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Abstract. This paper is concerned with mod p Morita-Mumford classes e
(p)
n ∈

H2n(Γg,
�

p ) of the mapping class group Γg of a closed oriented surface of genus

g ≥ 2, especially triviality and nontriviality of them. It is proved that e
(p)
n

is nilpotent if n ≡ −1 (mod p − 1), while the stable mod p Morita-Mumford

class e
(p)
n ∈ H2n(Γ•,

�
p ) is proved to be nontrivial and not nilpotent if n 6≡ −1

(mod p − 1). With these results in mind, we conjecture that e
(p)
n vanishes

whenever n ≡ −1 (mod p− 1), and obtain a few pieces of supporting evidence.

§1. Introduction

Let Σg be a closed oriented surface of genus g ≥ 2 and let Γg be the

mapping class group of Σg. The cohomology of Γg is one of the most

important objects in topology as well as in algebraic geometry. Indeed,

any cohomology classes of Γg can be considered as characteristic classes of

surface bundles, while the rational cohomology of Γg is naturally isomorphic

to that of the moduli space of compact Riemann surfaces of genus g (see [11],

[34] for instance).

Morita [28] and Mumford [35] independently introduced a series of cer-

tain cohomology classes en ∈ H2n(Γg, Z) (n ≥ 0) which are called Morita-

Mumford classes of Γg (see §2 for the definition). Concerning rational

Morita-Mumford classes, Miller [27] and Morita [28] independently proved

that the natural homomorphism

Q[e1, e2, e3, . . . ] −→ H∗(Γg, Q)
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is injective in dimensions less than 2g/3 (see [1] for an elementary proof of

this fact). It is conjectured that the above map is actually an isomorphism

in dimensions less than 2g/3, and there are many pieces of evidence which

support the conjecture (see [34]). On the contrary, little is known about

integral or mod p Morita-Mumford classes apart from a recent work of

Kawazumi and Uemura [21] which shows that integral Morita-Mumford

classes can play an interesting rôle in a study of cohomological properties

of finite subgroups of Γg. For further results concerning Morita-Mumford

classes, see [9], [11], [30], [31], [32], [33], [34] and references therein.

The purpose of this paper is to investigate mod p Morita-Mumford

classes e
(p)
n ∈ H2n(Γg, Fp), especially triviality and nontriviality of them,

and thereby fill the lack of knowledge of mod p Morita-Mumford classes. Let

us introduce the content of this paper briefly. In §2, we will recall relevant

definitions and facts concerning mapping class groups, Morita-Mumford

classes, and Harer’s stability theorem. In §3, we will review results in [1],

[21] concerning Morita-Mumford classes on finite subgroups of Γg. §4 is

devoted to prove the following theorem which is the main result of this

paper.

Theorem. If n ≡ −1 (mod p − 1), then e
(p)
n ∈ H2n(Γg, Fp) is nil-

potent. In particular, e
(2)
n ∈ H2n(Γg, F2) is nilpotent for all n ≥ 0. Con-

versely, if n 6≡ −1 (mod p − 1), then e
(p)
n ∈ H2n(Γ•, Fp) is nontrivial and

is not nilpotent.

Here H∗(Γ•, Fp) = limg→∞ H∗(Γg, Fp) is the stable mod p cohomology of

mapping class groups which exists by virtue of Harer’s stability theorem

and e
(p)
n ∈ H2n(Γ•, Fp) is the stable mod p Morita-Mumford class (see §2).

In view of the theorem, it is reasonable to make the following conjecture.

Conjecture 1. If n ≡ −1 (mod p−1), then e
(p)
n ∈ H2n(Γg, Fp) van-

ishes.

Passing to the stable mod p cohomology, Conjecture 1 together with the

prescribed theorem implies the following conjecture.

Conjecture 2. The stable mod p Morita-Mumford class e
(p)
n ∈

H2n(Γ•, Fp) vanishes if and only if n ≡ −1 (mod p − 1).
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In §5 and §6, we will give a few pieces of evidence which support the

conjectures. In particular, Conjecture 1 is settled in the affirmative for the

following cases: (i) n = 1, (ii) g = 2, (iii) g = 3 and p = 2, (iv) g = (p−1)/2

and n ≥ p − 3.

In §7, we will deal with oriented Σg-bundles. Any oriented Σg-bundle

E → X is determined by the holonomy homomorphism h : π1(X) → Γg,

and its mod p Morita-Mumford classes e
(p)
n ∈ H2n(X,Fp) are nothing but

the pull-back of e
(p)
n ∈ H2n(Γg, Fp) by h. In the context of oriented Σg-

bundles, there is yet another affirmative evidence for the conjectures. In

particular, we will prove the following result which is a consequence of the

Grothendieck Riemann-Roch theorem.

Theorem. Let p be a prime and E → X an oriented Σg-bundle over a

closed oriented 2n-manifold X. If n is odd and satisfies n ≡ −1 (mod p−1),

then e
(p)
n = 0 in H2n(X,Fp).

The last section is devoted to applications. For any oriented Σg-bundle

E → Σh over a closed oriented surface Σh, the total space E is oriented null-

cobordant if and only if the signature σ(E) of E vanishes (see Remark 6).

Meyer [26] showed that σ(E) = 0 whenever g = 2, and showed that for every

g ≥ 3 there exists an integer h ≥ 0 and an oriented Σg-bundle E → Σh with

σ(E) 6= 0. Together with results of Igusa [18] and Faber [8], the vanishing

of mod 2 Morita-Mumford classes of Γ2 and Γ3 which will be proved in §6
implies the following result which extends results of Meyer for g = 2 and 3.

Theorem. Let E → X be an oriented Σg-bundle over a closed ori-

ented manifold X. (i) If g = 2, then E is oriented null-cobordant. (ii) If

g = 3, dim X ≥ 3, and all the rational Pontryagin classes of X vanish, then

E is oriented null-cobordant.

Notation. Given a prime p, the field with p elements is denoted by Fp.
Given a group G and its subgroup H, the restriction is denoted by resG

H :
H∗(G,Z) → H∗(H, Z). When H is of finite index in G, the transfer (or the
corestriction in the literature) is denoted by TrG

H : H∗(H, Z) → H∗(G,Z).
Given an element γ ∈ G, the cyclic subgroup generated by γ is denoted by
〈γ〉. Given a closed manifold X, its mod 2 fundamental class is denoted by
[X]2. When X is oriented, its fundamental class is denoted by [X].
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§2. Review of mapping class groups and Morita-Mumford classes

Let Σg be a closed oriented surface of genus g ≥ 2. Let Diff+Σg be

the group of orientation-preserving diffeomorphisms of Σg equipped with

C∞-topology. The mapping class group Γg of Σg is defined to be the group

of connected components of Diff+Σg:

Γg := π0(Diff+Σg).

Let Diff+(Σg, ∗) be the subgroup of Diff+Σg consisting of all the orientation-

preserving diffeomorphisms which fix the distinguished base point ∗ ∈ Σg.

The group

Γ1
g := π0(Diff+(Σg, ∗))

is called the mapping class group of Σg relative to the base point ∗ ∈ Σg.

The natural homomorphism π : Γ1
g → Γg gives rise to an extension

1 −→ π1(Σg, ∗) −→ Γ1
g

π−→ Γg −→ 1.

Let D ⊂ Σg be the fixed embedded disk and write Σg,1 = Σg \ IntD. Let

Diff+(Σg,1, ∂Σg,1) be the group of all the orientation-preserving diffeomor-

phisms of Σg,1 which fix the boundary ∂Σg,1 pointwise. The group

Γg,1 := π0(Diff+(Σg,1, ∂Σg,1))

is called the mapping class group of Σg,1 relative to the one boundary

component. The natural homomorphism Γg,1 → Γ1
g gives rise to a central

extension

0 −→ Z −→ Γg,1 −→ Γ1
g −→ 1,(2.1)

where the central subgroup Z is generated by the Dehn twist along a sepa-

rating simple closed curve parallel to the boundary ∂Σg,1.

The inclusion Σg,1 ↪→ Σg+1,1 induces a homomorphism Γg,1 → Γg+1,1.

Harer’s stability theorem [13] as improved by Ivanov [19] asserts that homo-

morphisms Γg,1 → Γg+1,1 and Γg,1 → Γg induce isomorphisms

Hn(Γg,1, Z)
∼=−→ Hn(Γg+1,1, Z) and Hn(Γg,1, Z)

∼=−→ Hn(Γg, Z)

when n < g/2. Hence we may define the stable cohomology of mapping

class groups by

H∗(Γ•, Z) := lim
g→∞

H∗(Γg,1, Z).
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Let e ∈ H2(Γ1
g, Z) be the Euler class of the central extension (2.1). The

n-th Morita-Mumford class en ∈ H2n(Γg, Z) (n ≥ 0) is then defined by

en = π!(e
n+1) ∈ H2n(Γg, Z),

where π! : H∗(Γ1
g, Z) → H∗−2(Γg, Z) is the Gysin homomorphism. Note

that e0 = χ(Σg) = 2 − 2g. Given a prime number p, the mod p Morita-

Mumford class e
(p)
n ∈ H∗(Γg, Fp) is defined to be the mod p reduction of

en ∈ H∗(Γg, Z). By the naturality of the Gysin homomorphism with respect

to the mod p reduction, one has

e(p)
n = π!((e

(p))n+1) ∈ H∗(Γg, Fp),

where e(p) ∈ H2(Γ1
g, Fp) is the mod p reduction of e ∈ H2(Γ1

g, Z) which is

referred as the mod p Euler class of the central extension (2.1).

Let en ∈ H2n(Γg,1, Z) be the image of en ∈ H2n(Γg, Z) under the homo-

morphism induced by Γg,1 → Γg (we use the same symbol). As was shown

by Miller [27] and Morita [28], en is preserved by the homomorphisms in-

duced by Γg,1 → Γg+1,1 and Γg,1 → Γg. Hence the stable Morita-Mumford

classes en ∈ H2n(Γ•, Z) make sense. We close this section by proving non-

triviality of mod p Euler class e(p) ∈ H2(Γ1
g, Fp) along the lines of Harer [16,

Theorem 7.1] and Morita [28, p. 559].

Proposition 1. For any prime p, the mod p Euler class e(p) ∈
H2(Γ1

g, Fp) of the central extension (2.1) is nontrivial if g is sufficiently

large.

Proof. Since Γg,1 → Γg is the composition of the homomorphisms
Γg,1 → Γ1

g and Γ1
g → Γg, Harer’s stability theorem implies that the induced

homomorphism Hn(Γ1
g, Fp) → Hn(Γg,1, Fp) is surjective for n < g/2. This

shows that the Gysin sequence

· · · → Hn−2(Γ1
g, Fp)

∪e(p)

→ Hn(Γ1
g, Fp) → Hn(Γg,1, Fp) → Hn(Γ1

g, Fp) → · · ·
splits into the short exact sequence

0 −→ Hn−2(Γ1
g, Fp)

∪e(p)

−→ Hn(Γ1
g, Fp) −→ Hn(Γg,1, Fp) −→ 0

for n < g/2 and the proposition follows.

The last proposition suggests the notriviality of the conjectures stated

in the introduction.

Remark 1. When p ≥ 5, the mod p Euler class e(p) ∈ H2(Γ1
g, Fp) is

actually nontrivial for all g ≥ 3. See Corollary 2.
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§3. Morita-Mumford classes on finite subgroups

Let G be a finite subgroup of Γg. By the affirmative solution of the

Nielsen realization problem due to Kerckhoff [22], G is realized as a group

of automorphisms of a suitable compact Riemann surface R of genus g. For

each x ∈ R, let Gx be the isotropy subgroup at x. Since G preserves the

orientation, Gx is necessarily cyclic. Set S = {x ∈ R : Gx 6= 1}, and let S/G

be a set of representatives of G-orbits of elements of S. For each x ∈ S/G,

let ξx be the flat complex line bundle over the classifying space BGx of

Gx associated to the action of Gx on the holomorphic tangent space TxR,

and let c1(ξx) ∈ H2(Gx, Z) be its first Chern class. Among other things,

Kawazumi and Uemura proved the following result.

Theorem 1. ([21]) In the situation stated above, one has

res
Γg

G en =
∑

x∈S/G

TrG
Gx

(c1(ξx)n) ∈ H2n(G,Z)(3.1)

for all n ≥ 0.

Now we deal with finite cyclic subgroups of Γg. Let γ ∈ Γg be an

element of order m. As before, choose a compact Riemann surface R of

genus g for which 〈γ〉 is a group of automorphisms. Let {xi}1≤i≤q be a

set of representatives of the singular orbits of 〈γ〉, and αi the order of the

isotropy subgroup at xi. Let βi be an integer such that γβim/αi acts on

TxiR by z 7→ exp(2π
√
−1/αi)z with respect to a suitable local coordinate

z at xi. The number βi is well-defined modulo αi and is prime to αi. The

fixed point data of γ is then the collection

〈g,m | β1/α1, . . . , βq/αq〉.

The rational numbers β1/α1, . . . , βq/αq are unique up to order, if we con-

sider them as elements in Q/Z. The fixed point data satisfies

q∑

i=1

βi

αi
∈ Z(3.2)

and the Riemann-Hurwitz equation

2g − 2 = m(2h − 2) + m

q∑

i=1

(
1 − 1

αi

)
(3.3)
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for some integer h ≥ 0. According to Symonds [37], the fixed point data is

independent of various choices made and hence is well defined for γ ∈ Γg.

For later use, we recall the following fact concerning a realization of fixed

point data.

Proposition 2. Let p be a prime and β1, . . . , βq integers prime to p.
Then 〈g, p | β1/p, . . . , βq/p〉 can be realized as the fixed point data of an

element of Γg of order p if and only if it satisfies (3.2) and (3.3).

Proof. See [10].

Now let γ ∈ Γg be an element of order m having the fixed point data

〈g,m | β1/α1, . . . , βq/αq〉 as before. Let ξ be the complex line bundle over

the classifying space B〈γ〉 of 〈γ〉 associated to the representation 〈γ〉 →
U(1) defined by γ 7→ exp(2πi/m), and let uγ ∈ H2(〈γ〉, Z) be the first

Chern class of ξ. As is known, one has

H∗(〈γ〉, Z) ∼= Z[uγ ]/(muγ).

Under these conventions, Theorem 1 reduces to the following result.

Proposition 3. Let γ ∈ Γg be an element of order m having the fixed

point data 〈g,m | β1/α1, . . . , βq/αq〉. Then

res
Γg

〈γ〉en =

q∑

i=1

m

αi
(β∗

i )nun
γ ∈ H2n(〈γ〉, Z),

where β∗
i is an integer satisfying β∗

i βi ≡ 1 (mod αi).

Proof. See [1].

Proposition 4. Let G be a finite subgroup of Γg whose Sylow p-
subgroup is cyclic. Then

res
Γg

G en = 0 in H2n(G,Fp)

holds for all n ≡ −1 (mod p − 1).
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Proof. Let Gp be a Sylow p-subgroup of G generated by an element
γ ∈ Gp having the fixed point data

〈g, pt | β1/pt1 , . . . , βq/ptq 〉.

Choose an integer β∗
i satisfying βiβ

∗
i ≡ 1 (mod pti). Since (β∗

i )p−1 ≡ 1
(mod p), we see that, if n ≡ −1 (mod p− 1) then (β∗

i )n ≡ βi (mod p). On
the other hand, it follows from (3.2) that

q∑

i=1

pt−tiβi ≡ 0 (mod p).

Applying Proposition 3, we see that, if n ≡ −1 (mod p − 1) then

res
Γg

Gp
en =

q∑

i=1

pt−ti(β∗
i )nun

γ =

q∑

i=1

pt−tiβiu
n
γ = 0

in H2n(Gp, Fp). As resG
Gp

: H∗(G,Fp) → H∗(Gp, Fp) is injective, this com-
pletes the proof.

Remark 2. It was proved in [1] that, for any cyclic subgroup C ⊂ Γg

of order m, res
Γg

C en ∈ H2n(C, Z) vanishes whenever n ≡ −1 mod φ(m),
where φ is the Euler function.

§4. Proof of the main result

The purpose of this section is to prove the main result of this paper

which was mentioned in the introduction. More precisely, we will prove the

following two theorems.

Theorem 2. If n ≡ −1 (mod p−1), then e
(p)
n ∈ H2n(Γg, Fp) is nilpo-

tent. In particular, e
(2)
n ∈ H2n(Γg, F2) is nilpotent for all n ≥ 0.

Theorem 3. If n 6≡ −1 (mod p − 1), then (e
(p)
n )k ∈ H2nk(Γg, Fp) is

nontrivial for any k ≥ 1 satisfying k < g/4n.

Passing to the stable mod p cohomology H∗(Γ•, Fp), Theorem 3 together

with Harer’s stability theorem implies the following result which was men-

tioned in the introduction.
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Corollary 1. The stable mod p Morita-Mumford class e
(p)
n ∈

H2n(Γ•, Fp) is nontrivial and is not nilpotent whenever n 6≡ −1 (mod p−1).

Let p be a prime number. Recall that a finite group E is called an

elementary abelian p-group of rank m if E ∼= (Z/pZ)m. Let us denote

rankpE = m. We begin with the following lemma which may be well-

known.

Lemma. Let p be a prime number and E an elementary abelian p-
group with rankpE ≥ 2. For any cyclic subgroup C ⊂ E of order p, the

transfer

TrE
C : H∗(C, Z) −→ H∗(E, Z)

is the zero homomorphism for ∗ > 0.

Proof. It is easy to see that the restriction resE
C : H2(E, Z) → H2(C, Z)

is surjective. Since H∗(C, Z) ∼= Z[x]/(px) with deg x = 2, it follows that
resE

C : H∗(E, Z) → H∗(C, Z) is also surjective. Given an element u ∈
H∗(C, Z), choose v ∈ H∗(E, Z) with u = resE

Cv, and one has

TrECu = TrE
C ◦ resE

Cv = (E : C) · v,

where (E : C) is the index of C in E. It follows that pv = 0 since H2(E, Z) ∼=
(Z/pZ)m with m = rankpE and v can be chosen as a product of elements
of H2(E, Z). As p divides (E : C), this proves the lemma.

Proposition 5. Let p be a prime number. For any elementary abel-

ian p-subgroups E of Γg with rankpE ≥ 2, one has

res
Γg

E en = 0 in H2n(E, Z)

for all n ≥ 1.

Proof. According to Theorem 1, res
Γg

E en is the sum of elements each of
which belongs to the image of the transfer from a cyclic subgroup of order
p. In view of the lemma, this completes the proof.

Remark 3. Proposition 5 should be compared with a result of Morita
[29] which asserts that, for every amenable subgroup A ⊂ Γg, one has

res
Γg

A en = 0 in H2n(A,Q) for all n ≥ 1. Consequently, if A ⊂ Γg is a free
abelian subgroup of finite rank, then

res
Γg

A en = 0 in H2n(A,Z)

for all n ≥ 1.
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Now we are ready to prove Theorem 2. The key ingredient for the proof

of Theorem 2 is the celebrated F-isomorphism theorem of Quillen:

Theorem 4. ([36]) Let Γ be a group having finite virtual cohomological

dimension. If u ∈ H∗(Γ, Fp) restricts to zero for every elementary abelian

p-subgroups, then u is nilpotent.

Proof of Theorem 2. Recall that the virtual cohomological dimension
of Γg (written vcd Γg) is finite. Actually, vcd Γg = 4g − 5 according to
Harer [14]. In view of Proposition 4 and 5, Theorem 2 follows from Theo-
rem 4.

Proof of Theorem 3. Given an odd prime number p, choose a primitive
root rp (1 < rp ≤ p − 1) which is a generator of the multiplicative group
F×

p = Fp \ {0}. Choose an integer k ≥ 1 satisfying

h := pk +
(p − 1)(p − rp − 1)

2
≥ g.

Let γ ∈ Γh be an element having the fixed point data

〈h, p | 1/p, . . . , 1/p︸ ︷︷ ︸
p−rp

, rp/p〉.

Such γ ∈ Γh exists by virtue of Proposition 2. Applying Proposition 3 to
γ ∈ Γh, we see that

resΓh

〈γ〉en = (p − rp + (r∗p)
n)uγ in H2n(〈γ〉, Z),

where r∗p is an integer satisfying r∗prp ≡ 1 (mod p). Since rp is a primitive
root, p − rp + (r∗p)

n ≡ 0 (mod p) if and only if n ≡ −1 (mod p − 1). As

H∗(〈γ〉, Fp) ∼= Fp[uγ , v]/(v2)

with deg v = 1, we conclude that the mod p Morita-Mumford class e
(p)
n ∈

H2n(Γh, Fp) is nontrivial and is not nilpotent whenever n 6≡ −1 (mod p−1).
Now the theorem follows from Harer’s stability theorem.
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§5. First Morita-Mumford classes

The natural action of Γg on the first cohomology H1(Σg, Z) of Σg pre-

serves the symplectic form on it given by the cup product. Hence if we

choose a symplectic basis for H1(Σg, Z), we obtain a homomorphism

Γg −→ Sp(2g,Z)

where Sp(2g,Z) is the Siegel modular group of degree g. This induces a

homomorphism

Γg −→ Sp(2g,R).

Now the maximal compact subgroup of Sp(2g,R) is isomorphic to U(g).

Hence passing to the classifying spaces we obtain a continuous map

BΓg −→ BU(g).

Let cn ∈ H2n(Γg, Z) be the pull-back of the universal Chern class cn ∈
H2n(BU(g), Z). According to Morita [28] and Mumford [35], one has

ek−1 − ek−2c1 + · · · + (−1)gek−g−1cg = 0 in H2(k−1)(Γg, Z)(5.1)

for all k ≥ g, where we understand e−1 = 0.

Proposition 6. For all g ≥ 2, one has e1 = −12c1 in H2(Γg, Z).

Proof. Over the rationals, one has

e1 = −12c1 in H2(Γg, Q).(5.2)

This can be proved by applying the Atiyah-Singer index theorem for families
of elliptic operators or the Grothendieck Riemann-Roch theorem (see [28],
[35] and §7 below). On the other hand, Harer [12], [15] showed that
H2(Γg, Z) is generated by the first Chern class c1 and that

H2(Γg, Z) ∼=
{

Z/10Z, g = 2

Z, g ≥ 3.
(5.3)

The proposition for g ≥ 3 follows from (5.2) and (5.3). When g = 2, (5.1)
for k = 2 implies e1 = −2c1 in H2(Γ2, Z) since e0 = −2. In view of (5.3),
this proves the proposition.
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Proposition 6 and the previously mentioned results of Harer imply the

following corollary which is consistent with the conjectures.

Corollary 2. For all g ≥ 2, e
(2)
1 ∈ H2(Γg, F2) and e

(3)
1 ∈ H2(Γg, F3)

vanish. Furthermore, for all p ≥ 5 and g ≥ 3, e
(p)
1 ∈ H2(Γg, Fp) is non-

trivial.

Now we prove nilpotency of first mod p Morita-Mumford classes and

thereby show that the converse of Theorem 2 does not hold.

Proposition 7. For all g ≥ 3, the first mod p Morita-Mumford class

e
(p)
1 ∈ H2(Γg, Fp) is nontrivial and is nilpotent whenever p > 4g + 2.

Proof. If Γg has no elements of order p, then Hn(Γg, Fp) vanishes for
all n > vcd Γg = 4g − 5. This can be proved by inspection of the Farrell-
Tate cohomology of Γg (see [4] for Farrell-Tate cohomology). On the other
hand, as was proved by Wiman a hundred years ago (see [17]), if p > 4g +2
then Γg has no elements of order p. In summary, we have

Hn(Γg, Fp) = 0 if p > 4g + 2 and n > 4g − 5.(5.4)

Together with Corollary 2, this completes the proof.

As for higher mod p Morita-Mumford classes, Theorem 3 and (5.4)

imply the following result.

Proposition 8. If p > 4g + 2, then e
(p)
n ∈ H2n(Γg, Fp) is nontrivial

and is nilpotent for all n < g/4 with n 6≡ −1 (mod p − 1).

§6. Various calculations

The purpose of this section is to give a few pieces of evidence which

support the conjectures (Propositions 9, 10 and 11).

Proposition 9. For g = 2 or 3, the mod 2 Morita-Mumford class

e
(2)
n ∈ H2n(Γg, F2) vanishes for all n ≥ 0.

Proof. Applying the mod 2 reduction to (5.1), we obtain

e
(2)
k−1 + e

(2)
k−2w2 + · · · + e

(2)
k−g−1w2g = 0 in H2(k−1)(Γg, F2)(6.1)
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for all k ≥ g, where w2i ∈ H2i(Γg, F2) is the pull-back of the symplectic
Stiefel-Whitney class w2i ∈ H2i(BSp(2g,R), F2) by Γg → Sp(2g,R). When
g = 2, we have

e
(2)
k−1 + e

(2)
k−2w2 + e

(2)
k−3w4 = 0 in H2(k−1)(Γ2, F2)(6.2)

for all k ≥ 2. Since e
(2)
1 = e

(2)
0 = 0 by Corollary 2, the iterated use of (6.2)

implies the proposition for g = 2. When g = 3, we have

e
(2)
k−1 + e

(2)
k−2w2 + e

(2)
k−3w4 + e

(2)
k−4w6 = 0 in H2(k−1)(Γ3, F2)(6.3)

for all k ≥ 3. Applying k = 3 to (6.3), we see that e
(2)
2 vanishes by Corol-

lary 2. Hence we have e
(2)
2 = e

(2)
1 = e

(2)
0 = 0. By the iterated use of (6.3),

the proposition for g = 3 is proved.

Proposition 10. For p = 3 or 5, the mod p Morita-Mumford class

e
(p)
n ∈ H2n(Γ2, Fp) of Γ2 vanishes if and only if n ≡ −1 (mod p − 1).

Furthermore, if n 6≡ −1 (mod p − 1) then e
(p)
n ∈ H2n(Γ2, Fp) is not nil-

potent.

Proof. We have

e
(3)
k−1 + e

(3)
k−2c1 + e

(3)
k−3c2 = 0 in H2(k−1)(Γ2, F3)

for all k ≥ 2. Here the mod 3 reduction of ci ∈ H2i(Γ3, Z) is denoted by

the same symbol. Since 10e
(3)
1 = 10c1 = 0 by (5.3), we have e

(3)
1 = c1 = 0

in H∗(Γ2, F3) and hence

e
(3)
k−1 = −e

(3)
k−3c2 in H2(k−1)(Γ2, F3)(6.4)

for all k ≥ 2. By the iterated use of (6.4), we conclude that e
(3)
n ∈

H2n(Γ2, F3) vanishes for every odd integer n ≥ 1.
Conversely, let γ ∈ Γ2 be an element of order 3 having the fixed point

data 〈2, 3 | 1/3,1/3,2/3,2/3〉. We have

resΓ2

〈γ〉en = (1 + 1 + 2n + 2n)uγ = 2(1 + 2n)uγ in H∗(〈γ〉, Z).

As in the proof of Theorem 3, it follows that e
(3)
n ∈ H2n(Γ2, F3) is non-

trivial and is not nilpotent for every even integer n > 0, which verifies the
proposition for p = 3.
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Finally, we will prove the argument for p = 5. Let γ ∈ Γ2 be an element
of order 5 having the fixed point data 〈2, 5 | 1/5,1/5,3/5〉. We have

resΓ2

〈γ〉en = (1 + 1 + 2n)uγ = 2(1 + 2n−1)uγ in H∗(〈γ〉, Z).

Hence e
(5)
n ∈ H∗(Γ2, F5) is nontrivial and is not nilpotent if n 6≡ −1

(mod 4). According to Cohen [5] (see also [20]), there is a cyclic subgroup
C ⊂ Γ2 of order 5 such that the inclusion C ↪→ Γ2 induces the isomorphism
resΓ2

C : H∗(Γ2, F5) ∼= H∗(C, F5) of the mod 5 cohomology. In view of Propo-

sition 4, we see that e
(5)
n ∈ H∗(Γ2, F5) vanishes when n ≡ −1 (mod 4),

which proves the proposition for p = 5.

Remark 4. Actually, the subgroup C ⊂ Γ2 which appeared in the last
paragraph is generated by an element of Γ2 having the fixed point data
〈2, 5 | 1/5,1/5,3/5〉. See [20].

Remark 5. According to a result of Lee and Weintraub [24], the mod
p cohomology of Γ2 is nontrivial if and only if p = 2, 3, or 5. Hence all the
nontrivial mod p Morita-Mumford classes of Γ2 are determined by the last
two propositions.

Proposition 11. Let p be a prime. Then e
(p)
n ∈ H2n(Γ(p−1)/2, Fp)

vanishes whenever n ≥ p − 3 and n ≡ −1 (mod p − 1).

Proof. Let Cp be the set of representatives of conjugacy classes of cyclic
subgroups of order p of Γ(p−1)/2. According to results of Xia [39], the natural
homomorphism

∏

C∈Cp

res
Γ(p−1)/2

C : Ĥn(Γ(p−1)/2, Z)(p) −→
∏

C∈Cp

Ĥn(C, Z)

is injective, where Ĥn(−, Z) is the Farrell-Tate cohomology and Ĥn(−, Z)(p)

is the p-primary component of Ĥn(−, Z). Since Ĥn(Γ(p−1)/2, Z) is a torsion

group, the mod p reduction Ĥn(Γ(p−1)/2, Z) → Ĥn(Γ(p−1)/2, Fp) factors

through Ĥn(Γ(p−1)/2, Z)(p) (cf. [4, p. 290]). Consequently,

∏

C∈Cp

res
Γ(p−1)/2

C : Ĥn(Γ(p−1)/2, Fp) −→
∏

C∈Cp

Ĥn(C, Fp)
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is injective on the image of Ĥn(Γ(p−1)/2, Z) → Ĥn(Γ(p−1)/2, Fp), because

the mod p reduction Ĥ∗(C, Z) → Ĥ∗(C, Fp) is injective as it is easily seen.
According to fundamental properties of Farrell-Tate cohomology, there is a
commutative diagram

Hn(Γ(p−1)/2, Z) −−−→ Hn(Γ(p−1)/2, Fp) −−−→
∏

C∈Cp

Hn(C, Fp)

y
y

y
Ĥn(Γ(p−1)/2, Z) −−−→ Ĥn(Γ(p−1)/2, Fp) −−−→

∏

C∈Cp

Ĥn(C, Fp)

in which all the vertical arrows are isomorphisms for n > vcd Γ(p−1)/2 =
2p−7 (cf. [4, p. 278]). In view of Proposition 4, this completes the proof.

§7. Morita-Mumford classes for Σg-bundles

In this section, we consider mod p Morita-Mumford classes in the con-

text of oriented Σg-bundles and thereby obtain affirmative evidence for

Conjecture 1. A smooth fiber bundle π : E → X with fiber Σg is called a

Σg-bundle. Let TE/X be the relative tangent bundle (or the tangent bundle

along the fiber) of π. Namely it is the subbundle of the tangent bundle of

E consisting of those vectors which are tangent to the fibers of the bundle.

If TE/X is orientable and an orientation is given on it, we say that the Σg-

bundle π : E → X is oriented. Given an oriented Σg-bundle π : E → X,

let

e = e(TE/X) ∈ H2(E, Z)

be the Euler class of TE/X . The n-th Morita-Mumford class en ∈ H2n(X,Z)

of π is then defined by

en = π!(e
n+1) ∈ H2n(X,Z),

where π! : H∗(E, Z) → H∗−2(X,Z) is the Gysin homomorphism. As is

known,

π!(x ∪ π∗(y)) = π!(x) ∪ y(7.1)

holds for any x ∈ H∗(E, Z) and y ∈ H∗(X,Z). According to a result of Earle

and Eells [6], the classifying space BDiff+Σg of oriented Σg-bundles is the

Eilenberg-MacLane space K(Γg, 1) of Γg. It follows that the isomorphism
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class of an oriented Σg-bundle π : E → X is completely determined by the

holonomy homomorphism

h : π1(X) −→ Γg

induced by the classifying map X → K(Γg, 1). In addition, the Morita-

Mumford classes en ∈ H2n(X,Z) of π are identified with the pull-back of

en ∈ H2n(Γg, Z) by the holonomy homomorphism. See [28] for further

detail. We will prove the following theorem.

Theorem 5. Let p be a prime, n1, n2, . . . , nk positive integers, and

n =
∑

i ni. Let E → X be an oriented Σg-bundle over a closed oriented

manifold X whose 2n-th cohomology group H2n(X,Z) is torsion-free. If ni

is odd and satisfies ni ≡ −1 (mod p − 1) for some i, then

e(p)
n1

e(p)
n2

· · · e(p)
nk

= 0 in H2n(X,Fp).

As an immediate consequence, we obtain the following result.

Corollary 3. Let p be a prime and E → X an oriented Σg-bundle

over a closed oriented 2n-manifold X. If n is odd and satisfies n ≡ −1
(mod p − 1), then

e(p)
n = 0 in H2n(X,Fp).

To prove Theorem 5, we recall a certain relation among Morita-

Mumford classes and Chern classes which was proved by Morita [28] along

the line of Atiyah [2]. Let π : E → X be a Σg-bundle over a closed ori-

ented manifold X. For each fiber Ex = π−1(x) (x ∈ X), consider the real

cohomology H1(Ex, R). The natural projection

η :
⋃

x∈X

H1(Ex, R) −→ X

gives rise to a 2g-dimensional real vector bundle over X. A choice of a fiber

metric on π yields a structure of g-dimensional complex vector bundle on

η. Let cn(η) ∈ H2n(X,Z) be the n-th Chern class of η. Note that cn(η)

coincides with the pull-back of the n-th Chern class cn ∈ H2n(Γg, Z) of

Γg by the holonomy homomorphism h : π1(X) → Γg. Now the Atiyah-

Singer index theorem for families of elliptic operators or the Grothendieck

Riemann-Roch theorem implies

e2n−1 = (−1)n
2n

B2n
s2n−1(η) in H4n−2(X,Q)(7.2)
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for all n, where B2n is the 2n-th Bernoulli number and sn(η) ∈ H2n(X,Z)

is the characteristic class of η corresponding to the formal sum
∑

k xn
k (it is

an integral polynomial of Chern classes of η and is called the n-th Newton

class of η). See [28] for further detail. Now we will prove Theorem 5.

Proof of Theorem 5. Without loss of generality, we may assume n1 is
odd and satisfies n1 ≡ −1 (mod p − 1). For simplicity, set 2m− 1 = n1. It
follows from (7.2) that

e2m−1

k∏

i=2

eni = (−1)m
2m

B2m
s2m−1(η)

k∏

i=2

eni in H2n(X,Q).

Let num(B2m/2m) (resp. den(B2m/2m)) be the numerator (resp. denomi-
nator) of B2m/2m. Then the previous equality leads to

num
(B2m

2m

)
e2m−1

k∏

i=2

eni = (−1)mden
(B2m

2m

)
s2m−1(η)

k∏

i=2

eni(7.3)

in H2n(X,Q). Observe that both sides of (7.3) are integral. In other words,
they belong to the image of the homomorphism H∗(X,Z) → H∗(X,Q)
induced by Z ↪→ Q. Since H2n(X,Z) is torsion-free, we conclude that (7.3)
holds in H2n(X,Z). As 2m ≡ 0 (mod p− 1), von Staudt’s theorem implies
that den(B2m/2m) is divisible by p (see [3] for instance). Applying the mod
p reduction to (7.3), we have

num
(B2m

2m

)
e(p)
n1

e(p)
n2

· · · e(p)
nk

= 0 in H2n(X,Fp).

Since num(B2m/2m) is prime to p, the theorem is proved.

Now let sn ∈ H2n(Γg, Z) be the n-th Newton class of Γg which is defined

to be the characteristic class corresponding to the formal sum
∑

k xn
k of the

g-dimensional complex vector bundle associated with the continuous map

BΓg → BU(g) introduced in §5. Then the Grothendieck Riemann-Roch

theorem implies

e2n−1 = (−1)n
2n

B2n
s2n−1 in H4n−2(Γg, Q)

for all n ≥ 1. In view of the proof of Theorem 5, it is valuable to propose

the following conjecture.
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Conjecture 3.

num
(B2n

2n

)
e2n−1 = (−1)nden

(B2n

2n

)
s2n−1 in H4n−2(Γg, Z)

holds for all n ≥ 1.

According to Proposition 6, Conjecture 3 is affirmative for n = 1. By

virtue of the proof of Theorem 5, the affirmative solution of Conjecture 3

implies those of Conjectures 1 and 2 for mod p Morita-Mumford classes of

odd indices. We will deal with Conjecture 3 in the forthcoming paper with

N. Kawazumi.

§8. Applications to structure of oriented Σg-bundles

The purpose of this section is to investigate structure of oriented Σg-

bundles for g = 2 or 3 by applying Theorem 9. Let π : E → X be an oriented

Σg-bundle over a closed manifold X which is not necessarily orientable.

Then the tangent bundle T∗(E) of E decomposes itself into

T∗(E) = TE/X ⊕ π∗(T∗(X)).

Hence the total Stiefel-Whitney class w.(E) of E is expressed as

w.(E) = (1 + e(TE/X)) · π∗(w.(X)) in H∗(E, F2).

As (7.1) remains valid over F2 and 〈u, [E]2〉 = 〈π!(u), [X]2〉 holds for all

u ∈ Hdim E(E, F2), we see that all the Stiefel-Whitney numbers of E are ex-

pressed by the Stiefel-Whitney classes of X and the mod 2 Morita-Mumford

classes of π. In particular, if g = 2 or 3 then it follows from Theorem 9 that

all the Stiefel-Whitney numbers of E vanish. Hence we obtain the following

result.

Proposition 12. Let E → X be an oriented Σg-bundle over a closed

manifold X which is not necessarily orientable. If g = 2 or 3, then E is

unoriented null-cobordant.

Now let π : E → X be an oriented Σg-bundle over a closed oriented

manifold X so that the total space E admits a natural orientation. Then

the total rational Pontryagin class p.(E) of E is expressed as

p.(E) = (1 + e(TE/X)2) · π∗(p.(X)) in H∗(E, Q).
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Since (7.1) remains valid over the rationals and 〈u, [E]〉 = 〈π!(u), [X]〉 holds

for all u ∈ Hdim E(E, Q), we see that all the Pontryagin numbers of E are

expressed by the rational Pontryagin classes of X and the rational Morita-

Mumford classes of odd indices of π. In particular, we obtain the following

result.

Corollary 4. Let E → X be an oriented Σ2-bundle over a closed

oriented manifold X. Then E is oriented null-cobordant.

Proof. Since Γ2 is Q-acyclic by a result of Igusa [18], we see that all the
rational Morita-Mumford classes of π vanish and hence all the Pontryagin
numbers of E vanish.

Let E → X be an oriented Σ3-bundle over a closed oriented manifold X.

If dimX 6≡ 2 (mod 4), then E is oriented null-cobordant by Proposition 12.

In case dimX ≡ 2 (mod 4), we obtain the following result.

Corollary 5. Let E → X be an oriented Σ3-bundle over a closed

oriented manifold X with dim X = 4n + 2 for some n ≥ 1. Suppose that,

for any positive integers n1, n2, . . . , nk satisfying n =
∑

i ni,

pn1(X) pn2(X) · · · pnk
(X) = 0 in H4n(X,Q),

where pni(X) is the ni-th rational Pontryagin class of X. Then E is ori-

ented null-cobordant.

Proof. It was proved by Faber [8] that e2
1 = 0 and en = 0 for n ≥ 2 in

H∗(Γ3, Q). Indeed, according to Looijenga [25], one has

H∗(Γ3, Q) ∼= Q[e1]/(e2
1) + Qu

where u is an element of degree 6. Hence all the Pontryagin numbers of E
vanish by the assumption.

As an immediate consequence, we obtain the following result.

Corollary 6. Let E → X be an oriented Σ3-bundle over a closed

oriented manifold X with dimX ≥ 3. If all the rational Pontryagin classes

of X vanish, then E is oriented null-cobordant.
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In case E → X is an oriented Σg-bundle over a closed oriented surface

X, the signature σ(E) of the total space E was studied by Meyer [26]. He

showed that σ(E) = 0 whenever g = 2. Corollary 4 is a generalization of

this fact. He also showed that for every g ≥ 3 and every n ∈ 4Z there exists

an oriented Σg-bundle E → X over a closed oriented surface X such that

σ(E) = n (see [2], [7] and [23] for explicit constructions of such Σg-bundles).

Hence Corollary 6 is not valid when dim X = 2.

Remark 6. Since e
(2)
1 = 0 for all g ≥ 2 by Corollary 2, the total space

of any oriented Σg-bundle over a closed surface which is not necessarily
orientable is unoriented null-cobordant.

Acknowledgements. The author thanks to Professor Nariya Kawa-
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with the author.
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