ON THE THETA DIVISOR OF $S U(r, 1)$

SONIA BRIVIO and ALESSANDRO VERRA

Abstract

Let $S U(r, 1)$ be the moduli space of stable vector bundles, on a smooth curve C of genus $g \geq 2$, with rank $r \geq 3$ and determinant $O_{C}(p)$, $p \in C$; let \mathcal{L} be the generalized theta divisor on $S U(r, 1)$. In this paper we prove that the map $\phi_{\mathcal{L}}$, defined by \mathcal{L}, is a morphism and has degree 1 .

§0. Introduction

Let C be a smooth, irreducible, complex, projective curve, of genus $g \geq 2$. Let $S U(r, d)$ denotes the moduli space of semistable vector bundles with rank r and fixed determinant $L \in \operatorname{Pic}^{d}(C) . S U(r, d)$ is an irreducible projective variety of dimension $\left(r^{2}-1\right)(g-1)$, (see $[\mathrm{S}]$ and $\left.[\mathrm{N}-\mathrm{R}]\right)$, its Picard variety is free cyclic, see [D-N], the ample generator \mathcal{L} is called the generalized theta divisor of $S U(r, d)$. Let $\phi_{\mathcal{L}}: S U(r, d) \rightarrow|\mathcal{L}|^{*}$ be the map associated to the theta divisor: if $r=2$, then $\phi_{\mathcal{L}}$ is an embedding, see [Be1], [L],[B-V1], [vG-I] for d even, [D-R], [Be2] and [B-V2] for d odd. In this paper, we will assume $r \geq 3$ and we will consider $S U(r, 1)$, where $L=O_{C}(p)$ and p is a given point of C, our first result is the following:

Theorem 0.0.1. For any curve C of genus $g \geq 2: \operatorname{deg}\left(\phi_{\mathcal{L}}\right)=1$, the linear system $|\mathcal{L}|$ on $S U(r, 1)$ is base points free, i.e. the map $\phi_{\mathcal{L}}$ is a morphism.

As a second result we prove the following:
Theorem 0.0.2. For any curve C of genus $g \geq 2$, we have $\operatorname{deg}\left(\phi_{\mathcal{L}}\right)=$ 1.

The paper is organized as follows. The first section is devoted to proving theorem (0.0.1). In section 2 , we study rank r-bundles with $r+1$

[^0]sections extending the rank 2 case dealed in [B-V2]. Fix a line bundle $l \in \operatorname{Pic}^{g}(C)$: we can identify the spaces $S U(r, 1)$ and $S U\left(r, O_{C}(p+r l)\right)$, let $E \in S U\left(r, O_{C}(p+r l)\right)$, assume that $h^{0}(E)=r+1$ and the natural map $w_{E}: \wedge^{r} H^{0}(E) \rightarrow H^{0}(\operatorname{det} E)$ is injective, then $\operatorname{Im} w_{E}$ is a $(r+1)$-dimensional subspace of $H^{0}\left(O_{C}(p+r l)\right)$. This allow us to define a map
$$
g_{l}: S U\left(r, O_{C}(p+r l)\right) \rightarrow G_{l}\left(r+1, H^{0}\left(O_{C}(p+r l)\right)\right.
$$
we prove that g_{l} is a birational map and it is defined by a linear system in $|\mathcal{L}|$. In section 3 , we prove theorem (0.0.2). Actually, we perform a non empty open subset $\mathcal{U} \subset S U(r, 1)$ such that the restriction $\phi_{\mathcal{L} \mid \mathcal{U}}$ is an embedding. \mathcal{U} is naturally defined as the set of bundles ξ for which exists $l \in \operatorname{Pic}^{g}(C)$, s.t. g_{l} is biregular at the point $E=\xi(l)$. If $r=2$, in [B-V2] we proved that actually $\mathcal{U}=S U(2,1)$, which allows us to conclude that \mathcal{L} is very ample. If $r \geq 3$, actually \mathcal{U} can be a proper subset of $S U(r, 1)$, (see lemma (3.2.1)), this unable us to extend completely the result of rank 2.

Finally, we would like to remember that rank 2 vector bundles with 3 sections were useful also in proving that $\phi_{\mathcal{L}}$ is an embedding at singular points of $S U(2)$, see [I-vG].

0.1. Notations.

We reserve the notation ξ for points of $S U(r, 1)$; with some abuse, the same notation will be used for the vector bundle corresponding to ξ. For a vector bundle ξ of degree d and rank r we denote by $\mu:=\frac{d}{r}$ the slope of ξ. We say that ξ is semistable iff for every proper subbundle $\eta \subset \xi$ we have $\mu(\eta) \leq \mu(\xi)$, it is stable iff the inequality is strict. Given two vector bundles ξ, η on C, they are said complementary if $\chi(\xi \otimes \eta)=0$.

We recall that there exists a Poincaré family on $S U(r, 1)$, see [N-R], i.e. a vector bundle U on $S U(r, 1) \times C$ such that $U_{\mid \xi \times C} \simeq \xi$, for any $\xi \in S U(r, 1)$. Let as usual π_{i} denote the natural projections of $S U(r, 1) \times C$ onto factors. Note that if U is a Poincaré bundle, then for any $A \in \operatorname{Pic}(S U(r, 1)), U \otimes \pi_{1}^{*} A$ is a Poincaré bundle too. Actually there exists a unique Poincaré bundle U on $S U(r, 1) \times C$ with the further following property, (see [Ra]):

$$
\operatorname{det} U_{\mid S U(r, 1) \times\{x\}} \simeq \mathcal{L}
$$

where \mathcal{L} is the theta divisor of $S U(r, 1)$. Following [Ra], we will call such a bundle U the universal bundle.

§1. On the base points of the theta divisor

1.0.

Let θ be an effective divisor of degree $g-1$ on C, θ defines a natural isomorphism

$$
\begin{equation*}
f_{\theta}: S U(r, 1) \rightarrow S U(r, r(g-1)-1) \tag{1}
\end{equation*}
$$

sending ξ to $\xi^{*}(\theta)$. Let $(\xi, \eta) \in S U(r, 1) \times S U(r, r(g-1)-1)$ we have

$$
\begin{equation*}
\chi(\xi \otimes \eta)=0 \tag{2}
\end{equation*}
$$

hence the subset

$$
\begin{equation*}
\hat{\Theta}_{\xi}:=\left\{\eta \in S U(r, r(g-1)-1) / h^{0}(\xi \otimes \eta)>0\right\} \tag{3}
\end{equation*}
$$

is either $S U(r, r(g-1)-1)$ or a theta divisor of $S U(r, r(g-1)-1)$, see [D-N].

Lemma 1.0.1. Let $U_{\xi} \subset \hat{\Theta}_{\xi}$ be the locus of points η such that each non zero morphism $u: \eta^{*} \rightarrow \xi$ is a monomorphism. Then U_{ξ} is a non empty open subset.

Proof. Let \mathcal{F} be a family of stable vector bundles on $S \times C$, let $U: \mathcal{F}^{*} \rightarrow$ $\pi_{2}{ }^{*} \xi$ be a non zero morphism of vector bundles. It is enough to show that the locus Δ of points $s \in S$ such that U_{s} is not a monomorphism is closed. This is immediate because Δ is the projection of the degeneracy locus of U. The non emptyness follows from the exact sequence

$$
\begin{equation*}
0 \rightarrow \xi(-\theta) \rightarrow \xi \rightarrow O_{\theta} \otimes \xi \rightarrow 0 \tag{4}
\end{equation*}
$$

where $\eta^{*}=\xi(-\theta)$.
Lemma 1.0.2. We have: $\operatorname{dim} U_{\xi} \leq\left(r^{2}-1\right)(g-1)-1$.
Proof. Let $\eta \in U_{\xi}$: then there exists an exact sequence as follows

$$
\begin{equation*}
0 \rightarrow \eta^{*} \rightarrow \xi \rightarrow O_{D} \rightarrow 0 \tag{5}
\end{equation*}
$$

where D is a divisor in the linear system $|\operatorname{det}(\xi) \otimes \operatorname{det}(\eta)|$, that is $|r \theta|$. Let's consider the natural rational map

$$
\begin{equation*}
V_{D}: \operatorname{Hom}\left(\xi, O_{D}\right) \rightarrow S U(r, r(g-1)-1) \tag{6}
\end{equation*}
$$

which associates to any epimorphism $v: \xi \rightarrow O_{D}$ the sheaf (ker $\left.v\right)^{*}$. Then any $\eta \in U_{\xi}$ belongs to the image of the above map V_{D}. The group of automorphisms $\operatorname{Aut}\left(O_{D}\right)$ naturally acts on $\operatorname{Hom}\left(\xi, O_{D}\right)$; the action is faithful on points v which are epimorphisms, moreover $\operatorname{Aut}\left(O_{D}\right)$ contains the torus $\mathbf{C}^{* \operatorname{deg} D}$. Since $\operatorname{Hom}\left(\xi, O_{D}\right) \simeq \xi^{*} \otimes O_{D}$, it follows that the dimension of the image of the previous map at V_{D} is bounded by

$$
(r-1) \operatorname{deg} D=\left(r^{2}-1\right)(g-1)-(r-1)(g-1)
$$

On the other hand, if $r \geq 3$ we have $\operatorname{dim}|D|=(r-1)(g-1)-1$. Let $\mathcal{D} \subset C \times|D|$ be the universal divisor, then U_{ξ} is contained in the image of the natural map

$$
\begin{equation*}
\pi_{2 *}\left(\left(\pi_{1}{ }^{*} \xi\right) \otimes O_{\mathcal{D}}\right) \rightarrow S U(r, r(g-1)-1) \tag{7}
\end{equation*}
$$

By the previous count the dimension of this image is at most $\left(r^{2}-1\right)(g-$ 1) -1 .

Let $\xi \in S U(r, 1)$, with the above notations, we define

$$
\begin{equation*}
\Theta_{\xi}:=f_{\theta}{ }^{*} \hat{\Theta}_{\xi} \tag{8}
\end{equation*}
$$

Proposition 1.0.1. For any $\xi \in S U(r, 1), \Theta_{\xi}$ is actually a theta divisor on $\operatorname{SU}(r, 1)$.

Proof. It is enough to prove the assertion for $\hat{\Theta}_{\xi}$. Note that $\hat{\Theta}_{\xi}$ is either a theta divisor on $S U(r, r(g-1)-1)$ or it is $S U(r, r(g-1)-1)$. Let's assume that $\hat{\Theta}_{\xi}=S U(r, r(g-1)-1)$, then by the preceding lemma U_{ξ} is an open subset of $S U(r, r(g-1)-1)$: but this is impossible because $\operatorname{dim} U_{\xi}<\operatorname{dim} S U(r, r(g-1)-1)$. This implies the claim.

1.1.

Fix $\theta \in C^{(g-1)}$, the previous remarks allow us to define a map

$$
\begin{equation*}
\phi_{\theta}: S U(r, 1) \rightarrow|\mathcal{L}| \simeq \mathbf{P}^{n} \tag{9}
\end{equation*}
$$

just sending ξ to the divisor Θ_{ξ}. From the previous proposition follows immediately that ϕ_{θ} is a morphism.

Lemma 1.1.1. We have: $\phi_{\theta}{ }^{*} O_{\mathbf{P}^{n}}(1)=\mathcal{L}$.

Proof. Let $\xi_{0} \in S U(r, 1)$ be a point wich is not a point of ramificaton of ϕ_{θ}, set $\eta:=f_{\theta}\left(\xi_{0}\right)=\xi_{0}{ }^{*}(\theta)$. Let H be the hyperplane of \mathbf{P}^{n} consisting of divisors passing through ξ_{0}. We have:

$$
\phi_{\theta}{ }^{*} H=\left\{\xi \in S U(r, 1): \eta \in \hat{\Theta}_{\xi}\right\}=\left\{\xi \in S U(r, 1): h^{0}(\xi \otimes \eta)>0\right\}
$$

and set theoretically this is a divisor in the linear system $|\mathcal{L}|$. Actually, $\xi_{0} \in \phi_{\theta}{ }^{*} H$ and since it is not a point of ramification, we have $\phi_{\theta}{ }^{*} H=\mathcal{L}$.

As an immediate consequence we have
Proposition 1.1.1. The map associated to the theta divisor $\phi_{\mathcal{L}}$: $S U(r, 1) \rightarrow|\mathcal{L}|^{*}$ is a morphism.

§2. Bundles with $r+1$ sections

2.1. Definition

Let $(\xi, l) \in S U(r, 1) \times \operatorname{Pic}^{g}(C)$. We say that (ξ, l) satisfies condition $(*)$ if the following three properties hold:
(i) $h^{0}(\xi(l))=r+1$,
(ii) $\xi(l)$ is globally generated,
(iii) the determinant map $w_{\xi, l}: \wedge^{r} H^{0}(\xi(l)) \rightarrow H^{0}(\operatorname{det} \xi(l))$ is injective.

We will set

$$
\begin{equation*}
X_{l}:=\{\xi \in S U(r, 1) /(\xi, l) \quad \text { satisfies }(*)\} \tag{10}
\end{equation*}
$$

2.2. Remark

Assume that a pair $(\xi, l) \in S U(r, 1) \times \operatorname{Pic}^{g}(C)$ satisfies properties (i) and (ii), then it satisfies (iii) too. First of all, note that since $h^{0}(\xi(l))=r+1$, every vector of $\wedge^{r} H^{0}(\xi(l))$ is indecomposable. So assume that $v \neq 0$ is in the kernel of the map $w_{\xi, l}$, then $v=s_{1} \wedge s_{2} \wedge \ldots \wedge s_{r}$, with $s_{i} \in H^{0}(\xi(l))$, $i=1 \ldots r$. Then the sections $s_{1}, \ldots s_{r}$ would generate a subbundle $\eta \subset \xi(l)$ with the following properties: $r k \eta=s \leq r-1, h^{0}(\eta) \geq r$, and η is globally generated too. This implies $r k \eta=r-1, h^{0}(\eta)=r$ and the following commutative diagram

which implies $\operatorname{deg} \eta \geq 1+r g$, which contradicts the stability of $\xi(l)$.
We will show later that actually for any $l \in \operatorname{Pic}^{g}(C), X_{l}$ is a non empty open subset of $S U(r, 1)$.

2.3. Definition

Let $l \in \operatorname{Pic}^{g}(C)$, we will consider the Grassmannian

$$
\begin{equation*}
G_{l}=G\left(r+1, H^{0}\left(O_{C}(p+r l)\right)\right) \tag{12}
\end{equation*}
$$

of $(r+1)$ dimensional subspaces of $H^{0}\left(O_{C}(p+r l)\right)$. If (ξ, l) satisfies assumptions (i) and (iii) then the image of the determinant map $w_{\xi, l}$ is a $(r+1)$ dimensional subspace of $H^{0}\left(O_{C}(p+r l)\right)$, let's denote it by

$$
W:=\operatorname{Im} w_{\xi, l}
$$

This defines a map

$$
\begin{equation*}
g_{l}: S U(r, 1) \rightarrow G_{l}\left(r+1, H^{0}\left(O_{C}(p+r l)\right)\right) \tag{13}
\end{equation*}
$$

by sending ξ to the point of the Grassmannian corresponding to the subspace $W \hookrightarrow H^{0}\left(O_{C}(p+r l)\right)$.

Note that there is a canonical isomorphism $\wedge^{r} H^{0}(\xi(l)) \simeq H^{0}(\xi(l))^{*}$, which induces an inclusion

$$
\begin{equation*}
w_{\xi}^{\prime}: H^{0}(\xi(l))^{*} \hookrightarrow H^{0}\left(O_{C}(p+r l)\right) \tag{14}
\end{equation*}
$$

whose image is again W. Assume now that $\xi(l)$ is globally generated too, then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow O_{C}(p+r l)^{-1} \rightarrow H^{0}(\xi(l)) \otimes O_{C} \rightarrow \xi(l) \rightarrow 0 \tag{15}
\end{equation*}
$$

and its dual

$$
\begin{equation*}
0 \rightarrow \xi(l)^{*} \rightarrow H^{0}(\xi(l))^{*} \otimes O_{C} \rightarrow O_{C}(p+r l) \rightarrow 0 \tag{16}
\end{equation*}
$$

passing to cohomology we have

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\xi(l)^{*}\right) \rightarrow H^{0}(\xi(l))^{*} \xrightarrow{\pi} H^{0}\left(O_{C}(p+r l)\right) \rightarrow \ldots \tag{17}
\end{equation*}
$$

since $\xi(l)$ is stable, then $H^{0}\left(\xi(l)^{*}\right)=0$, so we can conclude that π is injective. We claim that $\operatorname{Im} \pi=W$, so that we can identify the maps π and w_{ξ}^{\prime}.

2.4.

Let $W \in G_{l}\left(r+1, H^{0}\left(O_{C}(p+r l)\right)\right.$, assume that $|W|$ is base point free. Then we can consider the evaluation map $e: W \otimes O_{C} \rightarrow O_{C}(p+r l)$, which is surjective, so its kernel is a rank r vector bundle, let's define

$$
\begin{equation*}
E_{W}:=(\operatorname{Ker} e)^{*} \tag{18}
\end{equation*}
$$

We have $\operatorname{det} E_{W}=O_{C}(p+r l)$, moreover we have the following exact sequence

$$
\begin{equation*}
0 \rightarrow O_{C}(p+r l)^{-1} \rightarrow W^{*} \otimes O_{C} \rightarrow E_{W} \rightarrow 0 \tag{19}
\end{equation*}
$$

so we can conclude that E_{W} is generated by $(r+1)$ global sections spanning the subspace $\operatorname{Im}\left(W^{*} \hookrightarrow H^{0}\left(E_{W}\right)\right)$. Passing to cohomology, we have

$$
(20) 0 \rightarrow W^{*} \rightarrow H^{0}\left(E_{W}\right) \rightarrow H^{1}\left(O_{C}(p+r l)^{-1}\right) \rightarrow W^{*} \otimes H^{1}\left(O_{C}\right) \rightarrow . .
$$

note that $h^{0}\left(E_{W}\right)=r+1$ if and only $H^{0}\left(E_{W}\right) \simeq W^{*}$, that is the following multiplication map is an isomorphism

$$
\begin{equation*}
\mu_{W}: W \otimes H^{0}\left(\omega_{C}\right) \rightarrow H^{0}\left(\omega_{C} \otimes O_{C}(p+r l)\right) \tag{21}
\end{equation*}
$$

We have the following results:
Lemma 2.4.1. Let E be a rank r vector bundle with $h^{0}(E)=\chi(E)=$ $r+1$, which is globally generated, then E is stable.

Proof. By Riemann Roch theorem we have $\operatorname{deg}(E)=1+r g$, and $\mu(E)=g+\frac{1}{r}$. Assume there exists a destabilizying subbundle $F \subset E$ with $r k(F)=s \stackrel{r}{\leq} r-1$ and $\mu(F) \geq g+\frac{1}{r}$. This implies $\operatorname{deg}(F) \geq 1+s g$ and $\chi(F) \geq s+1$. Since E is generated by $r+1$ global sections spanning $H^{0}(E)$, then $h^{0}(F)=s+1$ and F is globally generated too. So we have a commutative diagramm

from the inclusion $(\operatorname{det} F)^{-1} \hookrightarrow \operatorname{det} E^{-1}$ we have $s g+1 \geq r g+1$, which is impossible. This concludes the proof.

Assume that for a subspace W the map μ_{W} is an isomorphism, then by preceding lemma E_{W} is stable, so that $E_{W}(-l)=\xi \in S U(r, 1)$. Moreover, (ξ, l) satisfies conditions (i),(ii) so that the map g_{l} is defined at the point ξ and we actually have $g_{l}(\xi)=W$. We would remark that the exact sequence

$$
\begin{equation*}
0 \rightarrow \xi(l)^{*} \rightarrow W \otimes O_{C} \rightarrow O_{C}(p+r l) \rightarrow 0 \tag{23}
\end{equation*}
$$

is just the pull-back of the Euler sequence

$$
\begin{equation*}
0 \rightarrow \Omega_{\mathbf{P}^{r-1}}(1) \rightarrow W \otimes O_{\mathbf{P}^{r-1}} \rightarrow O_{\mathbf{P}^{r-1}}(1) \rightarrow 0 \tag{24}
\end{equation*}
$$

under the morphism $f: C \rightarrow \mathbf{P}^{r-1}=\mathbf{P}\left(W^{*}\right)$ defined by $|W|$. Hence it turns out that

$$
\begin{equation*}
\xi(l) \simeq f^{*} T_{\mathbf{P}^{r-1}}(-1) \tag{25}
\end{equation*}
$$

Let's define the following subsets of G_{l} :

$$
\begin{equation*}
B_{l}:=\left\{W \in G_{l}:|W| \text { has base points }\right\} \tag{26}
\end{equation*}
$$

and D_{l} as the set of W such that the multiplication map

$$
\begin{equation*}
\mu_{W}: W \otimes H^{0}\left(\omega_{C}\right) \rightarrow H^{0}\left(\omega_{C} \otimes O_{C}(p+r l)\right) \tag{27}
\end{equation*}
$$

is not surjective. Note that $\forall l$, we have $B_{l} \subset D_{l}$. Moreover, we have the following fact:

Lemma 2.4.2. For any $l \in \operatorname{Pic}^{g}(C), D_{l}$ is a Cartier divisor on G_{l}.
Proof. For more details see also [B], th.(0.0.1).
There exists a homomorphism between vector bundles $\mu: \mathcal{G} \rightarrow \mathcal{F}$ such that at the point $W \in G_{l}$ is actually the multiplication map

$$
\begin{equation*}
\mu_{W}: W \otimes H^{0}\left(\omega_{C}\right) \rightarrow H^{0}\left(\omega_{C} \otimes O_{C}(p+r l)\right) \tag{28}
\end{equation*}
$$

so that D_{l} is actually the degeneracy locus of μ. From Thom-Porteous's formula it is either a Cartier divisor or $D_{l}=G_{l}$. Actually we show that there exists $W \notin D_{l}$.

Claim: let $r \geq 1$, for any line bundle L of degree $r g+1$, base points free and non special, there exists a subspace $W \subset H^{0}(L)$ s.t. μ_{W} is surjective.

We will prove the claim by recurrence on r. Note that if $r=1$, and L is a non special base points free line bundle of degree $g+1$, the assertion
follows from the base points free pencil trick, see [A-C-G-H]. Assume that the claim is true for degree $1+(r-1) g$. Let L be any line bundle of degree $1+r g$: choose $x_{1}, \ldots, x_{g} \in C$ with the following properties:
i) $x_{1}+\ldots+x_{g}$ is non special,
ii) $L\left(-x_{1}-\ldots-x_{g}\right)$ is base points free and non special.

By the induction hypothesys there exists an r dimensional subspace $\bar{W} \subset H^{0}\left(L\left(-x_{1}-\ldots-x_{g}\right)\right)$ for which $\mu_{\bar{W}}$ is surjective. Choose a global section $s \in H^{0}(L)$, such that $s\left(x_{i}\right) \neq 0$, for $i=1, \ldots g$, and define the subspace

$$
W:=\langle\bar{W}, s\rangle
$$

By i), we can find indipendent global sections $\omega_{1}, \omega_{2}, \ldots, \omega_{g}$ such that $\omega_{i}\left(x_{j}\right) \neq 0$ if and only if $j=i$; let $f_{i}=\mu_{W}\left(s \otimes \omega_{i}\right)$, then it is easy to see that f_{1}, \ldots, f_{g} are indipendent global sections of $H^{0}\left(L \otimes \omega_{C}\right)$. This implies the following commutative diagramm

Since both $\mu_{\bar{W}}$ and μ_{s} are surjective, we can conclude that μ_{W} is surjective too.

As an immediate consequence of the lemma we have that X_{l} is a non empty open subset of $S U(r, 1)$: in fact if W is a point in $G_{l}-D_{l}$, then by the previous arguments $E_{W}(-l)=\xi \in X_{l}$. Moreover the map $h_{l}: G_{l}-D_{l} \rightarrow X_{l}$ sending W to $E_{W}(-l)$ is actually the inverse map of g_{l}.

2.5.

Let's consider the Pluecker embedding of the grassmannian G_{l} :

$$
\begin{equation*}
p_{l}: G_{l}\left(r+1, H^{0}\left(O_{C}(p+r l)\right) \hookrightarrow \mathbf{P}^{N}=\mathbf{P}\left(\wedge^{r+1} H^{0}\left(O_{C}(p+r l)\right)\right.\right. \tag{30}
\end{equation*}
$$

and look at the composition map

$$
\begin{equation*}
p_{l} \cdot g_{l}: S U(r, 1) \rightarrow \mathbf{P}^{N} \tag{31}
\end{equation*}
$$

we have the following result:

Proposition 2.5.1. Let $l \in \operatorname{Pic}^{g}(C)$,
(1) $g_{l}: S U(r, 1) \rightarrow G_{l}\left(r+1, H^{0}\left(O_{C}(p+r l)\right)\right.$ is a birational map, the restriction $g_{l \mid X_{l}}: X_{l} \rightarrow G_{l}-D_{l}$ is biregular;
(2) the rational map $p_{l} \cdot g_{l}: S U(r, 1) \rightarrow \mathbf{P}^{N}$ is defined by $N+1$ indipendent global sections of $H^{0}(\mathcal{L})$, where \mathcal{L} is the generalized theta divisor on $S U(r, 1)$.

Proof. (1) Let $l \in \operatorname{Pic}^{g}(C)$, note that we can identify the two moduli spaces $S U(r, 1)$ and $S U\left(r, O_{C}(p+r l)\right)$ via the natural isomorphism sending $\xi \rightarrow \xi(l)$. Let \mathcal{U}_{l} be the universal bundle on $S U\left(r, O_{C}(p+r l)\right) \times C$, let as usual π_{i}, with $i=1,2$, denote the natural projections. We recall that

$$
\begin{equation*}
\operatorname{det} \mathcal{U}_{l \mid S U\left(r, O_{C}(p+r l)\right) \times x} \simeq \mathcal{L} \tag{32}
\end{equation*}
$$

moreover $\operatorname{det} \mathcal{U}_{l \mid \xi(l) \times C} \simeq O_{C}(p+r l)$, so that we can conclude that

$$
\begin{equation*}
\operatorname{det} \mathcal{U}_{l} \simeq \pi_{2}^{*} O_{C}(p+r l) \otimes \pi_{1}{ }^{*} \mathcal{L} \tag{33}
\end{equation*}
$$

We will consider, on $S U\left(r, O_{C}(p+r l)\right)$, the torsion free sheaf $\pi_{1 *} \mathcal{U}_{l}$, whose fibre at the point ξ is $H^{0}(\xi(l))$. Let'consider the following open subset of $S U\left(r, O_{C}(p+r l)\right)$

$$
\begin{equation*}
V_{l}:=\left\{\xi(l): h^{0}(\xi(l))=r+1\right\}, \tag{34}
\end{equation*}
$$

then $\pi_{1 *} \mathcal{U}_{l \mid V_{l}}$ is a vector bundle of rank $r+1$. There is a natural map between sheaves on $S U\left(r, O_{C}(p+r l)\right) \times C$, see $[\mathrm{H}]$,

$$
\begin{equation*}
E: \pi_{1}^{*}\left(\pi_{1 *} \mathcal{U}_{l}\right) \rightarrow \mathcal{U}_{l} \tag{35}
\end{equation*}
$$

let's consider the map $\wedge^{r} E$

$$
\begin{equation*}
\wedge^{r} E: \pi_{1}{ }^{*}\left(\wedge^{r} \pi_{1 *} \mathcal{U}_{l}\right) \rightarrow \wedge^{r} \mathcal{U}_{l}=\operatorname{det} \mathcal{U}_{l} \tag{36}
\end{equation*}
$$

and tensor this map with $\pi_{1}{ }^{*} \mathcal{L}^{-1}$, so we have

$$
\begin{equation*}
\left.\pi_{1}{ }^{*}\left(\wedge^{r}\left(\pi_{1 *} \mathcal{U}_{l}\right) \otimes \mathcal{L}^{-1}\right)\right) \rightarrow \pi_{2}{ }^{*} O_{C}(p+r l) \tag{37}
\end{equation*}
$$

Finally let's push down this map on $S U\left(r, O_{C}(p+r l)\right)$, by using the projecting formula and recalling that $\pi_{1 *} O_{S U\left(r, O_{C}(p+r l)\right) \times C} \simeq O_{S U\left(r, O_{C}(p+r l)\right)}$, we will have the following map

$$
\begin{equation*}
G: \wedge^{r}\left(\pi_{1 *} \mathcal{U}_{l}\right) \otimes \mathcal{L}^{-1} \rightarrow \pi_{1 *} \pi_{2}{ }^{*} O_{C}(p+r l) \tag{38}
\end{equation*}
$$

Note that $\pi_{1 *} \pi_{2}{ }^{*} O_{C}(p+r l)$ is the trivial bundle on $S U\left(r, O_{C}(p+r l)\right)$ with fibre $H^{0}\left(O_{C}(p+r l)\right)$, moreover at the point $\xi(l) G$ is actually the determinant map

$$
\begin{equation*}
w_{\xi}: \wedge^{r} H^{0}(\xi(l)) \rightarrow H^{0}\left(O_{C}(p+r l)\right) . \tag{39}
\end{equation*}
$$

If $g_{l}(\xi)$ is defined, then $(\operatorname{Im} G)_{\xi(l)}=g_{l}(\xi)$ and this shows that g_{l} is a rational map. Moreover, let $U_{l} \subset S U\left(r, O_{C}(p+r l)\right)$ the set of points $\xi(l)$ satisfying properties (i) and (iii), then $X_{l} \subset U_{l}$ and the restriction $G_{\mid U_{l}}$ is an injection of vector bundle, and $\operatorname{codim} U_{l} \geq 2$.

Since $\operatorname{dim} S U(r, 1)=\operatorname{dim} G_{l}=\left(r^{2}-1\right)(g-1)$, and moreover both $S U(r, 1)$ and G_{l} are smooth and irreducible, then by Zariski's main theorem it is enough to show that $g_{l \mid X_{l}}$ is injective, but this follows from the preceding section.
(2) Since $\wedge^{r}\left(\pi_{1 *} \mathcal{U}_{l}\right) \simeq \pi_{1 *} \mathcal{U}_{l}^{*} \otimes \operatorname{det}\left(\pi_{1 *} \mathcal{U}_{l}\right), G_{\mid U_{l}}$ gives the following injection

$$
\begin{equation*}
\left(\pi_{1 *} \mathcal{U}_{l}\right)^{*} \otimes \operatorname{det}\left(\pi_{1 *} \mathcal{U}_{l}\right) \otimes \mathcal{L}^{-1} \hookrightarrow H^{0}\left(O_{C}(p+r l)\right) \otimes O_{S U(r, 1)} \tag{40}
\end{equation*}
$$

which is actually the pull back of the universal subbundle \mathcal{W} on G_{l}, via the map $g_{l \mid U_{l}}$. Since the Pluecker map p_{l} of G_{l} is defined by the line bundle $\operatorname{det} W^{*}$, we can conclude that

$$
\begin{equation*}
\left(p_{l} \cdot g_{l}\right)^{*}\left(O_{\mathbf{P}^{N}(1)}\right) \simeq \operatorname{det}\left(g_{l}{ }^{*} W^{*}\right) \tag{41}
\end{equation*}
$$

We will prove that actually $g_{l}{ }^{*} W^{*} \simeq \pi_{1 *} \mathcal{U}_{l}$ and $\operatorname{det} \pi_{1 *} \not \mathcal{U}_{l}=\mathcal{L}$.
Let's consider again the natural map of sheaves

$$
\begin{equation*}
E: \pi_{1}{ }^{*}\left(\pi_{1 *} \mathcal{U}_{l}\right) \rightarrow \mathcal{U}_{l}, \tag{42}
\end{equation*}
$$

the restriction at $\xi(l) \times C$ is actually the evaluation map: assume that $\xi(l) \in X_{l}$, then $E_{\mid \xi(l) \times C}$ is surjective and $(\operatorname{ker} E)_{\mid \xi(l) \times C} \simeq O_{C}(p+r l)^{-1}$. Let's consider the set $V \subset S U\left(r, O_{C}(p+r l)\right) \times C$ of pairs $(\xi(l), x)$ with $\xi(l) \in X_{l}$: we have

$$
\begin{equation*}
(\operatorname{Ker} E)_{\mid V}=\pi_{2}{ }^{*} O_{C}(p+r l)^{-1} \otimes \pi_{1}{ }^{*} B \tag{43}
\end{equation*}
$$

with $B \in \operatorname{Pic}\left(S U\left(r, O_{C}(p+r l)\right)\right)$. Look at the following exact sequences on V :

$$
\begin{gather*}
0 \rightarrow \operatorname{ker} E_{\mid V} \rightarrow \pi_{1}^{*}\left(\pi_{1 *} \mathcal{U}_{l}\right)_{\mid V} \rightarrow \mathcal{U}_{l \mid V} \rightarrow 0 \tag{44}\\
0 \rightarrow \mathcal{U}_{l \mid V}^{*} \rightarrow \pi_{1}^{*}\left(\pi_{1 *} \mathcal{U}_{l}\right)_{\mid V}^{*} \rightarrow(\operatorname{Ker} E)_{\mid V}^{*} \rightarrow 0 \tag{45}
\end{gather*}
$$

by pushing down to $S U\left(r, O_{C}(p+r l)\right)$ we obtain an injective map Π :

$$
\begin{equation*}
\Pi:\left(\pi_{1 *} \mathcal{U}_{l}\right)_{\mid V}^{*} \rightarrow \pi_{1 *}(\operatorname{Ker} E)_{\mid V}^{*} \tag{46}
\end{equation*}
$$

where $\pi_{1 *}(\operatorname{Ker} E)^{*}{ }_{\mid V}=\pi_{1 *} \pi_{2}{ }^{*} O_{C}(p+r l) \otimes B$. Note that by construction, Π turns out to be the restriction to V of the above $\operatorname{map} G$, so we can conclude that actually $B=O_{S U\left(r, O_{C}(p+r l)\right)}$ and $\operatorname{det} \pi_{1 *} \mathcal{U}_{l}=\mathcal{L}$, and this concludes the proof.

As an immediate consequence we have an alternative proof of the following well known result, see $[\mathrm{N}]$:

Proposition 2.5.2. $S U(r, 1)$ is a rational variety.

§3. The main result

Let $\phi_{\mathcal{L}}: S U(r, 1) \rightarrow|\mathcal{L}|^{*}$ be the map associated to the theta divisor. By prop. (2.5.1) there exist s_{0}, \ldots, s_{N}, indipendent global sections of $H^{0}(\mathcal{L})$ which define the rational map $p_{l} \cdot g_{l}$. Let V be the subspace spanned by them, we have a natural inclusion $V \hookrightarrow H^{0}(\mathcal{L})$, which induces a linear projection

$$
\begin{equation*}
\pi_{l}:|\mathcal{L}|^{*} \rightarrow \mathbf{P}\left(V^{*}\right)=\mathbf{P}^{N} \tag{47}
\end{equation*}
$$

such that $g_{l}=\pi_{l} \cdot \phi_{\mathcal{L}}$. This allows us to prove that for any curve C of genus $g \geq 2$, the map $\phi_{\mathcal{L}}: S U(r, 1) \rightarrow \mathbf{P}^{n}$ has degree one.

3.1. Proof of theorem (0.0.2)

Actually, we will perform a non empty open subset \mathcal{U} of $S U(r, 1)$, such that the restriction of $\phi_{\mathcal{L}}$ to \mathcal{U} is actually injective, moreover we will prove that the tangent $\operatorname{map} d\left(\phi_{\mathcal{L}}\right)_{\xi}$ at a point ξ of \mathcal{U} is injective too.

Consider in $S U(r, 1) \times \operatorname{Pic}^{g}(C)$ the set X containing pairs (ξ, l) satisfying property $(*)$. We will denote by

$$
\begin{equation*}
\mathcal{U}:=p_{1}(X) \tag{48}
\end{equation*}
$$

then \mathcal{U} is a non empty open subset of $S U(r, 1)$. First of all note that if $\xi \in \mathcal{U}$ the following set

$$
\begin{equation*}
\left\{l \in \operatorname{Pic}^{g}(C) \quad(\xi, l) \text { satisfies }(*)\right\} \tag{49}
\end{equation*}
$$

is a non empty open subset of $\operatorname{Pic}^{g}(C)$. Now let ξ_{1} and ξ_{2} be any two points of \mathcal{U} : then there exists l such that $\left(\xi_{i}, l\right) \in U$, for $i=1,2$. For such an l,
let $g_{l}: X_{1} \rightarrow G_{l}$ be the rational map defined in (2.3), then by pr. (2.5.1) the restriction $g_{l \mid X_{l}}$ is biregular and both ξ_{1} and ξ_{2} are in X_{l}. Now assume that $\phi_{\mathcal{L}}\left(\xi_{1}\right)=\phi_{\mathcal{L}}\left(\xi_{2}\right)$. Since $g_{l}=\pi_{l} \cdot \phi_{\mathcal{L}}$, then we have $g_{l}\left(\xi_{1}\right)=g_{l}\left(\xi_{2}\right)$. But $g_{l \mid X_{l}}$ is injective, so we can conclude that $\xi_{1} \simeq \xi_{2}$.

Assume now that $d\left(\phi_{\mathcal{L}}\right)_{\xi}(v)=0$ for a point $\xi \in \mathcal{U}$ and a tangent vector $v \in T_{S U(r, 1), \xi}$. Let $l \in \operatorname{Pic}^{g}(C)$ such that $(\xi, l) \in U$: then consider the rational map g_{l}, the linear projection π_{l} is defined at $\phi_{\mathcal{L}}(\xi)$, so we have

$$
\begin{equation*}
\left(d \pi_{l}\right)_{\phi_{\mathcal{L}}(\xi)} \cdot\left(d \phi_{\mathcal{L}}\right)_{\xi}=\left(d g_{l}\right)_{\xi} \tag{50}
\end{equation*}
$$

Since $\xi \in X_{l}$ and $g_{l \mid X_{l}}$ is biregular, then $\left(d g_{l}\right)_{\xi}(v)=0$, hence $v=0$, and $\left(d \phi_{\mathcal{L}}\right)_{\xi}$ is injective. This concludes the proof.

3.2 .

For $r \geq 3, \mathcal{U}$ may be a proper subset of $S U(r, 1)$, that is there exist bundles ξ such that for any $l \in \operatorname{Pic}^{g}(C)$ we have $\xi(l) \notin X_{l}$.

Let E be a semistable bundle on C of rank r, for any $l \in \operatorname{Pic}^{g}(C)$ we have $h^{0}(E(l)) \geq \max (0, \chi(E(l))$; actually there exists an open subset $U \subset \operatorname{Pic}^{g}(C)$ such that for $l \in U$ this value is constant, following Raynaud, let's denote it by $h^{0}\left(E\left(l_{\text {gen }}\right)\right.$), (see $\left.[\mathrm{R}]\right)$. If $r \leq 2$ or $r=3$ and the curve is general, then Raynaud proved that for any bundle we have $h^{0}\left(E\left(l_{g e n}\right)\right)=$ $\max (0, \chi(E(l))$; for $r \geq 4$ he showed the existence of bundles which do not satisfy this property, we will call such bundles Raynaud bundles, see $[R]$.

Let $\eta \in S U(r)$: for any non zero morphism $\lambda \in \operatorname{Hom}\left(\eta, C_{p}\right)$ the sheaf ker λ is actually a vector bundle on C with $\operatorname{det} \operatorname{ker} \lambda=O_{C}(-p)$:

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \lambda \rightarrow \eta \xrightarrow{\lambda} C_{p} \rightarrow 0 \tag{51}
\end{equation*}
$$

We claim that if η is stable then ker λ is stable too. In fact, if $\alpha \subset \operatorname{ker} \lambda \subset \eta$ is a destabilizying subbundle of $\operatorname{ker} \lambda$, then $\mu(\alpha)=\frac{d}{s} \geq \frac{-1}{r}$, with $s \leq r-1$: this implies $d \geq 0$ and contradicts the stability of η. Let's define

$$
\begin{equation*}
\xi:=\operatorname{ker} \lambda^{*} \tag{52}
\end{equation*}
$$

we can conclude that $\xi \in S U\left(r, O_{C}(p)\right)$, and fits into the exact sequence

$$
\begin{equation*}
0 \rightarrow \eta^{*} \rightarrow \xi \xrightarrow{v} C_{p} \rightarrow 0 \tag{53}
\end{equation*}
$$

In the above notations, we can prove the following fact:
Lemma 3.2.1. If $\eta^{*} \in S U(r)$ is a stable Raynaud bundle, then for any $l \in \operatorname{Pic}^{g}(C)$, we have $\xi(l) \notin X_{l}$.

Proof. Consider the exact sequence (53) and tensor with $l \in \operatorname{Pic}^{g}(C)$,

$$
\begin{equation*}
0 \rightarrow \eta^{*}(l) \rightarrow \xi(l) \xrightarrow{v_{l}} \rightarrow C_{p} \rightarrow 0 \tag{54}
\end{equation*}
$$

passing to cohomology, we can consider the following commutative diagramm

Since η^{*} is a Raynaud bundle, then $h^{0}\left(\eta^{*}(l)\right) \geq r+1$ for any $l \in \operatorname{Pic}^{g}(C)$, this implies that either $h^{0}(\xi(l)) \geq r+2$ for any $l \in \operatorname{Pic}^{g}(C)$, or $h^{0}(\xi(l))=r+1$ for l generic, and moreover \bar{v}_{l} is the zero map. In this case, $\operatorname{Im} e_{p} \subset \operatorname{Ker}\left(v_{p, l}^{-}\right)$ for any l, which implies that $\xi(l)$ is not globally generated at p for any l. So we can conclude that $\xi \notin X_{l}$ for any $l \in \operatorname{Pic}^{g}(C)$, and \mathcal{U} is a proper subset of $S U\left(r, O_{C}(p)\right)$.

References

[A-C-G-H] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of Algebraic curves, Springer verlag, Berlin, 1985.
[Be1] A. Beauville, Fibrés de rang 2 sur une courbe, fibré determinant et functions theta, Bull. Soc.Math.France, 116 (1988), 431-448.
[Be 2$] \ldots$, Fibrés de rang 2 sur une courbe, fibré determinant et functions theta II, Bull. Soc. Math.France, 119 (1991), 259-291.
[B] S.Brivio, On the degeneracy locus of a map of vector bundles on Grassmannian Varieties, Preprint (1999).
[B-V1] S. Brivio and A. Verra, The theta divisor of $S U_{C}(2)^{s}$ is very ample if C is not hyperelliptic, Duke Math. J., 82 (1996), 503-552.
[B-V2] \longrightarrow On the theta divisor of $S U(2,1)$, Int. J. math., 10, 8 (1998), 925-942.
[D-N] I.M. Drezet and M.S. Narasimhan, Groupes de Picard des variétés des modules des fibrés semistable sur les courbes algebriques, Invent.Math., 97 (1989), 53-94.
[D-R] U.V. Desale and S. Ramanan, Classificationn of vector bundles of rank two on hyperelliptic curves, Invent. Math., 38 (1976), 161-185.
[H] R. Hartshorne, Algebraic Geometry, Springer verlag, New York, 1977.
[I-vG] E.I zadi and L. van Geemen, The tangent space to the moduli space of vector bunldes on a curve and the singular locus of the theta divisor of the Jacobian, Preprint (1997).
[L] Y. Laszlo, A propos de lespace des modules de fibres de rang 2 sur une courbe, Math. Ann., 299 (1994), 597-608.
[N-R] M.S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann.Math., 89 (1969), 19-51.
[N] P.E. Newstead, Rationality of moduli spaces of vector bundles over an algebraic curve, Math.Ann., 215 (1975), 251-268. Correction, ibidem, 249, (1980), 281-282.
[Ra] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann., 200 (1973), 69-84.
[R] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull.Soc.math. France, 110 (1982), 103-125.
[S] C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 96 (1982), 3-50.

Sonia Brivio
Dipartimento di Matematica
Universita' di Pavia
via Abbiategrasso
209-27100 Pavia
Italy
Brivio@dimat.unipv.it
Alessandro Verra
Dipartimento di Matematica
Universita' di Roma Tre
largo S. Leonardo Murialdo 1-00146
Roma
Italy
Verra@matrm3.mat.uniroma3.it

[^0]: Received December 7, 1999.
 2000 Mathematics Subject Classification: 14 D20.
 The authors were partially supported by the European Science Project "AGE (Algebraic Geometry in Europe)", contract n. ERBCHRXCT940557.

