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SHELLABILITY OF SEMIGROUP RINGS

ANNETTA ARAMOVA, JÜRGEN HERZOG and

TAKAYUKI HIBI

Abstract. The concepts of Λ-shellability of locally finite posets as well as of
extendable sequentially Koszul algebras will be introduced. It will be proved
that the divisor poset of a homogeneous semigroup ring is Λ-shellable if and only
if the semigroup ring is extendable sequentially Koszul. Examples of extendable
sequentially Koszul semigroup rings contain all monomial ASL’s (algebras with
straightening laws) and all second squarefree Veronese subrings.

Introduction

Let A be a homogeneous semigroup ring over a field K, i.e., A is a sub-

ring of a polynomial ring over K generated by a finite number of monomials

and A is a graded algebra A = A0⊕A1⊕· · · with A0 = K such that the mini-

mal system of monomial generators of A is contained in A1. We write ΣA for

the infinite poset (partially ordered set) consisting of all monomials belong-

ing to A, ordered by divisibility. Thus, in particular, ΣA possesses a unique

minimal element 1 (∈ K), and is locally finite and pure, i.e., if α, β ∈ ΣA

with α < β, then the closed interval [α, β] = {γ ∈ ΣA ; α ≤ γ ≤ β} is finite

and pure. (A finite poset P is called pure if all maximal chains (totally

ordered sets) contained in P have the same cardinality.) The infinite poset

ΣA is said to be the divisor poset of A.

It is known, e.g., [11] that a homogeneous semigroup ring A over a field

K is Koszul if and only if ΣA is Cohen-Macaulay over K (i.e., for all α ∈ ΣA,

the closed interval [1, α] of ΣA is Cohen-Macaulay over K). See also [6].

(We refer the reader to, e.g., [3] and [7] for the detailed information about

Cohen-Macaulay posets.) In [5], the concept of strongly Koszul algebras

is introduced, and it is proved that a homogeneous semigroup ring A is

strongly Koszul if and only if, for all α ∈ ΣA, the closed interval [1, α] of

ΣA is wonderful (locally semimodular), i.e., if β → u < w, β → v < w in
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[1, α], then u → w′, v → w′ for some w′ ≤ w. (We write u → w if u is

covered by w, i.e., u < w and u < v < w for no v ∈ ΣA.)

In the combinatorics on finite posets, there is the hierarchy as follows:

wonderful ⇒ shellable ⇒ Cohen-Macaulay.

(A finite pure poset P is called shellable if there exists an ordering of the

maximal chains C1, C2, . . . , Cs of P such that, if 1 ≤ i < j ≤ s, then there

is k < j with Ci ∩ Cj ⊂ Ck ∩ Cj and ](Ck ∩ Cj) = δ − 1, where δ is

the cardinality of any maximal chain of P , and where ](Ck ∩ Cj) is the

cardinality of Ck ∩Cj.) It is a fundamental question to investigate the class

of homogeneous semigroup rings with shellable divisor posets. It seems,

however, unknown if there is a Koszul semigroup rings with a nonshellable

divisor poset.

A sufficient condition for a homogeneous algebra to be Koszul is that

its defining ideal possesses a quadratic Gröbner basis. In [11], the shella-

bility of divisor posets of homogeneous semigroup rings is studied from the

viewpoint of noncommutative Gröbner bases, and it is shown [11, Corol-

lary 3.6] that the divisor poset of a ‘quasi-poset’ semigroup ring (i.e., a

homogeneous semigroup ring whose defining ideal has a quasi-poset initial

ideal) is shellable. (An ideal I of the polynomial ring K[x1, x2, . . . , xn] is

called quasi-poset if I is generated by quadratic monomials and satisfies

the following condition: If 1 ≤ i ≤ k ≤ j ≤ n and if xixj ∈ I, then ei-

ther xixk ∈ I or xkxj ∈ I.) It is likely that the quasi-poset semigroup

rings form a rather small subclass of the class of semigroup rings having

quadratic Gröbner bases. For example, the d-th squarefree Veronese sub-

ring of K[x1, x2, . . . , xn], where 2 ≤ d < n, is quasi-poset if and only if either

(i) d = 2 and 3 ≤ n ≤ 4, or (ii) d ≥ 3 and n = d+ 1 ([8, Theorem 2.3]). See

also [10].

Our original motivation of the present paper is to find a useful criterion

for the divisor poset of a homogeneous semigroup ring to be shellable. We

introduce the combinatorial notion of Λ-shellability of locally finite posets

and present the algebraic concept of (extendable) sequentially Koszul alge-

bras. There is the following hierarchy in the class of homogeneous semigroup

rings:

strongly Koszul ⇒ extendable sequentially Koszul ⇒ Koszul.

Theorem 3.1, which is the main theorem of the present paper, guarantees

that the divisor poset of a homogeneous semigroup ring is Λ-shellable if and
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only if the semigroup ring is extendable sequentially Koszul. The class of ex-

tendable sequentially Koszul semigroup rings contains all monomial ASL’s

(algebras with straightening laws) as well as all second squarefree Veronese

subrings. See Theorems 2.4 and 2.5. In particular, divisor posets of these

semigroup rings are shellable. (Note that the shellability of monomial ASL’s

follows from [11, Corollary 3.6] since every monomial ASL is quasi-poset,

while the shellability of second squarefree Veronese subrings does not follow

from [11, Corollary 3.6].) It is remarkable that there exists an extendable

sequentially Koszul semigroup ring having no quadratic Gröbner basis. See

Example 3.5 (a). We do not know if there is a quasi-poset semigroup ring

which is not extendable sequentially Koszul.

§1. Λ-shellability of locally finite posets

We introduce the notion of Λ-shellability of locally finite posets (par-

tially ordered sets) and show that all rank-selected subposets of a Λ-shellable

poset are Λ-shellable.

First, we recall some fundamental materials on finite posets. See, e.g.,

[12] for the detailed information. Let P be a finite poset. A chain of P is a

totally ordered set C of P . The length of a chain C of P is ](C)− 1, where

](C) is the cardinality of C as a finite set. A pure poset is a finite poset

any of whose maximal chain has the same length. If α, β ∈ P with α < β,

then the closed interval [α, β] is the subposet {γ ∈ P ; α ≤ γ ≤ β} of P .

We write α → β with α, β ∈ P for the covering relation of P , i.e., α < β in

P and α < γ < β for no γ ∈ P . A chain C : α0 < α1 < · · · < αq of P is

called saturated if αi−1 is covered by αi, i.e., αi−1 → αi for all 1 ≤ i ≤ q.

A finite pure poset P is called shellable if there exists a total ordering

(called a shelling) of the maximal chains C1, C2, . . . , Cs of P such that,

if 1 ≤ i < j ≤ s, then there is k < j with Ci ∩ Cj ⊂ Ck ∩ Cj and

](Ck ∩ Cj) = δ − 1, where δ is the cardinality of any maximal chain of P .

See [1] and [2] for the foundations on shellability of finite posets.

A locally finite poset is an infinite poset Σ any of whose closed interval

is finite. A locally finite poset Σ is called pure if every closed interval of Σ

is pure.

We work with an infinite poset Σ which is locally finite and pure and

which possesses a unique minimal element 1. Let Mq(Σ) denote the set

of saturated chains of Σ of length q starting from 1, in other words, every



168-04 : 2002/12/6(17:25)

68 A. ARAMOVA, J. HERZOG AND T. HIBI

chain belonging to Mq(Σ) is of the form

1 → α1 → α2 → · · · → αq

with each αi ∈ Σ.

Let Ω denote a totally ordered set (say, Z). A chain-edge labeling of Σ

is a map

λ :

∞
⋃

q=1

Mq(Σ) −→
∞
⋃

q=1

Ωq,

which associates a saturated chain

C : 1 = α0 → α1 → α2 → · · · → αq

belonging to Mq(Σ) with

λ(C) =
(

λ(C;α0 → α1), λ(C;α1 → α2), . . . , λ(C;αq−1 → αq)
)

∈ Ωq,

satisfying the following condition:

If p ≤ q and if a saturated chain C ′ : 1 → α1 → · · · → αp belonging

to Mp(Σ) is a subchain of a saturated chain C : 1 → α1 → · · · →

αp → αp+1 → · · · → αq belonging to Mq(Σ), then λ(C ′;αi−1 →
αi) = λ(C;αi−1 → αi) for all 1 ≤ i ≤ p.

A chain-edge labeling λ of Σ is said to be a Λ-labeling if the following

conditions are satisfied:

(Λ-1) If C : 1 = α0 → α1 → · · · → αq ∈ Mq(Σ) and if αq → β and

αq → γ with β 6= γ, then λ(C ∪ {β};αq → β) 6= λ(C ∪ {γ};αq → γ);

(Λ-2) Let C : 1 = α0 → α1 → · · · → αq−1 → αq ∈ Mq(Σ), and let αq →

β and αq → γ with β 6= γ. If β covers an element α′ ∈ Σ with αq−1 → α′

satisfying λ((C\{αq})∪{α
′};αq−1 → α′) < λ(C;αq−1 → αq) and if γ covers

no element α′ ∈ Σ with αq−1 → α′ satisfying λ((C \ {αq}) ∪ {α′};αq−1 →
α′) < λ(C;αq−1 → αq), then λ(C ∪ {β};αq → β) < λ(C ∪ {γ};αq → γ).

A chain-edge labeling λ of Σ is said to be a Λ-shelling if λ is a Λ-labeling

and if, for all α ∈ Σ, the total ordering C1, C2, . . . , Cs of the maximal chains

of the closed interval [1, α] with

λ(C1) <lex λ(C2) <lex · · · <lex λ(Cs)
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defines a shelling of [1, α]. Here, <lex is the lexicographic order on Ωq (and q

is the length of any maximal chain of [1, α]), i.e., (a1, . . . , aq) <lex (b1, . . . , bq)

if a1 = b1, . . . , ai−1 = bi−1 and ai < bi for some 1 ≤ i ≤ q.

An infinite poset Σ which is locally finite and pure with a unique min-

imal element is called Λ-shellable if Σ admits a Λ-shelling.

Let Σ be an infinite poset which is locally finite and pure with a unique

minimal element 1. The rank-selected subposet of Σ of order d with 0 <

d ∈ Z is the subposet of Σ which consists of those elements α ∈ Σ such

that the length of any maximal chain of the closed interval [1, α] belongs to

{0, d, 2d, 3d, . . . }.

Theorem 1.1. All rank-selected subposets of a Λ-shellable poset are

Λ-shellable.

Proof. Let Σ be a Λ-shellable poset with a Λ-shelling λ, and let Σ(d)

be the rank-selected subposet of Σ of order d. If C : 1 = α0 → α1 → · · · →
αq ∈ Mq(Σ

(d)), then we write C̄ for the maximal chain of [1, αq] in Σ with
αi ∈ C̄ for each i such that, for any maximal chain C ′ of [1, αq] in Σ with
αi ∈ C ′ for each i, we have λ(C̄) ≤lex λ(C ′). If

C̄ : · · · → αi−1 → α
(1)
i−1 → α

(2)
i−1 → · · · → α

(d−1)
i−1 → αi → · · · ,

then we define λ(d)(C;αi−1 → αi) ∈ Ωd to be

(

λ(C̄;αi−1 → α
(1)
i−1), λ(C̄;α

(1)
i−1 → α

(2)
i−1), . . . , λ(C̄;α

(d−1)
i−1 → αi)

)

.

This technique enables us to obtain a chain-edge labeling

λ(d) :

∞
⋃

q=1

Mq(Σ
(d)) −→

∞
⋃

q=1

(Ωd)q

of Σ(d), which satisfies the condition (Λ-1).

Let C and C ′ be maximal chains of the closed interval [1, u] of Σ(d)

with λ(d)(C) <lex λ(d)(C ′). Then λ(C̄) <lex λ(C̄ ′). Hence there exists a
maximal chain C0 of the closed interval [1, u] of Σ such that λ(C0) <lex

λ(C̄ ′), C̄ ∩ C̄ ′ ⊂ C0 ∩ C̄ ′ and ](C0 ∩ C̄ ′) = ](C̄)− 1. Since λ(C0) <lex λ(C̄ ′),
it follows that C̄ ′ \ C0 ⊂ Σ(d). Thus the maximal chain C ′′ = C0 ∩ Σ(d)

of [1, u] of Σ(d) satisfies λ(d)(C ′′) <lex λ(d)(C ′), C ∩ C ′ ⊂ C ′′ ∩ C ′ and
](C ′′ ∩ C ′) = ](C) − 1.
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Hence λ(d) turns out to be a Λ-shelling of Σ(d), provided that λ(d)

satisfies the condition (Λ-2). Let C : 1 = α0 → α1 → · · · → αq−1 → αq ∈
Mq(Σ

(d)), and let αq → β and αq → γ with β 6= γ in Σ(d). Suppose that
β covers an element α′ ∈ Σ(d) with αq−1 → α′ satisfying λ(d)((C \ {αq}) ∪
{α′};αq−1 → α′) < λ(d)(C;αq−1 → αq) and that γ covers no element
α′ ∈ Σ(d) with αq−1 → α′ satisfying λ(d)((C \ {αq}) ∪ {α′};αq−1 → α′) <
λ(d)(C;αq−1 → αq). Let C1 = C ∪ {β}, C2 = C ∪ {γ} and C3 = (C \
{αq})∪{α′, β}. Let αq → β′ in C̄1, αq → γ′ in C̄2 and α′′ → αq in C̄. Since
λ(C̄3) <leq λ(C̄1), the shellability of [1, β] in Σ guarantees the existence
of ξ ∈ Σ(d) with α′′ → ξ → β′ in Σ and with λ((C̄ \ {αq}) ∪ {ξ};α′′ →
ξ) < λ(C̄;α′′ → αq). Since there is no ξ ∈ Σ(d) with α′′ → ξ → γ′ in Σ
and with λ((C̄ \ {αq}) ∪ {ξ};α′′ → ξ) < λ(C̄;α′′ → αq), it follows that
λ(C̄ ∪ {β′};αq → β′) < λ(C̄ ∪ {γ′};αq → γ′). Hence λ(d)(C ∪ {β};αq →
β) < λ(d)(C ∪ {γ};αq → γ), as desired.

§2. Extendable sequentially Koszul algebras

We introduce the concept of extendable sequentially Koszul algebras

and show that all ASL’s (algebras with straightening laws) as well as all

second squarefree Veronese subrings are extendable sequentially Koszul al-

gebras.

Let K be a field and A = A0 ⊕A1⊕· · · a homogeneous K-algebra. Let

G = {s1, . . . , sn} be a minimal system of generators of A with each si ∈ A1.

(1) We say that a subset {si1 , . . . , siq} of G has linear quotients if there

exists an ordered sequence

s = (sj1 , . . . , sjq)

of {si1 , . . . , siq} such that, for all initial sequences (sj1 , . . . , sjp) of s, the

colon ideal

I(s; p) = (sj1 , . . . , sjp−1) : sjp

is generated by a subset G(s; p) of G.

(1′) We say that a subset {si1 , . . . , siq} of G has extendable linear quo-

tients if there exists an ordered sequence

s = (sj1 , . . . , sjn)

of G with

{si1 , . . . , siq} = {sj1 , . . . , sjq}
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such that, for all initial sequences (sj1 , . . . , sjp) of s, the colon ideal

I(s; p) = (sj1 , . . . , sjp−1) : sjp

is generated by a subset G(s; p) of G.

(2) We say that a subset {si1 , . . . , siq} of G has linear quotients of second

level if there exists an ordered sequence s = (sj1 , . . . , sjq) of {si1 , . . . , siq}
such that, for all 1 < p ≤ q, the colon ideal I(s; p) is generated by a subset

G(s; p) of G and, in addition, G(s; p) has linear quotients.

(2′) We say that a subset {si1 , . . . , siq} of G has extendable linear quo-

tients of second level if there exists an ordered sequence s = (sj1 , . . . , sjn) of

G with {si1 , . . . , siq} = {sj1 , . . . , sjq} such that, for all 1 < p ≤ n, the colon

ideal I(s; p) is generated by a subset G(s; p) of G and, in addition, G(s; p)

has extendable linear quotients.

(3) We say that a subset {si1 , . . . , siq} of G has linear quotients of ρ-th

level if there exists an ordered sequence s = (sj1 , . . . , sjq) of {si1 , . . . , siq}
such that, for all 1 < p ≤ q, the colon ideal I(s; p) is generated by a subset

G(s; p) of G and, in addition, G(s; p) has linear quotients of (ρ−1)-th level.

(3′) We say that a subset {si1 , . . . , siq} of G has extendable linear quo-

tient of ρ-th level if there exists an ordered sequence s = (sj1 , . . . , sjn) of G

with {si1 , . . . , siq} = {sj1 , . . . , sjq} such that, for all 1 < p ≤ n, the colon

ideal I(s; p) is generated by a subset G(s; p) of G and, in addition, G(s; p)

has extendable linear quotients of (ρ − 1)-th level.

Definition 2.1. (a) A homogeneous K-algebra A = A0 ⊕ A1 ⊕ · · · is
called sequentially Koszul (resp. extendable sequentially Koszul) if A admits
a minimal system of generators G = {s1, . . . , sn} (⊂ A1) such that G has
linear quotients (resp. extendable linear quotients) of ρ-th level for all ρ ≥ 2.

(b) A homogeneous semigroup ring is called sequentially Koszul (resp.
extendable sequentially Koszul) if its minimal system of monomial genera-
tors has linear quotients (resp. extendable linear quotients) of ρ-th level for
all ρ ≥ 2.

Recall from [5] that a homogeneous K-algebra A = A0 ⊕ A1 ⊕ · · · is

called strongly Koszul if A admits a minimal system of generators G =

{s1, . . . , sn} (⊂ A1) satisfying the following condition:

(∗) For all subsequences si1 , . . . , siq of (s1, . . . , sn) with i1 < · · · <

iq and for all 1 < p ≤ q, the colon ideal (si1 , . . . , sip−1) : sip is

generated by a subset of G.
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Moreover, a homogeneous semigroup ring is called strongly Koszul if

its minimal system of monomial generators G = {s1, . . . , sn} satisfies the

condition (∗) above. It follows from [5, Proposition 1.4] that a homo-

geneous semigroup ring with its minimal system of monomial generators

G = {s1, . . . , sn} is strongly Koszul if and only if the colon ideal (si) : sj is

generated by a subset of G for all i 6= j. Thus, in particular, any strongly

Koszul semigroup ring is extendable sequentially Koszul.

In [5, Theorem 1.2] it is proved that every strongly Koszul algebra is

Koszul. The technique appearing in the proof of [5, Theorem 1.2] can be

applied to sequentially Koszul algebras and we obtain

Theorem 2.2. A sequentially Koszul algebra is Koszul. (Thus, in par-

ticular, every extendable sequentially Koszul algebra is Koszul.)

One of the most distinguished classes of extendable sequentially Koszul

algebras is the class of ASL’s. First of all, we recall some fundamental

materials on ASL’s from [4]. See also [3] and [7]. Let K be a field and

A = A0 ⊕ A1 ⊕ A2 ⊕ · · · a graded algebra over A0 = K. Let P be a finite

poset which is a subset of A1 and suppose that A is generated by P as

an algebra over K. A product of the form α1α2 · · ·αq with each αi ∈ P

is called a standard monomial of A if α1 ≤ α2 ≤ · · · ≤ αq. Then A is an

algebra with straightening laws (ASL for short) on P over K if

(ASL-1) The set of standard monomials of A is a basis of A as a vector

space over K;

(ASL-2) If α and β in P are incomparable and if

αβ =
∑

i

riγi1γi2 ,

where 0 6= ri ∈ K and γi1 ≤ γi2 , is the unique expression for αβ in A as

a linear combination of standard monomials guaranteed by (ASL-1), then

γi1 ≤ α and γi1 ≤ β for every i.

The relations mentioned in (ASL-2) are called the straightening relations.

It then follows that if w = β1β2 · · · is a nonstandard monomial of A and if

w =
∑

i

riγi1γi2 · · ·

with 0 6= ri ∈ K and with γi1 ≤ γi2 ≤ · · · is the standard monomial

expression of w, then γi1 < βj for all i and j.
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A poset ideal of a finite poset P is a subset I of P (possibly, empty)

such that α ∈ I and β ∈ P together with β ≤ α in P imply β ∈ I. If A is an

ASL on P over K and if I is a poset ideal of P , then the ideal ({ξ ; ξ ∈ I})
of A generated by I has a K-basis consisting of those standard monomials

γi1γi2 · · · with γi1 ≤ γi2 ≤ · · · and with γi1 ∈ I.

Lemma 2.3. Let I be a poset ideal of P and α ∈ P \ I. Suppose that

I ∪ {α} is a poset ideal of P . Then, in A, we have

({ξ ; ξ ∈ I}) : α = ({ζ ∈ P ; ζ 6≥ α}).

Proof. First, if ζ ∈ P with ζ 6≥ α, then ζα belongs to ({ξ ; ξ < α}) by
(ASL-2). Thus, ζα ∈ ({ξ ; ξ ∈ I}) since ({ξ ; ξ < α}) ⊂ ({ξ ; ξ ∈ I}).

Second, suppose that δ ∈ A belongs to ({ξ ; ξ ∈ I}) : α and let
δ =

∑

i riγi1γi2 · · · be the standard monomial expression of δ with 0 6=
ri ∈ K and with γi1 ≤ γi2 ≤ · · · for each i. Let S = {i ; α ≤ γi1} and
T = {i ; α 6≤ γi1}. Then, for each i ∈ S, the monomial αγi1γi2 · · · is
standard with αγi1γi2 · · · 6∈ ({ξ ; ξ ∈ I}). If i ∈ T , then every standard
monomial appearing in the standard monomial expression of αγi1γi2 · · · is
of the form ηi1ηi2 · · · with ηi1 ≤ ηi2 ≤ · · · and with ηi1 < α. Since I is a
poset ideal of P , it follows that αδ belongs to ({ξ ; ξ ∈ I}) if and only if
S = ∅. Thus, ({ξ ; ξ ∈ I}) : α ⊂ ({ζ ∈ P ; ζ 6≥ α}).

Theorem 2.4. Every ASL is extendable sequentially Koszul.

Proof. Let P = {α1, α2, . . . , αn} be a finite poset and suppose that
i < j if αi < αj . Let A = A0 ⊕ A1 ⊕ A2 ⊕ · · · be an ASL on P (⊂ A1)
over a field K = A0. We will prove that the minimal system of generators
P = {α1, α2, . . . , αn} has extendable linear quotients of ρ-th level for all
ρ ≥ 2.

Since {α1, α2, . . . , αi} is a poset ideal of P for every 1 ≤ i ≤ n,
Lemma 2.3 guarantees that

(α1, α2, . . . , αi) : αi+1 = ({αk ; αk 6≥ αi+1})

for every 1 ≤ i < n. Let {αk ; αk 6≥ αi+1} = {αj1 , αj2 , . . . , αjqi
} with

1 ≤ j1 < j2 < · · · < jqi
≤ n. We write (αp1 , αp2 , . . . , αpn) for the ordered

sequence (αj1 , αj2 , . . . , αjqi
, αt1 , αt2 , . . . , αtn−qi

) of P with t1 < t2 < · · · <
tn−qi

. Since {αp1 , αp2 , . . . , αpi
} is a poset ideal of P for every 1 ≤ i ≤ n,

it follows that (αp1 , αp2 , . . . , αpi
) : αpi+1 = ({αk ; αk 6≥ αpi+1}). Now,

continuing such procedures enables us to see that P has extendable linear
quotients of ρ-th level for all ρ ≥ 2, as desired.
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We next present a class of extendable sequentially Koszul semigroup

rings. Let K[x1, x2, . . . , xn] be the polynomial ring in n variables over a

field K and write Rn,2 for the subring of K[x1, x2, . . . , xn] generated by

all squarefree quadratic monomials. We call Rn,2 the second squarefree

Veronese subring of K[x1, x2, . . . , xn]. It is known [13] that Rn,2 has a

squarefree quadratic Gröbner basis and, in particular, is normal and Koszul.

Theorem 2.5. The second squarefree Veronese subring Rn,2 is extend-

able sequentially Koszul.

We will prove in fact that Rn,2 is extendable sequentially Koszul with

respect to the lexicographic order x1x2 > x1x3 > · · · > x1xn > x2x3 > · · ·
of the generators.

In order to simplify notation we write (ij) for xixj . If all integers i, j,

i′, j′ are different, then we call (ij), (i′j′) a bad pair.

Lemma 2.6. If a sequence L = ((i1j1), . . . , (imjm)) with (i1j1) > · · · >
(imjm) satisfies the following condition:

(∗∗) For every bad pair (ij) > (kl) in L, at least one of the elements

(ik), (il), (jk), (jl) belongs to L and is bigger than (kl),

then L has linear quotients and ((i1j1), . . . , (iq−1jq−1)) : (iqjq) satisfies (∗∗)
for every 2 ≤ q ≤ m.

Proof. First we compute all colon ideals of the form (i′j′) : (ij) with
(i′j′) 6= (ij). There are two cases to be considered:

Case 1. The number of elements of the set {i′, j′, i, j} is 3. We may
assume that i′ = i. Then (ij′) : (ij) = ((j′k) ; k 6= j′, j).

Case 2. (i′j′), (ij) is a bad pair. Then (i′j′) : (ij) = ((i′j′), (i′k)(j′k) ;
k 6= i′, j′, i, j).

In Case 1, let a ∈ (ij′) : (ij) be a semigroup element. Then a(ij) =
b(ij′) for some other semigroup element b. It follows that (kj′) is a factor of
a for some k 6= j′. If k 6= j, we are done. Assume k = j. Suppose all factors
(i`j`), 1 ≤ ` ≤ r, of a contain j. Then j has to appear (r + 1)-times in b,
which is a contradiction. Therefore, a = (j′j)(i′′j′′) · · · where i′′ 6= j 6= j′′.
Since i′′ 6= j′′, we may assume i′′ 6= j′. Then a = (j′i′′)(jj′′) · · · . This
completes the proof of Case 1.

In Case 2, let a ∈ (i′j′) : (ij) be a semigroup element which contains no
factor (i′j′). Then a = (i′i1)(j

′j1) · · · . If i1 6= j1, then a = (i′j′)(i1j1) · · ·



168-04 : 2002/12/6(17:25)

SHELLABILITY OF SEMIGROUP RINGS 75

which is a contradiction. Hence i1 = j1 and a = (i′i1)(j
′i1) · · · . Suppose

i1 = i. Then any factor of a must be (ti) with t 6= i, because a contains no
factor (i′j′). Thus, we get the contradiction a 6∈ (i′j′) : (ij). This completes
the proof of Case 2.

Let now I = ((i1j1), . . . , (iq−1jq−1)), 2 ≤ q ≤ m, and a ∈ I : (iqjq) be
a semigroup generator of the colon ideal. Then a ∈ (ipjp) : (iqjq) for some
p < q. If (ipjp), (iqjq) is not a bad pair, then by Case 1, the element a is of
degree 1 (in the algebra).

Now suppose that (ipjp), (iqjq) is a bad pair. Then by Case 2, if a is
not of degree 1, then a = (ipk)(jpk). By condition (∗∗), at least one of the
two factors (ipk), (jpk) of a belongs to I : (iqjq). Therefore this colon ideal
is linear.

It remains to show that I : (iqjq) satisfies condition (∗∗). From the
preceding arguments it follows that I : (iqjq) is generated by all ((ipjp) :
(iqjq)) such that (ipjp), (iqjq) is not a bad pair. Set i = iq, j = jq, assume
i < j, and take a bad pair a, b in I : (ij). Then there exist (isjs), (itjt) ∈ I,
is < js, it < jt such that (isjs), (ij) and (itjt), (ij) are not bad pairs, and
a ∈ (isjs) : (ij) and b ∈ (itjt) : (ij). Therefore a and b are of the form as
described in Case 1. Altogether there are six possibilities to be considered.
We treat one of them, the other cases being similar.

So let i = it and j = js; then

Qs = (isj) : (ij) = ((isk) ; k 6= is, i), Qt = (ijt) : (ij) = ((kjt) ; k 6= j, jt).

Therefore a = (isk1) for some k1 6= is, i, and b = (k2jt) for some k2 6= j, jt.

There are four cases to be considered.

(a) is < k1 and k2 < jt. If (isk1) > (k2jt), then is < k2, and so is < jt.
Since i < jt, it follows that (isjt) ∈ Qs and (isjt) > (k2jt).

If (isk1) < (k2jt), then k2 < is, and so (k2is) ∈ Qs and (k2is) > (isk1).

(b) is < k1 and k2 > jt. If (isk1) > (jtk2), then is < jt < k2. Since
i < jt, it follows that (isjt) ∈ Qs and (isjt) > (jtk2).

If (isk1) < (jtk2), then jt < is < k1, and so (jtis) ∈ Qs and (jtis) >
(isk1).

(c) is > k1 and k2 < jt. If (k1is) > (k2jt), then k1 < k2, and so k1 < jt.
Since k1 < j, it follows that (k1jt) ∈ Qt and (k1jt) > (k2jt).

If (k1is) < (k2jt), then k2 < k1, and so k2 < is. Since k2 < i it follows
that (k2is) ∈ Qs and (k2is) > (k1is).

(d) is > k1 and k2 > jt. If (k1is) > (jtk2), then k1 < jt, and since
k1 < is < i < j, it follows that (k1jt) ∈ Qt and (k1jt) > (jtk2).
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If (k1is) < (jtk2), then jt < k1, and so j1 < is < i. Hence (jtis) ∈ Qs

and (jtis) > (k1is).

Thus we see that in all four cases condition (∗∗) is satisfied. This
completes the proof of the lemma.

Proof of Theorem 2.5. Fix a semigroup element (i1j1) and consider the
ideal I1 = ((kl) ; (kl) > (i1j1)). In what follows, we call ideals of this form
generated by an initial sequence. By Lemma 2.6 the first quotient J1 = I1 :
(i1j1) is linear and J1 has linear quotients with respect to the lexicographic
order of the generators. Let (i1j1) > (i2j2) > · · · > (iµjµ) > · · · be all
the generators which are not in J1 and set I2 = (J1, (i1j1), . . . , (iµ−1jµ−1))
with µ ≥ 1. We have to show that J2 = I2 : (iµjµ) is linear and has
linear quotients. Then we consider I3 = (J2, (p1q1), . . . , (pν−1qν−1)), where
(p1q1) > · · · > (pνqν) > · · · are all the generators which are not in J2 and
we have again to show that I3 : (pνqν) is linear and has linear quotients.
We continue this procedure which, of course, is finite.

Thus, assume that I = I` for some ` ≥ 1 is linear and let (ij) be the
biggest element which is not contained in I. Assume that J = I : (ij) is
linear and that J has linear quotients (with respect to the lexicographic
order of the generators). Let (i1j1) > (i2j2) > · · · be all elements which
are not in J , and set L = (J, (i1j1), . . . , (iµ−1jµ−1)) and (pq) = (iµjµ) with
µ ≥ 1. Note first that by definition of L one has:

(a) if (tk) > (pq), then (tk) ∈ L;

(b) if (tk) < (pq), and (tk) ∈ L, then (tk) ∈ J .

We will show:

(1) L : (pq) is linear;

(2) L : (pq) has linear quotients (with respect to the lexicographic order
of the generators).

In what follows we refer to Case 1 and Case 2 from the proof of
Lemma 2.6, and to condition (∗∗) of the same lemma.

(1) Let a ∈ L : (pq) be a semigroup generator of the colon ideal. Then
a ∈ (rs) : (pq) for some (rs) ∈ L. If (rs), (pq) is not a bad pair, then by
Case 1 the element a is of degree 1 (in the algebra).

Now suppose that (rs), (pq) is a bad pair. Then by Case 2, if a is not
of degree 1, then a = (rk)(sk) for some k 6= r, s, p, q. If (rs) > (pq), then
t = min{r, s} < p and t < q, therefore (tk) > (pq) which implies that
(tk) ∈ L. Hence a factor of a is in L : (pq).

It remains the case (rs) < (pq). According to (b) we have (rs) ∈ J .
Since by assumption J is linear, from the arguments above it follows that J
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is generated by all (uv) : (ij) such that (uv) ∈ I and (uv), (ij) is not a bad
pair. Thus, there exists (ml) ∈ I such that (rs) ∈ (ml) : (ij) and (ml), (ij)
is not a bad pair. By Case 1 we may assume that (ml) = (ir). Then if
k 6= j, we have (rk)(ij) = (ir)(kj) ∈ I, therefore (rk) ∈ J . If k = j then
(rq)(ij) = (ir)(qj) ∈ I, so that (rq) ∈ J ⊂ L. Since (rj)(pq) = (pj)(rq),
one obtains that (rj) ∈ L : (pq). This completes the proof of (1).

(2) We show first the following claim:

Let (rs) ∈ L : (pq) and assume that (rs) /∈ L. Then we have the
following:

(c) All the elements of the set {r, s, p, q} are different.

(d) If r < s, then (pr) ∈ L or (qr) ∈ L.

Since L : (pq) is linear, as before it follows that (rs) ∈ (ml) : (pq) where
(ml) ∈ L and (ml), (pq) is not a bad pair. By Case 1 we may assume that
(ml) = (pr). Then s 6= q, r and r 6= p, q, s, and since (pr) ∈ L and by
assumption (rs) /∈ L one has p 6= s. This shows (c).

Let now r < s. By (c) we have r 6= p, q. Since L : (pq) is linear,
as before it follows that at least one of the elements (pr), (qr), (ps), (qs)
belongs to L. If L is generated by an initial sequence, then it is clear that
the claim is true. So, we can assume that (c) is true for all quotients of the
form L′ : (p′q′) ⊂ L, L′ 6= L, which are obtained by the same construction
as L.

Suppose now that (pr) /∈ L and (qr) /∈ L. Then (ps) or (qs) belongs
to L. We may assume that (ps) ∈ L. By (a) one has (pr) < (pq), so that
q < r < s. Therefore (ps) < (pq). By (b) one obtains that (ps) ∈ J .
Since (pq) /∈ L and (pq) > (ps) ∈ J ⊂ L, (ps) does not belong to any ideal
contained in L which is generated by an initial sequence. Therefore there
exists a quotient L′ : (p′q′) ⊂ L such that (ps) ∈ L′ : (p′q′) and (ps) /∈ L′

for some (p′q′) > (pq). Since (ps) ∈ J ⊂ L and (ps) /∈ L′ one has L′ 6= L,
so that by assumption (p′p) ∈ L′ or (q′p) ∈ L′. First assume (p′p) ∈ L′.
Then if q 6= q′, one has (pq)(p′q′) = (p′p)(q′q) ∈ L′, therefore we obtain
the contradiction (pq) ∈ L′ : (p′q′) ⊂ L. Hence q = q′. But then r 6= q′,
so that (pr)(p′q′) = (p′p)(rq′) ∈ L′. Hence (pr) ∈ L′ : (p′q′) contradicting
our assumption. Suppose now that (q′p) ∈ L′. Then if q 6= p′, one has
(pq)(p′q′) = (q′p)(qp′), and if q = p′, then (pr)(p′q′) = (q′p)(p′r). In each
case we get a contradiction which shows (d).

We will show that L : (pq) satisfies condition (∗∗). This will imply that
L : (pq) has linear quotients, see Lemma 2.6.

If L is an ideal generated by an initial sequence, then by Lemma 2.6,
L : (pq) satisfies condition (∗∗), so we may assume that J satisfies (∗∗).



168-04 : 2002/12/6(17:25)

78 A. ARAMOVA, J. HERZOG AND T. HIBI

Let a = (st) > b = (ml) be a bad pair in L : (pq). Since L : (pq) is
linear, as we noted already, we have a ∈ (uv) : (pq) and b ∈ (u′v′) : (pq)
with (uv), (u′v′) ∈ L such that (uv), (pq) and (u′v′), (pq) are not bad pairs.
We may assume that (uv) = (qs), so that t 6= p. There are two cases:
(u′v′) = (pl) and (u′v′) = (ql). We will consider the first one, the other
one being treated similarly. So, assume b ∈ (pl) : (pq), (pl) ∈ L. Since
(sl)(pq) = (pl)(qs) ∈ L, one obtains that (sl) ∈ L : (pq), therefore if
(sl) > b we are done. Hence we may assume (sl) < b = (ml), i.e., m < s.
Then since a > b, one obtains t < s, t < m and t < l. Therefore (tl) > b.
If t 6= q, then (tl)(pq) = (pl)(tq) ∈ L, so that (tl) satisfies the desired
condition. So, we may assume that t = q. Then a ∈ L. If m = p then b ∈ L
too. Since (qp) > a > b, by (b), a, b is a bad pair in J and by assumption
J satisfies (∗∗). Therefore (ql) or (ps) belongs to J ⊂ L. Hence we may
assume m 6= p. Then (ms)(pq) = (qs)(mp) ∈ L, so if (ms) > b we are done.

Thus it remains the case a = (qs) ∈ L, q < l < s, q < m < s, and
p 6= q, s, m, l. We have to show that (ql) ∈ L : (pq) or (qm) ∈ L : (pq). If
(ql) > (pq) or (qm) > (pq) then by (a), (ql) ∈ L or (qm) ∈ L. Therefore
we can assume (ql) < (pq) and (qm) < (pq), i.e., p < l and p < m. Then
a < (pq), so that by (b), a ∈ J . Since a is not contained in any ideal
generated by an initial sequence and included in L, there is a quotient
I ′ : (i′j′) ⊂ L such that a ∈ I ′ : (i′j′) and a /∈ I ′. According to (d) one
has (i′q) ∈ I ′ or (j′q) ∈ I ′. We may assume that (i′q) ∈ I ′. Since m 6= l,
one of m, l is different from j′, say l 6= j′. Then (ql)(i′j′) = (i′q)(lj′) ∈ I ′,
therefore (ql) ∈ I ′ : (i′j′) ⊂ L.

§3. Shellability of divisor posets

The purpose of the present section is to show that the divisor poset of

a homogeneous semigroup ring is Λ-shellable if and only if the semigroup

ring is extendable sequentially Koszul.

Given a homogeneous semigroup ring A over a field K, we write ΣA for

the infinite poset consisting of all monomials belonging to A, ordered by

divisibility. Thus, for monomials u and v of A, we have u ≤ v in ΣA if and

only if v = uw for some monomial w of A. Then ΣA is locally finite and

pure, and possesses a unique minimal element 1 (∈ K). The infinite poset

ΣA is called the divisor poset of A.

We now come to the main theorem of the present paper.

Theorem 3.1. Let A be a homogeneous semigroup ring and ΣA its

divisor poset. Then A is extendable sequentially Koszul if and only if ΣA
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is Λ-shellable.

Proof. (“ only if ”) Let G = {s1, . . . , sn} denote the minimal system of
monomial generators of A. First, since A is extendable sequentially Koszul,
we can find an ordered sequence s0 of G which has extendable linear quo-
tients of any level. Second, for each 1 ≤ p ≤ n, let s1(p) denote an ordered
sequence of G, which has extendable linear quotients of any level, aris-
ing from the colon ideal I(s0; p). Note that s1(1) = s0. Next, for each
1 ≤ p ≤ n and 1 ≤ p′ ≤ n, let s2(p, p′) denote an ordered sequence of G,
which has extendable linear quotients of any level, arising from the colon
ideal I(s1(p); p′). Note that s2(p, 1) = s1(p). Continue these procedures,
and we obtain an ordered sequence sq(p1, p2, . . . , pq) of G, which has extend-
able linear quotients of any level, for all q ≥ 0 and for all (p1, p2, . . . , pq) with
each 1 ≤ pj ≤ n. The ordered sequences sq(p1, p2, . . . , pq) of G occurring in
the step q are called the q-th derived sequences of G.

Now, for each saturated chain 1 = u0 → u1 → · · · → uq of ΣA of length
q starting from 1, we associated a q-th derived sequence of G as follows.
First, for the unique saturated chain of length 0 starting from 1, we associate
the 0-th derived sequence s0. Second, noting that each element u of ΣA

has n covering elements uG = {us1, . . . , usn}, if sq−1(p1, p2, . . . , pq−1) =
(si1 , . . . , sin) is the (q − 1)-th derived sequence associated with 1 = u0 →
u1 → · · · → uq−1 and if uq = uq−1sip , then the q-th derived sequence
associated with 1 = u0 → u1 → · · · → uq will now be the ordered sequence
sq(p1, p2, . . . , pq−1, p) of G arising from the colon ideal (si1 , . . . , sip−1) : sip .

If C : 1 = u0 → u1 → · · · → uq is a saturated chain of ΣA of length
q starting from 1 and if sq(p1, p2, . . . , pq) is the q-th derived sequence as-
sociated with C, then we define λ(C) ∈ Z

q to be λ(C) = (p1, p2, . . . , pq).
Then λ is a chain-edge labeling of ΣA. We claim that the map λ is a Λ-
labeling of ΣA. The condition (Λ-1) is obviously satisfied. To see why λ
satisfies the condition (Λ-2), fix a saturated chain C : 1 = α0 → α1 →
· · · → αq−1 → αq of ΣA with λ(C) = (p1, p2, . . . , pq), and let αq → β
and αq → γ with β 6= γ such that β covers an element α′ ∈ ΣA with
αq−1 → α′ satisfying λ((C \ {αq}) ∪ {α′};αq−1 → α′) < λ(C;αq−1 →
αq) and that γ covers no element α′ ∈ ΣA with αq−1 → α′ satisfying
λ((C \ {αq}) ∪ {α′};αq−1 → α′) < λ(C;αq−1 → αq). Let (si1 , . . . , sin) de-
note the (q − 1)-th derived sequence associated with C \ {αq} and αq =
αq−1sib . Let α′ = αq−1sia with a < b and suppose that β covers α′. Then
β/αq ∈ (sia) : sib ⊂ (si1 , . . . , sib−1

) : sib , while γ/αq 6∈ (si1 , . . . , sib−1
) : sib .

Hence, if (si1 , . . . , sib−1
) : sib = (sj1 , . . . , sjc) with j1 < · · · < jc, then
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λ(C ∪ {β};αq → β) ≤ c < λ(C ∪ {γ};αq → γ), as desired.
We now prove that the Λ-labeling λ is a Λ-shelling of ΣA. Let u ∈ ΣA

and M(u) the set of maximal chains of [1, u].
Let δ be the cardinality of any maximal chain of [1, u]. Let C,C ′ ∈

M(u) with λ(C ′) <lex λ(C) and ](C ′ ∩ C) < δ − 1. We must show that
there exists C ′′ ∈ M(u) with λ(C ′′) <lex λ(C) such that C ′ ∩ C ⊂ C ′′ ∩ C
with C ′ ∩ C 6= C ′′ ∩ C. Let C : 1 = u0 → u1 → · · · → uδ = u and
C ′ : 1 = v0 → v1 → · · · → vδ = u. Let q denote the smallest integer for
which uq+1 6= vq+1 and let p denote the smallest integer with q < p for
which up = vp. If p = q + 2, then

C ′′ : 1 → u1 → · · · → uq → vq+1 → uq+2 → · · · → uδ

is a desired maximal chain of [1, u]. Next, suppose that p > q + 2. Let s =
(si1 , . . . , sin) denote the q-th derived sequence associated with the saturated
chain 1 → u1 → · · · → uq of length q. Let vq+1 = vqsij and uq+1 =
uqsik . Then j < k since λ(C ′) <lex λ(C). Hence, w = up/uq+1 belongs to
(si1 , . . . , sik−1

) : sik . Let s′ = (sj1 , . . . , sjn) denote the (q + 1)-th derived
sequence associated with the saturated chain 1 → u1 → · · · → uq → uq+1

of length q + 1 and suppose that the colon ideal (si1 , . . . , sik−1
) : sik is

generated by {sj1 , . . . , sjt}. Then w = w′sjr for some 1 ≤ r ≤ t and for
some w′ ∈ ΣA. Let sj`

= uq+2/uq+1.
We distinguish the two cases; one is the case with sj`

∈ (si1 , . . . , sik−1
) :

sik and the other is the case with sj`
6∈ (si1 , . . . , sik−1

) : sik . If sj`
belongs

to the colon ideal (si1 , . . . , sik−1
) : sik , then sj`

sik = simsn′ for some m and
n′ with 1 ≤ m < k. Let wq+1 = uqsim . Thus uq+2 = wq+1sn′ . Then

C ′′ : 1 → u1 → · · · → uq → wq+1 → uq+2 → · · · → uδ

is a desired maximal chain of [1, u]. If sj`
6∈ (si1 , . . . , sik−1

) : sik , then
r ≤ t < `. Let wq+2 = uq+1sjr . Then wq+2 < up in ΣA since up = uq+1w =
uq+1w

′sjr = w′wq+2. We choose any maximal chain wq+2 → wq+3 → · · · →
up of [wq+2, up]. Then

C ′′ : 1 → u1 → · · · → uq → uq+1 → wq+2 → wq+3 → · · ·

· · · → up → up+1 → · · · → uδ

is a required maximal chain of [1, u].

(“ if ”) Let α1, . . . , αn denote the monomial generators of A and λ a Λ-
shelling of ΣA. First, supposing that λ(1 → α1) < · · · < λ(1 → αn), we will



168-04 : 2002/12/6(17:25)

SHELLABILITY OF SEMIGROUP RINGS 81

prove that the sequence α = (α1, . . . , αn) has linear quotients. Write Ii for
the colon ideal (α1, . . . , αi−1) : αi for each 1 < i ≤ n. Let w be a monomial
of A belonging to Ii. Then wαi = w′αj for some 1 ≤ j < i and for some
monomial w′ of A. Let u = wαi. Then αi < u and αj < u in ΣA. Let
C : 1 → αi → β → · · · → u be the maximal chain of [1, u] such that (∗∗∗) for
all maximal chain C ′ (6= C) of [1, u] with αi ∈ C ′, we have λ(C) <lex λ(C ′).
Since λ(1 → αj) < λ(1 → αi), it follows that the maximal chain C cannot
be the first maximal chain of [1, u] with respect to <lex. Since λ is a Λ-
shelling, we can find a maximal chain C ′′ of [1, u] with λ(C ′′) <lex λ(C) and
with ](C ′′ ∩C) = δ − 1, where δ is the cardinality of any maximal chain of
[1, u]. Let αk ∈ C ′′. Then, by (∗∗∗) and by λ(C ′′) <lex λ(C), we have k 6= i.
Hence k < i. Moreover, since ](C ′′ ∩ C) = δ − 1, we have 1 → αk → β.
Let β = αiα` with 1 ≤ ` ≤ n. Since β ∈ (αk) with k < i, we have α` ∈ Ii.
Moreover, w ∈ (α`). Hence Ii is generated by a subset of {α1, . . . , αn}, as
desired.

Second, for each 1 < i ≤ n, write Ii = (αj1 , . . . , αjp(i)
) with

λ(Ci
j1

;αi → αiαj1) < · · · < λ(Ci
jp(i)

;αi → αiαjp(i)
),

where Ci
` is the saturated chain 1 → αi → αiα` of ΣA. Let {αj′1

, . . . , αj′
n−p(i)

}

denote the set of all αj ’s with αj 6∈ Ii and suppose that

λ(Ci
j′1

;αi → αiαj′1
) < · · · < λ(Ci

j′
n−p(i)

;αi → αiαj′
n−p(i)

).

By virtue of the technique appearing in the first paragraph, in order to
show that the ordered sequence

(αj1 , . . . , αjp(i)
, αj′1

, . . . , αj′
n−p(i)

)

of {α1, . . . , αn} has linear quotients, noting that λ is also a Λ-shelling of
[αi,∞) in the obvious way, it is enough to show that λ(Ci

jq
;αi → αiαjq) <

λ(Ci
k;αi → αiαk) for all 1 ≤ q ≤ p(i) and for all k ∈ {j′1, . . . , j

′

n−p(i)}. Since
αjq belongs to Ii, there is j < i with 1 → αj → αiαjq . Moreover, since
αk 6∈ Ii, there is no j < i with 1 → αj → αiαk. Hence, by (Λ-2) we have
λ(Ci

jq
;αi → αiαjq) < λ(Ci

k;αi → αiαk), as required.
Now, repeated application of the discussion in the second paragraph

completes the proof of the “ if ” part of the theorem.

Let A be a homogeneous semigroup ring and P the minimal system of

monomial generators of A. Then A is called a monomial ASL if A is an ASL
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with respect to a partial order on P over K. See [10]. Since a monomial

ASL is an extendable sequentially Koszul semigroup ring (Theorem 2.4),

we immediately obtain

Corollary 3.2. The divisor poset of a monomial ASL is Λ-shellable.

Let A = A0 ⊕ A1 ⊕ · · · be a homogeneous K-algebra. Recall that the

d-th Veronese subring of A is the subalgebra A(d) = A0 ⊕ Ad ⊕ A2d ⊕ · · ·

of A. If A is a homogeneous semigroup ring with the divisor poset ΣA,

then the divisor poset of its d-th Veronese subring A(d) is the rank-selected

subposet of ΣA of order d. Hence it follows from Theorems 1.1 and 3.1 that

Corollary 3.3. All Veronese subrings of an extendable sequentially

Koszul semigroup ring are extendable sequentially Koszul.

It is known [5, Proposition 1.4] that a homogeneous semigroup ring is

strongly Koszul if and only if its divisor poset is wonderful (locally semi-

modular). Since a strongly Koszul semigroup ring is extendable sequentially

Koszul, we have

Corollary 3.4. A wonderful divisor poset is Λ-shellable.

We conclude this paper with a few examples and questions.

Example 3.5. (a) The homogeneous semigroup ring [9, Example 2.2]
is extendable sequentially Koszul, but not strongly Koszul. This semigroup
ring is generated by the squarefree cubic monomials

x1x2x3, x1x3x4, x1x4x5, x1x2x5, x2x3x6, x4x5x6, x3x4x7, x2x5x7.

Hence the divisor poset of this semigroup ring is Λ-shellable, but not won-
derful. Moreover, this ring possesses no quadratic Gröbner basis. Thus
we can obtain an example of a homogeneous semigroup ring having no

quadratic Gröbner basis whose divisor poset is Λ-shellable.

(b) Since the second squarefree Veronese subring Rn,2 is extendable
sequentially Koszul for all n, its divisor poset ΣRn,2 is Λ-shellable. It is
shown [8, Theorem 2.3], however, that Rn,2 is quasi-poset if and only if
n ≤ 4. Hence the shellability of ΣRn,2 with n ≥ 5 does not follow from [11,
Corollary 3.6].
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Question 3.6. Is the divisor poset of a sequentially Koszul semigroup

ring shellable ?

Question 3.7. Is there a Koszul semigroup ring whose divisor poset

is nonshellable ?

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math.

Soc., 260 (1980), 159–183.

[2] A. Björner and M. Wachs, On lexicographically shellable posets, Trans. Amer. Math.

Soc., 277 (1983), 323–341.

[3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cam-

bridge, New York, Sydney, 1993.

[4] D. Eisenbud, Introduction to algebras with straightening laws, Ring Theory and Al-

gebra III (B. R. McDonald, ed.), Dekker, New York (1980), pp. 243–268.

[5] J. Herzog, T. Hibi and G. Restuccia, Strongly Koszul algebras, Math. Scand., 86

(2000), 161–178.

[6] J. Herzog, V. Reiner and V. Welker, The Koszul property in affine semigroup rings,

Pacific J. Math., 186 (1998), 39–65.

[7] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications,

Glebe, N.S.W., Australia, 1992.

[8] H. Ohsugi, J. Herzog and T. Hibi, Combinatorial pure subrings, Osaka J. Math., 37

(2000), 745–757.

[9] H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, J. Algebra,

218 (1999), 509–527.

[10] H. Ohsugi and T. Hibi, Compressed polytopes, initial ideals and complete multipartite

graphs, Illinois J. Math., 44 (2000), 391–406.

[11] I. Peeva, V. Reiner and B. Sturmfels, How to shell a monoid, Math. Ann., 310

(1998), 379–393.

[12] R. Stanley, Enumerative Combinatorics, Volume I, Wadsworth & Brooks/Cole, Mon-

terey, Calif., 1986.
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