) proves the
lemma.

The following reciprocity law can be regarded as the nucleus of this
paper.

PROPOSITION 2.3. For ¥ € Z7"™™, T := det%, q f 2T a prime, x a
Dirichlet character modulo q, o € {1,2} and h,k € N, we have

Ga(h, k: %, X) _ 2—3m/2’T‘1/2—m€7ri(—1)°‘ sign(‘l)/4h—m/2k,m/2
et (2"
x O 0, TG (kAT 71T x( )",

where

_1\(a—1)m m
Olv.0,%) = et (E—TTY,

Proof. We distinguish three cases.
Case 1. q f hk. A simple calculation shows that, since ¢ f k,
(2.4) Ga(h, kT, x) = G((=1)"hg, k; D)x (R)X (K)-
Satz 2 in [9] gives for u,v € N the identity
(2.5) G(u,v;%) =
e SIEnD/A | 2mmg=Im 2y mm 22 G (—y, 4| T us |T1T7).
Therefore

Ga(h, k; T, x)
=) sign(S) /4| L/ 2-mg=3m/2 g\ =m/2m/2
XG((=1)*k, 4|T|hg; | T )x ()X (K).
Since q [ 4Th,
G((=1)*" k. 4|T|hg; |T|T71)
= G~ gk AT TS Y e(%(—1)a—14hk:r25—1[;]).
r mod ¢

Using a representation of type (2.3) for TS ~! shows that the right hand
sum equals
( (—1)a—1hk>mqm/2€m (Z) .
q

q q
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Putting everything together gives

= T sien(D)/4 | 1/2=mg=3m/2 p =m/2m /2y (b Yy (k)

(_1)0&71}”{ ™ m T a—1 . -1
x<?) " (E)G((—l) ak, A|T|h; | T|T ).
Replacing h, k,a, T, x in (2.4) by k,4|T|h, o — 1, mz—%ﬂ;)m gives

. -1 —(\"

Gamr (kAT T X (1))
_ (K AT|h

_ _1\a—1 . 1
= G0 kg, 4TI 71T ) (7 ) " xlTin (<)

The last two equations give the statement of the proposition in Case 1.

Case 2. qlk,g|h. Then

26) CalhkT)= 3 x®G((-1 (2~ ) ki7)

Lemma 2.2 gives

—mo—3m/2 m | _ me mi(—1)% sign(¥)/4 2—m

_ -1)mT 4/ —1\m(e=1) |T|
“h m/gkm/z(( )X _qje-1 (_) AIT ( )
. ((=1)*) p X(4|T1) .
\m _1)a71k.
X A(T‘Z_l , (—) )e((iT‘Z_l )
r mod 4gh|T|
Replacing h, k, o, %, x in (2.6) by k,4|T|h,a — 1, ]T|T*1,Y(;)m and using
(2.8) gives the statement of the proposition in Case 2.

Case 3. qlh,q [k or qlk,q f h. Then G4(h,k;%,x) = 0. In order to
see this we assume the contrary. Then there are a and b with x(b) # 0 and
kb+ (—1)*aq = h mod kq. This implies g /b and kb = h mod q. Therefore
qlk, qlh or g f k, ¢ f h which contradicts the conditions of Case 3. In the
same way it follows that the right hand term in the proposition vanishes.
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§3. Meromorphic continuation of p

For ¥ € Z"™, T := det%, b € N, ¢ [ 2Tb a prime, x a Dirichlet
character modulo ¢ and « € {1, 2}, define

Z Ga(h7 bk; Ta X)

Ry , Rs>m+2, Rw > 1.

pa(s,w;b, T, x) =
hk>1

For p,v € {0,1}, define

V211 G (h, b
Callt iT0) g g > ™ 13,

¢a7M7V(7—73;b7‘I’ X) = (hQ —|—Tk2)s ’ 4

hk>1

Functions of this type were already considered in [5]. The method of that
paper will be used here again. First p is written as a Mellin transform of
¢. For Rs >m+2, Rw > 1,

(3.1)
Pa(s,w;b, %, x) =
F(s—l—u fm) F<w—21—u) F(s—i—w—;—;H-y_%)
/%u, S—I—w;—'u—i_y—%;b’S,X>7(8+V)/2_m/4_1dT.

This identity will be used at the end to derive the continuation of p from
that of ¢. In order to get the latter the following simplified version of ¢ is
introduced. For a € N, define

Z kv=m2hi Gy (ah, bk; T, x)

¢a7M7V(7—7 s;a,0,%, X) = (hQ + Tk;Q)s ’

h£0, k>1
>0, Rs > % 13

LEMMA 3.1. For X e 2™, T :=det%,beN, q [ 2Tb a prime, x a
Dirichlet character modulo q, o € {1,2} and p,v € {0,1}, we have

(1 + (_1)u+u+16(71)a+17risign(3)/2>qba’u,y(T’ 15,7, %)
= Q;Z)a,,u,,l/(Ta 53 ]-7 ba ‘Z, X)
+ (_1)u+y+1bm/26(—1)°‘+1m‘ sign(‘l’)/4’T‘I/Q—m2—3m/20(x, a, (I)T—s

. m
X Yot ip (fl, 53, 4|T, \T|z*1,7(—) )
q
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Proof. From the reciprocity law in Proposition 2.3 and (2.2) it follows
that the second summand on the right hand side equals
(_1)M+V+1bm/26(*1)°‘+1ﬂ'i sign(%T)/4 ’T‘1/27m273m/20(x, o, )
kMR Gy (bh, AT | TS0 % () ™)

% (h21 + k2)°

R0, k>1

_ (_1)u+y+1€(—1)°‘+17ri sign(%)/2 Z kuhuim/QGa(k7 bh; T, X)
(h2T + k2)s

hk>1

kMhY=m/2G o (—k, bh; T, x)
1 (e} ) ) )
+ (_1)M+ Z (h27' + k:2)5

hk>1

Adding ¥, (7,5;1,0,%, x) gives the statement of the lemma.

For the analytic continuation of v the following facts are needed. For
TeZ™, T :=det%, h€Z, k € N, define

A(h,k; %) == #{r mod k | Tt] = h mod k},
and for b € N,
A T
L(s,h;b,%) := Z%, Rs > m + 1.

Define
P*(s5;5,%) :=((s —m+ 1)71L(8 - % + 17X(—1)m/24Tb2)7

P(s:b,T) := P*(5;0,%) [[ (1 —p" ) (25 —m —2),
p|2Tb

if m is even and

P*(s;b,%) := P(s;b,%) :=

C(s—m+ )7 —m o+ 1) T (1 p™ 72 (25— m — 1),
p|2Tb

if m is odd.

LEMMA 3.2. Let T € Z7"™™, T :=det %, b € N.



12 M. PETER

a) For h € Z\ {0}, the function L(s,h;b,T)P*(s;b, %) is entire and for

—00 < €1 < co < 00, there is some ¢ > 0 such that
|L(s, h;b,T)P*(s;b,%)| < (|R|(|Ss] +1))¢, 1 < Rs < co.

If m is odd and (—1)(m*1)/2Th s not a perfect square, then already
the function L(s,h;b,T)P*(s;b,%)(2s —m — 1)~1 is entire.

b) The function L(s,0;b,%)P(s;b, %) is entire and for —oo < ¢1 < ca <
o0, we have
|L(s,0;b,%)P(s;b,%)| < 1.

Proof. This is a restatement of Lemmas 3.8 and 3.9 from [5]. The
assumption that ¥ is positive definite was never used in their proofs. Ob-
serve that for m odd and (—1)™~Y/2Th not a perfect square, the character
X(—1)(m—1)/245, 72 1S not the principal character. Here h, is defined as in [5],
proof of Lemma 3.8. Thus the factor (s — (m + 1)/2) in the equation after
(3.17) of [5] is not needed to get an entire function.

The following lemma gives the meromorphic continuation of ¢ in certain
cases.

LEMMA 3.3. Let T € Z7™, be N, a € {1,2}, u,v € {0,1}, g f 2Tb
a prime and x a Dirichlet character modulo q. Then

Ve (T, 5+p15 1,0, F, X)P(2S+M—V+%—1; b, S)F(%—maX{Q v—p}—1)7"
is continuous on R x C and entire in s for 7 > 0 fizved.

Proof. The following method is borrowed from the theory of real ana-
lytic Eisenstein series. Let 7 > 0, Rs > m/4+ 3. Dividing the h-summation
into complete residue systems modulo kbq gives

Yau (7,8 + 151,60, %, X)

1
— —p—2s .
— (bg)H kaiwm 5 Y. Gala,bkiT,X)
k>1 1<a<bgk

y Z a(bgk) ™t + 1)~ YD Ga(0,bk; T, X)
ZEZ bqk: 1y l) +T(bq)_2)s+u = k2s+2pu—v+m/2
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Now the l-sum is transformed with Poisson’s summation formula (see [5],
Lemma 3.4, which is a reformulation of a result of [8]). This gives

¥ = (ba) > (2mr(s) 2 ()

s
le“\l\Qs ! (47TW 1/2 878)6_27r|l|7—1/2/(bQ)
10
1 al
X Z L2s+pu—v+m/2 Z Ga(a,bk; T, x) € (b k;)
k>1 1<a<bgk

o os B 7 \1/2-s 1
+ (1 — p)(bg) 272272 (2s — 1)T'(s) 2( ) ZW

k>1

x> Gala,bk; T, x)

1<a<bgk

_sx Ga(0,bk;F, x)
o (1 B M)T Z k?s—u+m/2 )
k>1

where ¢ is the confluent hypergeometric function. Since
l
> Galabks T x)e( 7o) = BRAC=L D A((=1)* 7L, bhk: )
bqk
1<a<bgk

and

Ga0.k: 50 = (%) Y0 MOG(-D e )

¢ mod ¢q

if g|k and G(0,bk; T, x) = 0 otherwise, it follows that
4|l
¢ — b(bq) n— 25(27_‘_)2511 ( ) Zlu|l|2s 1 ( W’ ’ 1/2’ ,S)

x A(—Z,Y)L<23 tp—-v+ 5 —1, (=1 b,i)e’%”“l/g/(b@

F (1= w)b(bg) 2 w222 (25 1)F(s)_2<@>1/ N0T)
><L<25— v+ % - 1,0;b,§>
— (1= T (25— = 23D MG e 0 D),

¢ mod q

Multiplying both sides with P(2s+pu—v+m/2—1;b, T)['(2s — max{0,v —
p} —1)~1 and using Lemma 3.2 finishes the proof.
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Now the meromorphic continuation of ¢ can be proved.

LEMMA 34. Let ¥ € 2™ T :=det%, a € {1,2} and p,v € {0,1}
such that 2(u + v) + (1) sign(T) £ 0mod 4. Let q | 2T be prime
and x a Dirichlet character modulo q. Set b :=1, & := T or b := 4|T,
S :=|T|T7L. Then

ba,up (T, 80,6, X)P(QS —p—v+ % -1 1,T>F(23 — 2max{p,v} —1)7!
is continuous on R x C and entire in s for fived 7 > 0.

Proof. Notice that by the assumption the prefactor of ¢ in Lemma 3.1
does not vanish. Therefore Lemmas 3.1 and 3.3 give the statement in case
b=1, 6 = %. On the other hand, the reciprocity law in Proposition 2.3
shows that for s > m/4 + 3, 7 > 0, we have

(3.2) Pauw (1,51, %, X)
_ 273m/2 ’T‘1/27mem‘(—1)0‘ Sign(T)MC(X, a, T)Tﬁs

. m
% Gt (sl TIT X (2)).

With this identity the statement for b = 4|T|, & = |T|T~! can be deduced
from that for b=1, 6 = %.

The following lemma gives an asymptotic development for ¢. It is very
similar to the one given for v in the proof of Lemma 3.3, with one exception.
Since the exponentially decreasing factor is missing in the [-sum one cannot
derive the meromorphic continuation of ¢ from this development. Therefore
the continuation of ¢ was first proved by using ¥. Once this is known, the
meromorphic continuation of the terms in the asymptotic development of
¢ can be deduced.

LEMMA 3.5. Let ¥ € 2™, T :=det ¥, a € {1,2} and p,v € {0,1}
such that 2(p + v) + (=1)% 1 sign(T) # 0mod 4. Let ¢ J 2T be a prime
and x a Dirichlet character modulo q. Set b :=1, & := T or b := 4|T,
& := |T|T~L. There are entire functions

D;,ll(s; b7 E’ 67 X)7 D;Tu(sv b7 z: 6)7 Da,u,ll,p(s; b7 z: 67 X)7 p 2 07

with the property: For every o1 € R™ there is some r(o1) € N such that



DIRICHLET SERIES AND AUTOMORPHIC FORMS 15

Ra,u,u,r(TaS;ba ‘I7 67X)
= bapuu (150,60 (25 —p—v+ T~ 11,5)
xI'(2s — 2max{u, v} — 1)1

r—1

- Z TM?S?pDa,u,V,p(SS b, %, 6, X)
p=p

— 77Dy, (550, %, 6, x) (1 — )

—r(Fm/2=s p** (5 h T S)A(0,X)

[TRY

is continuous on RT x C and entire in s for fived T > 0. For Rs > o1,
|s| <K, 7>0 andr >r(o1), we have

Ra,u,ll,r(Ta 5,0,6,%, X) <7, K0 7_—r+1—§Rs+u.

Proof. Again the h-summation is divided into complete residue sys-
tems modulo kbg and Poisson’s summation formula is applied (see [5],
Lemma 3.1). This gives for Rs > m/4 + 3, 7 > 0, the identity

Pauw(T: s + 10,6, X)
1

_ —25—
= b(bq) HZ k2s+p—v+m/2—1
k>1

S ALY, (z, s, L)A((—l)az, bk; &)

2
= (bq)
_1__/1’ m —2s+v—m/2,_—s o @
2 b™q T C(Qs v 2)
x Y x(OG((-1)*e,¢; ),
c mod ¢q

where h,(l,s,7) is the one-sided exponential Fourier transform of x#(7 +
x?)757H. Tts asymptotic behaviour is given in Lemmas 3.2 and 3.3 of [5]. If
terms for [ and [ — [I(bgk)~!]2bgk are grouped together, the [-sum becomes
absolutely convergent and the value of this absolute sum is O(k™*1). Plug-
ging in the asymptotic representation for h,(l,s, ) gives for the [-sum the
expression

A0, %)y (o, s, %)A(o, bk; &)

(bq)
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—8 7‘_1
+s_lt<(b%)2) ZT_ppp(S)Ca,uvﬂ(k7b56’X)

=

_ — o * T
FS Y AGDAD L0k S) B (L s ).
140

where

Ca,,u,ﬂ(kv ba 67 X) <<u,b,q,p km+17 pp(s) € Q[SL

* —2r4+1+u,_—r+1—Rs
Ry,r <<7’7q7u W T

ifre N\ {1}, Rs>2—r, 7>0, |s| < K. Define

1
Dy (54 wib, 5,6, x) i= =g 22 Y T (G (-1) e, 5 ©)

c mod ¢q

x 4(23 - %)P(Qs - % - 1;1,s)r(23 o 1)L

D;fy(s—i—u;b,‘I,G)
= q*lL(23+M—y+%—1,0;b,6)P(2s+u—v+%—1;1,$)

721727 (2s — )I(s)™2 , u=0 }

(2s)7! , w=1

- Ca,pu, (k,b;G,X)
Da,u,u,p(s + 150, %, 6, X) = b(bQ) s Mpp(s) Z kgg_i_pu_,/_;,_m/g_l

k>1

x (25 — 2max{0,v — u} — 1)7! {

><P<2s+,u—1/+% - 1;1,‘3)I‘(23—2max{0,1/—,u} -1)~h

Then D* and D** are entire and, if r > r(o1),

Ra,u,V,T(Ta s+ u;0,%, 6, X)
—925— — * T —
— b(ba) =S A OR (1 g )5
= (bg)
m ar.
xL(2s+u—u+5 1, (-1) l,b,G)

><P<2s—i—,u—1/—|— % - 1;1,‘3)I‘(23—2max{0,1/—,u} -1~
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is continuous for Ns > o1, 7 > 0 and holomorphic in s for 7 fixed. If
|s| < K, Rs > oy, the value of this function is O, i s, (7" 717%%). Finally,
since D*, D** and the term in R which contains ¢ as a factor are entire by
Lemma 3.4, it follows that for fixed 7 > 0, the function

r—1
Z TﬁSipDa,u,V,p(s +1;0,%,6,x)
p=4

is holomorphic on Rs > 1. Choosing r — p different values for 7 and
solving the corresponding linear system for the functions D shows that
Doy p(s+1;0,%,6,x), p< pp < r—1, are holomorphic on s > 1. Since
o1 € R™ is arbitrary the functions D are in fact entire.

Now the functions p can be continued meromorphically.

THEOREM 3.6. Let € € Z™™, T = det¥, q¢ [ 2T prime, x a
Dirichlet character modulo q, o € {0,1} and § € {0,1} such that 23 #
sign(¥) mod 4. Let a(x) = 1 for x = xo and a(x) = 0 otherwise. Set
b:=1,6:=F orb:=4|T|, & :=|T|T L. Then

ptsat @o0r (3o 04 1)) e (o2 )”

2 2
a(x(3)™)
><P(8+w—1;1,f)(w—1)“(X)(s—1—%) Ha

is entire in s and w and O ((|Sw| + 1)%e™3%/2) on every set of the form
(3.3) {(s,w) €C? | ¢ < Rs,Rw < 9, |s +w| < 3},

where c1,ca,c3 and ¢ = c(c1,c2,c3) are constants. Furthermore, we have
the functional equation

(3.4) ,Oa(37 w;1,%, X) _ 273m/2’T‘1/27m€m'(71)°‘ sign(‘I)/4C(X, a, (I)
m . _m 1 ()"
<poca (wet s = Fraprlrie x(0)").

Proof. Choose p,v € {0,1} such that p+v = 3. From (3.1), (3.2) and

Lemma 3.5 it follows that, for s > m +5, Rw > 1 and s* :== (s+w+ p+
v)/2 — m/4, we have

1 -1 -1
(3.5) pa(s,w;l,T,x)F(§(8+w+ﬁ - %)) F(s+w -6 % - 1)



18 M. PETER
a(x) m ax(3)™)
xP(s+w—11,%)(w—1) X(‘S_l_E) N
s+v  m\—1l_ /w4 p\-1! a(x) m @)™
F<2 4)F(2)(w1) <812)
X{ |:/ T(S+V)/2—m/4_1Ra,u,ll,r(7_7 S*; 1717 z’ X) dT
1

r—1

~1
D *1,%,%
+;(S+V)/2—m/4—5*_p+u avN7V7P(sa ) ) 7X)
~1
D* (s:1.%. % 1
e g a e LRS00 -

—1
T mAT 2 tn
+ 2—3m/2‘T’1/2—m€m‘(—1)°‘ sign(‘l)/4C(X,a,(Z)

x [/ PRI R (7855 AT T TIE T (2) )
1 q

+ § : - D ( S 4|T), T, T —()m)
— S . —
(s+v)/2+m/d—p+uv oThHee T s X q

—<s+u>/;im/4+yD3 (s ms oy (2) ) a -
—1

—(s+v)/24+m/4+(1—-v)/2+v

XDy (54|, %, \T|§*1)A(o, X(g)m)} }

The factor in front of the curly brackets cancels the denominators therein.
The estimate for R in Lemma 3.5 shows that the integrals define holomor-
phic functions on

D551, T, DA, )]

(3.6) {(s,w)eC* | §Rs>2—2r+%+u,

Rw > 2 —2r+ pu, §Rs—|—§)‘ﬁw>201—|—%—u—y}
if o1 € R~ and r > r(01). Thus the left hand side of (3.5) can be continued
holomorphically to the region (3.6). Since o1 € R~ is arbitrary the left
hand side of (3.5) is entire. Its growth on sets of the form (3.3) can be
estimated using Stirling’s formula. This establishes the case b =1, & = ¥.
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The reciprocity law in Proposition 2.3 immediately gives (3.4) for Rs >
m+ 2, Rw > m/2 + 2. From this identity the case b = 4|T'|, & = |T|T~!
follows easily.

Somewhat more can be deduced from the representation (3.5). The
factors (w — 1)%X) and (s — 1 — m/2)a(X(5)m) are necessary only to cancel

the poles of the terms which contain D%

v and DY as a factor. This gives

LEMMA 3.7. Under the assumptions of Theorem 3.6 there are entire
functions fg(s,w;b,6,%,q) and gs(s,w;b,&,%,q) independent of a such
that

pa(s,w;b,G,X)F(%(Herﬁ_ %»71

-1
X F(s—l—w—ﬁ— % —1) P(s+w—-1;1,%) — :}L(i()lfﬁ(s,w;b,GfI,q)

(=1)*si Ty ax(3)™)
_mi(—1)%sign()/4_m(2a—1) (1 T\ AX\g) T .
‘ eq (q)s—1_m/295(87wab,6,f,q)

is entire on C2.

This lemma will be useful in the next section when the number of
possible poles of the function 7 is reduced.

8§4. Meromorphic continuation of 7
For ¥ e 2™, T :=det%, a € {1,2}, be N, ¢ f 2Tb a prime and x a
Dirichlet character modulo ¢, define

A((—=1D)* 1 h, bk: DA (h
Ta(s,w; b, %, x) := Z (=1 hw;{js’lz) ( ’X), Rs > m + 2, Rw > 1.

hok>1

Next a connection between 7 and p will be established (cf. [5], Section 6).
Let Rs > m + 2, Rw > 1. Dividing the h-summation into complete residue
systems modulo bgk gives

(w—1)pa(s,w;b, T, x) =
0 " w-DY > GalabkT0¢ (w5 ).
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where ((w, k) denotes Hurwitz’ zeta function. The right hand side converges
uniformly on every compact subset of

Up:={(s,w) €C?* | Rs > R+m+4, Rw > —-R} (R>1)
and therefore defines a holomorphic function Fr(s,w) on Ug. On Ur N
{Rw < 0} the functional equation of {(w, ) gives

2T

w—1
E> T(1 — w)(w — 1)

FR(S’U}) = q_l(
" <€m(1w)/27a+1(3 +w,1 —w;b, T, X)
+ e—iﬂ(l_w)/Qx(—l)Ta(s + w, 1- w; b’ z’ X)) ’

Solving this linear system for 7, gives

(4.1) Ta(s+w,1 —w;b,T,X)

1 /2m\—w .
_ = T imw/2 1 .

I e—iww/QpaJrl(s, w; b, T, X))

on Ur N {Rw < 0}. Since the p, are meromorphic on C? the same follows
for 7,, and consequently (4.1) holds on C2?. More precise information is
given in

PROPOSITION 4.1. Let T € Z"™, T := det%, q f 2T a prime, x a
Dirichlet character modulo q, o € {1,2} and § € {0,1} such that 203 #
sign(¥) mod 4. Setb:=1, &:=F orb:=4|T|, & :=|T|T L. Then

1 -1
(4.2) 7o (s,w; 0,6, x)['(1 — w)_lf(§ (s + 8- %))
m)a(x(;)m)

X F(s—ﬁ—%—1)_1P(s—1;1,‘$)(s—|—w—2—§

is an entire function of s and w. It is bounded by O((!%w[ + l)ce”‘g“”) on

every set of the form
{(s,w) e C? ‘ Is|] < ez, <Rw < CQ}

where c1,co,c3,¢ = c(c1,co,c3) are constants.
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Proof. The statements follow immediately from (4.1) and Theorem 3.6.
Note that by Lemma 3.7 the possible poles of p, and p,4+1 at w = 1 cancel
each other.

Next we will reduce the set of possible poles of 7 considerably. This is
done with the following simple tools.

LEMMA 4.2. Let (sg,wg) € C2, U an open neighbourhood of this point,
f(s,w) holomorphic on U and f(s,w)(s — so) entire. Then f(s,w) itself is
entire.

Proof. The entire function F(s,w) := f(s,w)(s — s¢) has a Taylor
development

F(s,w) = Z agi(s — 50)" (w — wo)’

k,l>0

about (sg,wp). Since it converges everywhere, |ax| <g R™*7! for k,1 >0
and R > 0. For w close to wp, we have (sg,w) € U and therefore

Zam(w —wp)! = F(sg,w) = 0.
1>0

Thus for (s,w) € U, s # sy,

f(s,w) = (s —s0) LF(s,w) = (s — s0) " Z ar (s — $0)%(w — wp)!

k>1,1>0

= Z ar(s — s0)* 1 (w — wo)'.

k>1,1>0

Since the right hand power series converges on C2, the function f can be
extended to an entire function on C2.

LEMMA 4.3. Let T € 2™, T :=det¥, be N, q [ 2Tb a prime, X a
Dirichlet character modulo q, k € N and a € {1,2}. Then

> A((=1)*h, b D)A(R, X)
h mod bgk

_1\ym/2
(M#T))\((LX) 3 Q|k7 m even,

_ m_ 1—m/2 —1)(m=1)/2+4a
= (BR)"g T (G (1) gl moodd, x = (3),

0 , otherwise.
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Proof. Case 1. ¢ [ k. Then the left hand term in the lemma equals

Do AMhix) DL A1) he bk T).

h1 mod ¢ ho mod bk

Since the first sum vanishes, the lemma follows.

Case 2. q|k. Then a simple calculation shows that the left hand term
in the lemma equals

(4.3) Bk)™ g™ > A )A(=1)*  h, g D).
h mod ¢

Case 2.1. m even. From [5], Lemma 3.5, it follows that

—1)m/21

A((-1)*h, ;%) = g™t + ™! (7( )
q

where d4(h) = 1 if g|h and d4(h) = 0 otherwise. Thus the sum in (4.3)

equals
—1ym/2T
m/z((ZD™ET
q ( 7 )/\(O,X)

)@, (h) ~ 1),

and the lemma follows.

Case 2.2. m odd. Then [5], Lemma 3.5, gives

B B B -1 (m—l)/2T —1)e-1p
A((_l)a 1h,q;§) :qm 1+q(m 1)/2(( ) ( ) ))

q
and the sum in (4.3) equals
(m—1)/ (_1)(m—1)/2+oc—1T ﬁ
gt 2( . >hzo;1 /\(h,x)(q)
mod ¢
—1)(m=1)/24a=1p
:q(m—l)/2<( ) p )ql/Qeq Z Y(‘@(%)-

a mod q

If x = (;), the last sum equals (%)(q —1). If x # (;), it equals 0. Thus
the lemma follows.

Define

An(s;b,S,q) =
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(=nm/2s _
—_— , M even, X = xo

q
b1 (g — 1)g™2=5¢ (s —m) - Eq(%)’ m odd, xy = (3)’

0 , otherwise.
The central result of this section is

THEOREM 4.4. Let ¥ € Z™, T = det¥, q ) 2T a prime, x a
Dirichlet character modulo ¢ and o € {1,2}. Setb:=1, & : =% orb =
4T|, & == |T|T~L. Set S:=detS. Then

(4.4) (Ta(s,w; b,6,x) — (w— 1)71Aa(5; b, S, q))

m)a(x(;)’")( m )a(x(;)m)
2

xP*(s—l;l,T)(s—i—w—Q— >
is entire. Furthermore, we have the functional equation

Ta(saw; 1,%, X)

27N\ s+H2w—2—m/2 s—w —3m
) (AT |22y (—1)23m/

= C(x,a, %) —
(%0, T)(
1/2—m_—11(q _ m_._
x [TV m (1 w)F(2—|—2 s w)
1

T _ _m Z(_1\otl o
x[sm2<s+2w 2 5 +2( 1) 51gn(‘I)>

xra(5,24 2 — s — w715 % () ")
q

X2 s B (s - B 4 51 sien()

. m
x Ta+1<8,2 n % — s —w; AT, \Tys—l,y(—) )}
q
Proof. First we get rid of most of the possible poles. Choose 5 € {0,1}

such that 23 # sign(¥) mod 4. By definition, 7, (s, w;b, &, x) is holomor-
phic on U := {Rs > m + 2, Rw > 1}. Consequently, the function

(4.5)  7a(s,w;b, 6, x)(w — 1)I‘<1<s +3 - %))_IF(S - 08— % — 1)_1

2

a(x($)™)
xP(s—l;l,T)(s—kw—Q—%) g
is also holomorphic in this region. According to Proposition 4.1, the func-

tion (4.5) becomes entire after multiplication with (w — 1)7'T'(1 — w)~!.
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Lemma 4.2 now shows that in fact (4.5) is already entire. On U, we have
)‘(h7 X) -1

4.6 Ta(s,w; 0,6, x) = — = L(s—1,(-1)*""h;b,6).

@6 7l 0= L 1. )

Let 03 € R™. Lemma 3.2 shows that there is some ¢ = ¢(o1) > 0 such that
after multiplication by P*(s — 1;1,%), the series (4.6) converges uniformly
on every compact subset of U(o;) := {Rs > o1 +1, Rw > ¢(o1) + 1}. Thus
the function

m)a(x(;)’")

(4.7) Ta(S,’w;b,G,X)P*(S—1;1,T)(8+w—2——

. (w-1)

is holomorphic on U(o;) and, after multiplication with the entire function

P(5(s+8-5)) T(s=5-5 -1) Pe-LLDP (- 11D,

it becomes entire itself (see (4.5)). Again by Lemma 4.2 it follows that (4.7)
is already entire.

For 0 < x < 1, the function h(w, x) := ((w, k) — (w — 1)~! is entire in
w. Expanding ((w, k) — ((w) into a Dirichlet series for ®w > 0 shows that
|h(w, k)| < k=3/2 for 0 < k < 1, |w — 1] < 1/2. Thus the double series

H(s, w) ::Zﬁ 3 A((—l)a_la,bk:;G)A(a,x)h(w,ﬁ)

k>1 1<a<bkq

converges uniformly on every compact subset of V := {fs + Rw > 9/2 +
m, |w — 1| < 1/2} and therefore defines a holomorphic function on V. On
V'i={Rs >9/24+m, |w—1] < 1/2, Rw > 1}, we have
A(s,w) = Ta(s,w;b,6,x) — (bg) " H(s,w)
_ (w _ 1)—1bm—wqm/2+2—s—2w(q _ 1)C(5 +w—m— 1)
(M m even, Y = x
q ’ ) 0
_1)(m=1)/24ag .
x GQ(( 2 ) ) mOdd,X:(a)a

q
0 , otherwise.

Since (w — 1)A(s,w)|w=1 = Aa(s; b, &, q), we have

Ta(s,w;b, 6, x) — (w — 1) Ag(s;, S, q)
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= (bq) Y H(s,w) + (w —1)71 ((w —1A(s,w) — Ay(s; b, S, q))

on V', and the right hand side is even holomorphic on V. Thus (4.4) is
holomorphic on V. Since (4.7) is entire, (4.4) becomes so after multipli-
cation with (w — 1) (note that the factor (s — m/2 — 1)a(X(3)m) is needed
to cancel a pole of P*(s —1;1,%)). Applying Lemma 4.2 again shows that
(4.4) is entire.

Finally, the functional equation for 7, follows from that for p, (see
Theorem 3.6) by means of (4.1).

Finally, the analogue of Theorem 4.4 for untwisted Dirichlet series is
needed. Define

A((=1)* L h, bEk;
Ta(s,w; b, %) := Z ( ;21%51 ’T), Rs >m + 2, Rw > 1.

hk>1

THEOREM 4.5. Let ¥ € Z"™, T = det%, a € {1,2}. Set b :=1,
S :=F orb:=4T|, G :=|T|ZT"'. Then

(4.8) (T(s,w; b,&) — b1 (s —m) ! )

w—1

xP*(s—l;l,T)(s—l—w—Q—%)(s—%—l)

is entire. Furthermore,
Ta(sa w; 1, S)
_ (27[_)s+2w—2—m/2(4|T|)2+m/2—s—wr(1 o w)
xr(2 n % s w) 9=8m/2||1/2=m =1

1
X [sin g (5 +2w—-2— % + 5(—1)0‘+1 sign(‘I))

XTa(s, 2+ % — s — w4, \T|S_1)
LT m 1 a -
+ sin 5(5 -5 + 5(—1) 51gn(‘I)>
m -1
XTat (s,2 + 5 — s —wid[T],|TIT ) .
Proof. From [5], Lemmas 6.1 and 6.2, it follows that

Ta(s, w;b, G)I'(1 — w)‘l(s twe % - 2)
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xF(% - % + g)flr(s— % - 1)7113(5— 1,1,%)

is entire if 23 # sign(¥) mod 4. Furthermore, Theorem 1.4 in [5] immedi-
ately gives the functional equation. Exactly as in the proof of Theorem 4.4
it can be shown that already the function

Ta(s,w;b,6)(w — 1)(8 +w — % - 2>P*(s -1;1,%)

is entire. The remainder of the theorem is proved as there.

85. Construction of modular forms
For T € 27", T :=det%T,be N, a € {1,2}, ¢ [/ 2Tb a prime and y a
Dirichlet character modulo ¢, define

1

Da(37w; ba T:X) = Z n_wS(Sv (_1)(1_1”; b7 {Z)A(na><)7
n>1
1 a—1
Dy (s,w;b,%) ::Zn—wS(s, (=1)*""'n;b,%), Rs>m+2, Rw > 1.
n>1

For n € Z\ {0} and Rs > m + 2, a simple calculation shows that
C(s —=m)S(s,n;b,%) =bL(s—1,n;b,%).

From Lemma 3.2 it follows that S(s,n;b,T) can be continued to a mero-
morphic function on C. There are no poles to the right of o(m), where
o(m) = (m+2)/2 if m is even and o(m) := (m + 3)/2 if m is odd. The
same lemma shows that there is some ¢ > 0 such that

(5.1) Do (s, w;b,T,x) = b7als,w; b, T, x)¢(s —m)~"

converges uniformly as a Dirichlet series in w on every compact subset of
{Rs > o(m), Rw > c}; in particular it defines a holomorphic function there.
The same holds true for

(5.2) Do (s,w;b,%) = b7a(s,w;b,%)C(s —m) ™t

PROPOSITION 5.1. Let ¥ € 2™, T := det%, a € {1,2}, ¢ [ 2T
a prime and x a Dirichlet character modulo q. Set b := 1, & := ¥ or
b:=4T|, & :=|T|T7L. Set S :=det& and let | € Z be such that

1
Sal 1= % + 5(—1)0‘_1 sign(¥) + 20 > o(m).
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Then Dy (Sar, w; b, S, x) is meromorphic on C. If X(;)m # xo then it is
entire. If X(;)m = xo then it has one pole at w = 1 which s simple and
has the residue

(=ym/2s

Tat(b, &, q) == b™(g—1)g™/?~at. ( o Dyaragy
Eq(%)) m odd, x = (E)

m even, X = Xo,

Furthermore, Dy (Sq1, w;b, &) is meromorphic on C with a simple pole at
w =1 with residue b™. If soy # m/2 + 2 then there are no further poles of
Dy (Sa1, w; 0,8, %) and Dy (Sar, w;b,S). If sqy = m/24 2 then there may be
another simple pole at w = 0.

We have the functional equations

Da(saluw; 1,‘:, X)

Q7N SarH2w—2—m/2
= C(x, @, D)2 /22 |12y (- ()

q
X (4|T))FHm/2=sa—wp(] w)r(2 + % S — w)
1
X sin g (sal +2w—2— % + 5(—1)0”rl sign(‘I))
m 1 — . m
X Da(sa1,2 4 5 = sat —widTLITIT % (0)"),
Da(salaw; 17$)

_ 2—3m/2—2|T|—1/2—mﬂ_—1(27T)sal+2w—2—m/2(4|T’)2+m/2—sal—wr(l - w)
1
X F(2 + Sal — w) sin — (sal tow—2-"2 4 —(—1)>*! sign(‘l’))
2 2 2 2
m
% Dy, (sal, 2+ 5 — 5o —wid[T], |T\‘I_1).

Finally, on every vertical strip of finite width {c1 < Rw < ¢g, |[Sw| >

1}, we have
Do (Sar, w3 b, &, x) < |Sw|cem™SwI/2

where ¢ = c(c1,c2) > 0 is a constant. The same holds for Dy (Sa, w; b, &).

Proof. 'We only have to compile the results so far. From (5.1), (5.2)
and Theorems 4.4 and 4.5 it follows that

(el wib, &, 3%) = (w = 1)71b¢(s = m) " Auls, b5, ) ) (s = m)
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XP*(s = 151,) (5 + w -2 - %)“(X(?’m’ (-2 )a<><<;>’">

and

(Da(s,w;b,&) = b™(w —1)"1)¢(s —m)P*(s — 1;1,%)

(v B)(e- 3 )

are entire. Since the factors depending on s have no zero or pole at s = sy
it follows that

(Da(salaw; b7 67X) - (’U) - 1)_1b<(8 - m)_lAa(S; b7 Sa q)|szsal)

" (Sal w2 %)a(x(;)m)

and m
(Da(sal,w; b,8) —b"(w — 1)_1) (sal +w—2— 5)

are entire. If X(;)m # xo then Dy (sq1, w;b, S, ) is entire. If X(;)m = X0

then

(Da(sar,wi5,8,%) = (w0 = 1) 7ar(6,6,4)) (50 +w =2 = T)

is entire. This means that D, (sq;, w; b, S, x) has a simple pole at w = 1 with
residue r4;(b, S, ¢q), and at most another pole at w =2+ m/2 — s4; < 1 of
order 1. Similarly, D (sq;, w;b, &) has a simple pole at w = 1 with residue
b, and at most another pole at 2 + m/2 — s, of order 1.

The functional equations for D, follow immediately from those in The-
orems 4.4 and 4.5 with the help of (5.1) and (5.2) since the second sum-
mands on the right hand sides are holomorphic and vanish at s = s,;. Now if
Dg(sa1,w; b, S, x) has a pole at 24+m/2—s,; then D, (sal,w; 4T)b~L | T167 Y
Y(g)m) has a pole at 0 by the functional equation. Thus 24+m/2— s, = 0.
The same holds for D, (sq1, w; b, G).

Finally, the growth estimates in vertical strips of finite width follow im-
mediately from those in Proposition 4.1. If in (4.2) the functions depending
only on s vanish at s = s,; then divide by a suitable power of (s — s4;) and
integrate along a small circle about s,; with respect to s.

Now Theorem 1.1 can be proved by applying Weil’s converse theorem.
We introduce some standard notation. For a sequence (ay),>0 in C with
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an = O(n€) as n — oo with a constant ¢ > 0, set f(2) = > ~qane(nz),
z € H. For a Dirichlet character xy modulo g, set

L(w; f,x) = Z%U(jn), L(w; f) ::Za—".

n>1 n>1

For A > 0, set

Furthermore, define
F2)g=a"> age(qnz) — g 2f(2),  f(2)yx = anx(n)e(nz).
n>0 n>0

Now let the assumptions of Theorem 1.1 be fulfilled. Define Ay :=
(kat — 1)/2. For q [ 2T a prime and x a Dirichlet character modulo ¢,
we have

A4|T\ ('U), ®al('; b, G)a X) =
—w w|p|w/2 — ! Ral
™ q |T| F(w)T(X) Da<5alaw+1 - Tab76>x>

for x # xo,
A4|T\q2 (w; O (5 b, G)q) =
w*wqwlT\w/QF(w)qfl/QDa (sal,w 41— %; b, G,X())

for x = xo,

Agjriq2 (05 O (56, 6) ;) =
-1

for y = (;), and

Ral

Ay (w3 O (55, 8)) = 7~ |T[*/*T(w) D, (sal, w+1- 2, 6).
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It follows from Proposition 5.1 that all these functions are meromorphic on
C and grow at most polynomially in vertical strips of finite width.

Case 1. m odd. Proposition 5.1 shows that for x # xq, (;),
Ay (w; O (51,%), x) =
Ko N ("
O Cat Ay (75" — w3 O (31T ITIT),X (),

where

Cal — (_1)l ‘T’1/27mfﬁal/42fnal/2f3m/2’

oW .= T(T)C(%))eglx(—él\T!)(@) (%)Aalxm(q),

and both sides of the equation are entire. For y = (3)7

,iOé
1X4‘T|q2 (U), @al('; ]-7 ‘I)( )) - 0(2) Cal A4|T‘q2 (—l

4) =Ci o — w3 O (4[], ITIF ), ),

where Lo
@) . (Z2)™
CX : ( p ) X4\T|(Q)-

Proposition 5.1 and this functional equation show that the left hand side
has a single pole at w = K4;/2 which is simple and has the residue

—Rat/2| iRt /A (Fed \ (172 —1/2\~(2)
r el 2T AT (28 (g2 — ).
Finally,
Ko _
Ay (w5 ©01(51,%)) = Coy Ay (71 — w; O (54|, |TIT™)).

Proposition 5.1 and this functional equation show that the left hand side
has only poles at w = k4;/2 and w = 0; both are simple and have residues

m el 2Tl AT (28 ) vesp. — a2 T Rt AT (S50} (41T o

Now a version of Weil’s converse theorem for modular forms of half integral
weight can be applied ([12]; the case of half integral weight was scetched in
[6] and worked out in [1]). This gives case a) of Theorem 1.1.
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Case 2. m even. Proposition 5.1 shows that for x # xo,
KRal 1\ —
A (w5 Ot (5 1,5),X) = Cx Cat Ay ("ot = w3 O (4[T,TIT ™), X)
where ]
Oy = QT(X)QX(4’T|)X(—1)m/24T(Q)a

and both sides are entire. Weil’s converse theorem now gives case b) of
Theorem 1.1.

For a comparison between Theorem 1.1 and Cohen’s result [2], Theo-
rem 3.1, set m =1, ¥ = (1). Let r € N, r > 2. There is exactly one pair
(o, 1) € {1,2} x Z with s4; = r + 1. For this pair, we have a = 7+ 1 mod 2
and kg1 /2 = r+ 1/2. Furthermore, s, > o(1) = 2. In [5], Section 8, it was
shown that, for s, Rw > 1,

L 2
8¢(2(s +w) — 1) Z (s’ﬁD) :4<( S)Ta(s+1,w;47 (1))
D(—1)2=1>0, D a discr. ’D‘ C(S)
= ((25)Dq(s + 1,w;4,(1)).
Comparing coefficients with respect to w gives
8
Z WL(S,XD) =
d>1,D(—1)*"1>0: D a discr.,d?|D|=n
C25)S(s + 1, (—1)°n; 4,(1))
for n € N, s € C not a pole. Plugging in s = r gives
C(2r)S (541, (1) 4, (1)) =

7rr2r+2n1/27r 1
(r—1)!
where the “generalized Hurwitz class numbers” H(r,n) are defined in [2],

Definitions 2.1 and 2.2. Furthermore,

(—1)[T/2]H(7", n), néeN,

1
(r—1)!
As in [2], we set H(r,0) := ((1 — 2r). Thus for z € H,

MHo(2) =Y H(r,n)e(nz) = ¢(2r)m 72727 (r — DI(=1)"H 04 (214, (1)).

n>0

(—1)r/2.

w‘“al/Q(—l)lF(%> C(2r) = 7"¢(1 — 2r)

It now follows from Theorem 1.1 that H,(z) is a modular form of weight
r + 1/2 with respect to I'g(4), the theta multiplier system and character
Xo mod 4. This is Theorem 3.1 in [2].
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§6. Calculation of a singular component of 7

From now on let m be odd. In Proposition 5.1 only values so >
(m + 3)/2 were allowed in the first argument of D,. This was to ensure
that we would not fall into a pole of S(s,n;b,%). This procedure is in
fact over-cautious. For one value of «, depending on m and the sign of T,
there is no pole at (m + 3)/2. For the other value of « the terms in the
series development of 7, which contribute to the pole at (m + 3)/2 can be
precisely identified. Thus — excerting some care — the value (m+3)/2 can
be plugged in the functional equation of 7. For one value of « this gives
a functional equation for polynomials occuring in the singular component
of 74. For the other value of « it gives a functional equation of 7, with an
additional term.

For a € Z \ {0}, let a* denote the squarefree kernel of a including the
sign.

LEMMA 6.1. Let m € N be odd, T € Z7"*™, T := det ¥ and o € {1,2}
such that o = (m +1)/2 + (1 — sign(T"))/2 mod 2. Let b € N. For p|2Tb
prime, there are polynomials Ry(x,y) € Q[z,y] depending only on %, b and
p, with the properties:

a) For q [ 2Tb a prime and x a Dirichlet character modulo q, define

Ta(s,w;b, T, x) =

AR
> (h;}X)L(S —1,(=1)*'h;b, %), Rs>m+1, Rw > 1.
h>1: h*=|T*|

If X # xo then
Ta(s +1,w;0,T,x) = TOOX(T* DO’ |T*| 7V L(2s + 2w — m, x*) L(2w, x°)

Clo e s = )G = ooz - M)
Cow)

Rp fs’ 2
< ] (r~*,x*(p)p

(1 +p(m—1)/2—s)(1 _ X2(p)p(m—1)/2—s—2w) ’

p|2Tb
If x = xo then
To(s + 1, w;b, T, xo) = 0°|T7[77C(25 + 2w — m)¢(2w)

] (e (P
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72w)

Rp(p » D
X
pgb (1 +p(m—1)/2—s)(1 _ p(m—l)/Q—s—Qw)

y q1—2w _|_qm+1—25—2w +q(m—1)/2—s—2w_q(m+1)/2—s—2w _qm+1—25—4w -1

1— q(m—l)/2—s—2w

b) If x is the principal character modulo 1, define
7—;(87 w;b,T) 1=

1
> o L(s =1, (=) 'h:b,%), Rs>m+1, Rw > 1.
h>1: h*=|T*|

Then

To(s+ 1, w; b, %) = b°|T*|7((2s + 2w — m)((2w)

X ((s—m+1)((2s —m+1)_1C<5— mT_1>C<s—i—2w - Tl>
Ry(p~*,p~%")
x H 1 _’_p(mfl)/prs)(l — pm—D/2=s—2w)’

p|2Tb

Proof. Let r € N, e € Ng and ¢ a Dirichlet character modulo r. Define

f(s,w;q% ) - Z ¥(n (=) HT*|n%¢*;b, %), Rs > m+1, Rw > 1.

n>1

Let b = Hp p® be the prime factorisation of b. The Chinese Remainder
Theorem shows that

b5 L(s, (—1)* 1 T*|n¢*;b,T) = HLP(S,nqe), Rs >m+1,

where

n) =y p A=) T n?, p% %),

azap

Let plp||n2. Then A(—1)*~ 1|T*|n2 2e,pa;‘I):A((—l)o‘_l|T*|p2lpq2e,p“;‘Z).
If ¢ # p the factor ¢>¢ on the right hand side may be omitted. Thus

(6.1) b7 (s, w3, ) = H(Z wzpw (s plpqeém))

p Ip>0




34 M. PETER

for Rs, Rw sufficiently large.
Let p f2Tb. Since a has been chosen appropriately, (3.16) in [5] gives

(6.2)  Ly(s,p) (1 —p™ ') (1 —pm 7))
=1+ pm72s + +p(m725)(171) + p(m*25)l(1 _ p(mfl)/Qfs)—l.

Thus for s > m + 1, Rw > 1, we have

b
©63) 3 ¢2§£w)Lp(s, pr) =

1,>0

(1= pm=1729)(1 — g (p)plm—1/2s—w)
(1 —pm=1=)(1 — p(p)pm=25=w)(1 — plm=D/2=5)(1 — Y (p)p~v)

Our goal now is to show that for p|27b the left hand side is still a rational
function in p~* and ¥ (p)p~*. The same proof as for (3.13) in [5] works for
the following more general statement: There are x € Q and ay, € N such
that for ¢ € Ng, a > aj, and d € Z \ {0}, we have

(6.4) A(dp®, p*; %) = k(c, d)p(m_l)a + A(de_Q,p“_Q; p™,

where £(c,d) € Q depends only on ¢ and d, and k(c,d) = k for ¢ > a
Denote the left hand side of (6.3) by fy(s,w;%). Then for s > m +
Rw > 1, we have

(6-5) fp(saU); 1@

- Y 4y 4y

lp>aj, a>max{ap,a3} 0<Ip<aj,a>max{ap,a}} 1p>0,ap<a<max{ap,a;}

=: 31 + Xo + X3,

*
p*
L,

where the summands are always p~ 2~ (p)» A((—1)21T*|p?», p*; ).
Equation (6.4) now shows that
(6.6)

* * * -1
Y, = Hw(p)app—apw—(s—m—&-l)max{ap,ap} (1 _ Kg)) (1 _ pm—l—s)—l
p
)

x (21+ > + >

lp=a;—1,a>max{ap,a}} Ip>a}—1, max{ap,a;}—2<a<max{ap,a;}
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The second and third sum are of the same type as ¥ and X3, i.e. the [)-
resp. a-summation is finite. With the same reasoning as in [5], bottom
of p. 39, it follows that sums of type o become polynomials in p~° and
Y(p)p~™ after multiplication with (1 — p™~!=%). With the exception of
finitely many terms sums of type X3 are geometric sums. Thus they become
polynomials in p~® and ¥ (p)p~" after multiplication with (1 — ¢ (p)p~").
Thus (6.6) and (6.5) show that

(6.7) fp(s,wiw)(1 = p" 7)1 = p(p)p~)(1 = P(p)p™ > 7Y)
= Ry(p~*,v(p)p™")

with Ry, (z,y) € Q[z,y] depending only on p, b and €. Obviously for p f2Tb,
we have R,(z,y) = (1 + pm=D/2z)(1 — p(m=D/2zy).

a) For ¢ f2Tb a prime, x # xo a Dirichlet character modulo ¢ and s,
Rw sufficiently large,

Ta(s + 1w b, T,x) = 70T 7 x(IT7)) f (s, 2w3 1, x°).-
Now (6.1), (6.3) and (6.7) prove the statement of the theorem in this case.
If x = xo mod g,
Tr(s 4+ 1,w; b, %, xo mod q)
= [T*[7412% £(5, 23 6, xo mod 1) — [T*[ =% £(5, 23 1, xo mod 1).

It follows from (6.3) and (6.2) that
Z qilquq(S, qqurl)

1,>0
= ¢"(fq(s,w; xo mod 1) — Lg(s, 1))
B (1 + q(m—l)/Q—S)(l + qm—QS _ q(m—l)/Z—s _ qm—2s—w)
(1—gm1=5)(1 = gm=>7)(1 —q7v)
Again (6.1), (6.3) and (6.7) give the statement of the theorem.
b) For x = xo mod 1, we have

To(s+ 1Lw; b, %) =T f(s,2w; 1, xo mod 1),
and the statement follows as in a).

LEMMA 6.2. Letm € N be odd, T € Z7"*™, T := det¥ and o € {1,2}
such that o = (m +1)/2 + (1 —sign(7T"))/2 mod 2. Setb:=1, & := % or
b:=4|T|, & :=|T|T1. SetS:=det&. There are polynomials T,(:;b,S) €
Q[x] for p|2T with the following properties :
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a) If q | 2T is a prime and x a Dirichlet character modulo q, then

h(s,w;b,&,x) := Ta(s,w; 0,8, x)P* (s — 1;1, %) (w — 1)“()‘(?))

y (8 w2 %>Q(X(;)) (8 B % B 1)&()((;))

s entire with respect to s and w, and

h(m;?) w: b, &, x)

= 2 T (B D (|57 ) ST L (2w, x)

—<w a(x(= a(x(3))
x H T,(x*(p)p~ %36, &) (w — 1) x(3)) (w _ _) a
pl2T

for x # xo, and

h(m—i—?)

w; b 6 Xo) =
2bm+1 /2|S*| w<(2w 1-2w _ HT —2w, b, 6

for x = xo-
b) The function
h(s,w;b, &) :=

a0 b, &)P (s = 11, D) (w — 1) (s +w -2 ) (s = 0 = 1)

s entire, and

h(mTH w;b, &) =
b HD/2| 5%~ ¢ (2w) H Ty(p~2";5,8)(w — 1) (w — 1)

5):
pl2T

Proof. Tt follows immediately from Theorems 4.4 and 4.5 that

h(s,w;b, &, x) and h(s,w;b,S) are entire. From the definition of 7} and

Lemma 3.2a) it follows that there is some ¢ > 0 such that

(Ta(saw;bv GaX) - T;(S,w;b, G,X))P*(S - ]-7 15‘2)(25 -—m—= 3)71
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A(h
= > : ;X)L(s — 1, (=1)*'h;b,&)P* (s — 1;1,%)(2s — m — 3) !
h>1: h*#|S*|

converges uniformly on every compact subset of {Rs > m/2 + 1, Rw > c}.
Therefore it defines a holomorphic function f(s,w) on this set, and

h(s,w;b, &, x)
= 7(s,w;b, 6, x)P*(s — 11, T)(w — 1)*X&)
my a(x(3)) m a(x(3))
x(s—l—w—Q—E) (s—§_1>
+ f(s,w)(25 — m — 3)(w — 1))

" (S w2 %)a(x(;)) (S B % B 1>a(x(;))'

Thus for Rw > c,

= T(5,w; b, 8, X)P*(s — 151, %) | o= (g2 (w — 1))
<( 1>a(X(3))2—a(x(;))'

w— —

2
Analogously, for Rs > c,

* * 1 -
Ta(svw; b, &, X)P (8 -1 1as)|s:(m+3)/2(w - 1) (’U) - 5)2 h
Now the formulae in the lemma follow from Lemma 6.1 if we define
Ty(2;b,6) == (1 —p )1 —p 'z) ' Ry(p "2 2) € Q(a).

The formulae hold for all w since the left hand sides are entire. It remains to
prove that the T}, are polynomials. Assume T}, # 0 for all p|27T". Otherwise
we could set T}, = 0 for all p|27. The formula in b) gives
3 1\ -1
h(% w; b, 6)b’(m“)m|S*|“’C(2w)’1(w—1)’1 (w - 5)
= [[ o >":b.8).
pl2T
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The right hand side has poles at most at the points

1
—— 4+ iLn, n € Z, p|2T prime,
2 log p
where the left hand side has no poles. Therefore both sides are entire.
Let po|2T be a prime. Since {1,logp/logpy | p|2T, p # po} is linearly
independent over Q the sequence

n — (nlog p/10g po)pjat, p£po

is uniformly distributed modulo 1. Thus there is some ng € Z such that, for
p|2T, p # po, the function T, (p~*; b, &) is holomorphic and has no zero at
—1/2 +imng/log po. Thus Ty, (py 2w b, &) is holomorphic at this point and
therefore all T),(x; b, &) are polynomials.

Now we show that, for the other possible choice of «, the function 7,
has no pole at s = (m + 3)/2.

LEMMA 6.3. Letm € N be odd, T € Z"*™, T := det T and a € {1,2}
such that « = (m —1)/2 4+ (1 —sign(7))/2 mod 2. Setb:=1, & :=F or
b:=4|T|, & :=|T|T7L. Set S :=det&.

a) Forq [ 2T a prime and x a Dirichlet character modulo q, the function
(4.4) is still entire after division by (s — (m + 3)/2).

b) The function (4.8) is still entire after division by (s — (m + 3)/2).

Proof. From the special choice of o and Lemma 3.2a) it follows that
there is some ¢ > 0 such that

-1
(s, w5, &, )P s~ 11,9) (5 - T 12)
—1
= %L(s —1,(=1)*" A b, &) P* (s — 1;1,%) (s . mT*?’)
h>1

converges uniformly on every compact subset of {Rs > m/2 + 1, Rw >
c}. Therefore it defines a holomorphic function on this set. Consequently
(4.4), after division by (s — (m + 3)/2), is still holomorphic on this set.
An application of Lemma 4.2 finishes the proof of a). The proof of b) is
completely analogous.
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The next lemma contains some sort of functional equation which con-
nects the polynomials T (7;1,%) and Tp(x;4|T), |T|T1).

LEMMA 6.4. Let m € N be odd, ¥ € Z"™ and T := detT. Set
A= (1 £sign(T"))/4 where the sign is chosen so that X € Z. Then for p|2T
prime,

Tp(2;1,%) = ez T, (p~ e~ 5 4|T], |TISY),  dy = ord, |T/T*|'/?
where

[T e = v e

p|2T

Proof. Choose a € {1,2} with o = (m+1)/2+ (1 —sign(7"))/2 mod 2.
Multiply both sides of the functional equation in Theorem 4.5 with

P*(s—l;l,‘f)(w—l)(s—i—w—Q—%)(5—%—1)(8—{—11}—%—1)10

and plug s = (m + 3)/2 in. Lemmas 6.2b) and 6.3 give
m+3 1
n(Fg e g) (we 5)u =
(27r)2w71/2(4’T‘)1/27wF(1 - w)F(% - ’U)) 273m/2‘T’1/27m7T71
. m+3 1 ) 1 1
x sin(w — \) h(T, 5 — wiAlT],|T|T )(w - 1)<w - 5)

and consequently

“(r)E-mrz,

T,(p2%;1,%) T

6.8 P L = (—DMN=

o8 gemmimey -7
p

In the last step the functional equation of the Riemann zeta function was
used and it was assumed that none of the 7T}, vanishes identically. Otherwise
we could set T}, := 0 for all p|2T". Since the right hand side is entire and has
no zeros, an argument similar to that in the proof of Lemma 6.2 shows that
each single factor on the left hand side is entire without zeros. Therefore

T,(x;1,%
—1 f§x7 ’ ) —1 :Cpxdp
Tp(p~ta= 14T, |TI1T1)
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with ¢, € C\ {0} and d,, € Z for all p|2T". Plugging this representation back
into (6.8) gives

[T ()" = copermn 7

p|2T pl2T

from which the lemma follows.

The functional equation of 7, is now contained in

PROPOSITION 6.5. Let m € N be odd, ¥ € 2™, T := det¥ and
a € {1,2} such that « = (m —1)/2 + (1 —sign(7"))/2 mod 2. Set b := 1,
S :=F orb:=4|T|, & :=|T|T7L. Set S :=det& and \ := (1£sign(T))/4
where the sign is chosen so that \ € Z.

a) Let ¢ J 2T be a prime and x a Dirichlet character modulo q. Then

the function
m+3

2

is meromorphic on C. If x # (5) then it is entire. If x = (5) then

it has only a simple pole at w = 1 with residue b™(q — l)q_g/Qeq(%)
and a simple pole at w = 1/2 with residue

Da< w66x>

SIN B g 1amrsna, - g
(B s 29 e, =) L0 -7 T 07508,
pl2T

Furthermore,

3
Do ("2, w15, x) = C(x, 0, D)2 8m 22 7|2y (1)

« (2?”)2“ ST — w)F(% ) (-1

x[sinw(w—%) Da(mT+3 ; w; 4T, |T|T~ (q>>

3 m —2\— — w— _
—;(4!T\)( T =p ) (P )™ 4T TIT )
pl2T
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‘C(va) = Z m — { T(IY)L@U%XQ) y X ?é X0, } ]

n>1 (q 2w _ 1)C(2w) , X = Xo-

b) The function Do ((m+3)/2,w;b, &) is meromorphic on C. It has only
one simple pole at w = 1 with residue b™ and another simple pole at
w = 1/2 with residue

3 | gr—1/2;(m —2y— -
—%|S | 1/2b( +3)/2 H(l_p 2) lTp(p l;b,G).
p|2T

Furthermore,
Da<m—+37 w5 1) T) =
2
1
273(m+1)/2|T|7m7wﬂ_73/2+2w1ﬂ(1 _ w)r(§ _ w) (_1))\

1 m+3 1
in T — = D(—,—— 1 4|T, |1 1)
x[sm (w 2) a 5 5 w ] |\ ]‘Z

3 Y . -
g [T -2 g iris ) o - 2.
pl2T

Finally, both Do ((m~+3)/2,w;b, &, x) and Dy ((m~+3)/2,w; b, &) are subject
to the growth estimates in Proposition 5.1.

Proof. From Lemma 6.3 it follows that

(6.9) | |
(Da (mTJr?’,w; b, X) - aixial))bm(q - 1)q_3/2€q<§)> (w - %)G(X(E))
and m+3 1 1

(Do (F5 7 wsb.8) = g9 (w = 5)

are entire. We multiply both sides of the functional equation in Theorem 4.4
with

P*(s—1;1,%)(2s —m — 3)~!

X[(W—l)(s—i—w—Q—%)(s_%_1)<8+w_g_1)wr(x)
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and plug s = (m + 3)/2 in. After dividing both sides by common factors in
w we get

Do ("2 w11y ) =

2
ctram ()"

x X(_1)273m/2|T|1/27m7T71(_1))\

' 1N 1 m+3 1 e
X[Sm”(w_§>4|T|Da( y gy~ wATLITT 1’X(§>)

() o - ()

<ITa-r (5o 3)0) ™)

pl2T

A|T)V2er (1 — w)l"(% - w)

From Lemma 6.2a) the first functional equation now follows. For x # (;),
the function D, ((m + 3)/2,w;b,&, x) is entire. For y = (5) it has only
poles at w = 1 and w = 1/2 which are simple. Since the function (6.9) is
entire the residues can be computed from the functional equation.

The proof of b) is similar and uses Theorem 4.5. The growth estimates

follow as in Proposition 5.1.

87. Construction of an automorphic function

Now the procedure basically is as in Section 5 with Proposition 5.1
replaced by Proposition 6.5. Since the functional equations now have an
additional term Weil’s converse theorem cannot be applied directly. The
idea is to bring part of the additional term to the left hand side in order to
get a more symmetric functional equation. The following lemma is essential
in this procedure.

On {Rs > 0}, the function

(7.1) F(s):= /100 w32 (2u — 1)V* 5 du

is holomorphic.

LEMMA 7.1. F(s) can be continued meromorphically to C and has the
functional equation

F(s) +F<; - s) = —F(S)F<§ - s).
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In particular, F(1/2) =2 and F(1) = /8 — 2.
Proof. Let 0 < Rs < 3/2. Substituting u~! for w in (7.1) gives
1
(7.2) F(s) = / w2 — w) 2 .
0

Substituting 2 — u for u and 3/2 — s for s gives

(7.3) F(% - s) = /12 w2 — w)* o du.

Adding (7.2) and (7.3) and using the relation between the Beta and the
Gamma function gives the functional equation for 0 < s < 3/2. This in
turn proves that F' can be continued meromorphically to C.

For ¢ > 0, define
(7.4) y(t) = / w3 e du.
1

LEMMA 7.2. The function v is C* on RT, continuous on Rar and it
solves the initial value problem

1 1
") — =y(t) +-e " =0 0) =2.
V() =5+ ce , 7(0)
For 6,y > 0, we have
1 d+ioco 1
— ywa(w + —)F(w) dw = eYy(2y).
21t Js_ioo 2

Proof. The differential equation follows by integration by parts. The
second formula follows from Fubini’s theorem and Mellin’s inversion formula
for the Gamma function.

Now we can prove Theorem 1.2. Under the assumptions of this theorem,
choose a € {1,2} with « = (m — 1)/2 + (1 — sign(7))/2 mod 2. The
functional equation of the zeta- and L-functions and Proposition 5.2 in
[6] show that for all primes ¢ f 27" and Dirichlet characters y modulo ¢, we
have the functional equation

(7.5) (E)_“_“’)m ~w)e(1- wy(g)) _

q
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Define
A(w; b, 8,x) =
() (e (20~ o)
n %X(IS*I)IS*IWWF(MF(%U —3)e(w-5.x)
<TL0- 2 L0 2050.0))
pl2T

Then Proposition 6.5a), Lemmas 6.4 and 7.1 and (7.5) give the functional
equation

(7.6)  A(w;1,T,x) = [T~/ m2 73 DR (1) (- 1)C (%, 0, %)
< A(2 —warl s x(5)).
2 q
If x # xo, (;), both sides of the equation are entire. If x = (;), the left
hand side has a simple pole at w = 3/2 with residue

1 T

- ()

=T = 1)ey (5
and a simple pole at w = 1 with residue

3 T
A

1/2 (E
V82

q

Y- 50751,9).

pl2T

If x = xo0, the left hand side has a simple pole at w = 1/2 with residue
3

ST A2 g - 1) TT (-p ) 7 4T T

pl2T

and a simple pole at w = 0 with residue

Lo/ (—1 ) g - 1),
™
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Furthermore, the function A(w;1,%, ) grows at most polynomially in ver-
tical strips of finite width.
Similarly, define

A(w;b,6) := (|T|L1/2> - (F(w)Da<mT+3,w — %; b, 6)

3pmE3)/2 1
o gr|/2w _ - _
+ ()2 |S™| F(w)F(w 2)((210 1)
X H (1-— T,(p' "3 b, 6))
pl2T

Then
(77) Aw;1,%) = ]T|*1/4*“12*3(””‘“)/2(—1)”%(g — w; AT, |T\‘I*1).

The left hand side is meromorphic on C and has only simple poles at w =
3/2, 1, 1/2, 0 with the respective residues

1 T (1/2

TP/ —‘— 1-p 7, (p 1,5

27_(_’ ‘ \/gﬂ_Q T* g( p ) p(p P )7

3 2 m/2‘T’ m/2+7/4 )\+1 H ( 71;4’T‘, ’T|Tfl)7
p|2T

12(m—5)/2’T‘1/2(_1))\'
T

It grows at most polynomially in vertical strips of finite width. Define the
numbers a, (b, &), n > 1, implicitly by

(7.8) 328 _ ) T - p 2T 050, 6).

nS
n>1 pl2T

For z = x + iy € H, define
H(z;b,6) = ﬂflg(me)/Zb(m+3)/21511/2(_1)A+1
m——{—?) _1\(m+1)/2 . 1/2 2minz
+ZS( 5 ,(—1) s1gn(T)n,b,6>n e ,

n>1

b2y~ 2 TT (1= p~) 7' T(1;b, ©)

pl2T
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b(m+3 .
+—— 3 UzZan b,S)y 4W\S*|n2y)672m|5 In*z

n>1

Since the functions A(w; b, &) and A(w; b, &, x) contain the additional func-

tion F'(w) we cannot apply Weil’s converse theorem directly. But its proof
can be imitated. The first step is to compute

1 d+ioco

2|7 ?y) " A(w; 1,F) dw

2mi d—1ioo

for 6 > 3/2, y > 0, in two ways. Firstly the defining series for A(w;1, %)
is plugged in and Mellin’s inversion formula and Lemma 7.2 are used. Sec-
ondly the line of integration is moved to fw = x < 0 with the help of the
Phragmen-Lindel6f principle. Here the residues are taken into account and
the functional equation (7.7) is used. Thus the defining series can be used
again. Equating both expressions one gets

(7.9) 7{@y;1xz>+—KXiy;1¢Z>*f\JW‘””‘12‘3"”2‘3<—4)A+1y—&”

X[H( 4\T! AT, |T|5™ )+zc( 4\T1! AT, |T|5™ )]

for y > 0. From (7.8) it follows that for ¢ [ 27" a prime and x a Dirichlet
character modulo g,

) 3 an (b, &)A(—n?,x) _

anfl
n>1

For z € H, define

H(z;b,6,x) =
m I G2 (—1)MIA(0, X)
m+ 3 .
-~ v (1 (m+1)/2 Tn: 1/2 2minz
—I—;S( 5 ,(—1) sign(T")n; b, G)n A(n, x)e ,

3 m _ oy
@5¢<ﬁW%1”¥£u—p2)ﬁuh@6me>
p|2
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b(m+3 .
—|—3 UZZan b,S)y 47r\S*|n2y))\(—]S*|n2,X)6727”|S In*z

n>1
The same procedure as above gives

(7.11) H(ig 'y 1, T, x) + K(ig 'y;1, T, x)
= ||~ 23 m 23 ()M (—1)C (R, a, B )y 3

< [H( = g irsx ()

+IC( - m;wy, |T\Tl,y<;>)}

We would like to conclude now that similar relations hold for arbitrary
2 € H instead of iy € iR™. In the case of holomorphic modular forms this
is done with the identity principle. In the case of Maafl wave forms the
hyperbolic Laplace equation is used. Here we need the lemma below. For
z € H, define

3b(m+3)/2< —
an(b, & 627rz|5’ [n?z
(2m)? T; ( )

+= Hl— 1T(1be)>

p|2T

O(%;b,6) =

3 m+3/2 . * 2
O(2:b.6,x) = (Zan (b, &)A(—|S7[n?, x)e2m 15 =

n>1

+= H1— H=IT,(1;6, S)N(0, )).

LEMMA 7.3. O(z;b0,6) is a modular form of weight 1/2 on T'o(4|T)
with respect to the theta multiplier system and character x4 g+ . Further-
more,

1
—m(_1\A\o—3m/2—1 . =1y _ (_s.\—1/2 _ .
[T/ (~1P2 O AT ITIT ) = (i) 20 — i1 T),

T~ (1) 232N (1) C(X, o, T)O (z 4T, 71T, _< )>

1
— (s —-1/2
( ZqZ) @< 4‘T’ 2 i 1L,E, X)
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9 .. _ 1 spg s

7o K(2:0,8) = -y 726(-%:b, ©),

9 .. _ 1 g s

7K (2:6,8,%) = =y~ 7O(=%b, 6, ).

Proof. With the notations from Section 5 (where ko and A, are re-
placed by 1 and 0), Lemma 6.4 and the equations (7.5) and (7.10) give

Ay (w; ©(+51,%), x)
— Tfm71/4 1)\273(m+1)/20(1)A 1 SO 4T ITIE Y. % )
= [T =) g (5~ wr 04T ITIE ), %))

for ¢ f 2T a prime and x # xo, (5) a Dirichlet character modulo ¢; both

sides are entire. For xy = (;), we have

Agjriqr(w;©(5 1, %) )

—m— —o(m 1 -
= [T A=) 2O Ay (5 — wi OGAITLITIT ), ),

where the left hand side has only a simple pole at w = 1/2 with the residue

—m— —a3(m 3 m -
(Tt T DR (1) G TN ROR (¢ — g7
1 Con_ _
<5 [Ta-p) ' 4], ).
pl2T
Furthermore,

A4\T|(w§ @(‘§ 1, ‘Z)) =
—m— —3(m 1 -
|T| 1/4(_1)>‘2 3( +1)/2A4‘T|<§ —w; O 4(T, |T|% 1))’

where the left hand side has only simple poles at w = 1/2 and w = 0 with
residues

3
21)2

‘T’—m—1/42—3(m+1)/2(_1)>\ (4’T‘)(m+3)/2

—~

1 N _
x5 [L0—p 3 T4, iz

p2T

and

DN =

(2i)2 10 - 2)7'7,0151,%).
pl2T



DIRICHLET SERIES AND AUTOMORPHIC FORMS 49

Now the first statement follows from Weil’s converse theorem for half in-
tegral weights. The transformation formulae under inversion follow from
Hecke’s theorem. Since the termwise differentiated series for K(z;b, &) and
K(z;b,6, x) converge uniformly on every compact subset of H, these series
define C'*° functions. The equations for the partial derivatives now follows
from Lemma 7.2.

We also need to know how Mébius transformations and differentiating
with respect to Z interchange. The following lemma follows by a simple
computation.

a b

LEMMA 7.4. Let f:H — C be C* and A = (c d) € GLJ (R). Then

o ~detA Of
£(f(x4<z>)) = m%m@»

Now set F(+;b6,8,x) = (H+ K)(+;b,8, x). From (7.11) it follows that
G(z) == F(%1,%,x)
— [Tl )M (D)X, a, T)(—igz) T

< F( - m;mmfw(;))

vanishes for z = iy € iR*. On the other hand, from Lemmas 7.3 and 7.4 it
follows that 0G/0z = 0 on H. Thus G is holomorphic on H, and the identity
principle gives G = 0 on H. Consequently,

F(z1,%,x) = |77 1273273 (1) My (1) 0(x, , %)

x (—igz)2F (- m;zlm, mzfl,y(;)), :€cH.

Similarly, from (7.9) it follows that for F(-;0,&) = (H+K)(+;b, &), we have

1

F(2:1,%) = |T| 7127 8m/2 3 (C)M 1 () =92 (- A

AT TS,
z € H.

The last two relations are the essential ingredients in the proof of Weil’s
converse theorem. From this point on everything works as in the case of
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holomorphic Fourier expansions. There is one further situation in which

holomorphy is needed. If A = (c

a b
d

F(+50,6)|3/2A(2) — xa/57|(d) F(2;b,6)

) € To(4|T)), then

is holomorphic on H. This can be shown again with Lemmas 7.3 and 7.4.
Thus Theorem 1.2 is proved. U
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