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LIFTING OF SUPERSINGULAR POINTS ON X0(p
r)

AND LOWER BOUND OF RAMIFICATION INDEX

FUMIYUKI MOMOSE and MAHORO SHIMURA

Abstract. Let K be a finite extension of Qur
p (= the maximal unramified

extension of Qp) of degree eK , O its integer ring, p a rational prime and r a
positive integer. If there exists a one parameter formal group defined over O
whose reduction is of height 2 with a cyclic subgroup V of order pr defined over
O, then eK ≥ 2pl (resp. pl + pl−1) if r = 2l + 1 (resp. r = 2l).

We apply this result to a criterion for non-existence of Q-rational point of
X+

0 (pr). (This criterion is Momose’s theorem in [14] except for the cases p = 5
and p = 13, but our new proof does not require defining equations of modular
curves except for the case p = 2.)

§0. Introduction

Let p be a rational prime and let r be a positive integer. We denote Qp

and Qur
p the p-adic number field and the maximal unramified extension of

Qp. Let K be a finite extension of Qur
p , O the ring of integers of K, m the

maximal ideal of O and eK the degree of K over Qur
p . Let E be an elliptic

curve with cyclic subgroup A of order pr defined over O whose reduction

mod m is a supersingular elliptic curve. In this paper, we will show that

the existence of such a pair (E,A) gives a lower bound for eK with respect

to p and r. If r is greater than one, the known lower bound of eK is p + 1

([14]). We note that it depends only on p. Our main result is as follows.

Main Theorem. Notation is as above. If such a pair (E,A) exists,

then

eK ≥

{
2pl if r = 2l + 1

pl + pl−1 if r = 2l.

We have two proofs of this theorem, one is obtained by using the formal

groups associated to elliptic curves, the other is due to the crossing theorem

of modular curves ([9, Chap. 13, Theorem 13.4.7]). As an application of
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this theorem, we discuss the rational points of the modular curve X+
0 (pr) =

X0(p
r)/〈wpr 〉. A point of X+

0 (pr) is called a CM point, if the corresponding

elliptic curve has a complex multiplication. Let g+
0 (pr) denote the genus

of X+
0 (pr). Let n(p, r) be the number of the Q-rational points on X+

0 (pr)

which are neither cusps nor CM points. Then the following theorem holds.

(See Section 3.1 about the definition of J−
0 (p). Table (2) in Section 3.1 gives

pairs (p, r) which satisfy g+
0 (pr) > 0.)

Theorem 0.1. Let p be a prime number and r ≥ 2 be an integer with

g+
0 (pr) > 0. Then n(p, r) = 0 for p = 2, 3, 7, 11, p = 5 with r ≥ 4, p = 13

with r ≥ 3 and p ≥ 17 with ]J−
0 (p)(Q) < ∞.

This result is already proved by the first author, except for the cases

p = 5 and p = 13. The result for p = 5 is based on the finiteness of the

Q-rational points of J−
0 (125) ([16]).

To prove this theorem, the first author used the defining equations of

X0(p
r) in [14] for the cases p = 2, 3, 5. But our new proof requires the

discussions of the defining equations only for the cases p = 2 with r = 6.

Acknowledgement. We would like to thank the referee for one’s
many helpful remarks concerning our paper. In particular, Theorem 3.3
and its related lemmas are owed to the referee.

Notation

• N , n : positive integers, p : a prime.

• W (F ) : the Witt algebra over F (F : a field).

• Qur
p : the maximal unramified extension of Qp.

• Zur
p : the ring of integers of Qur

p .

• Q̂ur
p : the completion of Qur

p . (We note that Q̂ur
p is isomorphic to the

field of fractions of W (Fp).)

• K : a finite extension of Qur
p of degree eK .

• K̂ : the completion of K.

• O = OK : the ring of integers of K.

• Ô : the completion of O.

• m : the maximal ideal of O.

• k := O/m : the residue field with char(k) = p (k ∼= Fp).

• π : a prime element of O.
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• v : the normalized valuation of O, i.e. v(π) = 1.

• vp := 1
v(p)v.

• Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (N)

}
.

• H := {z ∈ C | Im(z) > 0}.

• H∗ := H ∪ Q ∪ {i∞} = H ∪ P1(Q).

• X0(N) : the modular curve corresponding to Γ0(N).

Its C-valued points are

X0(N)(C) = Γ0(N)\H∗.

§1. Main Theorem

We here discuss an elliptic curve E defined over K with a cyclic sub-

group V of order pr defined over K which has supersingular good reduction.

Let F be the associated formal group of E, then F mod m is of height 2.

Proposition 1.1. Let F be a one parameter formal group over O
whose reduction mod m is of height 2 with a cyclic subgroup V of order

pr defined over O, and x a generator of V . Then the ramification index

v(p) and v(x) satisfy the following inequality.

v(p) − pr−t−1

pt
≥ ϕ(pr)v(x) ≥ 1, 0 ≤ ∃t ≤

[ r

2

]
,

where ϕ( · ) is the Euler function, [x] is the greatest integer not exceeding x.

Proof. First of all, we will show the right side inequality. Since the
addition map of F is defined over O, any pair x, x′ of generators of V
satisfies K(x) = K(x′). Hence irreducible polynomials over K of x and x′

have same degree. It implies that the degree (= the number of conjugates
of x) divides the number of the generators of V (= ϕ(pr)). Since the
conjugates of x have same valuations and V is defined over O, ϕ(pr)v(x)
is a positive integer. Hence, ϕ(pr)v(x) ≥ 1. We will show the left side
inequality. The p-times map of F mod m can be written [p](x) = h(xp2

),
h′(0) 6= 0, h(x) ∈ k[x], since F mod m is of height 2. So the p-times map
of F must be the following form (cf. [17]):

[p](T ) = pf (T ) + πg(T p) + h(T p2
), f(T ), g(T ), h(T ) ∈ O[[T ]],

f(0) = g(0) = h(0) = 0, f ′(0) = 1.
(1)
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Step 1 : r = 1;

Suppose x 6= 0 and [p](x) = 0;

0 = [p](x) = pf (x) + πg(xp) + h(xp2
).

Comparing each leading terms of pf (x), πg(xp) and h(xp2
), we have

v(px) ≥ v(πxp).

(Since p > 1 and (p− 1)v(x) ≥ 1, v(πxp) < v(xp2
). So we can omit v(xp2

).)

Hence

v(p) − 1 ≥ (p − 1)v(x) = ϕ(p)v(x),

which proves the theorem for r = 1.

Step 2 : r = s ≥ 1;

Suppose the following inequality holds for x of order ps.

v(p) − ps−t−1

pt
≥ ϕ(ps)v(x), 0 ≤ ∃t ≤

[ s

2

]
.

Step 3 : r = s + 1;

By the hypothesis of Step 2, if x is of order ps+1, then

v(p) − ps−t−1

pt
≥ ϕ(ps)v([p]x), 0 ≤ ∃t ≤

[ s

2

]
.

By (1),

v(p) − ps−t−1

pt
≥ ϕ(ps)min

{
v(p) + v(x), 1 + pv(x), p2v(x)

}
.

Since v(p) + v(x) ≥ 1 + pv(x) (by Step 1),

min
{
v(p) + v(x), 1 + pv(x), p2v(x)

}
= min

{
1 + pv(x), p2v(x)

}
.

Case 1

If 1 + pv(x) ≤ p2v(x), then

v(p) − ps−t−1

pt
≥ ϕ(ps)(1 + pv(x)) = ϕ(ps) + ϕ(ps+1)v(x).
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Therefore,

v(p) − p(s+1)−t−1

pt
≥

v(p) − ps−t−1

pt
− ϕ(ps) ≥ ϕ(ps+1)v(x),

0 ≤ t ≤
[s + 1

2

]
,

which proves the theorem in this case.

Case 2

If 1 + pv(x) ≥ p2v(x), then

v(p) − ps−t−1

pt
≥ ϕ(ps)(p2v(x)) = pϕ(ps+1)v(x).

v(p) − p(s+1)−(t+1)−1

pt+1
≥ ϕ(ps+1)v(x).

If s is odd or s = 2l and t < l, then 0 ≤ t + 1 ≤
[

s+1
2

]
. Hence the theorem

holds in this case. If s = 2l and t = l, then by the hypothesis of Step 2 and
ϕ(ps)v([p]x) ≥ 1, we have

v(p) ≥
(
pl + pl−1

)
.

Then

v(p) − p(s+1)−t−1

pt
−

v(p) − p(s+1)−(t+1)−1

pt+1

=
(p − 1)(v(p) − (pl + pl−1))

pl+1
≥ 0.

Hence

v(p) − p(s+1)−t−1

pt
≥

v(p) − p(s+1)−(t+1)−1

pt+1
≥ ϕ(ps+1)v(x),

0 ≤ t = l ≤
[s + 1

2

]

So we have the desired result.

Finally, we prove the Main Theorem.
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Proof of the Main Theorem. By Proposition 1.1, we have

v(p) − pr−t−1

pt
≥ 1, 0 ≤ ∃t ≤

[ r

2

]
.

eK = v(p) ≥ pr−t−1 + pt, 0 ≤ ∃t ≤
[ r

2

]
.

It is easy to show the right hand side is minimum, if t = [r/2].

§2. Another proof of the Main Theorem

(Ell) is the category whose objects are elliptic curves E
π

−→ S over

variable base schemes, and whose morphisms are cartesian squares of elliptic

curves

E1

a
−−−→ E

yπ1

yπ

S1

f
−−−→ S

i.e. commutative squares such that the induced morphism of S1-schemes

E1
(a,π1)
−→ E ×S S1 is an isomorphism of elliptic curves over S1 ([9]). This

category (Ell) is the “modular stack” of Deligne-Rapoport ([5]). Let R

be a ring. The category (Ell/R) is a subcategory of (Ell) whose objects

are elliptic curves over variable R-schemes, and whose morphisms are the

cartesian squares whose bottom arrow is R-linear.

Let T be a representable moduli problem of elliptic curves whose ten-

sored by Z(p), T ⊗ Z(p) is finite etale over (Ell/Z(p)). Then T × [Γ0(p
r)] is

also representable and represented by M = M(T, [Γ0(p
r)]) ([9, Chap. 4])

and the fine moduli stack M ⊗ Z(p) is regular ([9, Chap. 5]).

Let (E,A) be the pair in the Main Theorem. We consider the point in

M([Γ0(p
r)]) corresponding to (E,A). Since T⊗Z(p) is etale over (Ell/Z(p))

and O is strictly henselian, we can lift the point of M([Γ0(p
r)]) to a point

P of M(T, [Γ0(p
r)]). We give P by the following O-valued point of M(T,

[Γ0(p
r)]).

f : Spec(O) −→ M

Since Ô includes W (k), the morphism f lifts uniquely to a W (k)-

morphism F : Spec(Ô) → MW (k) := M ⊗Z W (k).
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Notation

• A : the complete local ring of MW (k) at the image by F of the closed

point of Spec(Ô).

• mR : the maximal ideal of a local ring R.

To prove the theorem, we need the following two facts.

(I) A becomes a 2-dimensional regular local ring.

(II) A/(p)(= A ⊗W (k) k) ∼= k[[s, t]]/(h(s, t)),

h(s, t) := (spr

− t)(s − tp
r

)
∏

a, b≥1
a+b=r

(spa−1
− tp

b−1
)p−1. ([9, Chap. 13]).

(I) and (II) deduce the surjection k[[s, t]] � A/(p) lifts to a surjection

W (k)[[s, t]] � A.

We claim that the following formula holds in A.

p = h(s, t)g(s, t), g(s, t) ∈ W (k)[[s, t]].

In fact, we can show the claim as follows.

(I) implies that dimk(mA/m2
A) = 2. (II) implies that A/(p) becomes a 2-

dimensional regular local ring. Hence, dimk(mA/(p)/m2
A/(p)) = 2. Therefore,

the natural surjection mA/m2
A � mA/(p)/m2

A/(p) is bijective. Thus, since p

vanishes in the target, p also vanish in the source, or, equivalently, p ∈

m2
A. Since m2

W (k)[[s,t]] → m2
A is surjective, we can take f ∈ m2

W (k)[[s,t]]

such that p = f(s, t) holds in A. Now, since f (mod (p)) is divisible by

h (mod (p)), we can write f = ah + bp for some a, b ∈ W (k)[[s, t]], or

f − ah = bp. Since both f and h belong to m2
W (k)[[s,t]], so does bp. Now

since p is a non-trivial element of mW (k)[[s,t]]/m2
W (k)[[s,t]], b cannot be a unit,

or, equivalently, b ∈ mW (k)[[s,t]]. In particular, (1−b) is a unit. Now put g =

(1−b)−1a ∈ W (k)[[s, t]]. Then we have gh = (1−b)−1ah = (1−b)−1(f−bp)

in W (k)[[s, t]], which maps to (1 − b)−1(p − bp) = p in A.

Moreover, we can show the following facts.

(i) W (k)[[s, t]]/(h(s, t)g(s, t) − p) ∼= A.

(ii) g(s, t) ∈ W (k)[[s, t]]×.

In fact, the surjection W (k)[[s, t]]/(h(s, t)g(s, t) − p) � A is between two

2-dimensional regular local rings, it must be an isomorphisms. Hence (i)
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holds. By (i), we have A/(p) = k[[s, t]]/(h(s, t)g(s, t) mod (p)). On the

other hand we know that A/(p) = k[[s, t]]/(h(s, t) mod (p)). Hence g(s, t)

mod (p) must be a unit and so is g(s, t).

Since

f∗ : A −→ Ô, s 7−→ πα, t 7−→ πβ, (∃α, β ∈ Ô)

and p = g(s, t)h(s, t), g(s, t) ∈ W (k)[[s, t]]×,

eK = v(p)

= v
(
(πα)p

r

− πβ
)

+ v
(
πα − (πβ)p

r)
+ (p − 1)

∑
v
(
(πα)p

a−1
− (πβ)p

b−1)

≥ 1 + 1 + (p − 1)
∑

min
{
pa−1, pb−1

}

=

{
2pl if r = 2l + 1

pl + pl−1 if r = 2l.

§3. Application to rational points of X+
0 (pr)

3.1. Notation and Facts

Let p be a prime number, r ≥ 1 an integer. The fundamental involution

wpr of X0(p
r) is defined by the functor; (E,A) 7→ (E/A,E[pr ]/A), where

E[pr] := ker([pr] : E → E). Let X+
0 (pr) denote the quotient X0(p

r)/〈wpr〉.

There exists a covering over Q of X+
0 (pr+2) to X+

0 (pr), which is induced

by the morphism over Q of X0(p
r+2) to X0(p

r) defined by

(E,A) 7−→ (E/A[p], A[pr+1]/A[p]),

where A[pi] is the unique cyclic subgroup of A of order pi. Let Xs(p
t) =

Xsp.Car .(p
t) be the modular curve over Q which corresponds to the modular

group

Γs(p
t) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ c ≡ 0 (mod pt)

}
.

Then Xs(p
t) is the coarse moduli space of the generalized elliptic curves E

with independent cyclic subgroups C1 and C2 of order pt, which is defined

over Q. The fundamental involution w(pt) of Xs(p
t) is defined by

(E,C1, C2) 7−→ (E,C2, C1).
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Let Xn
s (pt) = Xsplit (p

t) be the quotient Xs(p
t)/〈w(pt)〉, which corresponds

to the modular group

〈
Γs(p

t),

(
0 −1
1 0

)〉
. There exists a canonical isomor-

phism defined over Q of X0(p
2t) (resp. X+

0 (p2t)) to Xs(p
t) (resp. Xn

s (pt))

which is defined by

(E,A) 7−→ (E/A[pt], A/A[pt], E[pt]/A[pt]).

The inverse map is given by

(E,C1, C2) 7−→ (E/C2, (C1 + (E/C1)[p
t])/C2).

Let J0(p
r), J+

0 (pr) be the Jacobian varieties of X0(p
r) and X+

0 (pr), re-

spectively. Let J−
0 (ps) be the quotient J0(p

s)/(1 + wps)J0(p
s), where wps

is the automorphism of J0(p
s) induced by the involution wps of X0(p

s)

([10]). Let π = πr,s be the natural morphism of X0(p
r) to X0(p

s) defined

by (E,A) 7→ (E,A[ps]) for an integer s, 1 ≤ s ≤ r − 1. Let f = fr,s be the

morphism of X0(p
r) to J0(p

s) defined by f(x) = cl((wpsπ(x))− (πwpr (x))),

i.e. f : (E,A) 7→ cl((E/A[ps], E[ps]/A[ps]) − (E/A, (E[ps] + A)/A)). Then

f induces a morphism f+ = f+
r,s of X+

0 (pr) to J−
0 (ps), which is defined by

the following commutative diagram:

X0(p
r)

can.
−−−→ X+

0 (pr)

f

y
yf+

J0(p
s)

can.
−−−→ J−

0 (ps).

We will make use of f and f+ in the following cases:

p r s
2 ≥ 6 5
3 ≥ 4 3
5 ≥ 4 3
7 ≥ 3 2

11 ≥ 2 1
3 ≥ 3 2

p ≥ 17 ≥ 2 1

(2)

Remark. In this table, s is the minimal value satisfying g0(p
s) > 0,

and r ≥ s+1. Then g+
0 (pr) > 0 holds automatically. And the Mordell-Weil

group of J−
0 (ps) is finite for such (p, s) with p = 2, 3, 5, 7, 13 ([10], [2], [16],

[7]).
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Remark. We note that the known results about the finiteness of
J−

0 (p)(Q). By Mazur’s result, the Q-rank of any Eisenstein quotient is
zero ([10]). It is true that J−

0 (p) contains at least one Eisenstein quotient.
Hence, if J−

0 (p) is simple, then the rank of J−
0 (p)(Q) is zero, or, equiva-

lently the Mordell-Weil group of J−
0 (p) is finite. For example, J−

0 (11)(Q) is
finite, because J−

0 (11) is an elliptic curve. For p < 2000, the table of split-
tings of J−

0 (p) is given by Mazur and Brumer ([10], [3]). If J−
0 (p) contains

non-Eisenstein quotient, we don’t know its rank is zero or not. However, if
the quotient is elliptic curve and its conductor less than 1000, we know the
rank by Cremona’s table ([4]).

Let X0(p
r) be the normalization of the projective j-line X0(1) ∼= P1

Z
in

the function field of X0(p
r) and X+

0 (pr) = X0(p
r)/〈wpr 〉. Denote also by

π = πr,s the natural morphisms of X0(p
r) to X0(p

s), and by f , (resp. f+)

the morphisms of the smooth part X0(p
r)smooth (resp. X+

0 (pr)smooth ) to the

Neron models J0(p
s)/Z (resp. J−

0 (ps)/Z).

Let Ei (0 ≤ i ≤ r) be the irreducible components of X0(p
r) ⊗ Fp. Ei

contains the following cuspidal section. i.e.
(0
1

)
⊗ Fp ∈ E0,

(1
0

)
⊗ Fp ∈ Er

and
( i
pi

)
⊗ Fp ∈ Ei (1 ≤ i ≤ r − 1) ([14]).

Let Eh
i be Ei\{supersingular points on Ei}.

3.2. Elliptic curves

Lemma 3.1. Let E be a semistable elliptic curve with a cyclic subgroup

A of order pr defined over K. Let x be an O-section of X0(p
r) such that

x ⊗ K is represented by the pair (E,A). Then

(i) If x⊗k is a section of Eh
i , then K contains a primitive pm(i)-th root

ζpm(i) of unity for m(i) = min{i, r − i}.

(ii) If x ⊗ k is a supersingular point, then

eK ≥

{
2pl, if r = 2l + 1,

pl + pl−1, if r = 2l.

Proof. (i) [14, Lemma 2.2 (i)]. (ii) It is obvious by the Main Theorem.

Let E be an elliptic curve with a cyclic subgroup A defined over K

and x be an O-section of X0(p
r) such that x⊗K is represented by the pair
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(E,A). We put

e′ =





1, if j(x) 6≡ 0, 1728 (mod m),

2, if j(x) ≡ 1728 (mod m), p ≥ 5,

3, if j(x) ≡ 0 (mod m), p ≥ 5,

6, if j(x) ≡ 0 (mod m), p = 3,

12, if j(x) ≡ 0 (mod m), p = 2.

Then E (or its quadratic twist) has semistable reduction over a finite ex-

tension of K with degree e′ ([20, pp. 33–52]).

Corollary 3.2. Let E be a elliptic curve with a cyclic subgroup A of

order pr defined over K. Let x be an O-section of X0(p
r) such that x ⊗ K

is represented by the pair (E,A). Then

(i) If x⊗k is a section of Eh
i , then eKe′ ≥ pm(i)−1(p−1) if 1 ≤ i ≤ r−1.

(ii) If x ⊗ k is a supersingular point, then

eKe′ ≥

{
2pl, if r = 2l + 1,

pl + pl−1, if r = 2l.

3.3. Local moduli and X+
0 (pr)

In this section, we treat purely local situation, where the base field is

Qur
p or Q̂ur

p .

Let (p, r) be a pair in Table (2). Let y be a non-cuspidal Qur
p -rational

point on X+
0 (pr), and x, x′ = wpr(x) the sections of the fiber X0(p

r)y at y.

They are defined over a field M with degree eM . M is Qur
p or a quadratic

field of Qur
p . Denote also by x and x′ (resp. y) the OM (resp. O)-sections

of X0(p
r) (resp. X+

0 (pr)) with generic fibers x and x′ (resp. y).

We shall start with the special case p = 2.

Theorem 3.3. Let y be a Qur
2 -rational point of X+

0 (2r) for r ≥ 6, and

x a point of the fiber in X0(2
r) at y. Then j(x) 6≡ 0 (mod 2).

Let E be an elliptic curve over O. Then the universal formal deforma-

tion ring R = REk
of the elliptic curve Ek = E⊗Ok over k is known to be iso-

morphic to the formal power series ring W (k)[[T ]]. By universality, we have

a canonical homomorphism ϕE : R → Ô. Then we define v(E) (resp. vp(E))

to be the minimum of v(ϕE(x)) (resp. vp(ϕE(x))) for x ∈ mR, the maximal
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ideal of R. More concretely, if we fix an isomorphism R ∼= W (k)[[T ]], then

we have v(E) = min(v(ϕE(T )), v(p)) (resp. vp(E) = min(vp(ϕE(T )), 1)).

Note that vp(E) is preserved under change of the base O. (Thus we can

define vp(E) for an arbitrary elliptic curve over K).

Lemma 3.4. Assume p = 2 and j(E) ≡ 0 (mod m). Then we have

v2(E) < 1/4 ⇐⇒ v2(j(E)) < 3, and if one of these conditions holds, we

have v2(E) = 1
12v2(j(E)).

Proof. REk
= W (k)[[T ]] admits a natural faithful action of

Aut(Ek)/{±1} and the quotient by this action coincides with W (k)[[j]]
(See [9, Proposition 8.2.3]). In our case, it is known that (Aut(Ek) :
{±1}) = 12 and that the degree 12 extension REk

/W (k)[[j]] contains
the degree 3 subextension W (k)[[j1/3]]/W (k)[[j]]. Write j1/3 =

∑∞
i=0 aiT

i

with ai ∈ W (k). Then, considering the degrees, we must have ai ≡ 0
(mod (p)) for 0 ≤ i ≤ 3 and a4 6≡ 0 (mod (p)). Now, comparing the val-
uations of the images by ϕE of both sides of the equality, we can deduce
v2(j(E)1/3) = v2(ϕE(T )4), if we use one of the conditions v2(E) < 1/4
and v2(j(E)) < 3. Or, equivalently, v2(ϕE(T )) = 1

12v2(j(E)). Since this is
< 1/4 < 1, we have v2(E) = v2(ϕE(T )). Finally, the condition that we did
not use follows from this identity and the other condition that we used.

Remark. Assume p = 2 and j(E) ≡ 0 (mod m). Then in general, we
can prove:

v2(E) = min
( 1

12
v2(j(E)), 1

)
.

(We will not use this fact, though.)

Let E1 be an elliptic curve over O with E1,k supersingular, and C a

cyclic subgroup of E1 of order pr. Put E2 = E1/C. Since E1,k → E2,k can be

identified with the composition of the r Frobenii, E2,k can be canonically

identified with E1,k ⊗k,σr k and RE2,k
can be canonically identified with

RE1,k
⊗W (k),σr W (k), where σ denotes the Frobenius automorphism on k or

W (k). Accordingly, if we fix an identification RE1,k
= W (k)[[T ]], then we

also have RE2,k
= W (k)[[T ]]. Now, we can take f∗(s) = ϕE1(T ), f∗(t) =

ϕE2(T ). (See the definitions of s, t and f∗ in Section 2.)

Put vi = v(Ei) (i = 1, 2). We prove the following lemma for later use.

(In fact, only the case p = 2, r = 1 will be used later.)
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Lemma 3.5. At least one of the following holds.

(i) pav1 = pbv2 for some a, b ≥ 0, a + b = r.
(ii) v1, v2 ≥ v(p)/(pr + pr−1).

Proof. Suppose that (ii) does not hold. For example, suppose v1 <
v(p)/(pr + pr−1). (The other case is similar.) Then, since, in particular,
v1 < v(p), we have v1 = v(ϕE1(T )) = v(f∗(s)). Suppose further that
pav(f∗(s)) 6= pbv(f∗(t)) for any a, b ≥ 0, a + b = r. Then by comparing the
valuations of both sides of p = h(f∗(s), f∗(t))g(f∗(s), f∗(t)), we obtain

v(p) =
∑

a,b≥0, a+b=r

δ(a, b)min
(
pav(f∗(s)), pbv(f∗(t))

)
,

where δ(a, b) is 1 (resp. (p− 1)/p) for a = 0 or b = 0 (resp. a, b ≥ 1). From
this,

v(p) ≤
∑

a,b≥0, a+b=r

δ(a, b)pav(f∗(s)) ≤ (pr + pr−1)v(f∗(s)) < v(p),

which is absurd. Thus v(f∗(t)) = pa−bv(f∗(s)) for some a, b ≥ 0, a + b = r.
In particular, v(f∗(t)) ≤ prv(f∗(s)) ≤ prv(p)/(pr + pr−1) < v(p), hence
v2 = v(f∗(t)). Now (i) follows.

Next, consider the situation of Section 2 for p = 2 and T = Γ(3). Let

X be the (compactified) modular curve over Z corresponding to the moduli

problem [Γ0(2
r),Γ(3)]. Since 2r ≡ ±1 (mod 3), X admits a natural action

of W ×G, where W = 〈w〉 (w = w2r) and G = GL2(Z/3Z)/{±1}. (The in-

volution w acts as (E,C, (α, β)) 7→ (E/C,E[pr ]/C, (α mod C, β mod C)).)

X is a fine moduli scheme and X+
0 (2r) is the quotient of X by W ×G. Note

that the integral closure of Z in X is Z[ζ3] and that the action of W × G

on Z[ζ3] is via χr : W × G → (Z/3Z)×,

χr(w
i, g) = (2r)i det(g) =

{
det(g), r : even,

(−1)i det(g), r : odd,

Let Hr denote the kernel of χr, which depends only on r (mod 2). More

explicitly, we have Hr = W × S, where S = SL2(Z/3Z)/{±1}, for r even,

and Hr
∼

−→ G by the projection, for r odd.

Let y be a Qur
2 -rational point of X+

0 (2r), and ξ a point of the fiber in

X at y. We may assume that the residue field of ξ is K. Then we obtain
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the following subgroups: I ⊂ D ⊂ Hr ⊂ W × G, where D (resp. I) is the

decomposition (resp. inertia) subgroup at ξ. (Thus D/I ∼= Gal(K/Qur
2 ).)

Observe that j(x) = 0, 1728 =⇒ I 6= {±1} =⇒ x : a CM point or a cusp.

We would like to estimate the degree e = (D : I) of the field of definition

of ξ over Qur
2 . (Note that e corresponds to eKe′.)

Now, assume that ξ has supersingular reduction, or, equivalently, that

j(x) ≡ 0 (mod m). Then ξ induces a homomorphism f∗ : W (k)[[s, t]] → Ô,

as in Section 2.

Lemma 3.6. We have e ≤ 24. Moreover, one of the following holds:

(i) e ≤ 12;

(ii) e = 24, r = 2l : even, and e > (2l + 2l−1)v, where v := v(f∗(s)) =
v(f∗(t)).

Proof. Since Hr ⊃ D � D/I and ](Hr) = 24, we have e|24, hence,
in particular, e ≤ 24. Suppose that (i) does not hold, i.e. e > 12. Then
we must have e = 24, D = Hr and I = {1}. Since D is a Galois group
over Qur

2 , the Sylow 2-subgroup of D has to be a normal subgroup of D.
However, if r is odd, then we can easily check that the Sylow 2-subgroup
of Hr (∼= G) is not a normal subgroup of Hr. Therefore, r is even.

Define σ ∈ Gal(K/Qur
2 ) to correspond to w ∈ W ⊂ W ×S = Hr. Then,

f∗ is compatible with the involution (s, t) 7→ (t, s) on W (k)[[s, t]] and σ on
Ô. From this we obtain f∗(t) = σ(f∗(s)) and v(f∗(t)) = v(f∗(s)).

Finally, we have to prove the strict inequality e = v(2) > (2l + 2l−1)v,

in the context of Section 2. This comes from the middle term v
(
f∗(s)2

l−1
−

f∗(t)2
l−1)

which was estimated as ≥ 2l−1v in Section 2. However, we have

f∗(s)2
l−1

− f∗(t)2
l−1

= f∗(s)2
l−1

− σ
(
f∗(t)2

l−1)
,

and σ acts trivially on m2l−1
v/m2l−1

v+1 since p = 2 and σ is of order 2.

Accordingly, we have v
(
f∗(s)2

l−1
− f∗(t)2

l−1)
> 2l−1v. This completes the

proof.

End of the proof of Theorem 3.3. Suppose the existence of such a

rational point. In the notation above, put v1 = v(f∗(s)), v2 = v(f∗(t)).

(r ≥ 9) We have a contradiction as follows.

24 ≥ e ≥ 2[r/2] + 2[(r−1)/2] ≥ 32.
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(r = 8) First we obtain 24 ≥ e ≥ 24 + 23 = 24. Then, by Lemma 3.6,

conclude: 24 = e > 24 + 23 = 24.

(r = 7) by Lemma 3.6, conclude: 12 ≥ e ≥ 2 · 23 = 16.

(r = 6) First we obtain e ≥ 23 + 22 = 12. Since e|24, we have two possi-

bilities: (1) e = 12; (2) e = 24. In the case (1), since e = 23 + 22, we must

have v1 = v2 = 1. In the case (2), by Lemma 3.6, conclude v1 = v2 = v

and 24 = e > 12v. Hence v = 1. Now, for the point x = (E,C, (α, β)) of

X above y, put Ei = E/C[2i] for i = 0, . . . , 6. Then our conclusion above

means v(E0) = v(E6) = 1. Applying Lemma 3.5 to the pairs (E0, E1) and

(E5, E6) (r = 1), we obtain v(E1) = v(E5) = 2, or, equivalently, we have

(1) e = 12, v2(E1) = v2(E5) = 1/6; or (2) e = 24, v2(E1) = v2(E5) = 1/12.

Note that {E1, E5} defines a Qur
2 -rational point of X+

0 (24). Now we

resort to the defining equation to prove the following:

Lemma 3.7. Let y be a Qur
2 -rational point of X+

0 (24), {x, x′} the (geo-
metric) fiber in X+

0 (24) at y, and j(x) ≡ 0 (mod m). (If y is a ramified

point, we put x′ = x.) Then the unordered pair {j(x), j(x′)} satisfies the

following:

{v2(j(x)), v2(j(x
′))} =

{
{1, 4}, x, x′ are Qur

2 -rational,

{1/2,1/2},{3/2, 3/2}, otherwise.

Proof. The modular curve X0(2
4) is defined by the equation

j(X) = g(X)/X(X + 4)(X2 + 4X + 8)(X + 2)4

with w∗
16(X) = 8/X, where g(X) = (X8 + 24X7 + 7 · 24X6 + 7 · 26X5 +

69 · 24X4 + 13 · 27X3 + 11 · 27X2 + 29X + 24)3 ([6]). If v2(x) ≤ 0, then
v2(j(x)) ≤ 0. If v2(x) ≥ 3, then v2(j(x

′)) ≤ 0. Hence, 0 < v2(x) < 3.

If x and x′ are Qur
2 -rational points, then {v2(x), v2(x

′)} = {1, 2}. If
v2(x) = 1,

v2(j(x)) = v2(g(x)) − v2(x(x + 4)(x2 + 4x + 8)(x + 2)4)

≥ 8 − 4v2(x + 2).

v2(x + 2) ≥ 2 implies v2(j(x)) ≤ 0. Hence, v2(x + 2) = 1 and v2(j(x)) = 4.
By the same argument, we have v2(j(x)) = 1, if v2(x) = 2.

If x and x′ are not Qur
2 -rational points, then x and x′ become the

solutions of X2 − aX + 8 = 0 for a ∈ Zur
2 , a = x + x′ = x + 8/x, v2(a) ≥ 2
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and both v2(x) and v2(x
′) are half integers. Since v2(a) = v2(x + 8/x) is

integer, v2(x) = v2(8/x) = 3/2.

v2(j(x)) ≥ 5 − v2((a + 4)x)) = 7/2 − v2(a + 4).

Since a 6= −4 (if so, the denominator of j(X) vanishes), v2(a + 4) ≥ 2 and
v2(a + 4) is integer. Hence, {v2(j(x)), v2(j(x

′))} = {1/2,1/2},{3/2, 3/2}.

From this and Lemma 3.4, we must have

{v2(E1), v2(E5)} = {1/12,≥ 1/4},{1/24,1/24}, {1/8, 1/8},

(In fact, the first one must be {1/12,1/3} by Remark to Lemma 3.4.) This

contradicts our former conclusion

{v2(E1), v2(E5)} = {1/6,1/6},{1/12, 1/12}.

Lemma 3.8. Let (p, r) be a pair in Table (2), and x, x′, y and eM be

as above. If eM = 2, then x is a section of Et if r = 2t is even, and it is a

supersingular point if r is odd.

Proof. [14, Lemma 3.1]. We note that the proof in [14] can be applied
to our purely local situation.

We recall that each non-cuspidal F -rational point (F : a field) of X0(p
r)

is represented by an object (E,C) defined over F .

Lemma 3.9. If r = 2t is even and p 6= 2. Then Corollary 3.2 holds if

we replace eKe′ by e′.

Proof. If r = 2t is even, then there exists the following diagram

X0(p
2t)

�

−−−→ Xs(p
t)

y
y

X+
0 (p2t)

�

−−−→ Xn
s (pt).

Let η be the image of y ∈ X+
0 (p2t)(Q) by the lower isomorphism and η is

represented by (E′, {A,B}) for an elliptic curve E′ over Q, where A and
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B are independent cyclic subgroups of E′ and {A,B} is an unordered pair.
The sections of the fiber Xs(p

t)η at η are represented by (E′, (A,B)) and
(E′, (B,A)) where (A,B) and (B,A) are ordered pairs.

E′ is defined over Qur
p . A and B are defined over the quadratic field L0

over Qur
p . E′ has multiplicative reduction over a field L of degree e′ over

Qur
p . Since e′ is even and L0 is the unique tamely quadratic extension over

Qur
p , L contains L0. It implies that (E′, (A,B)) defined over L and E′ has

multiplicative reduction over L. Hence, we may replace eKe′ by e′.

The following theorem is the same as Theorem (3.2) in [14].

Theorem 3.10. Let (p, r) be a pair in Table (2), and x, x′, y and eM

be as above. Further x and x′ are sections of Eh
0 ∪ Eh

r if p 6= 2 and they

are sections of Eh
0 ∪ Eh

1 ∪ Eh
r−1 ∪ Eh

r if p = 2.

Proof. Case for p ≥ 11. Corollary 3.2, applied to the inequality eMe′ ≤
6 < p − 1, shows that x and x′ are sections of Eh

0 ∪ Eh
r .

Case for p = 7. If j(x) 6≡ 0, 1728 mod m, then eMe′ = eM ≤ 2 < p− 1.
If x is a supersingular point, then eMe′ ≥ 71 + 70 = 8. But eMe′ ≤ 6, so
it is not supersingular. If j(x) ≡ 0 mod m and eMe′ ≥ p − 1, then eM = 2
and r is even. Then eMe′ ≤ 6 < p(p − 1). Therefore Corollary 3.2 and
Lemma 3.1 give the result.

Case for p = 5 (r ≥ 3). We can show that x is not a section of Eh
i

(1 ≤ i ≤ r − 1) by the same argument as for p = 7. If x is a supersingular
point, then eMe′ ≥ 2 · 51 = 10. But eMe′ ≤ 6, so it is not supersingular.

Case for p = 3 (r ≥ 4). The same argument as for p = 7 gives the
result, except for the case when j(x) ≡ 0 mod m. If r = 2t is even, then
we can take eM = 1 by Lemma 3.9. If j(x) ≡ 0 mod m, r = 2t (t ≥ 2)
and x is supersingular, then eMe′ ≥ 32 + 32−1 = 12. But eMe′ ≤ 6, so it is
not supersingular. It remains the case for odd integer r ≥ 5. It suffices to
discuss the case for r = 5 and j(x) ≡ 0 mod m. If x is supersingular, then
eMe′ ≥ 2 · 32 = 18 but eMe′ ≤ 12, so it is not supersingular.

Case for p = 2 (r ≥ 6). If j(x) 6≡ 0 mod m, then e′ = 1. If x is a
section of Eh

i for 2 ≤ i ≤ r − 2, then eMe′ ≥ 2m(i)−1 ≥ 2 by Corollary 3.2.
By Lemma 3.8, if x 6∈ Er/2, then eM = 1 and if x ∈ Er/2, then eM ≤ 2

and 2m(i)−1 ≥ 4. Summing up these facts, we have x and x′ are sections of
Eh

0 ∪ Eh
1 ∪ Eh

r−1 ∪ Eh
r . If x is supersingular, then j(x) ≡ 0 mod m. But by

the Theorem 3.3, it does not happen. So it is not supersingular.
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Proposition 3.11. Let (p, r) be a pair as in Table (2), x and m be

as at the beginning of this section. Let f = fr,s be the morphism of

X0(p
r)smooth to the Neron model J0(p

s)/Z. If x is a section of Eh
0 ∪ Eh

r ,

then f(x) = 0 (the unit section of J0(p
s)/Z ⊗ Fp).

Proof. [14, Proposition 3.3].

3.4. Rational points on X+
0 (pr)

In this section, we resort to the global techniques in [14].

Let (p, r) be a pair in Table (2). Let y be a non-cuspidal Q-rational

point on X+
0 (pr), and x, x′ = wpr(x) the sections of the fiber X0(p

r)y at y.

Then x and x′ are not defined over Q ([14, (1.1)]). They are defined over

a quadratic field M . Denote also by x and x′ (resp. y) the OM (resp. Z)-

sections of X0(p
r) (resp. X+

0 (pr)) with generic fibers x and x′ (resp. y). Let

p be a prime of M lying over the rational prime p and κ(p) the residue filed

OM/p.

Proposition 3.12. Let x and f be as in Proposition 3.11 above, and

let f+ be the morphisms defined in Section 3.1 for a triple (p, r, s) in Table

(2). If f(x) ⊗ κ(p) = 0 and the Mordell-Weil group of J−
0 (ps) is of finite

order, then f+(y) = 0.

Proof. [14, Proposition 3.4].

Proposition 3.13. Let x, y and f+ be as in Proposition 3.12 above.

If p 6= 37 and f+(y) = 0, then y is a CM point.

Proof. [14, Proposition 3.5].

Theorem 3.14. For the following pairs (p, r), n(p, r) = 0:

p r
2 ≥ 6
3 ≥ 4
5 ≥ 4
7 ≥ 3

11 ≥ 2
13 ≥ 3

p ≥ 17 ≥ 2 if ]J−
0 (p)(Q) < ∞.
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Proof. [14, Theorem 3.6], which can be applied to p = 5 and to p = 13.
We also use the results in [16], [8] and [7].

Remark. This theorem contains other new results owing to Y. Hase-
gawa, T. Hibino, N. Murabayashi and the second author for p = 13 and p =
37. In case of p = 13, Y. Hasegawa has shown the finiteness of J−

0 (132)(Q)
by calculating the special value of the L-function of a two dimensional factor
of J−

0 (132) ([7]). And in case of p = 37, Momose determined the rational
points on X0(37N)/〈w37N 〉 ([15]), using the defining equation of X0(37) in
[11] and the minimal model of X0(37) over Z[1/37]. T. Hibino has given
the relation of certain defining equation of X0(37) and invariant j-function.
By using this result, T. Hibino and N. Murabayashi have decided the Q-
rational points of Xsplit (37) ∼= X+

0 (372) ([8]).
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