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OSCILLATION RESULTS FOR n-TH ORDER

LINEAR DIFFERENTIAL EQUATIONS WITH

MEROMORPHIC PERIODIC COEFFICIENTS

SHUN SHIMOMURA

Abstract. Consider n-th order linear differential equations with meromorphic
periodic coefficients of the form w(n) + Rn−1(e

z)w(n−1) + · · · + R1(e
z)w′ +

R0(e
z)w = 0, n ≥ 2, where Rν(t) (0 ≤ ν ≤ n − 1) are rational functions

of t. Under certain assumptions, we prove oscillation theorems concerning
meromorphic solutions, which contain necessary conditions for the existence of a
meromorphic solution with finite exponent of convergence of the zero-sequence.
We also discuss meromorphic or entire solutions whose zero-sequences have an
infinite exponent of convergence, and give a new zero-density estimate for such
solutions.

§1. Introduction

Consider equations of the form

w(n) +An−1(e
z)w(n−1) + · · · +A1(e

z)w′ +A0(e
z)w = 0, n ≥ 2(1.1)

(′= d/dz), where Aν(t) (0 ≤ ν ≤ n−1) are rational functions of t admitting

poles at most at t = 0, ∞ only. The coefficients of (1.1) are entire periodic

functions, and every solution is entire. In the case where n = 2, the zero

distribution of solutions was first examined by [8]. Studies concerning (1.1)

have been carried on by several authors, and various oscillation theorems

have been obtained ([2], [4], [12], [14], [15], [16]).

In this paper we extend such results to meromorphic solutions of linear

equations with meromorphic periodic coefficients. Some of our results, even

in the case restricted to entire solutions, are also improvements of previously

known ones concerning equations with entire periodic coefficients. We treat

n-th order linear differential equations of the form

w(n) +Rn−1(e
z)w(n−1) + · · · +R1(e

z)w′ +R0(e
z)w = 0, n ≥ 2.(E)
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Here Rν(t) (0 ≤ ν ≤ n−1) are rational functions of t which may admit poles

other than t = 0 or ∞, and hence the coefficients Rν(e
z) are meromorphic

on C. Throughout this paper we suppose the following conditions on (E):

(a) around t = ∞,

R0(t) = tq
∞

∑

k=0

akt
−k, q ∈ N, a0 6= 0,(1.2)

Rν(t) = tqν

∞
∑

k=0

aν,kt
−k or ≡ 0, 1 ≤ ν ≤ n− 1,(1.3)

qν ∈ Z, aν,0 6= 0,

where

qν < q(n− 1 − ν)/n for 1 ≤ ν ≤ n− 2, qn−1 ≤ 0;(1.4)

(b) around t = 0,

R0(t) = t−p
∞
∑

k=0

bkt
k, p ∈ Z, b0 6= 0,(1.5)

Rν(t) = t−pν

∞
∑

k=0

bν,kt
k or ≡ 0, 1 ≤ ν ≤ n− 1,(1.6)

pν ∈ Z, bν,0 6= 0,

where

pν < p(n− 1 − ν)/n for 1 ≤ ν ≤ n− 2, pn−1 ≤ 0, if p ≥ 1,(1.7)

pν ≤ 0 for 1 ≤ ν ≤ n− 1, if p ≤ 0;(1.8)

(c) equation (E) possesses at least one solution which is nontrivial and

meromorphic on the whole complex z-plane C.

We put

P =

n−1
⋃

ν=0

Pν ⊂ C − {0},(1.9)

where each Pν is the set of all the distinct poles of Rν(t) other than t = 0

or ∞. Clearly P is a finite set. If (E) possesses a meromorphic solution
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with poles, then P is not empty. By the change of the variable t = ez, (E)

is taken into the equation

ϑnw +Rn−1(t)ϑ
n−1w + · · · +R1(t)ϑw +R0(t)w = 0, ϑ = t(d/dt),(aE)

which is called the associate equation of (E). For an arbitrary solution φ(z)

of (E), there exists a solution Φ(t) of (aE) such that φ(z) = Φ(ez) at least

around a point z = z0 at which φ(z) is analytic. Then, Φ(t) is continued

meromorphically to R, if and only if φ(z) is meromorphic on C. Here R

denotes the universal covering of C − {0}, namely the Riemann surface of

log t. In general, solutions of equations of the form (aE) have a branch

point at t = ξ ∈ P. In the case which we are going to treat, the coefficients

of (aE) need to satisfy suitable conditions under which (aE) possesses a

nontrivial solution meromorphic on R. For example, if every ξ ∈ P is

an apparent singular point, namely a regular singular point at which all

the characteristic exponents are integers and the series expansion of every

solution does not contain a logarithmic term, then every solution of (aE)

is meromorphic on R. Such conditions for n = 2 are found in [9], [21,

Chapter 6], [22]; see also examples in Section 3.1.2.

Our main results and their corollaries are stated in Sections 2 and 3.

Theorem 2.1 is an extension of oscillation results for the entire periodic

coefficients cases ([8, Theorem 1], [12, Theorem 2]), which gives necessary

conditions for the existence of a meromorphic solution of (E) satisfying

λ(φ) < +∞. Here λ(f) denotes the exponent of convergence of the zero-

sequence of a meromorphic function f , namely

λ(f) = lim sup
r→∞

logN(r, 1/f)

log r
,

in which N(r, g) denotes the counting function (see [18], [20], [21]). The-

orem 2.3 gives a zero-density estimate for every meromorphic solution of

(E) satisfying λ(φ) = +∞. For (1.1) with entire periodic coefficients, it

is known that a result corresponding to Theorem 2.1 is also valid under

the condition logN(r, 1/w) = o(r) instead of λ(w) < +∞ ([2], [4], [12]).

Theorem 2.3 enables us to replace this by a weaker condition of the form

lim infr→∞ r−1 logN(r, 1/w) < C0 for some C0 > 0 (Remark 2.3). Fur-

thermore, combining this theorem with Corollary 3.3 which follows from

Theorem 2.1, we estimate the zero-density of solutions of the Hill equation

(Proposition 3.4). Theorem 2.2 or Corollary 3.5 contains the affirmative
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answer to the conjecture by Chiang and Wang [15] that every nontrivial

solution of

w(n) + (ez +K0)w = 0, n ≥ 3, K0 ∈ C

satisfies λ(φ) = +∞ (Section 3.2). For (E) with entire periodic coefficients,

Theorem 2.4 gives a sufficient condition under which arbitrary linearly inde-

pendent solutions χ0(z), χ1(z), . . . , χn−1(z) satisfy max{λ(χ0), . . . , λ(χn−1)}

= +∞; it is an extension of [7, Section 3, Fact (B)] (see also [10, Theo-

rem 1], [11], [13, Theorem 4], [23]). In the proofs of these results, our main

idea is to examine the asymptotic behaviour of solutions of (aE) near the

singular points t = ∞ and t = 0. The asymptotic integration has been used

in the study of the zero distribution of solutions of linear equations ([5], [6],

[17], [19]). In Section 4, we give asymptotic solutions of (aE) and sectorial

domains in which the expressions of them are valid. In Section 5, we define

a zero-ample solution at t = ∞ (or at t = 0) of (aE), and show that it ad-

mits infinitely many zeros in some sectorial domain. Furthermore we give

a characterisation of a solution which is not zero-ample. In Section 6, we

prove Theorems 2.1 and 2.3. In the proof of Theorem 2.3, in addition to the

zero-density estimate in Section 5, we employ the Wiman-Valiron theory.

In Sections 7 and 8, observing the relation between solutions of (aE) near

t = ∞ and near t = 0 carefully, we prove Theorems 2.2 and 2.4.

Throughout this paper, in addition to the standard notation of the

Nevanlinna theory such as T (r, f), N(r, f), λ(f), we use the notation below:

(1) We write ϕ(r) � ψ(r) or ψ(r) � ϕ(r) as r → ∞, if ϕ(r) = O(ψ(r))

as r → ∞.

(2) For a set A, ]A denotes the cardinal number of A.

(3) For σ ∈ C and for m ∈ Z − {0}, O[tσ]1/m denotes a formal series

expressed as tσ
∑

k≥0 ckt
k/m (ck ∈ C). When f(t) admits a convergent

series expression of the form f(t) = tσ
∑

k≥0 ckt
k/m around t1/m = 0, we

also write as f(t) = O[tσ]1/m.

§2. Main theorems

We define αk (k ≥ 0) by

[

−tq
∑

0≤k≤q/n

akt
−k

]1/n

= tq/n
∑

k≥0

αkt
−k, α0 = (−a0)

1/n,
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near t = ∞. When p ∈ N, we define βk (k ≥ 0) by

[

(−1)n+1t−p
∑

0≤k≤p/n

bkt
k

]1/n

= t−p/n
∑

k≥0

βkt
k, β0 = −(−b0)

1/n,

near t = 0. Here ak, bk (k ≥ 0) are the coefficients of (1.2) and (1.5). When

q/n ∈ N, tq/n
∑

0≤k≤q/n αkt
−k is the approximate n-th root of [1], [7]. Put

V∞(t) = tq/n
∑

0≤k<q/n

αk

q/n− k
t−k,(2.1)

V0(t) = t−p/n
∑

0≤k<p/n

βk

p/n− k
tk (p ∈ N).(2.2)

If p ≤ 0, then we put V0(t) ≡ 0.

Theorem 2.1. Suppose that (E) possesses a meromorphic solution

w = φ(z) (6≡ 0) satisfying λ(φ) < +∞. Then φ(z) is expressible in the

form

φ(z) = Φ(ez),

Φ(t) =

(

∏

ξ∈P

(t− ξ)−ι(ξ)

)

P (t1/n)tκ exp
(

ω∞V∞(t) + ω0V0(t)
)

,(2.3)

and one of the following must hold:
(i) q/n 6∈ N, p/n 6∈ N, p ≥ 1, and

nIφ(P) − (n− 1)(q + p)/2 − (Rn−1(∞) −Rn−1(0)) ∈ N ∪ {0};

(ii) q/n ∈ N, p/n ∈ N, and

Iφ(P) − (n− 1)(q + p)/(2n) − (Rn−1(∞) −Rn−1(0))/n

+ ω∞αq/n + ω0βp/n ∈ N ∪ {0};

(iii) q/n 6∈ N, p ≤ 0, and, for some m ∈ Z satisfying m ≤ nIφ(P),

ρm = (2m− (n− 1)q − 2Rn−1(∞))/(2n)

is a root of the equation

ρn +

n−1
∑

ν=0

Rν(0)ρν = 0;(2.4)
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(iv) q/n ∈ N, p ≤ 0, and, for some m ∈ Z satisfying m ≤ Iφ(P),

ρ̃m = m− (n− 1)q/(2n) −Rn−1(∞)/n+ ω∞αq/n

is a root of (2.4).
Here,

(a) ι(ξ) ∈ {0} ∪ N, Iφ(P) =
∑

ξ∈P ι(ξ);
(b) (ω∞, ω0) is some pair of n-th roots of 1;
(c) κ is a constant given by

κ =























(n− 1)p/(2n) −Rn−1(0)/n in case (i),

(n− 1)p/(2n) −Rn−1(0)/n− ω0βp/n in case (ii),

ρm in case (iii),

ρ̃m in case (iv);

(d) P (τ) is a polynomial in τ which satisfies P (0) 6= 0 and is not

divisible by τn − ξ for every ξ ∈ P satisfying ι(ξ) ∈ N, and in particular,

when q/n ∈ N, P (t1/n) is a polynomial in t such that P (ξ1/n) 6= 0 for every

ξ ∈ P satisfying ι(ξ) ∈ N.

Remark 2.1. In the theorem above, for each solution φ(z) such that
λ(φ) < +∞, the integer Iφ(P) is uniquely determined. If P = ∅, then every
solution is entire, and hence Iφ(P) = 0. There exists a case where P 6= ∅
and every solution is entire (see Section 3.1.2).

Remark 2.2. When P = ∅, by (1.4) and (1.7) (or (1.8)), we have
Rn−1(t) ≡ C ∈ C. Then, by the transformation w = e−Cz/nv, our problem
is reduced to one concerning (E) with Rn−1(t) ≡ 0.

In the special case where q/n 6∈ N, p ≤ 0, we have the following:

Theorem 2.2. Suppose that q/n 6∈ N and that p ≤ 0. Put n = n0d0,

q = q0d0, where d0 is the greatest common divisor of n and q. If there exists

a meromorphic solution w = φ(z) (6≡ 0) of (E) satisfying λ(φ) < +∞, then

(1) φj(z) = φ(z + 2jπi) (j = 0, 1, . . . , n0 − 1) are linearly independent

solutions of (E) satisfying λ(φj) < +∞;
(2) the equation

ρn +

n−1
∑

ν=0

nn−ν
0 Rν(0)ρν = 0(2.5)
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admits n0 distinct roots expressed as −(n−1)q0/2−Rn−1(∞)/d0 +mj with

mj ∈ Z (j = 0, 1, . . . , n0 − 1) satisfying m0 ≤ n0Iφ(P), m0 < m1 < · · · <
mn0−1.

For the zero-density of solutions, we have the following:

Theorem 2.3. Let φ(z) be an arbitrary meromorphic solution of (E)
satisfying λ(φ) = +∞. Then we have

logN(r, 1/φ) = O(r)(2.6)

and

logN(r, 1/φ) ≥ (m0(p, q)/n)r +O(log r)(2.7)

as r → ∞, where

m0(p, q) =

{

min{p, q} if p ≥ 1,

q if p ≤ 0.

Remark 2.3. This theorem implies that the condition λ(φ) < +∞ of
Theorem 2.1 or 2.2 can be replaced by

lim inf
r→∞

r−1 logN(r, 1/φ) < m0(p, q)/n.

Theorem 2.4. Suppose that P = ∅, Rn−1(t) ≡ 0, and that either of

the following holds:

(i) p ≥ 1;

(ii) p ≤ 0, q/n ∈ N, and αq/n(ωj − ωj′) 6∈ Z for every pair (j, j′) of

integers satisfying 0 ≤ j < j′ ≤ n− 1, where ω = exp(2πi/n).

Then, for arbitrary linearly independent solutions χ0(z), χ1(z), . . . , χn−1(z)
of (E), we have max{λ(χ0), λ(χ1), . . . , λ(χn−1)} = +∞.

§3. Corollaries and examples

3.1. Corollaries of Theorem 2.1

From Theorem 2.1, we can derive sufficient conditions under which a

meromorphic solution of (E) satisfies λ(φ) = +∞.
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Corollary 3.1. Let φ(z) = Φ(ez) (6≡ 0) be a meromorphic solution of

(E) such that Φ(t)
∏

ξ∈P(t− ξ)ι
∗(ξ) is analytic on R, where ι∗(ξ) ∈ N∪{0},

ξ ∈ P. Suppose that, for I∗φ(P) =
∑

ξ∈P ι
∗(ξ), one of the following holds:

(i) q/n 6∈ N, p/n 6∈ N, p ≥ 1, and

nI∗φ(P) − (n− 1)(q + p)/2 − (Rn−1(∞) −Rn−1(0)) 6∈ N ∪ {0};

(ii) q/n ∈ N, p/n ∈ N, and, for every (j1, j2) ∈ Z2,

I∗φ(P) − (n− 1)(q + p)/(2n) − (Rn−1(∞) −Rn−1(0))/n

+ ωj1αq/n + ωj2βp/n 6∈ N ∪ {0},

where ω = exp(2πi/n).

Then λ(φ) = +∞.

Corollary 3.2. Suppose that q/n 6∈ N, p/n ∈ N, or that q/n ∈ N,

p/n 6∈ N, p ≥ 1. Then every nontrivial meromorphic solution of (E)
satisfies λ(φ) = +∞.

Observing that every entire solution φ(z) of (E) satisfies I∗φ(P) = 0 in

Corollary 3.1, we have the following:

Corollary 3.3. Suppose that p ≥ 1, Rn−1(∞) − Rn−1(0) ≥ 0, and

that either of the following holds:

(i) q/n 6∈ N or p/n 6∈ N;

(ii) q/n ∈ N, p/n ∈ N, and, for every (j1, j2) ∈ Z2,

− (n− 1)(q + p)/(2n) − (Rn−1(∞) −Rn−1(0))/n

+ ωj1αq/n + ωj2βp/n 6∈ N ∪ {0}.

Then every nontrivial entire solution of (E) satisfies λ(φ) = +∞; under

the additional conditions P = ∅, Rn−1(t) ≡ 0, every nontrivial solution of

(E) is entire and satisfies λ(φ) = +∞.

3.1.1. Hill equation

Consider the Hill equation

d2w

dz2
+

(

Θ0 + 2Θ1 cos(2z) + · · · + 2Θq cos(2qz)
)

w = 0, Θq 6= 0.(HE)
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By the change of the variable s = 2iz, (HE) is taken into

d2w

ds2
+R0(e

s)w = 0,

R0(t) = −
1

4

(

Θ0 + Θ1(t+ t−1) + · · · + Θq(t
q + t−q)

)

.

For every odd integer q, it is known that every solution φ(z) of (HE) satisfies

λ(φ) = +∞ ([8]). When q is even, we put

[

tq

4

∑

0≤k≤q/2

Θq−kt
−k

]1/2

= tq/2
∑

k≥0

αkt
−k, α0 = Θ1/2

q /2.

Note that αq/2 = βq/2. For example, if Θq−1 = Θq−2 = · · · = Θq−l = 0, l ≥

q/4, then αq/2 = βq/2 = Θq/2Θ
−1/2
q /4. By Corollary 3.3 and Theorem 2.3,

we have the following:

Proposition 3.4. Suppose that (HE) has either of the following prop-

erties:

(i) q is odd ;

(ii) q is even, and ±2αq/2 − q/2 6∈ N ∪ {0}.
Then every solution φ(z) of (HE) satisfies

logN(r, 1/φ) ≥ qr +O(log r), logN(r, 1/φ) = O(r)

as r → ∞.

3.1.2. Meromorphic coefficients cases

Consider equations of the form

w′′ +R1(e
z)w′ +R0(e

z)w = 0(E2)

with

R1(t) = 0, R0(t) =
−2

(t− 1)2
+

−3

t− 1
−

1

2

(

t3 +
1

t3

)

,(3.1)

with

R1(t) = −1, R0(t) = −
t

t− 1
− t,(3.2)
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and with

R1(t) =
−t

t− 1
, R0(t) = 2 − t2 −

1

t
.(3.3)

The associate equations of (E2) with (3.1), (3.2), (3.3) possess linearly in-

dependent solutions given by

Φ1
1(t) = T−1

(

1 +O[T 4]1
)

, Φ2
1(t) = T 2

(

1 +O[T ]1
)

,(3.4)

Φ1
2(t) = T

(

1 +O[T ]1
)

, Φ2
2(t) = 1 +O[T ]1 + Φ1

2(t) log T,(3.5)

Φ1
3(t) = 1 +O[T 3]1, Φ2

3(t) = T 2
(

1 +O[T ]1
)

(3.6)

(T = t− 1), respectively, around the regular singular point t = 1. By (3.4),

every solution φ(z) (6≡ 0) of (E2) with (3.1) is meromorphic. By Corol-

lary 3.1 with I∗φ(P) = 1, we have λ(φ) = +∞. Equation (E2) with (3.2)

possesses a one-parameter family of entire solutions
{

φC(z) = CΦ(ez)
∣

∣ C ∈
C

}

. (Note that every solution of the associate equation is analytic around

t = 0.) By Theorem 2.1, (iii), we have λ(φC) = +∞ for every C ∈ C−{0}.
Although R1(e

z) with (3.3) is meromorphic, every solution of (E2) with

(3.3) is entire. By Corollary 3.2, it satisfies λ(φ) = +∞.

3.2. Corollaries of Theorem 2.2

From Theorem 2.2, we immediately have the following:

Corollary 3.5. Suppose that q and n are relatively prime, and that

p ≤ 0. If the characteristic equation

ρn +
n−1
∑

ν=0

nn−νRν(0)ρν = 0(3.7)

has a multiple root or has a root ρ∗ such that ρ∗+(n−1)q/2+Rn−1(∞) 6∈ Z,

then every meromorphic solution φ(z) of (E) satisfies λ(φ) = +∞.

Corollary 3.6. Under the same supposition as in Corollary 3.5, if

(E) possesses a meromorphic solution φ(z) (6≡ 0) such that λ(φ) < +∞,

then φj(z) = φ(z + 2jπi) (j = 0, 1, . . . , n − 1) are linearly independent

solutions of (E) satisfying λ(φj) < +∞.

Consider an equation of the form

w(n) +K1w
′ +R0(e

z)w = 0, n ≥ 3,(3.8)

R0(t) = Lqt
q + · · · + L1t+ L0, Lq 6= 0, Lk ∈ C (0 ≤ k ≤ q),

K1 ∈ C − {x | x < 0},
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where n and q are relatively prime. Equation (3.7) is written in the form

ρn + nn−1K1ρ+ nnL0 = 0.(3.9)

Since n ≥ 3, (3.9) has a root ρ = ρ∗ such that Im ρ∗ 6= 0, or has a multiple

root ρ = 0. Hence every solution of (3.8) satisfies λ(φ) = +∞. This result

is an extension of [15, Theorem 3.2].

In the case where n = 2, R1(t) ≡ 0, R0(t) = t+K0 or in the case where

n = 3, R2(t) ≡ 0, R1(t) ≡ K1, R0(t) = t + K0, a result corresponding to

Corollary 3.6 is known ([10], [15, Theorem 3.1]). For example, as is shown

in [15], when K1 = −7/9, the equation

w(3) +K1w
′ + (ez − 2/9)w = 0, K1 ∈ C(3.10)

has the linearly independent solutions

φ0(z) = (1 + (3/2)ez/3) exp(−3ez/3 − (2/3)z),

φ1(z) = φ0(z + 2πi), φ2(z) = φ0(z + 4πi)

satisfying λ(φj) < +∞ (j = 0, 1, 2). The characteristic equation corre-

sponding to (3.10) is given by

ρ3 + 9K1ρ− 6 = 0.(3.11)

When K1 = −7/9, (3.11) has the roots −2,−1, 3 ∈ Z. For every K1 ∈
C − {−7/9}, (3.11) has a root ρ = ρ∗ 6∈ Z. Hence by Corollary 3.5, every

solution of (3.10) with K1 6= −7/9 satisfies λ(φ) = +∞.

§4. Asymptotic solutions of (aE)

4.1. Propositions

Formal solutions of (aE) are given by the following:

Proposition 4.1. Near t = ∞, equation (aE) possesses formal solu-

tions of the form

Wj(t) = Yj(t) exp(ωjV∞(t) + κj log t), j = 0, 1, . . . , n − 1,

ω = exp(2πi/n),

κj =

{

−(n− 1)q/(2n) −Rn−1(∞)/n if q/n 6∈ N,

−(n− 1)q/(2n) −Rn−1(∞)/n+ ωjαq/n if q/n ∈ N.
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Here V∞(t) is the function given by (2.1) and Yj(t) (0 ≤ j ≤ n − 1) are

formal power series of the form

Yj(t) =
∑

h≥0

cj(h)t
−h/n, cj(0) = 1.

In particular, when q/n ∈ N,

Yj(t) =
∑

h≥0

cj(nh)t
−h.

Let M∞ be a sufficiently large positive constant and δ a sufficiently

small positive constant. For each µ ∈ Z, in the universal covering R of

C − {0}, we define the sector Sµ by

Sµ =
{

t ∈ R
∣

∣ µπ − δ < (q/n) arg t < (µ+ 1)π, |t| > M∞

}

.

Then
⋃

µ∈Z
Sµ = R∞ =

{

t ∈ R
∣

∣ |t| > M∞

}

.

Proposition 4.2. For each sector Sµ (µ ∈ Z), equation (aE) pos-

sesses linearly independent solutions ϕµ,0(t), . . . , ϕµ,n−1(t) which admit the

asymptotic representations

ϕµ,j(t) ∼Wj(t), j = 0, 1, . . . , n− 1,(4.1)

as t → ∞ through the sector Sµ. Furthermore these solutions are uniquely

determined by (4.1).

When p ∈ N, we also have the following:

Proposition 4.3. Suppose that p ∈ N. Near t = 0, equation (aE)
possesses formal solutions of the form

W
(0)
j (t) = Y

(0)
j (t) exp(ωjV0(t) − κ0

j log t), j = 0, 1, . . . , n− 1,

κ0
j =

{

−(n− 1)p/(2n) +Rn−1(0)/n if p/n 6∈ N,

−(n− 1)p/(2n) +Rn−1(0)/n+ ωjβp/n if p/n ∈ N.

Here V0(t) is the function given by (2.2) and Y
(0)
j (t) (0 ≤ j ≤ n − 1) are

formal power series of the form

Y
(0)
j (t) =

∑

h≥0

c0j (h)t
h/n, c0j (0) = 1.
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In particular, when p/n ∈ N,

Y
(0)
j (t) =

∑

h≥0

c0j (nh)t
h.

For each µ ∈ Z, denote by S0
µ the sector given by

S0
µ =

{

t ∈ R
∣

∣ µπ < (p/n) arg t < (µ+ 1)π + δ, |t| < ε0
}

,

where δ and ε0 are sufficiently small positive constants.

Proposition 4.4. Under the supposition p ∈ N, for each sector S0
µ

(µ ∈ Z), equation (aE) possesses linearly independent solutions ϕ
(0)
µ,0(t), . . . ,

ϕ
(0)
µ,n−1(t) which admit the asymptotic representations

ϕ
(0)
µ,j(t) ∼W

(0)
j (t), j = 0, 1, . . . , n− 1,(4.2)

as t → 0 through the sector S0
µ. Furthermore these solutions are uniquely

determined by (4.2).

Propositions 4.3 and 4.4 are obtained from Propositions 4.1 and 4.2 by

putting t = 1/τ and using (1.5).

4.2. Proofs of Propositions 4.1 and 4.2

Let w be an arbitrary solution of (aE). Then the column vector function

w = D(t)











w
ϑw
...

ϑn−1w











, D(t) = diag[1, t−q/n, . . . , t−q(n−1)/n]

satisfies a system of the form

ϑw = A(t)w,(S)

A(t) = D(t)Ξ(t)D(t)−1 −D(t)ϑ(D(t)−1),

Ξ(t) =























0 1 0 · · · · · · 0
... 0 1

. . .
...

...
. . .

. . . 0
...

...
...

. . . 1 0
0 0 · · · · · · 0 1

−R0 −R1 · · · · · · −Rn−2 −Rn−1























.
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Observing (1.4), we can verify that

A(t) = tq/n
∑

k≥0

Akt
−k +

n−2
∑

ν=0

t−qν/n
∑

k≥−qν/n

A
(ν)
k t−k −D0,

A0 =

















0 1 0 · · · 0
... 0 1

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 1
−a0 0 · · · · · · 0

















, D0 = (q/n) diag[0,1, . . . , n− 1].

Note that A0 has the distinct eigenvalues ωj(−a0)
1/n = ωjα0 (j = 0, 1, . . . ,

n − 1). When q/n ∈ N, system (S) admits a formal fundamental matrix

solution of the form

U(t) exp

(

tq/n
∑

0≤k<q/n

∆kt
−k + ∆∗ log t

)

, U(t) =
∑

k≥0

Ukt
−k.

Here Uk (k ≥ 0) are n by n matrices, and ∆k (0 ≤ k < q/n), ∆∗ are

diagonal matrices; in particular ∆0 =
(

α0/(q/n)
)

diag[1, ω, . . . , ωn−1], and

U0 ∈ GL(n,C) satisfies U−1
0 A0U0 = α0 diag[1, ω, . . . , ωn−1] (see [26, Sec-

tions 10, 11]). Hence equation (aE) has formal solutions of the form

W̃j(t) = Ỹj(t) exp

(

tq/n
∑

0≤k<q/n

α̃j,kt
−k + κ̃j log t

)

,(4.3)

Ỹj(t) =
∑

h≥0

c̃j,ht
−h, c̃j,0 = 1, α̃j,0 =

ωjα0

q/n
(0 ≤ j ≤ n− 1).

In the case where q/n 6∈ N, putting τ = t1/n in (S), we have

ϑ̃w = nA(τn)w, ϑ̃ = τ(d/dτ)

with

nA(τn) = τ q
∑

0≤k<q/n

nAkτ
−nk +

∑

k≥0

A′
kτ

−k.
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From this we obtain formal solutions of (aE) expressed as

˜̃W j(t) = ˜̃Y j(t) exp

(

tq/n
∑

0≤k<q/n

˜̃αj,kt
−k + ˜̃κj log t

)

,(4.4)

˜̃Y j(t) =
∑

h≥0

˜̃cj,ht
−h/n, ˜̃cj,0 = 1, ˜̃αj,0 =

ωjα0

q/n
(0 ≤ j ≤ n− 1).

It is known that, for each sector Sµ, there exist uniquely determined

linearly independent solutions ϕµ,0(t), . . . , ϕµ,n−1(t) of (aE) admitting the

asymptotic representations

ϕµ,j(t) ∼ W̃j(t) (or ∼ ˜̃W j(t)), j = 0, 1, . . . , n− 1

as t→ ∞ through the sector Sµ ([3, Theorem A], see also [24], [25]).

By the facts above, it is sufficient to show that (4.3) (or (4.4)) coincides

with the formal solution Wj(t) of Proposition 4.1. We write W̃j(t) in the

form

W̃j(t) = exp(Ωj(t)), Ωj(t) = tq/n
∑

0≤k<q/n

α̃j,kt
−k + κ̃j log t+O[t−1]−1.

By induction on ν ∈ N, we can verify that

ϑν = tν
dν

dtν
+Nν

ν−1t
ν−1 dν−1

dtν−1
+ · · · +Nν

1 t
d

dt
, Nν

ν−1 = ν(ν − 1)/2,

and that

(

exp(Ωj(t))
)(ν)

/ exp(Ωj(t))

= Ω′
j(t)

ν +Nν
ν−1Ω

′
j(t)

ν−2Ω′′
j (t) +O[t(ν−2)q/n−ν ]−1.

Using (1.4) and observing q/n ∈ N, we have

W̃j(t)
−1

(

ϑn +Rn−1(t)ϑ
n−1 + · · · +R1(t)ϑ+R0(t)

)

W̃j(t)(4.5)

= W̃j(t)
−1(ϑn +Rn−1(t)ϑ

n−1)W̃j(t) +R0(t) +O[t(n−1)q/n−1]−1

= (tΩ′
j(t))

n +
1

2
n(n− 1)

(

(tΩ′
j(t))

n−2(t2Ω′′
j (t)) + (tΩ′

j(t))
n−1

)

+Rn−1(∞)(tΩ′
j(t))

n−1 +R0(t) +O[t(n−1)q/n−1]−1

= 0.
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Note that tΩ′
j(t) = ωjα0t

q/n(1 +O[t−1]−1), and that

(tΩ′
j(t))

n−2(t2Ω′′
j (t)) + (tΩ′

j(t))
n−1(4.6)

= ω−j(q/n)αn−1
0 t(n−1)q/n +O[t(n−1)q/n−1]−1.

By the definition of V∞(t),

−R0(t) = (tV ′
∞(t))n + nαn−1

0 αq/nt
(n−1)q/n +O[t(n−1)q/n−1]−1.(4.7)

Substitution of these into (4.5) yields

(4.8) (tΩ′
j(t))

n − (tV ′
∞(t))n

− nω−j
(

ωjαq/n − (n− 1)q/(2n) −Rn−1(∞)/n
)

αn−1
0 t(n−1)q/n

+O[t(n−1)q/n−1]−1 = 0,

from which we obtain

tΩ′
j(t) = ωjtV ′

∞(t) +
(

ωjαq/n − (n− 1)q/(2n) −Rn−1(∞)/n
)

+O[t−1]−1.

This implies that W̃j(t) coincides with Wj(t). In case q/n 6∈ N, replacing

O[t−1]−1, O[t(n−1)q/n−1]−1 by O[t−1/n]−1/n, O[t(n−1)q/n−1/n]−1/n, respec-

tively, in the argument above, and using

(tΩ′
j(t))

n−2(t2Ω′′
j (t)) + (tΩ′

j(t))
n−1

= ω−j(q/n)αn−1
0 t(n−1)q/n +O[t(n−1)q/n−1/n]−1/n,

−R0(t) = (tV ′
∞(t))n +O[t(n−1)q/n−1/n]−1/n

instead of (4.6), (4.7), respectively, we can verify that ˜̃W j(t) = Wj(t). Thus

the propositions are proved.

§5. Zero-ample solutions of (aE)

Recall the sector Sµ and the corresponding linearly independent solu-

tions ϕµ,0(t), . . . , ϕµ,n−1(t) of (aE) given by Proposition 4.2. Let χ(t) be

an arbitrary nontrivial solution of (aE). In each sector Sµ, it is uniquely

expressed as

χ(t) = γµ,0ϕµ,0(t) + · · · + γµ,n−1ϕµ,n−1(t), γµ,j ∈ C.(5.1)

We call χ(t) a zero-ample solution at t = ∞, if, for some µ (∈ Z), there

exist at least two distinct indices j, j′ (0 ≤ j < j′ ≤ n − 1) such that

γµ,jγµ,j′ 6= 0.
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Proposition 5.1. Let χ(t) be a zero-ample solution at t = ∞. Then,

for some sector Sµ,

]
{

t ∈ Sµ

∣

∣ χ(t) = 0, M∞ < |t| < r
}

� rq/n

as r → ∞.

Proof. There exists a sector Sµ such that expression (5.1) of χ(t) con-
tains at least two non-vanishing coefficients. Since the opening of Sµ is
larger than nπ/q, there exist a pair (j1, j2) (j1 6= j2) of indices and the
direction arg t = θ0 = θ0(j1, j2) in the interior of Sµ with the properties:

(1) γµ,j1γµ,j2 6= 0;
(2) Re

(

(ωj2 − ωj1)α0t
q/n

)

= 0 on the ray arg t = θ0;

(3) for every j satisfying j 6= j1, j2 and γµ,j 6= 0, Re
(

(ωj−ωj1)α0t
q/n

)

<
0 on the ray arg t = θ0.
Then, for a sufficiently small positive constant ε, we have

χ(t) = γµ,j2ϕµ,j1(t)
[

γµ,j1/γµ,j2 + ϕµ,j2(t)/ϕµ,j1(t) + o(1)
]

= γµ,j2ϕµ,j1(t)
[

γµ,j1/γµ,j2

+ exp
(

(ωj2 − ωj1)(nα0/q)t
q/n(1 + o(1))

)

+ o(1)
]

as t→ ∞ through S(θ0, ε) =
{

t ∈ Sµ

∣

∣ | arg t− θ0| < ε
}

. This yields

]
{

t ∈ S(θ0, ε)
∣

∣ χ(t) = 0, M∞ < |t| < r
}

� rq/n,

from which the desired estimate follows.

Proposition 5.2. Suppose that ψ(t) (6≡ 0) is not a zero-ample solu-

tion at t = ∞. Then, in every sector Sµ, we have

ψ(t) = γ0ϕµ,j∗(t),

where the constant γ0 (6= 0) and the index j∗ are independent of µ.

Proof. By definition, ψ(t) is expressed as ψ(t) = γ̃µ,j(µ)ϕµ,j(µ)(t)
(γ̃µ,j(µ) 6= 0) in each Sµ. By Proposition 4.2,

ψ(t) ∼ γ̃µ,j(µ)Wj(µ)(t), and ψ(t) ∼ γ̃µ+1,j(µ+1)Wj(µ+1)(t)

as t → ∞ through Sµ ∩ Sµ+1 6= ∅. Viewing the asymptotic behaviour, we
have j(µ) = j(µ + 1) and γ̃µ,j(µ) = γ̃µ+1,j(µ+1). Repeating this procedure,
we can verify the assertion.
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Proposition 5.3. For each (µ, j) (µ ∈ Z, 0 ≤ j ≤ n−1), the solution

ϕµ,j(t) of Proposition 4.2 is not zero-ample at t = ∞, if and only if the

formal series Yj(t) is convergent around t = ∞.

Proof. If Yj(t) is convergent, then, clearly, ϕµ,j(t) = Wj(t) (t ∈ R∞)
is not zero-ample. Suppose that ϕµ,j(t) is not zero-ample, and that t ∈ Sµ.
Note that e2nπit ∈ Sµ+2q. By Propositions 5.2 and 4.2,

ϕµ,j(e
2nπit) = ϕµ+2q,j(e

2nπit) ∼Wj(e
2nπit) = e2nκjπiWj(t)(5.2)

as e2nπit→ ∞ through Sµ+2q, namely as t→ ∞ through Sµ. On the other
hand, by the monodromic property, there exist constants C0, . . . , Cn−1 such
that

ϕµ,j(e
2nπit) = C0ϕµ,0(t) + · · · + Cn−1ϕµ,n−1(t),(5.3)

and hence, by Proposition 4.2,

ϕµ,j(e
2nπit) ∼ C0W0(t) + · · · + Cn−1Wn−1(t)(5.4)

as t → ∞ through Sµ. Since the opening of Sµ is larger than nπ/q, from
(5.2) and (5.4) it follows that Cj = e2nκjπi, Cl = 0 (l 6= j). Hence, by (5.3),
we have

ϕµ,j(e
2nπit) = e2nκjπiϕµ,j(t),

which implies that ϕ∗(τ) = τ−nκjϕµ,j(τ
n) satisfies ϕ∗(e

2πiτ) = ϕ∗(τ), and
that

ϕ∗(τ) ∼ τ−nκjWj(τ
n) = Yj(τ

n) exp
(

ωjV∞(τn)
)

around τ = ∞. Therefore Yj(t) converges around t = ∞. This completes
the proof.

Remark 5.1. In the case where p ∈ N, we call a solution χ(0)(t) of (aE)
a zero-ample solution at t = 0, if χ(0)(1/τ) is zero-ample at τ = ∞. By
Propositions 5.1 and 4.4, there exists a sector S0

µ0
such that

]
{

t ∈ S0
µ0

∣

∣ χ(0)(t) = 0, 1/r < |t| < ε0
}

� rp/n

as r → ∞. Furthermore, by Propositions 4.4, 5.2 and 5.3, we have the
following:

(1) if ψ(0)(t) (6≡ 0) is not zero-ample at t = 0, then, for every µ ∈ Z,

ψ(0)(t) = γ0
0ϕ

(0)
µ,j∗∗

(t)
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in S0
µ, where γ0

0 (6= 0) and the index j∗∗ are independent of µ;

(2) for each (µ, j), the solution ϕ
(0)
µ,j(t) is not zero-ample at t = 0, if and

only if Y
(0)
j (t) is convergent around t = 0.

Remark 5.2. Suppose that p ≤ 0. Then t = 0 is at most a regular
singular point of (aE). For convenience’ sake, in this case, we regard an
arbitrary solution χ(0)(t) (6≡ 0) of (aE) as non-zero-ample at t = 0.

§6. Proofs of Theorems 2.1 and 2.3

6.1. Solution of (aE) which is zero-ample neither at ∞ nor
at 0

Suppose that (aE) possesses a meromorphic solution Φ(t) (6≡ 0) which

is zero-ample neither at t = ∞ nor at t = 0. Then, by Propositions 4.1, 5.2

and 5.3, around t = ∞,

Φ(t) = Y (∞)(t)tκ(∞) exp(ω∞V∞(t)),(6.1)

κ(∞) =

{

−(n− 1)q/(2n) −Rn−1(∞)/n if q/n 6∈ N,

−(n− 1)q/(2n) −Rn−1(∞)/n+ ω∞αq/n if q/n ∈ N,

in which Y (∞)(t) = O[1]−1/n (if q/n 6∈ N), = O[1]−1 (if q/n ∈ N) satisfies

Y (∞)(∞) 6= 0 and converges near t = ∞, and ω∞ is an n-th root of 1.

Furthermore, when p ≥ 1, by Proposition 4.3 and Remark 5.1, around

t = 0,

Φ(t) = Y (0)(t)tκ(0) exp(ω0V0(t)),(6.2)

κ(0) =

{

(n− 1)p/(2n) −Rn−1(0)/n if p/n 6∈ N,

(n− 1)p/(2n) −Rn−1(0)/n− ω0βp/n if p/n ∈ N,

in which Y (0)(t) = O[1]1/n (if p/n 6∈ N), = O[1]1 (if p/n ∈ N) satisfies

Y (0)(0) 6= 0 and converges near t = 0, and ω0 is an n-th root of 1. There

exists an integer ι0 ∈ N such that the multiplicity of every pole of Φ(t)

in R does not exceed ι0. This fact is verified by substituting a Laurent

series expansion of Φ(t) into (aE) around each pole. We can choose non-

negative integers ι(ξ) (ξ ∈ P) as small as possible in such a way that

Φ(t)
∏

ξ∈P(t− ξ)ι(ξ) is analytic on R.



166-04 : 2002/6/10(22:31)

74 S. SHIMOMURA

6.1.1. Case p ≥ 1

Consider the function

F (t) = Φ(t)

(

∏

ξ∈P

(t− ξ)ι(ξ)
)

t−κ(0) exp
(

−ω0V0(t) − ω∞V∞(t)
)

,(6.3)

which is analytic on R. Then we have

F (t) = Y (0)(t)

(

∏

ξ∈P

(t− ξ)ι(ξ)
)

exp(−ω∞V∞(t))(6.4)

= Y (0)(0)
∏

ξ∈P

(−ξ)ι(ξ) +O[t1/n]1/n

near t = 0, and

F (t) = Y (∞)(t)

(

∏

ξ∈P

(t− ξ)ι(ξ)
)

tκ(∞)−κ(0) exp(−ω0V0(t))(6.5)

= Y (∞)(∞)tκ
∗

(1 +O[t−1/n]−1/n),

κ∗ = I(Φ,P) + κ(∞) − κ(0), I(Φ,P) =
∑

ξ∈P

ι(ξ),

near t = ∞. By (6.4), F (τn) is entire with respect to τ and satisfies

F (0) 6= 0. Hence, by (6.5), F (τn) = P (τ) is a polynomial in τ , and

nκ∗ = n
(

I(Φ,P) + κ(∞) − κ(0)
)

∈ N ∪ {0}. This implies that Φ(t) is

written in the form (2.3) with κ = κ(0). By the definition of ι(ξ), P (τ)

is not divisible by τn − ξ for every ξ ∈ P satisfying ι(ξ) ∈ N. In par-

ticular, if p/n ∈ N, then we see that F (t) is a polynomial in t, and that

κ∗ = I(Φ,P) + κ(∞) − κ(0) ∈ N ∪ {0}. Suppose that q/n 6∈ N, p/n ∈ N.

Then, by (6.2), Ψ(t) = Φ(t)t−κ(0) is single-valued on C−{0}. On the other

hand, around t = ∞,

Ψ(t) = Y (∞)(t)t−κ(0)+κ(∞) exp
(

(ω∞nα0/q)t
q/n(1 +O(t−1))

)

.

Since q/n 6∈ N, Ψ(t) is not single-valued around t = ∞, which is a contra-

diction. In a similar way, we can show that q/n ∈ N and p/n 6∈ N do not

hold simultaneously. Thus we have proved that either of the following cases

occurs:

(a) q/n 6∈ N, p/n 6∈ N, p ≥ 1, −(n−1)(q+p)/2−(Rn−1(∞)−Rn−1(0))+

nI(Φ,P) ∈ N ∪ {0};
(b) q/n ∈ N, p/n ∈ N, p ≥ 1, −(n − 1)(q + p)/(2n) − (Rn−1(∞) −

Rn−1(0))/n+ ω∞αq/n + ω0βp/n + I(Φ,P) ∈ N ∪ {0}.
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6.1.2. Case p ≤ 0

We put

G(t) = Φ(t)

(

∏

ξ∈P

(t− ξ)ι(ξ)
)

t−κ(∞) exp(−ω∞V∞(t)).

Then G(t) is analytic on R. Consider the case where q/n 6∈ N. Since

G(t) = Y (∞)(t)
∏

ξ∈P

(t− ξ)ι(ξ) = tI(Φ,P)O[1]−1/n(6.6)

converges near t = ∞, the function G(τn) is analytic on C−{0}, and τ = ∞
is at most a pole of G(τn). Hence, observing that t = 0 is a regular singular

point, we have

t−κ(∞)Φ(t) = G(t)

(

∏

ξ∈P

(t− ξ)−ι(ξ)

)

exp(ω∞V∞(t))(6.7)

= tm/n(c0 +O[t]1/n), c0 6= 0

near t = 0 for some m ∈ Z. This implies that, for the solution Φ(t),

ρm = m/n+κ(∞) = (2m− (n− 1)q)/(2n)−Rn−1(∞)/n is a characteristic

exponent at t = 0, and hence ρm is a root of (2.4). By (6.7), t−m/nG(t) =

P (t1/n) = O[1]1/n, P (0) 6= 0, and hence P (τ) is a polynomial in τ . Fur-

thermore, by (6.6), m/n ≤ I(Φ,P). When q/n ∈ N, the function G(t) is

analytic on C − {0}, and t = ∞ is at most a pole of G(t). By an anal-

ogous argument, we verify that, for some m ∈ Z satisfying m ≤ I(Φ,P),

ρ̃m = m+ κ(∞) = m− (n− 1)q/(2n) −Rn−1(∞)/n+ ω∞αq/n is a root of

(2.4), and that t−mG(t) is a polynomial in t.

Summing up the facts above, we have the following:

Proposition 6.1. Suppose that there exists a meromorphic solution

Φ(t) (6≡ 0) of (aE) which is zero-ample neither at t = ∞ nor at t = 0.
Then Φ(t) is expressible in the form (2.3), and one of the cases (i), (ii),
(iii), (iv) of Theorem 2.1 with I(Φ,P) in place of Iφ(P) occurs.

6.2. Proof of Theorem 2.1

Concerning the zero-density we have the following:

Lemma 6.2. Let φ(z) = Φ(ez) be a meromorphic solution of (E). If

Φ(t) is zero-ample at t = ∞, then N(r, 1/φ) � r−1e(q/n)r. If p ≥ 1, and if

Φ(t) is zero-ample at t = 0, then N(r, 1/φ) � r−1e(p/n)r.
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Proof. Suppose that Φ(t) is zero-ample at t = ∞. Let Sµ be a sector
such that Proposition 5.1 is valid for χ(t) = Φ(t). Note that, by t = ez,
the strip logM∞ < Re z < r′, (n/q)(µπ − δ) < Im z < (n/q)(µ + 1)π
is conformally mapped onto the region

{

t ∈ Sµ

∣

∣ M∞ < |t| < er
′
}

. By
Proposition 5.1 the number of zeros of φ(z) = Φ(ez) in |z| < r is estimated
as n(r, 1/φ) � e(q/n)r+O(1/r), so that

N(r, 1/φ) �

∫ r

1

1

σ

(

n(σ, 1/φ) − n(0, 1/φ)
)

dσ � r−1e(q/n)r.

The second assertion is verified in a similar way.

Suppose that φ(z) = Φ(ez) (6≡ 0) is a meromorphic solution of (E)

satisfying λ(φ) < +∞. Then, by Lemma 6.2, Φ(t) is zero-ample neither at

t = ∞ nor at t = 0. Combining this fact with Proposition 6.1, we obtain

Theorem 2.1.

6.3. Proof of Theorem 2.3

Suppose that a meromorphic solution φ(z) = Φ(ez) of (E) satisfies

λ(φ) = +∞. Then, Φ(t) is zero-ample at t = 0 or t = ∞; otherwise, by

Proposition 6.1, we have λ(φ) < +∞. For example consider the case where

Φ(t) is zero-ample at t = ∞. Then, by Lemma 6.2, N(r, 1/φ) � r−1e(q/n)r.

The other cases are treated in a similar way. Thus we obtain (2.7).

Take a polynomial of the form Π(t) =
∏

ξ∈P(t− ξ)δ(ξ), δ(ξ) ∈ N ∪ {0}
in such a way that η(z) = φ(z)Π(ez) = Φ(ez)Π(ez) is entire. It is easy to

see that η(z) satisfies an equation of the form

η(n) +Qn−1(e
z)η(n−1) + · · · +Q1(e

z)η′ +Q0(e
z)η = 0.(E′)

Here Qh(t) (h = 0, 1, . . . , n − 1) are rational functions of t whose poles

belong to P. All the poles of the coefficients of (E′) are written in the form

ζd,l = zd + 2lπi, ezd ∈ P (d = 1, . . . , d0 ≤ ]P, l ∈ Z). Consider the domain

∆ = C −
d0
⋃

d=1

⋃

l∈Z

{

z
∣

∣ |z − ζd,l| ≤ (|l| + 1)−2
}

.

All the radiuses of the circles Γr : |z| = r satisfying Γr 6⊂ ∆ constitute the

set E0 ⊂ R+ = {r | r > 0} of finite linear measure. If r ∈ R+ − E0, then

Γr ⊂ ∆. Note that |l| � ζd,l as |l| → ∞. Hence

log |Qh(ez)| � r, h = 0, 1, . . . , n− 1,(6.8)
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as r → ∞, r 6∈ E0. For the entire function η(z) =
∑

k≥0 ckz
k, we put

µ(r, η) = max
{

|ck|r
k

∣

∣ k ≥ 0
}

, ν(r, η) = max
{

k
∣

∣ µ(r, η) = |ck|r
k
}

.

Then, by the Wiman-Valiron theory ([20], [21]),

η(h)(z) =

(

ν(r, η)

z

)h

(1 + o(1))η(z), r = |z|, h = 1, . . . , n(6.9)

for z satisfying |η(z)| = M(r, η) = max
{

|η(ζ)|
∣

∣ |ζ| = r
}

, |z| 6∈ E1, where

E1 is a set of finite logarithmic measure. Substituting (6.9) into (E′), and

using (6.8), we have log ν(r, η) � r as r → ∞, r 6∈ F = E0 ∪ E1. By [20,

Satz 4.4],

logM(r, η) ≤ log
(

µ(r, η)(ν(2r, η) + 2)
)

� ν(r, η) log r + log ν(2r, η)

as r → ∞, and hence log T (r, η) � r, as r → ∞, r 6∈ F . Note that
∫

F dx/x = u0 < +∞, and that, for every r > 0,
∫ U0r
r dx/x = 2u0 (U0 =

exp(2u0)). There exists r′ = r′(r) satisfying r < r′ < U0r and r′ 6∈ F .

Observing that logT (r, η) is monotone increasing, we have logT (r, η) ≤
logT (r′, η) � r′ < U0r for r ≥ r0, where r0 is a sufficiently large positive

constant. Therefore

logN(r, 1/φ) � logT (r, η) + log T (r,Π(ez)) � r

for r ≥ r0, which implies (2.6). This completes the proof.

§7. Proof of Theorem 2.2

By definition, n0 = n/d0 and q0 = q/d0 are relatively prime. Since

q/n 6∈ N, we have d0 < n, so that n0 > 1. By the change of the variable

ez/n0 = s, equation (E) is transformed into

ϑ̌nw + n0Rn−1(s
n0)ϑ̌n−1w + · · · + nn−1

0 R1(s
n0)ϑ̌w + nn

0R0(s
n0)w = 0,

(aE∗)

ϑ̌ = s(d/ds), where

nn
0R0(s

n0) = nn
0 (a0s

qn0 + a1s
(q−1)n0 + · · · + aks

(q−k)n0 + · · · ).

Observing that qn0/n = q0 ∈ N, we write

[

−nn
0s

qn0
∑

0≤n0k≤q0

aks
−n0k

]1/n

= sq0

∞
∑

k=0

ãks
−n0k = sq0

∞
∑

l=0

Als
−l.
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Since q0/n0 6∈ N,

Aqn0/n = Aq0 = 0.(7.1)

Suppose that (E) possesses a meromorphic solution φ(z) = Φ(ez) (6≡ 0)

satisfying λ(φ) < +∞, where Φ(t) is a meromorphic solution of (aE). Note

that φ̃(ζ) = φ(n0ζ) = Φ0(e
ζ) (ζ = z/n0) also satisfies λ(φ̃) < +∞ as a

function of ζ, where Φ0(s) is a solution of (aE∗). Then, by Theorem 2.1

with qn0 (instead of q), Φ0(s) is written in the form

Φ0(s) =

(

∏

ξ′∈P ′

(s− ξ′)−ι′(ξ′)

)

P∗(s)s
κ0 exp(ω∞V

∗
∞(s)),(7.2)

V ∗
∞(s) = sq0

∑

0≤l<q0

Al

q0 − l
s−l,

where ω∞ is some n-th root of 1, P ′ =
{

ξ′ ∈ C − {0}
∣

∣ ξ′n0 ∈ P
}

, and

ι′(ξ′) ∈ N ∪ {0}. Note that case (iv) of Theorem 2.1 with qn0 occurs. For

some m0 ∈ Z satisfying m0 ≤ I ′φ(P ′) =
∑

ξ′∈P ′ ι′(ξ′),

κ0 = m0 − (n− 1)qn0/(2n) −Rn−1(∞)n0/n

= m0 − (n− 1)q0/2 −Rn−1(∞)/d0

(cf. (7.1)), and P∗(s) is a polynomial in s satisfying P∗(0) 6= 0 and P∗(ξ
′) 6= 0

for every ξ′ ∈ P ′ such that ι′(ξ′) ∈ N. Observing that Φ0(s) = Φ(sn0)

(cf. (2.3)), and that, for each ξ ∈ P,

(sn0 − ξ)−ι(ξ) =

n0−1
∏

j=0

(s− ω̃jξ1/n0)−ι(ξ), ω̃ = exp(2πi/n0),

we have ι(ξ) ≥ ι′(ξ′), if ξ′n0 = ξ, ξ′ ∈ P ′. Hence m0 ≤ I ′φ(P ′) ≤ n0Iφ(P).

By Theorem 2.1, (iv) (with (c)), κ0 is a characteristic exponent of Φ0(s) at

s = 0, and Φ0(s) is expressed as

Φ0(s) = sκ0
∑

k≥0

c0(k)s
k, c0(0) 6= 0(7.3)

near s = 0. To derive other characteristic exponents, we note the fact

that equation (aE∗) remains invariant under the replacement of s by ω̃js

(j ∈ Z). Hence,Φ0(ω̃
js) (j = 0, 1, . . . , n0 − 1) are solutions of (aE∗).
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Furthermore these solutions are linearly independent, because the lead-

ing terms of V ∗
∞(ω̃js) and V ∗

∞(ω̃hs) coincide with each other, only when

(h − j)q0/n0 ∈ Z, which is equivalent to (h − j)/n0 ∈ Z. It is easy to see

that φj(z) = φ(z + 2jπi) = Φ0(e
(z+2jπi)/n0) (j = 0, 1, . . . , n0 − 1) satisfy

λ(φj) < +∞. By (7.3), we have, for j = 0, 1, . . . , n0 − 1,

ψj = Φ0(ω̃
js) = sκ0

∑

k≥0

cj(k)s
k, cj(0) = ω̃κ0jc0(0) 6= 0.

From these solutions, we derive the linearly independent solutions

ψ0 = sκ0(c0(0) +O(s)),(7.4)

ψj − ω̃κ0jψ0 = sκ0+l(j)(c1j (0) +O(s)), l(j) ∈ N, c1j (0) 6= 0,

1 ≤ j ≤ n0 − 1.

Thus we obtain the sequence

κ0 < κ1 = κ0 + l(j1) ≤ κ0 + l(j2) ≤ · · · ≤ κ0 + l(jn0−1),

which contains at least two distinct characteristic exponents κ0, κ1. Repeat-

ing this procedure within (n0−1) times, we obtain n0 distinct characteristic

exponents κj = κ0 + lj (0 ≤ j ≤ n0 − 1), lj ∈ Z, l0 = 0 < l1 < · · · < ln0−1.

Hence they satisfy equation (2.5). This completes the proof.

§8. Proof of Theorem 2.4

Suppose that there exist linearly independent entire solutions χj(z) =

Φj(e
z) (j = 0, 1, . . . , n− 1) satisfying λ(χj) < +∞.

8.1. Case p ≥ 1

Under the assumptions P = ∅, Rn−1(t) ≡ 0, the case (i) of Theorem 2.1

does not occur. It is sufficient to treat the case where q/n ∈ N, p/n ∈ N.

Then, each Φj(t) is zero-ample neither at t = ∞ nor at t = 0. Using

Propositions 4.1, 4.3, 5.2 and 5.3, we have, for j = 0, 1, . . . , n− 1,

Φj(t) = tκjY
(∞)
j (t) exp(ωjV∞(t)), ω = exp(2πi/n)

(the indices of Φ0(t), . . . ,Φn−1(t) are suitably rearranged if necessary), and

Φj(t) = tκj(0)Y
(0)
j (t) exp(ωε(j)V0(t)).
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Here Y
(∞)
j (t) = O[1]−1 and Y

(0)
j (t) = O[1]1 converge near t = ∞ and

near t = 0, respectively, ε(j) (j = 0, 1, . . . , n − 1) are integers satisfying

0 ≤ ε(j) ≤ n− 1, and

κj = −(n− 1)q/(2n) + ωjαq/n, κj(0) = (n− 1)p/(2n) − ωε(j)βp/n.

By the same argument as in the proof of Theorem 2.1 (cf. Section 6.1.1),

we have, for j = 0, 1, . . . , n− 1,

(n− 1)(p+ q) = 2n(−m′
j + ωjαq/n + ωε(j)βp/n),(8.1.j)

where m′
j ∈ N ∪ {0} (Iχj

(P) = 0). Note that ε(j) 6= ε(j′) for j 6= j′,

because Φ0(t), . . . ,Φn−1(t) are linearly independent solutions of (aE). Sum-

ming (8.1.j) over 0 ≤ j ≤ n−1, we have n(n−1)(p+q) = −2n
∑n−1

j=0 m
′
j ≤ 0,

which is a contradiction.

8.2. Case p ≤ 0

By Theorem 2.1 with P = ∅,

Φj(t) = tκjPj(t) exp(ωjV∞(t)), j = 0, 1, . . . , n− 1,

where Pj(t) (j = 0, . . . , n− 1) are polynomials in t and

κj = m′′
j − (n− 1)q/(2n) + ωjαq/n, m′′

j ≤ 0.

Hence

n−1
∑

j=0

κj = −(n− 1)q/2 +

n−1
∑

j=0

m′′
j < 0.(8.2)

On the other hand, by assumption, κj (0 ≤ j ≤ n − 1) are n distinct

characteristic exponents at t = 0. Then, from (2.4), we have
∑n−1

j=0 κj = 0,

which contradicts (8.2). This completes the proof.
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