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ON THE RATIONAL SOLUTIONS OF

q-PAINLEVÉ V EQUATION

TETSU MASUDA

Abstract. We give an explicit determinant formula for a class of rational solu-
tions of a q-analogue of the Painlevé V equation. The entries of the determinant
are given by the continuous q-Laguerre polynomials.

§1. Introduction

Since the introduction of the singularity confinement criterion as the

discrete analogue of the Painlevé test [2], a lot of ordinary difference equa-

tions have been proposed as discrete Painlevé equations [12], [1]. It is

known that the discrete Painlevé equations possess several properties anal-

ogous to the continuous ones such as the coalescence cascade, symmetry as

the Bäcklund transformations and particular solutions.

Recently, Kajiwara, Noumi and Yamada have proposed a q-analogue of

the Painlevé IV equation [3], and investigated the structure of symmetry

and special solutions of the q-PIV. It has been shown that the q-PIV admits

two types of special solutions; one is the special function type solutions,

which are expressed in terms of the continuous q-Hermite-Weber functions,

and another is the rational solutions expressed as the ratio of a q-analogue

of Okamoto polynomials [11].

In this paper, we consider the symmetric form of q-PV

ā0 = a0, ā1 = a1, ā2 = a2, ā3 = a3,

f̄0 = a0a1f1
1 + a2f2 + a2a3f2f3 + a2a3a0f2f3f0

1 + a0f0 + a0a1f0f1 + a0a1a2f0f1f2
,

f̄1 = a1a2f2
1 + a3f3 + a3a0f3f0 + a3a0a1f3f0f1

1 + a1f1 + a1a2f1f2 + a1a2a3f1f2f3
,(1.1)

f̄2 = a2a3f3
1 + a0f0 + a0a1f0f1 + a0a1a2f0f1f2

1 + a2f2 + a2a3f2f3 + a2a3a0f2f3f0
,
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f̄3 = a3a0f0
1 + a1f1 + a1a2f1f2 + a1a2a3f1f2f3

1 + a3f3 + a3a0f3f0 + a3a0a1f3f0f1
,

with

(1.2) a0a1a2a3 = q−1,

where ¯ stands for the discrete time evolution. Introducing a variable c by

(1.3) f0f2 = f1f3 = c−1,

we find that c plays a role of the independent variable,

(1.4) c̄ = qc.

Originally, the equation (1.1) is derived as a subsystem of the discrete

dynamical systems associated with the extended affine Weyl group sym-

metry of type A
(1)
m−1 × A

(1)
n−1 [4]. In the case of (m,n) = (2, 4), by regard-

ing a translation of W̃ (A
(1)
1 ) as the discrete time evolution ¯ , we obtain

the system (1.1). The variables q and c are invariant for the action of

W̃ (A
(1)
1 × A

(1)
3 ) and W̃ (A

(1)
3 ), respectively. The inverse time evolution of

(1.1) is given by

a0 = a0, a1 = a1, a2 = a2, a3 = a3,

f0 =
f3

a0a1

a2a1a0 + a1a0f2 + a0f2f1 + f2f1f0

a0a3a2 + a3a2f0 + a2f0f3 + f0f3f2
,

f1 =
f0

a1a2

a3a2a1 + a2a1f3 + a1f3f2 + f3f2f1

a1a0a3 + a0a3f1 + a3f1f0 + f1f0f3
,(1.5)

f2 =
f1

a2a3

a0a3a2 + a3a2f0 + a2f0f3 + f0f3f2

a2a1a0 + a1a0f2 + a0f2f1 + f2f1f0
,

f3 =
f0

a3a0

a1a0a3 + a0a3f1 + a3f1f0 + f1f0f3

a3a2a1 + a2a1f3 + a1f3f2 + f3f2f1
.

The reason why we refer to the discrete system (1.1) as the symmetric

form of q-PV is as follows. By the original construction in [4], it is clear

that this equation admits the affine Weyl group symmetry of type A
(1)
3 as

the Bäcklund transformation group, which is stated in Section 3 precisely.

Moreover, the system (1.1) reduces to the symmetric form of the Painlevé V

equation in the continuum limit. We set

(1.6) q = e
ε2

2 , ai = e−
ε2

2
αi , fi = −e−εϕi , c = eεγ ,
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and define the derivation d
ds by

(1.7)
dz

ds
= lim

ε→0

z̄ − z

ε
,

for a function z in αi and ϕi. Then, we get from (1.1) and (1.4)

(1.8)
dϕ0

ds
=

1

γ

[
ϕ0ϕ2(ϕ1 − ϕ3) +

( 1

2
− α2

)
ϕ0 + α0ϕ2

]
,

dγ

ds
=

1

2
.

Introducing the variable t and derivation ′ as

(1.9) γ =
√

t, ′ = t
d

dt
,

we have

α′
0 = 0, α′

1 = 0, α′
2 = 0, α′

3 = 0,

ϕ′
0 = ϕ0ϕ2(ϕ1 − ϕ3) +

( 1

2
− α2

)
ϕ0 + α0ϕ2,

ϕ′
1 = ϕ1ϕ3(ϕ2 − ϕ0) +

( 1

2
− α3

)
ϕ1 + α1ϕ3,

ϕ′
2 = ϕ2ϕ0(ϕ3 − ϕ1) +

( 1

2
− α0

)
ϕ2 + α2ϕ0,

ϕ′
3 = ϕ3ϕ1(ϕ0 − ϕ2) +

( 1

2
− α1

)
ϕ3 + α3ϕ1.

(1.10)

The normalization conditions (1.2) and (1.3) reduce to

(1.11) α0 + α1 + α2 + α3 = 1,

and

(1.12) ϕ0 + ϕ2 = ϕ1 + ϕ3 =
√

t,

respectively. This differential system (1.10)–(1.12) is nothing but the sym-

metric form of PV [10].

On the other hand, it has been revealed that a family of the rational

solutions of PV, which exists on the barycenters of Weyl chambers, has a

determinant formula whose entries are the Laguerre polynomials [8]. This

determinant expression is regarded as a specialization of the universal char-

acters [7]. The aim of this paper is to present an explicit determinant

formula for a class of the rational solutions of q-PV.
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This paper is organized as follows. In Section 2, we give the main result

of this paper. In Section 3, we describe the affine Weyl group symmetry and

derive a set of bilinear equations for the τ -functions of q-PV. In Section 4,

we construct the rational solutions of q-PV. Proof of our result is given in

Section 5. Section 6 is devoted to some remarks.

§2. Main result

Definition 2.1. Let p
(b)
k = p

(b)
k (y|q) and q

(b)
k = q

(b)
k (y|q), k ∈ Z, be

two sets of polynomials defined by

∞∑

k=0

p
(b)
k λk =

(q
1
4 bλ, q

3
4 bλ; q)∞

(−q
1
4 xλ,−q

3
4 x−1λ; q)∞

, p
(b)
k = 0 for k < 0,

∞∑

k=0

q
(b)
k λk =

(−q
1
4 xλ,−q

3
4 x−1λ; q)∞

(q
1
4 b−1λ, q

3
4 b−1λ; q)∞

, q
(b)
k = 0 for k < 0,

(2.1)

with

(2.2) y = − 1

2
(q−1/4x + q1/4x−1).

For m,n ∈ Z≥0, we define a family of polynomials R
(b)
m,n = R

(b)
m,n(y|q) by

(2.3) R(b)
m,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q
(b)
1 q

(b)
0 ··· q

(b)
−m+2 q

(b)
−m+1 ··· q

(b)
−m−n+3 q

(b)
−m−n+2

q
(b)
3 q

(b)
2 ··· q

(b)
−m+4 q

(b)
−m+3 ··· q

(b)
−m−n+5 q

(b)
−m−n+4

...
...

...
...

...
...

...
...

q
(b)
2m−1 q

(b)
2m−2 ··· q

(b)
m q

(b)
m−1 ··· q

(b)
m−n+1 q

(b)
m−n

p
(b)
n−m p

(b)
n−m+1 ··· p

(b)
n−1 p

(b)
n ··· p

(b)
2n−2 p

(b)
2n−1

...
...

...
...

...
...

...
...

p
(b)
−n−m+4 p

(b)
−n−m+5 ··· p

(b)
−n+3 p

(b)
−n+4 ··· p

(b)
2 p

(b)
3

p
(b)
−n−m+2 p

(b)
−n−m+3 ··· p

(b)
−n+1 p

(b)
−n+2 ··· p

(b)
0 p

(b)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For m,n ∈ Z<0, we define R
(b)
m,n by

(2.4) R(b)
m,n = (−1)m(m+1)/2R

(b)
−m−1,n, R(b)

m,n = (−1)n(n+1)/2R
(b)
m,−n−1.

Remark 2.2. The polynomials p
(b)
k and q

(b)
k are essentially the contin-

uous q-Laguerre polynomials P
(α)
k (y|q), which is defined by [6]

(2.5)
∞∑

k=0

P
(α)
k (y|q)λk =

(qα+ 1
2 λ, qα+1λ; q)∞

(q
1
2

α+ 1
4 eiθλ, q

1
2

α+ 1
4 e−iθλ; q)∞

,

P
(α)
k (y|q) = 0 for k < 0, y = cos θ.
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In fact, denoting as

(2.6) Lk(y, b|q) = P
(α)
k (y|q), b = q

1
2

α+ 1
4 ,

we see that p
(b)
k and q

(b)
k are expressed as

p
(b)
k (y|q) = (q

3
4 b−1)kLk(y, q−

1
4 b|q),

q
(b)
k (y|q) = (q−

3
4 b)kLk(y, q

1
4 b−1|q−1),

(2.7)

respectively.

Our main result is stated as follows.

Theorem 2.3. We set

(2.8) Sm,n(x, a) = R(b)
m,n(y), y = − 1

2
(q−1/4x+q1/4x−1), b = q−

1
2

(m−n)a.

Then, for the parameters

(2.9) (a0, a1, a2, a3) = (qn− 1
2 a, a−1, q−m− 1

2 a, qm−na−1),

we have the following rational solutions of q-PV,

1 + q
1
2

(2n−1)af0(x, a)

= q
1
2

m(1 + q−
1
2

(m−n+1)ax−1)
Sm,n(x, a)Sm−1,n−1(q

1
2 x, q−1a)

Sm,n−1(q
1
2 x, a)Sm−1,n(x, q−1a)

,

1 + a−1f1(x, a)

= q
1
2

n(1 + q
1
2

(m−n)a−1x−1)
Sm−1,n(x, q−1a)Sm,n−1(q

1
2 x, qa)

Sm,n(q
1
2 x, a)Sm−1,n−1(x, a)

,

1 + q−
1
2

(2m+1)af2(x, a)

= q−
1
2

m(1 + q−
1
2

(m−n+1)ax−1)
Sm−1,n−1(x, a)Sm,n(q

1
2 x, q−1a)

Sm−1,n(q
1
2 x, q−1a)Sm,n−1(x, a)

,

1 + qm−na−1f3(x, a)

= q−
1
2

n(1 + q
1
2

(m−n)a−1x−1)
Sm,n−1(x, a)Sm−1,n(q

1
2 x, a)

Sm−1,n−1(q
1
2 x, a)Sm,n(x, a)

,

(2.10)
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with x2 = c. Moreover, the above solutions admit the other expressions as

1 + q−
1
2

(2n−1)a−1f0(x, a)

= q−
1
2

n(1 + q
1
2

(m−n+1)a−1x−1)
Sm,n(q

1
2 x, a)Sm−1,n−1(x, q−1a)

Sm,n−1(q
1
2 x, a)Sm−1,n(x, q−1a)

,

1 + af1(x, a)

= q
1
2

m(1 + q−
1
2

(m−n)ax−1)
Sm−1,n(q

1
2 x, q−1a)Sm,n−1(x, qa)

Sm,n(q
1
2 x, a)Sm−1,n−1(x, a)

,

1 + q
1
2

(2m+1)a−1f2(x, a)

= q
1
2

n(1 + q
1
2

(m−n+1)a−1x−1)
Sm−1,n−1(q

1
2 x, a)Sm,n(x, q−1a)

Sm−1,n(q
1
2 x, q−1a)Sm,n−1(x, a)

,

1 + q−m+naf3(x, a)

= q−
1
2

m(1 + q−
1
2

(m−n)ax−1)
Sm,n−1(q

1
2 x, a)Sm−1,n(x, a)

Sm−1,n−1(q
1
2 x, a)Sm,n(x, a)

.

(2.11)

Remark 2.4. The rational solutions of q-PV in Theorem 2.3 are a q-
analogue of those to the Painlevé V equation [8]. See Appendix C in detail.

§3. Weyl group symmetry and bilinear relations

As we mentioned in Section 1, the symmetric form of q-PV (1.1) admits

the symmetry of the extended affine Weyl group W̃ = 〈s0, s1, s2, s3, π〉 of

type A
(1)
3 as a group of Bäcklund transformations. The action of si and π

on the variables ai and fi is given by

si(aj) = aja
−aij

i , π(aj) = aj+1,(3.1)

si(fj) = fj

( ai + fi

1 + aifi

)uij

, π(fj) = fj+1,(3.2)

where A = (aij)
3
i,j=0 is the generalized Cartan matrix of type A

(1)
3 and

U = (uij)
3
i,j=0 is an orientation matrix of the corresponding Dynkin diagram

(3.3) A =




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 , U =




0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0


 ,
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and indices are understood as elements of Z/4Z. These transformations

commute with the time evolution and satisfy the fundamental relations

(3.4)
s2
i = 1, sisj = sjsi (j 6= i, i ± 1), sisjsi = sjsisj (j = i ± 1),

π4 = 1, πsj = sj+1π.

Let us introduce τ -functions τi as solutions of the following equations [5],

(3.5) ¯̄τi = gi
τ̄iτ̄i+1

τi+1
,

where gi is given by

(3.6) gi = 1 + ai+1fi+1 + ai+1ai+2fi+1fi+2 + ai+1ai+2ai+3fi+1fi+2fi+3.

The inverse transformations are given as,

(3.7) τi = hi
τi−1τi

τ̄i−1
,

with

(3.8) hi = 1 +
fi−1

ai−1
+

fi−1fi−2

ai−1ai−2
+

fi−1fi−2fi−3

ai−1ai−2ai−3
.

The Bäcklund transformations can be lifted on the τ -functions as follows:

(3.9)

si(τi) =
(
1 +

fi

ai

) τ̄i−1τi+1

τ̄i
, si(τ̄i) = (1 + aifi)

τ̄i−1τi+1

τi
,

si(τj) = τj , si(τ̄j) = τ̄j, (i 6= j),

π(τj) = τj+1, π(τ̄j) = τ̄j+1.

The fundamental relations (3.4) are preserved in this lifting. Note that we

have the multiplicative formulas

(3.10) 1 +
fi

ai
=

τ̄isi(τi)

τ̄i−1τi+1
, 1 + aifi =

τisi(τ̄i)

τ̄i−1τi+1
,

for the independent variables fi in terms of τ -functions.
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Proposition 3.1. We have the following bilinear equations:

τ0s0s1(τ̄1) = a2
0s0(τ0)s1(τ̄1) + (1 − a2

0)τ2τ̄3,

τ̄1s1s0(τ0) = a−2
1 s0(τ0)s1(τ̄1) + (1 − a−2

1 )τ2τ̄3,

τ1s1s2(τ̄2) = a2
1s1(τ1)s2(τ̄2) + (1 − a2

1)τ3τ̄0,

τ̄2s2s1(τ1) = a−2
2 s1(τ1)s2(τ̄2) + (1 − a−2

2 )τ3τ̄0,

τ2s2s3(τ̄3) = a2
2s2(τ2)s3(τ̄3) + (1 − a2

2)τ3τ̄1,

τ̄3s3s2(τ2) = a−2
3 s2(τ2)s3(τ̄3) + (1 − a−2

3 )τ0τ̄1,

τ3s3s0(τ̄0) = a2
3s3(τ3)s0(τ̄0) + (1 − a2

3)τ1τ̄2,

τ̄0s0s3(τ3) = a−2
0 s3(τ3)s0(τ̄0) + (1 − a−2

0 )τ1τ̄2.

(3.11)

Proof. Eliminating f0 from (3.9) with i = 0, we obtain

(3.12) 1 − a2
0

τ̄0s0(τ0)

τ0s0(τ̄0)
= (1 − a2

0)
τ̄3τ1

τ0s0(τ̄0)
.

From (3.2) and (3.9), we get

(3.13)
τ1s0s1(τ̄1)

s0(τ̄0)τ2
= 1 + a2

0

( τ1s1(τ̄1)

τ̄0τ2
− 1

) τ̄0s0(τ0)

τ0s0(τ̄0)
,

which leads to the first equation of (3.11) by using (3.12). The other equa-
tions are derived by the similar way.

Let us define the translation operators Ti (i = 0, 1, 2, 3) by

(3.14) T1 = πs3s2s1, T2 = s1πs3s2, T3 = s2s1πs3, T0 = s3s2s1π,

which commute with each other and satisfy T1T2T3T0 = 1. These operators

act on parameters ai as

(3.15) Ti(ai−1) = q−1ai−1, Ti(ai) = qai, Ti(aj) = aj (j 6= i − 1, i).

In terms of Ti, τ -functions in (3.11) are expressed as

(3.16)
τ1 = T1(τ0), τ2 = T1T2(τ0), τ3 = T−1

0 (τ0),

s0(τ0) = T−1
0 T1(τ0), s1(τ1) = T2(τ0), s2(τ2) = T1T3(τ0),

s3(τ3) = T−1
3 (τ0), s0s1(τ1) = T1T2T

−1
0 (τ0), s1s0(τ0) = T2T

−1
0 (τ0),

s1s2(τ2) = T2T3(τ0), s2s1(τ1) = T3(τ0), s2s3(τ3) = T−1
2 (τ0),

s3s2(τ2) = T1T0(τ0), s3s0(τ0) = T1T
−1
3 (τ0), s0s3(τ3) = T1T

−1
3 T−1

0 (τ0).
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Introducing a notation,

(3.17) τl,m,n = T l
2T

m
3 T n

0 (τ0), τ̄l,m,n = T l
2T

m
3 T n

0 (τ̄0), l,m, n ∈ Z,

we can express the bilinear relations (3.11) as

(3.18)

τl,m,nτ̄l,m−1,n−2 = a2
0q

2nτl−1,m−1,n−2τ̄l+1,m,n

+ (1 − a2
0q

2n)τl,m−1,n−1τ̄l,m,n−1,

τ̄l−1,m−1,n−1τl+1,m,n−1 = a−2
1 q2lτl−1,m−1,n−2τ̄l+1,m,n

+ (1 − a−2
1 q2l)τl,m−1,n−1τ̄l,m,n−1,

τl−1,m−1,n−1τ̄l+1,m+1,n = a2
1q

−2lτl+1,m,nτ̄l−1,m,n−1

+ (1 − a2
1q

−2l)τl,m,n−1τ̄l,m,n,

τ̄l,m−1,n−1τl,m+1,n = a−2
2 q2(−l+m)τl+1,m,nτ̄l−1,m,n−1

+ (1 − a−2
2 q2(−l+m))τl,m,n−1τ̄l,m,n,

τl,m−1,n−1τ̄l−1,m,n = a2
2q

2(l−m)τl−1,m,n−1τ̄l,m−1,n

+ (1 − a2
2q

2(l−m))τl,m,nτ̄l−1,m−1,n−1,

τ̄l,m,n−1τl−1,m−1,n = a−2
3 q2(−m+n)τl−1,m,n−1τ̄l,m−1,n

+ (1 − a−2
3 q2(−m+n))τl,m,nτ̄l−1,m−1,n−1,

τl,m,n−1τ̄l−1,m−2,n−1 = a2
3q

2(m−n)τl,m−1,nτ̄l−1,m−1,n−2

+ (1 − a2
3q

2(m−n))τl−1,m−1,n−1τ̄l,m−1,n−1,

τ̄l,m,nτl−1,m−2,n−2 = a−2
0 q−2nτl,m−1,nτ̄l−1,m−1,n−2

+ (1 − a−2
0 q−2n)τl−1,m−1,n−1τ̄l,m−1,n−1.

§4. Construction of rational solutions

In this section, we construct a family of rational solutions of q-PV. Sim-

ilarly to the continuous case, we consider the fixed points of Dynkin diagram

automorphism π2 to get a seed solution. It is clear that the symmetric form

of q-PV (1.1) has a particular solution,

(a0, a1, a2, a3) = (q−
1
2 a, a−1, q−

1
2 a, a−1),

(f0, f1, f2, f3) = (x−1, x−1, x−1, x−1),

x2 = c,

(4.1)
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Applying Bäcklund transformations to the seed solution (4.1), we obtain a

family of rational solutions of q-PV.

Calculating τl,m,n and τ̄l,m,n from (3.2), (3.9) and (3.14), and putting

as (4.1) and

(4.2) τi = τ̄i = 1,

we obtain the τ -functions for the rational solutions of q-PV. For small

l,m, n, we observe that τl,m,n and τ̄l,m,n are factorized as the form

(4.3) τl,m,n = ckUl,m,n, τ̄l,m,n = c̃kŪl,m,n, k = m − n − l.

It is possible to guess that Ul,m,n = Ul,m,n(x, a) are some polynomials in

x−1, a±1 and q±
1
2 , and that the factors ck and c̃k are determined by the

recurrence relations

(4.4) ck+1c̃k−1 = (1 + q
k
2 a−1x−1)ck c̃k, c̃k+1ck−1 = (1 + q−

k
2 ax−1)ck c̃k,

with the initial conditions

(4.5) c0 = c1 = 1, c̃0 = c̃1 = 1.

Some examples of them are listed in Appendix A.

Notice that we have

(4.6) T l
2T

l
0(a0, a1, a2, a3) = (q−

1
2 ã, ã−1, q−

1
2 ã, ã−1), ã = qla, l ∈ Z,

under the specialization of (4.1). Comparing (4.6) with (4.1), we see that

the effect of T2 is absorbed by that of T−1
0 and rescaling of the parameter

a. Then, we do not need to consider the translation T2 for constructing the

family of rational solutions of q-PV, and it is possible to put

(4.7) Ul,m,n(x, a) = U0,m,n−l(x, qla).

Now, by (4.1), (4.3) and (4.7), we can rewrite the bilinear relations
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(3.18) in terms of Um,n = U0,m,n. We have

Um,nŪm−1,n−2 = a2q2n−1µm−nU−−
m−1,n−1Ū

++
m,n−1

+ (1 − a2q2n−1)Um−1,n−1Ūm,n−1,

Ū−−
m−1,nU++

m,n−2 = a2µm−nU−−
m−1,n−1Ū

++
m,n−1

+ (1 − a2)Um−1,n−1Ūm,n−1,

U−−
m−1,nŪ++

m+1,n−1 = a−2νm−nU++
m,n−1Ū

−−
m,n

+ (1 − a−2)Um,n−1Ūm,n,

Ūm−1,n−1Um+1,n = a−2q2m+1νm−nU++
m,n−1Ū

−−
m,n

+ (1 − a−2q2m+1)Um,n−1Ūm,n,

Um−1,n−1Ū
−−
m,n+1 = a2q−2m−1µm−nU−−

m,nŪm−1,n

+ (1 − a2q−2m−1)Um,nŪ−−
m−1,n,

Ūm,n−1U
−−
m−1,n+1 = a2q−2(m−n)µm−nU−−

m,nŪm−1,n

+ (1 − a2q−2(m−n))Um,nŪ−−
m−1,n,

Um,n−1Ū
−−
m−2,n = a−2q2(m−n)νm−nUm−1,nŪ−−

m−1,n−1

+ (1 − a−2q2(m−n))U−−
m−1,nŪm−1,n−1,

Ūm,nU−−
m−2,n−1 = a−2q−2n+1νm−nUm−1,nŪ−−

m−1,n−1

+ (1 − a−2q−2n+1)U−−
m−1,nŪm−1,n−1,

(4.8)

with the initial conditions

(4.9) U−1,−1 = U−1,0 = U0,−1 = U0,0 = 1,

where we denote as

µk = (1 + q
1
2

(k+1)a−1x−1)(1 + q
k
2 a−1x−1),

νk = (1 + q−
1
2

(k−1)ax−1)(1 + q−
k
2 ax−1),

(4.10)

and

(4.11) U±±
m,n = Um,n(x, q±1a).

Conversely, by solving the bilinear relations (4.8) with (4.9), we can

construct the family of rational solutions of q-PV. Applying T m
3 T n

0 to (3.10)

and denoting as T m
3 T n

0 (fi) = fi(x, a), we have the following proposition.
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Proposition 4.1. Let Um,n = Um,n(x, a) (m,n ∈ Z) be polynomials

in x−1, a±1 and q±
1
2 which satisfy the bilinear equations (4.8) with the

initial conditions (4.9). Then, fi(x, a) given by

1 + q
1
2

(2n−1)af0(x, a)

= (1 + q−
1
2

(m−n+1)ax−1)
Um,n(x, a)Um−1,n−1(q

1
2 x, q−1a)

Um,n−1(q
1
2 x, a)Um−1,n(x, q−1a)

,

1 + a−1f1(x, a) = (1 + q
1
2

(m−n)a−1x−1)
Um−1,n(x, q−1a)Um,n−1(q

1
2 x, qa)

Um,n(q
1
2 x, a)Um−1,n−1(x, a)

,

1 + q−
1
2

(2m+1)af2(x, a)

= (1 + q−
1
2

(m−n+1)ax−1)
Um−1,n−1(x, a)Um,n(q

1
2 x, q−1a)

Um−1,n(q
1
2 x, q−1a)Um,n−1(x, a)

,

1 + qm−na−1f3(x, a) = (1 + q
1
2

(m−n)a−1x−1)
Um,n−1(x, a)Um−1,n(q

1
2 x, a)

Um−1,n−1(q
1
2 x, a)Um,n(x, a)

,

(4.12)

solve the q-PV (1.1) for the parameters

(4.13) (a0, a1, a2, a3) = (qn− 1
2 a, a−1, q−m− 1

2 a, qm−na−1).

Moreover, the above solutions admit the other expressions as

1 + q−
1
2

(2n−1)a−1f0(x, a)

= (1 + q
1
2

(m−n+1)a−1x−1)
Um,n(q

1
2 x, a)Um−1,n−1(x, q−1a)

Um,n−1(q
1
2 x, a)Um−1,n(x, q−1a)

,

1 + af1(x, a) = (1 + q−
1
2

(m−n)ax−1)
Um−1,n(q

1
2 x, q−1a)Um,n−1(x, qa)

Um,n(q
1
2 x, a)Um−1,n−1(x, a)

,

1 + q
1
2

(2m+1)a−1f2(x, a)

= (1 + q
1
2

(m−n+1)a−1x−1)
Um−1,n−1(q

1
2 x, a)Um,n(x, q−1a)

Um−1,n(q
1
2 x, q−1a)Um,n−1(x, a)

,

1 + q−m+naf3(x, a) = (1 + q−
1
2

(m−n)ax−1)
Um,n−1(q

1
2 x, a)Um−1,n(x, a)

Um−1,n−1(q
1
2 x, a)Um,n(x, a)

.

(4.14)
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§5. Proof of Theorem 2.3

In this section, we give the proof for Theorem 2.3.

Proposition 5.1. We have

(5.1) Um,n = (−1)(
n+1

2 )κmκnSm,n,

where Sm,n = Sm,n(x, a) is defined in Theorem 2.3 and κn is the factor

determined by

(5.2) κn+1κ̄n−1 = q−
1
4

(2n+1)x−1(1 − q2n+1)κnκ̄n, κ0 = κ−1 = 1.

We notice that κn for n ≥ 0 is expressed as

(5.3) κn = q−(n+1
3 )− 1

4 (n+1
2 )x−(n+1

2 )
n∏

k=1

k∏

j=1

(1 − q2j−1).

By substituting (5.1) into (4.12), we find that Theorem 2.3 is a di-

rect consequence of Propositions 4.1 and 5.1. Taking (5.1) and (2.8) into

account, we obtain the bilinear relations for R
(b)
m,n.

Proposition 5.2. The following bilinear relations hold :

(5.4)

− q
1
4

(2m−2n−1)x(1 − q2n+1)R+
m,n+1R̄m−1,n−1

= b2qm+n+1µ+R−
m−1,nR̄++

m,n + x2(1 − b2qm+n+1)R+
m−1,nR̄m,n,

− q
1
4

(2m−6n−3)x(1 − q2n+1)R̄m−1,n+1R
+
m,n−1

= b2qm−nµ+R−
m−1,nR̄++

m,n + x2(1 − b2qm−n)R+
m−1,nR̄m,n,

q
1
4

(−6m+2n−3)x(1 − q2m+1)R−
m−1,nR̄m+1,n−1

= b−2q−m+nνR+
m,n−1R̄

−−
m,n + x2(1 − b−2q−m+n)R−

m,n−1R̄m,n,

q
1
4

(−2m+2n−1)x(1 − q2m+1)R̄m−1,n−1R
−
m+1,n

= b−2qm+n+1νR+
m,n−1R̄

−−
m,n + x2(1 − b−2qm+n+1)R−

m,n−1R̄m,n,

− q−
1
4

(2m+6n+3)x(1 − q2n+1)Rm−1,n−1R̄
−
m,n+1

= b2q−m−n−1µR−−
m,nR̄+

m−1,n + x2(1 − b2q−m−n−1)Rm,nR̄−
m−1,n,

− q−
1
4

(2m+2n+1)x(1 − q2n+1)R̄−
m,n−1Rm−1,n+1
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= b2q−m+nµR−−
m,nR̄+

m−1,n + x2(1 − b2q−m+n)Rm,nR̄−
m−1,n,

q−
1
4

(2m+2n+1)x(1 − q2m+1)R−−
m+1,n−1R̄

−
m−1,n

= b−2qm−n+2ν−Rm,nR̄−−−
m,n−1 + x2(1 − b−2qm−n+2)R−−

m,nR̄−
m,n−1,

q−
1
4

(6m+2n+3)x(1 − q2m+1)R̄−
m+1,nR−−

m−1,n−1

= b−2q−m−n+1ν−Rm,nR̄−−−
m,n−1 + x2(1 − b−2q−m−n+1)R−−

m,nR̄−
m,n−1,

with

(5.5) µ = (x + b−1)(x + q
1
2 b−1), ν = (x + b)(x + q−

1
2 b),

where we denote as

(5.6) X

j︷ ︸︸ ︷
± · · · ± = X

j︷ ︸︸ ︷
± · · · ±(b) = X(q±

j

2 b).

From the above discussion, now the proof of Theorem 2.3 is reduced to that

of Proposition 5.2.

It is possible to reduce the number of bilinear relations to be proved in

(5.4) by the following symmetry of R
(b)
m,n(y|q).

Lemma 5.3. We have the relations for m,n ∈ Z≥0

(5.7)
R

(b−1)
n,m (y|q−1) = R

(b)
m,n(y|q),

R
(b−1)
n,m = (−1)m(m+1)/2+n(n+1)/2R

(b)
m,n.

Proof. From (2.7), it is easy to see that

(5.8) q
(b)
k (y|q) = p

(b−1)
k (y|q−1),

which leads to the first relation of Lemma 5.3. To verify the second relation,

we introduce polynomials q̃
(b)
k = q̃

(b)
k (y|q) by

(5.9)
∞∑

k=0

q̃
(b)
k λk =

(−q
1
4 b−1λ,−q

3
4 b−1λ; q)∞

(q
1
4 xλ, q

3
4 x−1λ; q)∞

, q̃
(b)
k = 0 for k < 0.

Comparing the generating functions, we see that each q̃k is a linear com-

bination of qj , j = k, k − 2, k − 4, . . . . Therefore we can express R
(b)
m,n for
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m,n ∈ Z≥0 in terms of pk and q̃k as

(5.10) R(b)
m,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃
(b)
1 q̃

(b)
0 ··· q̃

(b)
−m+2 q̃

(b)
−m+1 ··· q̃

(b)
−m−n+3 q̃

(b)
−m−n+2

q̃
(b)
3 q̃

(b)
2 ··· q̃

(b)
−m+4 q̃

(b)
−m+3 ··· q̃

(b)
−m−n+5 q̃

(b)
−m−n+4

...
...

...
...

...
...

...
...

q̃
(b)
2m−1 q̃

(b)
2m−2 ··· q̃

(b)
m q̃

(b)
m−1 ··· q̃

(b)
m−n+1 q̃

(b)
m−n

p
(b)
n−m p

(b)
n−m+1 ··· p

(b)
n−1 p

(b)
n ··· p

(b)
2n−2 p

(b)
2n−1

...
...

...
...

...
...

...
...

p
(b)
−n−m+4 p

(b)
−n−m+5 ··· p

(b)
−n+3 p

(b)
−n+4 ··· p

(b)
2 p

(b)
3

p
(b)
−n−m+2 p

(b)
−n−m+3 ··· p

(b)
−n+1 p

(b)
−n+2 ··· p

(b)
0 p

(b)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Noticing that q̃k and pk are related as

(5.11) q̃
(b)
k (y|q) = (−1)kp

(b−1)
k (y|q),

we obtain the second relation of Lemma 5.3.

From the symmetries of R
(b)
m,n(y|q) described by (2.4) and Lemma 5.3,

it is sufficient to prove the first two relations in (5.4) for m,n ∈ Z≥0, which

are equivalent to

− q
1
4

(2m−2n−1)R+
m,n+1R̄m−1,n−1 + q

1
4

(2m+2n+1)R̄m−1,n+1R
+
m,n−1(5.12)

= xR+
m−1,nR̄m,n,

− q
1
4

(2m−6n−3)x(1 − q2n+1)R̄m−1,n+1R
+
m,n−1(5.13)

= b2qm−nµ+R−
m−1,nR̄++

m,n + x2(1 − b2qm−n)R+
m−1,nR̄m,n,

In the following, we show that these bilinear relations are reduced to

Jacobi’s identity of determinants. Let D be an (m + n + 1) × (m + n + 1)

determinant and D
[

i1 i2 ··· ik
j1 j2 ··· jk

]
the minor which are obtained by deleting the

rows with indices i1, . . . , ik and the columns with indices j1, . . . , jk. Then

we have Jacobi’s identity

D · D
[
m m + 1
1 m + n + 1

]
(5.14)

= D

[
m
1

]
D

[
m + 1

m + n + 1

]
− D

[
m + 1

1

]
D

[
m

m + n + 1

]
.

We first choose proper determinants as D (D itself should be expressed in

terms of R
(b)
m,n). Secondly, we construct such formulas that express the minor
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determinants by R
(b)
m,n. Then, Jacobi’s identity yields bilinear equations for

R
(b)
m,n which are nothing but (5.12) and (5.13).

We have the following lemmas.

Lemma 5.4. We set

(5.15) D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q−
m+n−2

2 q
1
4 x−1q+

1 q̄1 · · · q̄−m−n+3 q̄−m−n+2

q−
m+n−4

2 q
1
4 x−1q+

3 q̄3 · · · q̄−m−n+5 q̄−m−n+4
...

...
. . .

...
...

q−
n−m

2 q
1
4 x−1q+

2m−1 q̄2m−1 · · · q̄m−n+1 q̄m−n

q−np+
n−m+1 p̄n−m+2 · · · p̄2n p̄2n+1
...

...
. . .

...
...

q−1p+
−n−m+3 p̄−n−m+4 · · · p̄2 p̄3

p+
−n−m+1 p̄−n−m+2 · · · p̄0 p̄1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then, we have

D = q
1
4

m2− 1
4

n(n+5)x−mR+
m,n+1,

D

[
cm
1

]
= R̄m−1,n+1, D

[
cm + 1

1

]
= R̄m,n,

D

[
m

m + n + 1

]
= q

1
4

(m−1)2− 1
4

(n−1)(n+4)−1x−m+1R+
m−1,n,

D

[
m + 1

m + n + 1

]
= q

1
4

m2− 1
4

(n−2)(n+3)−1x−mR+
m,n−1,

D

[
ccm m + 1
1 m + n + 1

]
= R̄m−1,n−1.

(5.16)

Lemma 5.5. Define P
[−m−n+j]
j,k and Q

[−m−n+j]
j,k by

P
[−m−n+j]
j,k =

m+n−j∏

i=1

(q−
1
4
− i

2 x)q
1
2

(m+n−j)(k− 1
2

(m+n−j)+ 1
2

)p
[−m−n+j]
k ,

Q
[−m−n+j]
j,k = q−

1
2

(m+n−j)kq
[−m−n+j]
k ,

(5.17)

where we denote

(5.18) X [j] = X [j](x, b) = X(q
j

2 x, q
j

2 b).
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Then, setting

(5.19) D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eQ[−m−n]++
0,1 Q

[−m−n+1]
1,1 ··· Q

[−1]
m+n−1,−m−n+3 Q

[0]
m+n,−m−n+2

eQ[−m−n]++
0,3 Q

[−m−n+1]
1,3 ··· Q

[−1]
m+n−1,−m−n+5 Q

[0]
n+n,−m−n+4

...
...

...
...

...

eQ[−m−n]++
0,2m−1 Q

[−m−n+1]
1,2m−1 ··· Q

[−1]
m+n−1,m−n+1 Q

[0]
m+n,m−n

bP [−m−n]++
0,2n P

[−m−n+1]
1,2n+1 ··· P

[−1]
m+n−1,2n+1 P

[0]
m+n,2n+1

...
...

...
...

...

bP [−m−n]++
0,2 P

[−m−n+1]
1,3 ··· P

[−1]
m+n−1,3 P

[0]
m+n,3

bP [−m−n]++
0,0 P

[−m−n+1]
1,1 ··· P

[−1]
m+n−1,1 P

[0]
m+n,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

P̂
[−m−n]++
0,2k = −

P
[−m−n]++
0,2k

1 − q2k+1
,

Q̃
[−m−n]++
0,2k−1 =

Q
[−m−n]++
0,2k−1

qm+n+1−2k(1 − q−m−n+2kb2)
,

(5.20)

we have

(5.21)

D = (−1)n+1

m+nQ
j=1

µ[−m−n+j]

(q−
1
4 b−2x)m+n

nQ
k=0

(1−q2k+1)
mQ

i=1
qm+n+1−2i(1−q−m−n+2ib2)

R++
m,n,

D

[
m
1

]
= Rm−1,n+1, D

[
m + 1

1

]
= Rm,n,

D

[
m

m + n + 1

]
= (−1)n+1xn+1

×
q−

1
4 m2+ 1

4 n2+ 1
4 m−

1
2 n−

3
4

m+n−1Q
j=1

µ[−m−n+j]

(q−
1
4 b−2x)m+n−1

nQ
k=0

(1−q2k+1)
m−1Q
i=1

qm+n+1−2i(1−q−m−n+2ib2)

R+
m−1,n,

D

[
m + 1

m + n + 1

]
= (−1)nxn

×
q−

1
4 m2+ 1

4 n2
−

1
4 m−n

m+n−1Q
j=1

µ[−m−n+j]

(q−
1
4 b−2x)m+n−1

n−1Q
k=0

(1−q2k+1)
mQ

i=1
qm+n+1−2i(1−q−m−n+2ib2)

R+
m,n−1,
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D

[
m m + 1
1 m + n + 1

]
= q−

1
4

m2+ 1
4

n2+ 1
4

m− 1
2

nxnR−
m−1,n.

It is easy to see that the bilinear relations (5.12) and (5.13) follow

immediately from Jacobi’s identity (5.14) by using Lemmas 5.4 and 5.5,

respectively. We give the proof of Lemmas 5.4 and 5.5 in Appendix B. This

completes the proof of our main result Theorem 2.3.

§6. Remarks

The q-PV (1.1) admits the ultra-discrete limit [14]. The limiting pro-

cedure is the same as the case of q-PIV [4] and preserves the symmetry

of the extended affine Weyl group of type A
(1)
3 . Moreover, it is observed

that Um,n = Um,n(x, a) are polynomials in x−1, a±1 and q±
1
2 with positive

coefficients. Then, the rational solutions of q-PV (1.1) in Theorem 2.3 are

thought to survive after taking the ultra-discrete limit.

It is known that the special polynomials associated with the rational

solutions of the Painlevé equations possess the mysterious combinatorial

properties [16], [9], [15]. It is interesting problem to investigate whether the

polynomials Um,n admit such properties.

In [4], it has been shown that the q-PIV coincides with Sakai’s Mul.6

system [13]. As mentioned in Section 1, the q-PV (1.1) has W̃ (A
(1)
1 × A

(1)
3 )

symmetry by the original construction. On the other hand, Sakai’s Mul.5

system [13], which should be also regarded as a q-analogue of the Painlevé V

equation, admits the symmetry of W̃ (A
(1)
4 ). It might be an important

problem to study the relationship between the equation (1.1) and Sakai’s

Mul.5 system.

Acknowledgment. The author would like to thank Prof. M. Noumi,
Prof. Y. Yamada and Prof. K. Kajiwara for fruitful discussions.

A. Table of ck, c̃k and Um.n

The polynomials Um,n(x, a).

U0,0 = 1,

U1,0 = 1 + q
1
2 x−2 + a−1q

1
2 (1 + q

1
2 )x−1,

U2,0 = 1 + q
3
2 x−6 + a−1(1 + q

1
2 )(1 + q + q2)(x−1 + qx−5)

+ q−
1
2 (1 + q + q2)

[
1 + a−2q

3
2 (1 + q

1
2 )2

]
(x−2 + q

1
2 x−4)
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+ a−1q
1
2 (1 + q

3
2 )

[
2(1 + q

1
2 + q) + a−2q2(1 + q

1
2 )2

]
x−3,

U0,1 = 1 + aq
1
2 (1 + q

1
2 )x−1 + q

1
2 x−2,

U0,2 = 1 + q
3
2 x−6 + a(1 + q

1
2 )(1 + q + q2)(x−1 + qx−5)

+ q−
1
2 (1 + q + q2)

[
1 + a2q

3
2 (1 + q

1
2 )2

]
(x−2 + q

1
2 x−4)

+ aq
1
2 (1 + q

3
2 )

[
2(1 + q

1
2 + q) + a2q2(1 + q

1
2 )2

]
x−3,

U1,1 = 1 + qx−4 + (1 + q
1
2 )(a + a−1)(x−1 + q

1
2 x−3)

+ q−
1
2 (1 + q)(1 + q

1
2 + q)x−2,

U1,2 = 1 + q2x−8 + a−1q−
1
2 (1 + q

1
2 )

[
1 + a2(1 + q + q2)

]
(x−1 + q

3
2 x−7)

+ q−
3
2

[
a2q

3
2 (1 + q

1
2 )2(1 + q + q2)

+ (1 + q
1
2 + q + q2)(1 + q + q

3
2 + q2)

]
(x−2 + qx−6)

+ a−1q−1(1 + q
3
2 )

[
a4q2(1 + q

1
2 )2 + a2(1 + q + q2)(2 + 3q

1
2 + 2q)

+ (1 + q
1
2 + q)

]
(x−3 + q

1
2 x−5)

+ q−1(1 + q
1
2 + q + q

3
2 + q2)

×
[
a2q

1
2 (1 + q

1
2 )(1 + q)(1 + q

3
2 ) + 2(1 + q + q2)

]
x−4,

U2,1 = 1 + q2x−8 + a−1q−
1
2 (1 + q

1
2 )

[
a2 + (1 + q + q2)

]
(x−1 + q

3
2 x−7)

+ a−2q−
3
2

[
a2(1 + q

1
2 + q + q2)(1 + q + q

3
2 + q2)

+ q
3
2 (1 + q

1
2 )2(1 + q + q2)

]
(x−2 + qx−6)

+ a−3q−1(1 + q
3
2 )

[
a4(1 + q

1
2 + q) + a2(1 + q + q2)(2 + 3q

1
2 + 2q)

+ q2(1 + q
1
2 )2

]
(x−3 + q

1
2 x−5)

+ a−2q−1(1 + q
1
2 + q + q

3
2 + q2)

×
[
2a2(1 + q + q2) + q

1
2 (1 + q

1
2 )(1 + q)(1 + q

3
2 )

]
x−4.
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The factor ck and c̃k.

c0 = 1, c1 = 1,

c2 = 1 + q
1
2 a−1x−1,

c3 = (1 + q
1
2 a−1x−1)(1 + qa−1x−1)(1 + q−

1
2 ax−1),

c4 = (1 + q
1
2 a−1x−1)2(1 + qa−1x−1)(1 + q

3
2 a−1x−1)(1 + q−

1
2 ax−1)

× (1 + q−1ax−1),

c5 = (1 + q
1
2 a−1x−1)2(1 + qa−1x−1)2(1 + q

3
2 a−1x−1)(1 + q2a−1x−1)

× (1 + q−
1
2 ax−1)2(1 + q−1ax−1)(1 + q−

3
2 ax−1),

c̃0 = 1, c̃1 = 1,

c̃2 = 1 + q−
1
2 ax−1,

c̃3 = (1 + q−
1
2 ax−1)(1 + q−1ax−1)(1 + q

1
2 a−1x−1),

c̃4 = (1 + q−
1
2 ax−1)2(1 + q−1ax−1)(1 + q−

3
2 ax−1)(1 + q

1
2 a−1x−1)

× (1 + qa−1x−1),

c̃5 = (1 + q−
1
2 ax−1)2(1 + q−1ax−1)2(1 + q−

3
2 ax−1)(1 + q−1ax−2)

× (1 + q
1
2 a−1x−1)2(1 + qa−1x−1)(1 + q

3
2 a−1x−1).

B. Proof of Lemmas 5.4 and 5.5

We first note that the following contiguity relations hold,

p+
k − q

k
2 p̄k = −q

1
4 xp+

k−1, q+
k − q−

k
2 q̄k = −q−

1
4 x−1q+

k−1,(B.1)

pk − q
k
2 p−

k
= −q

3
4 x−1pk−1, qk − q−

k
2 q−

k
= −q−

3
4 xqk−1,(B.2)

and

(1 − qk+1)pk+1 = q
k
2

+ 1
4 bx(b − b−1)p+

k
− q

1
4 b2x−1µp++

k ,

(1 − qk+1b2)qk+1 = q
1
2

(k+1)b(b−1 − b)q+
k+1

+ qk+ 1
4 b2x−1µq++

k ,
(B.3)

which are easily derived from (2.1).
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Let us prove Lemma 5.4. Noticing that p1 = 1 and pk = 0 for k < 0,

we see that Rm,n can be rewritten as

(B.4) Rm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q1 q0 ··· q
−m−n+3 q

−m−n+2 q
−m−n+1

q3 q2 ··· q
−m−n+5 q

−m−n+4 q
−m−n+3

...
...

...
...

...
...

q2m−1 q2m−2 ··· qm−n+1 qm−n qm−n−1

pn−m pn−m+1 ··· p2n−2 p2n−1 p2n

...
...

...
...

...
...

p
−n−m+4 p

−n−m+5 ··· p2 p3 p4

p
−n−m+2 p

−n−m+3 ··· p0 p1 p2

p
−n−m p

−n−m+1 ··· p
−2 p

−1 p0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Adding the (j−1)-th column multiplied by q
1
4 x to the j-th column of R+

m,n

for j = m + n,m + n − 1, . . . , 2 and using (B.1), we get

R+
m,n = q−

1
4

m2+ 1
4

(n−1)(n+4)xm(B.5)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q−
m+n−3

2 q
1
4 x−1q+

1 q̄1 ··· q̄
−m−n+4 q̄

−m−n+3

q−
m+n−5

2 q
1
4 x−1q+

3 q̄3 ··· q̄
−m−n+6 q̄

−m−n+5
...

...
...

...
...

q−
n−m−1

2 q
1
4 x−1q+

2m−1 q̄2m−1 ··· q̄m−n+2 q̄m−n+1

q−n+1p+
n−m p̄n−m+1 ··· p̄2n−2 p̄2n−1

...
...

...
...

...

q−1p+
−n−m+4 p̄

−n−m+5 ··· p̄2 p̄3

p+
−n−m+2 p̄

−n−m+3 ··· p̄0 p̄1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From (B.4) and (B.5), we obtain Lemma 5.4.

We next prove Lemma 5.5. Adding the (i+1)-th column multiplied by

q
1
4
−(m+n−j)x to the i-th column of Rm,n for i = 1, 2, . . . , j, j = m + n −

1,m + n − 2, . . . , 1 and using (B.2), we get

(B.6) Rm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
[−m−n+1]
1,1 Q

[−m−n+2]
2,0 ··· Q

[−1]
m+n−1,−m−n+3 Q

[0]
m+n,−m−n+2

Q
[−m−n+1]
1,3 Q

[−m−n+2]
2,2 ··· Q

[−1]
m+n−1,−m−n+5 Q

[0]
n+n,−m−n+4

...
...

...
...

...

Q
[−m−n+1]
1,2m−1 Q

[−m−n+2]
2,2m−2 ··· Q

[−1]
m+n−1,m−n+1 Q

[0]
m+n,m−n

P
[−m−n+1]
1,2n−1 P

[−m−n+2]
2,2n−1 ··· P

[−1]
m+n−1,2n−1 P

[0]
m+n,2n−1

...
...

...
...

...

P
[−m−n+1]
1,3 P

[−m−n+2]
2,3 ··· P

[−1]
m+n−1,3 P

[0]
m+n,3

P
[−m−n+1]
1,1 P

[−m−n+2]
2,1 ··· P

[−1]
m+n−1,1 P

[0]
m+n,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Noticing that p1 = 1 and pk = 0 for k < 0, we see that Rm,n can be
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rewritten as

(B.7) Rm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
[−m−n]
0,1 Q

[−m−n+1]
1,0 ··· Q

[−1]
m+n−1,−m−n+2 Q

[0]
m+n,−m−n+1

Q
[−m−n]
0,3 Q

[−m−n+1]
1,2 ··· Q

[−1]
m+n−1,−m−n+4 Q

[0]
n+n,−m−n+3

...
...

...
...

...

Q
[−m−n]
0,2m−1 Q

[−m−n+1]
1,2m−2 ··· Q

[−1]
m+n−1,m−n Q

[0]
m+n,m−n−1

P
[−m−n]
0,2n P

[−m−n+1]
1,2n ··· P

[−1]
m+n−1,2n P

[0]
m+n,2n

...
...

...
...

...

P
[−m−n]
0,2 P

[−m−n+1]
1,2 ··· P

[−1]
m+n−1,2 P

[0]
m+n,2

P
[−m−n]
0,0 P

[−m−n+1]
1,0 ··· P

[−1]
m+n−1,0 P

[0]
m+n,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then, adding the j-th column multiplied
q

3
4

+m+n−jb−2x(1 − q−m−n+jb2)

µ[−m−n+j]

to (j +1)-th column of R++
m,n for j = m+n,m+n−1, . . . , 1 and using (B.3),

we obtain

(B.8)

R++
m,n = (−1)n+1

(q−
1
4 b−2x)m+n

nQ
k=0

(1−q2k+1)
mQ

i=1
qm+n+1−2i(1−q−m−n+2ib2)

m+nQ
j=1

µ[−m−n+j]

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eQ[−m−n]++
0,1 Q

[−m−n+1]
1,1 ··· Q

[−1]
m+n−1,−m−n+3 Q

[0]
m+n,−m−n+2

eQ[−m−n]++
0,3 Q

[−m−n+1]
1,3 ··· Q

[−1]
m+n−1,−m−n+5 Q

[0]
n+n,−m−n+4

...
...

...
...

...

eQ[−m−n]++
0,2m−1 Q

[−m−n+1]
1,2m−1 ··· Q

[−1]
m+n−1,m−n+1 Q

[0]
m+n,m−n

bP [−m−n]++
0,2n P

[−m−n+1]
1,2n+1 ··· P

[−1]
m+n−1,2n+1 P

[0]
m+n,2n+1

...
...

...
...

...

bP [−m−n]++
0,2 P

[−m−n+1]
1,3 ··· P

[−1]
m+n−1,3 P

[0]
m+n,3

bP [−m−n]++
0,0 P

[−m−n+1]
1,1 ··· P

[−1]
m+n−1,1 P

[0]
m+n,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where we use the relations

P
[−m−n+j+1]−
j,k = q−

k
2

+ 1
4

+ 1
2

(m+n−j)x−1P
[−m−n+j]
j,k ,

Q[−m−n+j+1]−
j,k

= q
k
2 Q

[−m−n+j]
j,k .

(B.9)

Lemma 5.5 follows from (B.6), (B.7) and (B.8).

C. Continuum limit to the rational solutions of PV

We consider the continuum limit of the rational solutions of q-PV to

those of the Painlevé V equation. In the previous paper [8], we have pre-

sented a determinant formula for the rational solutions of PV.
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Proposition C.1. Let p̂
(r)
k = p̂

(r)
k (z) and q̂

(r)
k = q̂

(r)
k (z) be polynomials

defined by

(C.1) p̂
(r)
k (z) = L

(r−1)
k (z), q̂

(r)
k (z) = L

(r−1)
k (−z),

respectively, where L
(r)
k (z) are the Laguerre polynomials. For m,n ∈ Z≥0,

we define a family of polynomials R̂
(r)
m,n = R̂

(r)
m,n(z) by

(C.2) R̂(r)
m,n(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̂
(r)
1 q̂

(r)
0 ··· q̂

(r)
−m+2 q̂

(r)
−m+1 ··· q̂

(r)
−m−n+3 q̂

(r)
−m−n+2

q̂
(r)
3 q̂

(r)
2 ··· q̂

(r)
−m+4 q̂

(r)
−m+3 ··· q̂

(r)
−m−n+5 q̂

(r)
−m−n+4

...
...

...
...

...
...

...
...

q̂
(r)
2m−1 q̂

(r)
2m−2 ··· q̂

(r)
m q̂

(r)
m−1 ··· q̂

(r)
m−n+1 q̂

(r)
m−n

p̂
(r)
n−m p̂

(r)
n−m+1 ··· p̂

(r)
n−1 p̂

(r)
n ··· p̂

(r)
2n−2 p̂

(r)
2n−1

...
...

...
...

...
...

...
...

p̂
(r)
−n−m+4 p̂

(r)
−n−m+5 ··· p̂

(r)
−n+3 p̂

(r)
−n+4 ··· p̂

(r)
2 p̂

(r)
3

p̂
(r)
−n−m+2 p̂

(r)
−n−m+3 ··· p̂

(r)
−n+1 p̂

(r)
−n+2 ··· p̂

(r)
0 p̂

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For m,n ∈ Z<0, we define R̂
(r)
m,n by

(C.3) R̂(r)
m,n = (−1)m(m+1)/2R̂

(r)
−m−1,n, R̂(r)

m,n = (−1)n(n+1)/2R̂
(r)
m,−n−1.

Moreover, we introduce Sm,n = Sm,n(t, s) as

(C.4) R̂(r)
m,n(z) = Ŝm,n(t, s), z =

t

2
, r = 2s − m + n.

Then, ϕi = ϕi(t, s) given by

ϕ0 =

√
t

2

Ŝm,n(t, s)Ŝm−1,n−1(t, s − 1)

Ŝm,n−1(t, s)Ŝm−1,n(t, s − 1)
,

ϕ1 =

√
t

2

Ŝm−1,n(t, s − 1)Ŝm,n−1(t, s + 1)

Ŝm,n(t, s)Ŝm−1,n−1(t, s)
,

ϕ2 =

√
t

2

Ŝm−1,n−1(t, s)Ŝm,n(t, s − 1)

Ŝm−1,n(t, s − 1)Ŝm,n−1(t, s)
,

ϕ3 =

√
t

2

Ŝm,n−1(t, s)Ŝm−1,n(t, s)

Ŝm−1,n−1(t, s)Ŝm,n(t, s)
,

(C.5)

solve the symmetric form of PV (1.10) for the parameters

(C.6) (α0, α1, α2, α3) =
( 1

2
− s − n, s,

1

2
− s + m, s − m + n

)
.
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Let us consider the continuum limit of the result in Theorem 2.3. First,

we note that the continuous q-Laguerre polynomials P
(α)
k (y|q) are expressed

as

(C.7) P
(α)
k (y|q) =

(qα+1; q)k
(q; q)k

3 φ2

(
q−k, q

1
2

α+ 1
4 eiθ, q

1
2

α+ 1
4 e−iθ

qα+1, 0

∣∣∣∣q; q
)

,

y = cos θ for k ≥ 0,

in terms of the basic hypergeometric functions [6]. Then, from (2.2), (2.6)

and (2.7), the polynomials p
(b)
k (y|q) are written as

(C.8)

p
(b)
k (y|q) = (q

3
4 b−1)k

(b2; q)k
(q; q)k

3 φ2

(
q−k,−q−

1
2 bx,−bx−1

b2, 0

∣∣∣∣q; q
)

for k ≥ 0.

Setting

(C.9) b = q
r
2 , q = e

ε2

2 , x = −e
ε
2

√
t,

and taking the limit as ε → 0, we obtain

(C.10) lim
ε→0

p
(b)
k (y|q) =

(r)k
k!

1 F1

(−k

r

∣∣∣∣
t

2

)
= L

(r−1)
k (t/2) for k ≥ 0.

Similarly, we see that q
(b)
k reduce to L

(r−1)
k (−t/2). Thus, we get

(C.11) lim
ε→0

R(b)
m,n(y|q) = R̂(r)

m,n(z),

and

(C.12) lim
ε→0

Sm,n(x, a) = Ŝm,n(t, s),

with a = qs. Finally, setting as

(C.13) fi = −e−εϕi ,

we find that (2.10) and (2.9) reduce to (C.5) and (C.6), respectively. It is

shown that q-PV (1.1) reduce to the symmetric form of PV (1.10) by the

above limiting procedure in Section 1. Therefore, the rational solutions of

q-PV stated in Theorem 2.3 reduce to those of PV.
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