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ON THE THETA DIVISOR OF SU(r, 1)

SONIA BRIVIO and ALESSANDRO VERRA

Abstract. Let SU(r, 1) be the moduli space of stable vector bundles, on a
smooth curve C of genus g ≥ 2, with rank r ≥ 3 and determinant OC(p),
p ∈ C; let L be the generalized theta divisor on SU(r, 1). In this paper we
prove that the map φL, defined by L, is a morphism and has degree 1.

§0. Introduction

Let C be a smooth, irreducible, complex, projective curve, of genus

g ≥ 2. Let SU(r, d) denotes the moduli space of semistable vector bundles

with rank r and fixed determinant L ∈ Picd(C). SU(r, d) is an irreducible

projective variety of dimension (r2 − 1)(g − 1), (see [S] and [N-R]), its

Picard variety is free cyclic, see [D-N], the ample generator L is called the

generalized theta divisor of SU(r, d). Let φL:SU(r, d) → |L|∗ be the map

associated to the theta divisor: if r = 2, then φL is an embedding, see

[Be1], [L],[B-V1], [vG-I] for d even, [D-R], [Be2] and [B-V2] for d odd. In

this paper, we will assume r ≥ 3 and we will consider SU(r, 1), where

L = OC(p) and p is a given point of C, our first result is the following:

Theorem 0.0.1. For any curve C of genus g ≥ 2: deg(φL) = 1, the

linear system |L| on SU(r, 1) is base points free, i.e. the map φL is a

morphism.

As a second result we prove the following:

Theorem 0.0.2. For any curve C of genus g ≥ 2, we have deg(φL) =
1.

The paper is organized as follows. The first section is devoted to prov-

ing theorem (0.0.1). In section 2, we study rank r-bundles with r + 1
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sections extending the rank 2 case dealed in [B-V2]. Fix a line bundle

l ∈ Picg(C): we can identify the spaces SU(r, 1) and SU(r,OC(p + rl)), let

E ∈ SU(r,OC (p + rl)), assume that h0(E) = r + 1 and the natural map

wE :∧rH0(E) → H0(det E) is injective, then ImwE is a (r+1)-dimensional

subspace of H0(OC(p + rl)). This allow us to define a map

gl:SU(r,OC (p + rl)) → Gl(r + 1,H0(OC(p + rl)),

we prove that gl is a birational map and it is defined by a linear system

in |L|. In section 3, we prove theorem (0.0.2). Actually, we perform a

non empty open subset U ⊂ SU(r, 1) such that the restriction φL|U is an

embedding. U is naturally defined as the set of bundles ξ for which exists

l ∈ Picg(C), s.t. gl is biregular at the point E = ξ(l). If r = 2, in [B-V2]

we proved that actually U = SU(2, 1), which allows us to conclude that L

is very ample. If r ≥ 3, actually U can be a proper subset of SU(r, 1), (see

lemma (3.2.1)), this unable us to extend completely the result of rank 2.

Finally, we would like to remember that rank 2 vector bundles with 3

sections were useful also in proving that φL is an embedding at singular

points of SU(2), see [I-vG].

0.1. Notations.

We reserve the notation ξ for points of SU(r, 1); with some abuse, the

same notation will be used for the vector bundle corresponding to ξ. For

a vector bundle ξ of degree d and rank r we denote by µ: = d
r

the slope

of ξ. We say that ξ is semistable iff for every proper subbundle η ⊂ ξ we

have µ(η) ≤ µ(ξ), it is stable iff the inequality is strict. Given two vector

bundles ξ, η on C, they are said complementary if χ(ξ ⊗ η) = 0.

We recall that there exists a Poincaré family on SU(r, 1), see [N-R], i.e.

a vector bundle U on SU(r, 1)×C such that U|ξ×C ' ξ, for any ξ ∈ SU(r, 1).

Let as usual πi denote the natural projections of SU(r, 1)×C onto factors.

Note that if U is a Poincaré bundle, then for any A ∈ Pic(SU(r, 1)), U⊗π∗
1A

is a Poincaré bundle too. Actually there exists a unique Poincaré bundle U

on SU(r, 1) × C with the further following property, (see [Ra]):

detU |SU(r,1)×{x} ' L,

where L is the theta divisor of SU(r, 1). Following [Ra], we will call such a

bundle U the universal bundle.
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§1. On the base points of the theta divisor

1.0.

Let θ be an effective divisor of degree g − 1 on C, θ defines a natural

isomorphism

fθ:SU(r, 1) → SU(r, r(g − 1) − 1)(1)

sending ξ to ξ∗(θ). Let (ξ, η) ∈ SU(r, 1) × SU(r, r(g − 1) − 1) we have

χ(ξ ⊗ η) = 0,(2)

hence the subset

Θ̂ξ: = {η ∈ SU(r, r(g − 1) − 1) / h0(ξ ⊗ η) > 0}(3)

is either SU(r, r(g − 1) − 1) or a theta divisor of SU(r, r(g − 1) − 1), see

[D-N].

Lemma 1.0.1. Let Uξ ⊂ Θ̂ξ be the locus of points η such that each non

zero morphism u: η∗ → ξ is a monomorphism. Then Uξ is a non empty

open subset.

Proof. Let F be a family of stable vector bundles on S×C, let U :F∗ →
π2

∗ξ be a non zero morphism of vector bundles. It is enough to show that
the locus ∆ of points s ∈ S such that Us is not a monomorphism is closed.
This is immediate because ∆ is the projection of the degeneracy locus of
U . The non emptyness follows from the exact sequence

0 → ξ(−θ) → ξ → Oθ ⊗ ξ → 0(4)

where η∗ = ξ(−θ).

Lemma 1.0.2. We have: dimUξ ≤ (r2 − 1)(g − 1) − 1.

Proof. Let η ∈ Uξ: then there exists an exact sequence as follows

0 → η∗ → ξ → OD → 0,(5)

where D is a divisor in the linear system |det(ξ)⊗det(η)|, that is |rθ|. Let’s
consider the natural rational map

VD: Hom(ξ,OD) → SU(r, r(g − 1) − 1)(6)
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which associates to any epimorphism v: ξ → OD the sheaf (ker v)∗. Then
any η ∈ Uξ belongs to the image of the above map VD. The group of au-
tomorphisms Aut(OD) naturally acts on Hom(ξ,OD); the action is faithful
on points v which are epimorphisms, moreover Aut(OD) contains the torus
C∗deg D. Since Hom(ξ,OD) ' ξ∗ ⊗OD, it follows that the dimension of the
image of the previous map at VD is bounded by

(r − 1) deg D = (r2 − 1)(g − 1) − (r − 1)(g − 1).

On the other hand, if r ≥ 3 we have dim |D| = (r − 1)(g − 1) − 1. Let
D ⊂ C × |D| be the universal divisor, then Uξ is contained in the image of
the natural map

π2∗((π1
∗ξ) ⊗ OD) → SU(r, r(g − 1) − 1).(7)

By the previous count the dimension of this image is at most (r2 − 1)(g −
1) − 1.

Let ξ ∈ SU(r, 1), with the above notations, we define

Θξ: = fθ
∗Θ̂ξ.(8)

Proposition 1.0.1. For any ξ ∈ SU(r, 1), Θξ is actually a theta di-

visor on SU(r, 1).

Proof. It is enough to prove the assertion for Θ̂ξ. Note that Θ̂ξ is
either a theta divisor on SU(r, r(g − 1) − 1) or it is SU(r, r(g − 1) − 1).
Let’s assume that Θ̂ξ = SU(r, r(g − 1) − 1), then by the preceding lemma
Uξ is an open subset of SU(r, r(g − 1) − 1): but this is impossible because
dim Uξ < dim SU(r, r(g − 1) − 1). This implies the claim.

1.1.

Fix θ ∈ C(g−1), the previous remarks allow us to define a map

φθ:SU(r, 1) → |L| ' Pn(9)

just sending ξ to the divisor Θξ. From the previous proposition follows

immediately that φθ is a morphism.

Lemma 1.1.1. We have: φθ
∗OPn(1) = L.
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Proof. Let ξ0 ∈ SU(r, 1) be a point wich is not a point of ramificaton
of φθ, set η: = fθ(ξ0) = ξ0

∗(θ). Let H be the hyperplane of Pn consisting
of divisors passing through ξ0. We have:

φθ
∗H = {ξ ∈ SU(r, 1): η ∈ Θ̂ξ} = {ξ ∈ SU(r, 1):h0(ξ ⊗ η) > 0};

and set theoretically this is a divisor in the linear system |L|. Actually,
ξ0 ∈ φθ

∗H and since it is not a point of ramification , we have φθ
∗H = L.

As an immediate consequence we have

Proposition 1.1.1. The map associated to the theta divisor φL:
SU(r, 1) → |L|∗ is a morphism.

§2. Bundles with r + 1 sections

2.1. Definition

Let (ξ, l) ∈ SU(r, 1)×Picg(C). We say that (ξ, l) satisfies condition (∗)

if the following three properties hold:

(i) h0(ξ(l)) = r + 1,

(ii) ξ(l) is globally generated,

(iii) the determinant map wξ,l : ∧rH0(ξ(l)) → H0(det ξ(l)) is injective.

We will set

Xl: = {ξ ∈ SU(r, 1)/(ξ, l) satisfies (∗)}.(10)

2.2. Remark

Assume that a pair (ξ, l) ∈ SU(r, 1)×Picg(C) satisfies properties (i) and

(ii), then it satisfies (iii) too. First of all, note that since h0(ξ(l)) = r + 1,

every vector of ∧rH0(ξ(l)) is indecomposable. So assume that v 6= 0 is in

the kernel of the map wξ,l, then v = s1 ∧ s2 ∧ ... ∧ sr, with si ∈ H0(ξ(l)),

i = 1...r. Then the sections s1, ...sr would generate a subbundle η ⊂ ξ(l)

with the following properties: rkη = s ≤ r − 1, h0(η) ≥ r, and η is globally

generated too. This implies rkη = r − 1, h0(η) = r and the following

commutative diagram

0 −−−→ (det η)−1 −−−→ H0(η) ⊗ OC

e
−−−→ η −−−→ 0







y







y







y

0 → OC(p + rl)−1 −−−→ H0(ξ(l)) ⊗ OC −−−→ ξ(l) −−−→ 0,

(11)
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which implies deg η ≥ 1 + rg, which contradicts the stability of ξ(l).

We will show later that actually for any l ∈ Picg(C), Xl is a non empty

open subset of SU(r, 1).

2.3. Definition

Let l ∈ Picg(C), we will consider the Grassmannian

Gl = G(r + 1,H0(OC(p + rl)))(12)

of (r + 1) dimensional subspaces of H0(OC(p + rl)). If (ξ, l) satisfies as-

sumptions (i) and (iii) then the image of the determinant map wξ,l is a

(r + 1) dimensional subspace of H0(OC(p + rl)), let’s denote it by

W : = Im wξ,l.

This defines a map

gl:SU(r, 1) → Gl(r + 1,H0(OC(p + rl)))(13)

by sending ξ to the point of the Grassmannian corresponding to the sub-

space W ↪→ H0(OC(p + rl)).

Note that there is a canonical isomorphism ∧rH0(ξ(l)) ' H0(ξ(l))∗,

which induces an inclusion

w′
ξ:H

0(ξ(l))∗ ↪→ H0(OC(p + rl)),(14)

whose image is again W . Assume now that ξ(l) is globally generated too,

then we have an exact sequence

0 → OC(p + rl)−1 → H0(ξ(l)) ⊗ OC → ξ(l) → 0,(15)

and its dual

0 → ξ(l)∗ → H0(ξ(l))∗ ⊗ OC → OC(p + rl) → 0;(16)

passing to cohomology we have

0 → H0(ξ(l)∗) → H0(ξ(l))∗
π
→ H0(OC(p + rl)) → ....,(17)

since ξ(l) is stable, then H0(ξ(l)∗) = 0, so we can conclude that π is in-

jective. We claim that Imπ = W , so that we can identify the maps π and

w′
ξ.
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2.4.

Let W ∈ Gl(r + 1,H0(OC(p + rl)), assume that |W | is base point free.

Then we can consider the evaluation map e:W ⊗ OC → OC(p + rl), which

is surjective, so its kernel is a rank r vector bundle, let’s define

EW : = (Ker e)∗.(18)

We have detEW = OC(p + rl), moreover we have the following exact se-

quence

0 → OC(p + rl)−1 → W ∗ ⊗ OC → EW → 0,(19)

so we can conclude that EW is generated by (r+1) global sections spanning

the subspace Im(W ∗ ↪→ H0(EW )). Passing to cohomology, we have

0 → W ∗ → H0(EW ) → H1(OC(p + rl)−1) → W ∗ ⊗ H1(OC) → ..;(20)

note that h0(EW ) = r + 1 if and only H0(EW ) ' W ∗, that is the following

multiplication map is an isomorphism

µW :W ⊗ H0(ωC) → H0(ωC ⊗ OC(p + rl)).(21)

We have the following results:

Lemma 2.4.1. Let E be a rank r vector bundle with h0(E) = χ(E) =
r + 1, which is globally generated , then E is stable.

Proof. By Riemann Roch theorem we have deg(E) = 1 + rg, and
µ(E) = g + 1

r
. Assume there exists a destabilizying subbundle F ⊂ E with

rk(F ) = s ≤ r − 1 and µ(F ) ≥ g + 1
r
. This implies deg(F ) ≥ 1 + sg

and χ(F ) ≥ s + 1. Since E is generated by r + 1 global sections spanning
H0(E), then h0(F ) = s + 1 and F is globally generated too. So we have a
commutative diagramm

0 −−−→ (det F )−1 −−−→ H0(F ) ⊗ OC

e
−−−→ F −−−→ 0







y







y







y

0 −−−→ detE−1 −−−→ H0(E) ⊗ OC

e
−−−→ E −−−→ 0,

(22)

from the inclusion (det F )−1 ↪→ detE−1 we have sg + 1 ≥ rg + 1, which is
impossible. This concludes the proof.



165-10 : 2002/3/11(18:3)

186 S. BRIVIO AND A. VERRA

Assume that for a subspace W the map µW is an isomorphism, then by

preceding lemma EW is stable, so that EW (−l) = ξ ∈ SU(r, 1). Moreover,

(ξ, l) satisfies conditions (i),(ii) so that the map gl is defined at the point ξ

and we actually have gl(ξ) = W . We would remark that the exact sequence

0 → ξ(l)∗ → W ⊗ OC → OC(p + rl) → 0(23)

is just the pull-back of the Euler sequence

0 → ΩPr−1(1) → W ⊗ OPr−1 → OPr−1(1) → 0(24)

under the morphism f :C → Pr−1 = P(W ∗) defined by |W |. Hence it turns

out that

ξ(l) ' f∗TPr−1(−1).(25)

Let’s define the following subsets of Gl:

Bl: = {W ∈ Gl: |W | has base points }(26)

and Dl as the set of W such that the multiplication map

µW :W ⊗ H0(ωC) → H0(ωC ⊗ OC(p + rl))(27)

is not surjective. Note that ∀l, we have Bl ⊂ Dl. Moreover, we have the

following fact:

Lemma 2.4.2. For any l ∈ Picg(C), Dl is a Cartier divisor on Gl.

Proof. For more details see also [B], th.(0.0.1).

There exists a homomorphism between vector bundles µ:G → F such
that at the point W ∈ Gl is actually the multiplication map

µW :W ⊗ H0(ωC) → H0(ωC ⊗ OC(p + rl));(28)

so that Dl is actually the degeneracy locus of µ. From Thom-Porteous’s
formula it is either a Cartier divisor or Dl = Gl. Actually we show that
there exists W 6∈ Dl.

Claim: let r ≥ 1, for any line bundle L of degree rg+1, base points free
and non special, there exists a subspace W ⊂ H0(L) s.t. µW is surjective.

We will prove the claim by recurrence on r. Note that if r = 1, and L
is a non special base points free line bundle of degree g + 1, the assertion
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follows from the base points free pencil trick, see [A-C-G-H]. Assume that
the claim is true for degree 1+ (r− 1)g. Let L be any line bundle of degree
1 + rg: choose x1, ..., xg ∈ C with the following properties:

i) x1 + ... + xg is non special,
ii) L(−x1 − ... − xg) is base points free and non special.
By the induction hypothesys there exists an r dimensional subspace

W̄ ⊂ H0(L(−x1 − ... − xg)) for which µW̄ is surjective. Choose a global
section s ∈ H0(L), such that s(xi) 6= 0, for i = 1, ...g, and define the
subspace

W : = 〈W̄ , s〉.

By i), we can find indipendent global sections ω1, ω2,... ,ωg such that
ωi(xj) 6= 0 if and only if j = i; let fi = µW (s ⊗ ωi), then it is easy to see
that f1, ..., fg are indipendent global sections of H0(L ⊗ ωC). This implies
the following commutative diagramm

W̄ ⊗ H0(ωC)
µW̄

−−−→ H0(L(−x1 − .. − xg) ⊗ ωC))






y







y

W ⊗ H0(ωC)
µW

−−−→ H0(L ⊗ ωC)






y







y

< s > ⊗H0(ωC)
µs

−−−→ < f1, .., fg >

(29)

Since both µW̄ and µs are surjective, we can conclude that µW is surjective
too.

As an immediate consequence of the lemma we have that Xl is a non empty

open subset of SU(r, 1): in fact if W is a point in Gl − Dl, then by the

previous arguments EW (−l) = ξ ∈ Xl. Moreover the map hl:Gl −Dl → Xl

sending W to EW (−l) is actually the inverse map of gl.

2.5.

Let’s consider the Pluecker embedding of the grassmannian Gl:

pl:Gl(r + 1,H0(OC(p + rl)) ↪→ PN = P(∧r+1H0(OC(p + rl))(30)

and look at the composition map

pl · gl:SU(r, 1) → PN ,(31)

we have the following result:
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Proposition 2.5.1. Let l ∈ Picg(C),

(1) gl:SU(r, 1) → Gl(r + 1,H0(OC(p + rl)) is a birational map, the re-

striction gl|Xl
:Xl → Gl − Dl is biregular;

(2) the rational map pl ·gl:SU(r, 1) → PN is defined by N +1 indipendent

global sections of H0(L), where L is the generalized theta divisor on

SU(r, 1).

Proof. (1) Let l ∈ Picg(C), note that we can identify the two moduli
spaces SU(r, 1) and SU(r,OC(p+ rl)) via the natural isomorphism sending
ξ → ξ(l). Let Ul be the universal bundle on SU(r,OC (p + rl)) × C, let as
usual πi, with i = 1, 2, denote the natural projections. We recall that

detUl|SU(r,OC(p+rl))×x ' L,(32)

moreover detUl|ξ(l)×C ' OC(p + rl), so that we can conclude that

detUl ' π2
∗OC(p + rl) ⊗ π1

∗L.(33)

We will consider, on SU(r,OC(p + rl)), the torsion free sheaf π1∗Ul, whose
fibre at the point ξ is H0(ξ(l)). Let’consider the following open subset of
SU(r,OC (p + rl))

Vl: = {ξ(l):h0(ξ(l)) = r + 1},(34)

then π1∗Ul|Vl
is a vector bundle of rank r + 1. There is a natural map

between sheaves on SU(r,OC (p + rl)) × C, see [H],

E:π1
∗(π1∗Ul) → Ul,(35)

let’s consider the map ∧rE

∧rE:π1
∗(∧rπ1∗Ul) → ∧rUl = detUl,(36)

and tensor this map with π1
∗L−1, so we have

π1
∗(∧r(π1∗Ul) ⊗ L−1)) → π2

∗OC(p + rl).(37)

Finally let’s push down this map on SU(r,OC(p + rl)), by using the pro-
jecting formula and recalling that π1∗OSU(r,OC(p+rl))×C ' OSU(r,OC(p+rl)),
we will have the following map

G:∧r(π1∗Ul) ⊗ L−1 → π1∗π2
∗OC(p + rl).(38)
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Note that π1∗π2
∗OC(p + rl) is the trivial bundle on SU(r,OC (p + rl)) with

fibre H0(OC(p + rl)), moreover at the point ξ(l) G is actually the determi-
nant map

wξ:∧
rH0(ξ(l)) → H0(OC(p + rl)).(39)

If gl(ξ) is defined, then (Im G)ξ(l) = gl(ξ) and this shows that gl is a rational
map. Moreover, let Ul ⊂ SU(r,OC(p + rl)) the set of points ξ(l) satisfying
properties (i) and (iii), then Xl ⊂ Ul and the restriction G|Ul

is an injection
of vector bundle, and codimUl ≥ 2.

Since dim SU(r, 1) = dim Gl = (r2 − 1)(g − 1), and moreover both
SU(r, 1) and Gl are smooth and irreducible, then by Zariski’s main theo-
rem it is enough to show that gl|Xl

is injective, but this follows from the
preceding section.

(2) Since ∧r(π1∗Ul) ' π1∗Ul
∗ ⊗ det(π1∗Ul), G|Ul

gives the following
injection

(π1∗Ul)
∗ ⊗ det(π1∗Ul) ⊗ L−1 ↪→ H0(OC(p + rl)) ⊗ OSU(r,1),(40)

which is actually the pull back of the universal subbundle W on Gl, via the
map gl |Ul

. Since the Pluecker map pl of Gl is defined by the line bundle
detW ∗, we can conclude that

(pl · gl)
∗(OPN (1)) ' det(gl

∗W ∗).(41)

We will prove that actually gl
∗W ∗ ' π1∗Ul and detπ1∗Ul = L.

Let’s consider again the natural map of sheaves

E:π1
∗(π1∗Ul) → Ul,(42)

the restriction at ξ(l) × C is actually the evaluation map: assume that
ξ(l) ∈ Xl, then E|ξ(l)×C is surjective and (ker E)|ξ(l)×C ' OC(p + rl)−1.
Let’s consider the set V ⊂ SU(r,OC (p + rl)) × C of pairs (ξ(l), x) with
ξ(l) ∈ Xl: we have

(Ker E)|V = π2
∗OC(p + rl)−1 ⊗ π1

∗B,(43)

with B ∈ Pic(SU(r,OC (p+ rl))). Look at the following exact sequences on
V :

0 → ker E|V → π1
∗(π1∗Ul)|V → Ul|V → 0,(44)

0 → Ul
∗
|V → π1

∗(π1∗Ul)
∗
|V → (Ker E)∗|V → 0,(45)
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by pushing down to SU(r,OC (p + rl)) we obtain an injective map Π:

Π: (π1∗Ul)
∗
|V → π1∗(Ker E)∗|V ,(46)

where π1∗(Ker E)∗|V = π1∗π2
∗OC(p+rl)⊗B. Note that by construction, Π

turns out to be the restriction to V of the above map G, so we can conclude
that actually B = OSU(r,OC(p+rl)) and det π1∗Ul = L, and this concludes
the proof.

As an immediate consequence we have an alternative proof of the fol-

lowing well known result, see [N]:

Proposition 2.5.2. SU(r, 1) is a rational variety.

§3. The main result

Let φL:SU(r, 1) → |L|∗ be the map associated to the theta divisor.

By prop. (2.5.1) there exist s0, ... , sN , indipendent global sections of

H0(L) which define the rational map pl ·gl. Let V be the subspace spanned

by them, we have a natural inclusion V ↪→ H0(L), which induces a linear

projection

πl: |L|
∗ → P(V ∗) = PN(47)

such that gl = πl ·φL. This allows us to prove that for any curve C of genus

g ≥ 2, the map φL:SU(r, 1) → Pn has degree one.

3.1. Proof of theorem (0.0.2)

Actually, we will perform a non empty open subset U of SU(r, 1), such

that the restriction of φL to U is actually injective, moreover we will prove

that the tangent map d(φL)ξ at a point ξ of U is injective too.

Consider in SU(r, 1) × Picg(C) the set X containing pairs (ξ, l) satis-

fying property (∗). We will denote by

U : = p1(X),(48)

then U is a non empty open subset of SU(r, 1). First of all note that if

ξ ∈ U the following set

{l ∈ Picg(C) (ξ, l)satisfies (*)}(49)

is a non empty open subset of Picg(C). Now let ξ1 and ξ2 be any two points

of U : then there exists l such that (ξi, l) ∈ U , for i = 1, 2. For such an l,
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let gl:X1 → Gl be the rational map defined in (2.3), then by pr. (2.5.1)

the restriction gl|Xl
is biregular and both ξ1 and ξ2 are in Xl. Now assume

that φL(ξ1) = φL(ξ2). Since gl = πl · φL, then we have gl(ξ1) = gl(ξ2). But

gl|Xl
is injective, so we can conclude that ξ1 ' ξ2.

Assume now that d(φL)ξ(v) = 0 for a point ξ ∈ U and a tangent vector

v ∈ TSU(r,1),ξ. Let l ∈ Picg(C) such that (ξ, l) ∈ U : then consider the

rational map gl, the linear projection πl is defined at φL(ξ), so we have

(dπl)φL(ξ) · (dφL)ξ = (dgl)ξ.(50)

Since ξ ∈ Xl and gl|Xl
is biregular, then (dgl)ξ(v) = 0, hence v = 0, and

(dφL)ξ is injective. This concludes the proof.

3.2.

For r ≥ 3, U may be a proper subset of SU(r, 1), that is there exist

bundles ξ such that for any l ∈ Picg(C) we have ξ(l) 6∈ Xl.

Let E be a semistable bundle on C of rank r, for any l ∈ Picg(C)

we have h0(E(l)) ≥ max(0, χ(E(l)); actually there exists an open subset

U ⊂ Picg(C) such that for l ∈ U this value is constant, following Raynaud,

let’s denote it by h0(E(lgen)), (see [R]). If r ≤ 2 or r = 3 and the curve is

general, then Raynaud proved that for any bundle we have h0(E(lgen)) =

max(0, χ(E(l)); for r ≥ 4 he showed the existence of bundles which do not

satisfy this property, we will call such bundles Raynaud bundles, see [R].

Let η ∈ SU(r): for any non zero morphism λ ∈ Hom(η,Cp) the sheaf

ker λ is actually a vector bundle on C with det ker λ = OC(−p):

0 → ker λ → η
λ
→ Cp → 0.(51)

We claim that if η is stable then ker λ is stable too. In fact, if α ⊂ ker λ ⊂ η

is a destabilizying subbundle of ker λ, then µ(α) = d
s
≥ −1

r
, with s ≤ r − 1:

this implies d ≥ 0 and contradicts the stability of η. Let’s define

ξ: = ker λ∗,(52)

we can conclude that ξ ∈ SU(r,OC (p)), and fits into the exact sequence

0 → η∗ → ξ
v
→ Cp → 0.(53)

In the above notations, we can prove the following fact:

Lemma 3.2.1. If η∗ ∈ SU(r) is a stable Raynaud bundle, then for any

l ∈ Picg(C), we have ξ(l) 6∈ Xl.
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Proof. Consider the exact sequence (53) and tensor with l ∈ Picg(C),

0 → η∗(l) → ξ(l)
vl→→ Cp → 0,(54)

passing to cohomology, we can consider the following commutative dia-
gramm

0 −−−→ H0(η∗(l)) −−−→ H0(ξ(l))
v̄l

−−−→ C






y







y

ep







y

(η∗(l))p −−−→ ξ(l)p
¯vl,p

−−−→ Cp −−−→ 0

(55)

Since η∗ is a Raynaud bundle, then h0(η∗(l)) ≥ r+1 for any l ∈ Picg(C), this
implies that either h0(ξ(l)) ≥ r + 2 for any l ∈ Picg(C), or h0(ξ(l)) = r + 1
for l generic, and moreover v̄l is the zero map. In this case, Im ep ⊂ Ker( ¯vp,l)
for any l, which implies that ξ(l) is not globally generated at p for any l. So
we can conclude that ξ 6∈ Xl for any l ∈ Picg(C), and U is a proper subset
of SU(r,OC(p)).
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Bull. Soc. Math.France, 119 (1991), 259–291.

[B] S.Brivio, On the degeneracy locus of a map of vector bundles on Grassmannian

Varieties, Preprint (1999).

[B-V1] S. Brivio and A. Verra, The theta divisor of SUC(2)s is very ample if C is not

hyperelliptic, Duke Math. J., 82 (1996), 503–552.

[B-V2] , On the theta divisor of SU(2,1), Int. J. math., 10, 8 (1998), 925–942.

[D-N] I.M. Drezet and M.S. Narasimhan, Groupes de Picard des variétés des modules

des fibrés semistable sur les courbes algebriques, Invent.Math., 97 (1989), 53–94.

[D-R] U.V. Desale and S. Ramanan, Classificationn of vector bundles of rank two on

hyperelliptic curves, Invent. Math., 38 (1976), 161–185.

[H] R. Hartshorne, Algebraic Geometry, Springer verlag, New York, 1977.

[I-vG] E.I zadi and L. van Geemen, The tangent space to the moduli space of vector

bunldes on a curve and the singular locus of the theta divisor of the Jacobian,

Preprint (1997).



165-10 : 2002/3/11(18:3)

ON THE THETA DIVISOR OF SU(r, 1) 193

[L] Y. Laszlo, A propos de lespace des modules de fibres de rang 2 sur une courbe,

Math. Ann., 299 (1994), 597–608.

[N-R] M.S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Rie-

mann surface, Ann.Math., 89 (1969), 19–51.

[N] P.E. Newstead, Rationality of moduli spaces of vector bundles over an alge-

braic curve, Math.Ann., 215 (1975), 251–268. Correction, ibidem, 249, (1980),

281–282.

[Ra] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math.

Ann., 200 (1973), 69–84.

[R] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull.Soc.math. France,

110 (1982), 103–125.

[S] C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 96 (1982),
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