ON HOLOMORPHIC MAPS WITH ONLY FOLD SINGULARITIES

YOSHIFUMI ANDO¹

Dedicated to Professor Takuo Fukuda on his sixtieth birthday

Abstract. Let $f: N \to P$ be a holomorphic map between n-dimensional complex manifolds which has only fold singularities. Such a map is called a holomorphic fold map. In the complex 2-jet space $J^2(n, n; \mathbf{C})$, let Ω^{10} denote the space consisting of all 2-jets of regular map germs and fold map germs. In this paper we prove that Ω^{10} is homotopy equivalent to SU(n+1). By using this result we prove that if the tangent bundles TN and TP are equipped with SU(n)-structures in addition, then a holomorphic fold map f canonically determines the homotopy class of an SU(n+1)-bundle map of $TN \oplus \theta_N$ to $TP \oplus \theta_P$, where θ_N and θ_P are the trivial line bundles.

Introduction

Let N and P be complex manifolds of dimension n. We shall say that a holomorphic map germ of (N,x) to (P,y) has a fold singularity at x if it is written as $(z_1,\ldots,z_{n-1},z_n)\mapsto (z_1,\ldots,z_{n-1},z_n^2)$ under suitable local coordinate systems near x and y. Such a germ will be called a fold map germ. A holomorphic map $f:N\to P$ will be called a holomorphic fold map if f has only fold singularities.

Let $J^k(n, n; \mathbf{C})$ ($J^k(n, n)$ for short) denote the k-jet space of all k-jets of holomorphic map germs ($\mathbf{C}^n, \mathbf{0}$) \to ($\mathbf{C}^n, \mathbf{0}$). We consider the subspace Ω^1 of $J^1(n, n)$ consisting of all 1-jets whose kernel rank is either 0 or 1, and the subspace Ω^{10} of $J^2(n, n)$ consisting of all 2-jets of regular germs and fold map germs. The purpose of this paper is to determine their homotopy types. Let $J^2(N, P; \mathbf{C})$ ($J^2(N, P)$ for short) denote the complex 2-jet space, which is the total space of a fibre bundle over $N \times P$ and $\Omega^{10}(N, P; \mathbf{C})$ ($\Omega^{10}(N, P)$

Received December 1, 1998.

Revised February 22, 2000.

²⁰⁰⁰ Mathematics Subject Classification: Primary 58K15; Secondary 58A20, 58C10.

¹This research was partially supported by Grant-in-Aid for Scientific Research (No.11640081), Ministry of Education, Science and Culture, Japan.

for short) denote its subbundle associated with Ω^{10} . The the 2-jet extension j^2f of a holomorphic fold map $f:N\to P$ is a section of $\Omega^{10}(N,P)$ over N. The homotopy type of Ω^{10} will be important in the study of the space consisting of all holomorphic fold maps. This paper is partially the complex version of [A1] and [A2], although the arguments are quite different and more complicated except for Sections 1 and 2.

Let S^{2k-1} , D_r^{2k} and \mathbf{CP}^{k-1} denote the unit sphere of dimension 2k-1 in \mathbf{C}^k , the disk of radius r and of dimension 2k in \mathbf{C}^k , and the complex projective space of dimension k-1 respectively. Let $\mathrm{U}(k)$ and $\mathrm{SU}(k)$ denote the unitary group and the special unitary group of degree k respectively. Now we explain the homotopy types of Ω^1 and Ω^{10} . Let I_a $(a \in \mathbf{R})$ be the diagonal $n \times n$ -matrix (n-matrix for short) with diagonal components $(1,\ldots,1,e^{\sqrt{-1}a})$. Let \mathbf{v} be a point of \mathbf{CP}^{n-1} represented by a vector $\mathbf{s}=t(s_1,s_2,\ldots,s_n)$ of S^{2n-1} . Then we define the n-matrix $G(\mathbf{v},e^{\sqrt{-1}\theta})$ by

$$G(\mathbf{v}, e^{\sqrt{-1}\theta}) = I_{\theta}(E_n + (e^{\sqrt{-1}\theta} - 1)(s_i\bar{s}_j)),$$

where E_n is the unit matrix of rank n and $(s_i\bar{s}_j)$ is the n-matrix with (i,j) component given by $s_i\bar{s}_j$. It will be shown that $G(\mathbf{v},e^{\sqrt{-1}\theta})$ lies in $\mathrm{SU}(n)$ (see (3.3)). Let $\mathrm{OC}(\mathbf{CP}^{n-1})$ denote the open cone over \mathbf{CP}^{n-1} , that is, the quotient space $\mathbf{CP}^{n-1} \times [0,1)/\mathbf{CP}^{n-1} \times 0$. Then we define the homeomorphism

$$g: \mathbf{CP}^{n-1} \times \mathrm{Int}(D^2_{1/2} \setminus \{\mathbf{0}\}) \times \mathrm{SU}(n) \longrightarrow \mathbf{CP}^{n-1} \times (\sqrt{3}/2, 1) \times S^1 \times \mathrm{SU}(n)$$

by $g(\mathbf{v},be^{\sqrt{-1}\theta},U)=(\mathbf{v},(1-b^2)^{1/2},e^{\sqrt{-1}\theta},G(\mathbf{v},e^{\sqrt{-1}\theta})U)$. We make the new space $\mathbf{CP}^{n-1}\times \mathrm{Int}\, D^2_{1/2}\times \mathrm{SU}(n)\cup_g \mathrm{OC}(\mathbf{CP}^{n-1})\times S^1\times \mathrm{SU}(n)$ by pasting the two subspaces by g.

We consider the two actions of $\mathrm{SU}(n) \times \mathrm{SU}(n)$: one on $J^2(n,n)$ through the source and target spaces $(\mathbf{C}^n,\mathbf{0})$, and the other on $\mathrm{SU}(n+1)$ through $\mathrm{SU}(n) \times (1)$ from the right and left hand sides. The main theorem of the present paper is the following.

THEOREM 1. (1) There exists a topological embedding of $\mathbb{CP}^{n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n) \cup_g \operatorname{OC}(\mathbb{CP}^{n-1}) \times S^1 \times \operatorname{SU}(n)$ into Ω^1 whose image is a deformation retract of Ω^1 $(n \geq 2)$.

(2) There exists an equivariant topological embedding $i_n : SU(n+1) \to \Omega^{10}$ with respect to the actions of $SU(n) \times SU(n)$ whose image is a deformation retract of Ω^{10} $(n \ge 1)$.

An n-dimensional complex vector bundle with structure group $\mathrm{SU}(n)$ will be called an $\mathrm{SU}(n)$ -vector bundle. Let M be a complex manifold of dimension n. In this paper, an $\mathrm{SU}(n)$ -structure of TM refers to a reduction (E',φ) of the structure group $\mathrm{GL}(n,\mathbf{C})$ of the tangent bundle TM to $\mathrm{SU}(n)$, where E' is an $\mathrm{SU}(n)$ -vector bundle over M and $\varphi:TM\to E'$ is a bundle map. Then (E',φ) induces a homotopy class of a classifying map of E', $M\to B_{\mathrm{SU}(n)}$. It is well known that TM has an $\mathrm{SU}(n)$ -structure if and only if the first Chern class of M vanishes.

Let $L^2(n)$ be the group of all 2-jets of biholomorphic map germs ($\mathbb{C}^n, \mathbf{0}$) \rightarrow ($\mathbb{C}^n, \mathbf{0}$). The structure group of the fibre bundle $\pi_N \times \pi_P : J^2(N, P) \rightarrow$ $N \times P$ with fibre $J^2(n,n)$ is $L^2(n) \times L^2(n)$. Since $GL(n, \mathbb{C})$ is naturally a subgroup of $L^2(n)$ and the quotient space $L^2(n)/\operatorname{GL}(n; \mathbf{C})$ is contractible, the structure group $L^2(n) \times L^2(n)$ of the fibre bundle $\pi_N \times \pi_P : J^2(N,P) \to$ $N \times P$ is reduced to $GL(n; \mathbb{C}) \times GL(n; \mathbb{C})$. If TN and TP have SU(n)structures (E, φ_N) and (F, φ_P) respectively, then the structure group of $J^2(N,P)$ is, furthermore, reduced from $GL(n; \mathbf{C}) \times GL(n; \mathbf{C})$ to $SU(n) \times$ SU(n). Moreover, we have the subbundle $SU(E \oplus \theta_N, F \oplus \theta_P)$ of $Hom(E \oplus \theta_N, F \oplus \theta_P)$ $\theta_N, F \oplus \theta_P$) associated with SU(n + 1), where θ_N and θ_P are the trivial complex line bundles over N and P respectively. We will prove in Section 7 that there exists a fibre map $i(N,P): SU(E \oplus \theta_N, F \oplus \theta_P) \to \Omega^{10}(N,P)$ associated with the equivariant embedding $i_n: \mathrm{SU}(n+1) \to \Omega^{10}$ in Theorem 1 (2). The SU(n)-vector bundles E and F not only have hermitian metrics, but also enable us to consider the determinant on each fibre of a bundle map of E to F. A bundle map of E to F will be called an SU(n)-bundle map if it preserves norms and the determinant on each fibre is equal to 1. The following theorem will be proved in Section 7.

THEOREM 2. Let N and P be complex manifolds of dimension n with SU(n)-structures (E, φ_N) and (F, φ_P) respectively. Then we have the following.

- (1) The map $i(N,P): SU(E \oplus \theta_N, F \oplus \theta_P) \to \Omega^{10}(N,P)$ is a fibre homotopy equivalence.
- (2) If there exists a holomorphic fold map f of N into P, then j^2f determines the homotopy class of an SU(n+1)-bundle map of $E \oplus \theta_N$ to $F \oplus \theta_P$ covering f through i(N, P).

The set of all continuous sections of $SU(E \oplus \theta_N, F \oplus \theta_P)$ over N corresponds bijectively to that of all SU(n+1)-bundle maps of $E \oplus \theta_N$ to $F \oplus \theta_P$.

For a holomorphic fold map f, the section $j^2f: N \to \Omega^{10}(N, P)$ determines the homotopy class of the section $i(N, P)^{-1} \circ j^2f$ of $\mathrm{SU}(E \oplus \theta_N, F \oplus \theta_P)$, where $i(N, P)^{-1}$ is the homotopy inverse of i(N, P). This gives the homotopy class of an $\mathrm{SU}(n+1)$ -bundle map $\widetilde{f}: E \oplus \theta_N \to F \oplus \theta_P$ covering f in Theorem 2 (2). Since \widetilde{f} is reduced to an $\mathrm{SU}(n)$ -bundle map of E to F by the obstruction theory, we have the following corollary.

COROLLARY 3. Let N and P be complex manifolds of dimension n whose first Chern classes vanish. If there is a holomorphic fold map $f: N \to P$, then there exists a bundle map of TN to TP covering f.

The assertion in the C^{∞} -category corresponding to Theorem 2 is described in [A2, Corollary 2] and Corollary 3 can be compared with the results [E, 3.8, 3.9 and 3.10 Theorem] and [Sa, Lemma 3.1] in the C^{∞} -category.

In Section 2 we will prepare lemmas in linear algebra. Let Σ^1 denote the subspace of $J^1(n,n)$ consisting of all 1-jets with kernel rank 1. We will prove in Section 3 that Σ^1 is homotopy equivalent to $\mathbf{CP}^{n-1} \times \mathrm{SU}(n)$ (Theorems 3.1 and 3.7). It is known that the normal bundle of Σ^1 in Ω^1 is the trivial complex line bundle $\mathrm{Hom}(\mathbf{K},\mathbf{Q})$, where \mathbf{K} is the kernel bundle and \mathbf{Q} is the cokernel bundle of the first derivative over Σ^1 . Therefore the tubular neighbourhood of Σ^1 is homotopy equivalent to $\mathbf{CP}^{n-1} \times D^2_{1/2} \times \mathrm{SU}(n)$. We will study how $\partial(\mathbf{CP}^{n-1} \times D^2_{1/2} \times \mathrm{SU}(n))$ is pasted to $\mathrm{U}(n) \cong S^1 \times \mathrm{SU}(n)$ (\cong here refers to a homeomorphism) to prove Theorem 1 (1).

Let Σ^{10} denote the subspace of $J^2(n,n)$ consisting of all 2-jets of fold map germs. In Section 5 we will see that the fibre bundle Σ^{10} over Σ^1 is homotopy equivalent to the canonical S^1 -bundle $S^{2n-1} \times \mathrm{SU}(n)$ over $\mathbf{CP}^{n-1} \times \mathrm{SU}(n)$ and hence the tubular neighbourhood of Σ^{10} in Ω^{10} is homotopy equivalent to $S^{2n-1} \times D^2_{1/2} \times \mathrm{SU}(n)$. The tubular neighbourhood of $U(n) \cong S^1 \times \mathrm{SU}(n)$ in Ω^{10} is homotopy equivalent to $D^{2n}_1 \times S^1 \times \mathrm{SU}(n)$. Then we will see that the pasting map of $\partial(S^{2n-1} \times D^2_{1/2} \times \mathrm{SU}(n))$ to $\partial(D^{2n}_1 \times S^1 \times \mathrm{SU}(n))$ is induced from g by considering the S^1 -bundle above and that the pasted space becomes the total space of a fibre bundle over S^{2n+1} with fibre $\mathrm{SU}(n)$. We will prove in Section 5 that there exists a bundle map from this space to $\mathrm{SU}(n+1)$ by constructing in Section 4 a special bundle structure of the fibre bundle $\mathrm{SU}(n+1)$ over $\mathrm{SU}(n+1)/\mathrm{SU}(n) \times \mathrm{SU}(1) \cong S^{2n+1}$.

Next we will specify the embedding of SU(n+1) into Ω^{10} of Theorem 1 (2) in Section 5 and prove in Section 6 that it is equivariant with respect to the actions of $SU(n) \times SU(n)$. In Section 7 we will prove Theorem 2 and give certain examples of holomorphic fold maps.

§1. Notations

Let \mathbf{C}^n denote the *n*-dimensional complex number space consisting of all column vectors of *n* complex numbers. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ denote the canonical basis of \mathbf{C}^n with $\mathbf{e}_i = {}^t(0, \dots, 0, \overset{i}{1}, 0, \dots, 0)$. The hermitian inner product of vectors \mathbf{v} , \mathbf{w} is denoted by (\mathbf{v}, \mathbf{w}) and the norm of \mathbf{v} is denoted by $\|\mathbf{v}\|$. In this paper a linear map $\mathbf{C}^n \to \mathbf{C}^n$ or a quadratic form on \mathbf{C}^n is identified with an *n*-matrix or an *n*-symmetric matrix respectively.

The details and further results of this section can be found in [Bo] and [L] although we work in the complex category. The space of all homomorphisms of a vector space V into a vector space W over \mathbf{C} will be denoted by $\operatorname{Hom}(V,W)$. The basis $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ induces the identifications of $J^1(n,n)$ with $\operatorname{Hom}(\mathbf{C}^n,\mathbf{C}^n)$ and of $J^2(n,n)$ with $\operatorname{Hom}(\mathbf{C}^n,\mathbf{C}^n)\oplus\operatorname{Hom}(\mathbf{C}^n\subset\mathbf{C}^n,\mathbf{C}^n)$, where $\mathbf{C}^n\subset\mathbf{C}^n$ is the 2-fold symmetric product of \mathbf{C}^n . Let Σ^i denote the subspace of $J^1(n,n)$ consisting of all homomorphisms $\alpha:\mathbf{C}^n\to\mathbf{C}^n$ with kernel rank i $(0\leq i\leq n)$. We usually denote an element of $J^2(n,n)$ as (α,β) for $\alpha:\mathbf{C}^n\to\mathbf{C}^n$ and $\beta:\mathbf{C}^n\subset\mathbf{C}^n\to\mathbf{C}^n$. Consider the composition of the restriction $\beta\mid \operatorname{Ker}(\alpha)\subset \operatorname{Ker}(\alpha)$ and the natural projection of \mathbf{C}^n onto $\operatorname{Cok}(\alpha)$. It induces a new homomorphism of $\operatorname{Ker}(\alpha)$ into $\operatorname{Hom}(\operatorname{Ker}(\alpha),\operatorname{Cok}(\alpha))$ denoted by $\widetilde{\beta}$. Let Σ^{ij} be the subspace consisting of all elements (α,β) such that α and $\widetilde{\beta}$ are of kernel ranks i and j respectively. The notation Σ^i is often used for $\Sigma^i \times \operatorname{Hom}(\mathbf{C}^n \subset \mathbf{C}^n,\mathbf{C}^n)$ if there is no confusion.

The space Ω^1 denotes the union $\Sigma^0 \cup \Sigma^1$ in $J^1(n,n)$ and Ω^{10} denotes the union $\Sigma^0 \cup \Sigma^{10}$ in $J^2(n,n)$. Both spaces are open subsets. We say that a 2-jet of Σ^{10} or its singularity at the origin is of fold type.

In this paper maps are basically continuous, but may be holomorphic or C^{∞} -differentiable if so stated.

$\S 2$. Lemmas

In this section we will discuss several results proved by elementary arguments in linear algebra in the complex category. The diagonal matrix with diagonal components $\mathbf{a} = (a_1, \ldots, a_n)$ will be denoted by $\Delta(\mathbf{a})$. In

particular, $\Delta(1,\ldots,1,e^{\sqrt{-1}a})$ of rank n is written as I_a . For an n-matrix A, ${}^t\bar{A}$ is denoted by A^* .

LEMMA 2.1. Let A be an n-matrix. Then A is decomposed as $S\Delta(\mathbf{d})T$, where S and T are unitary matrices and d_1, \ldots, d_n are nonnegative real numbers such that (1) d_1^2, \ldots, d_n^2 are the eigen-values of A^*A and (2) $d_1 \geq d_2 \geq \cdots \geq d_n \geq 0$.

Proof. The hermitian and nonnegative definite matrix A^*A is diagonalized by a unitary matrix U as

$$U^*(A^*A)U = \Delta(d_1^2, \dots, d_n^2).$$

Set $U^*AU = (\mathbf{a}_1, \dots, \mathbf{a}_n)$. Then $(\mathbf{a}_i, \mathbf{a}_j) = 0$ for $i \neq j$ and $(\mathbf{a}_i, \mathbf{a}_i) = d_i^2$. When $\mathbf{a}_i \neq \mathbf{0}$, set $\mathbf{f}_i = \mathbf{a}_i/\|\mathbf{a}_i\|$. Then we can find an orthonormal basis $\mathbf{f}_1, \dots, \mathbf{f}_n$ by choosing \mathbf{f}_j for j with $\mathbf{a}_j = \mathbf{0}$ appropriately. It follows that

$$U^*AU = (\mathbf{f}_1, \dots, \mathbf{f}_n)\Delta(\|\mathbf{a}_1\|, \dots, \|\mathbf{a}_n\|).$$

This proves (1).

We can prove that in the decomposition of A two values d_i and d_j are exchanged by using the matrix $P_{ij} = (p_{ij})$ such that $p_{kk} = 1$ when k is equal to neither i nor j and that $p_{ij} = p_{ji} = 1$ and $p_{st} = 0$ otherwise. This follows from $A = SP_{ij}P_{ij}\Delta(\mathbf{d})P_{ij}P_{ij}T$ and $P_{ij}\Delta(\mathbf{d})P_{ij} = \Delta(d_1, \ldots, d_j, \ldots, d_i, \ldots, d_n)$.

If $d_1 \geq d_2 \geq \cdots \geq d_n \geq 0$ holds, then we say in this paper that the diagonal components $\mathbf{d} = (d_1, \ldots, d_n)$ is decreasing. Let A_j $(j = 1, \ldots, s)$ be square i_j -matrices. The new matrix

will be denoted by $A_1 + \cdots + A_s$. Let E_j denote the unit matrix of rank j. The following lemma is a key tool of this paper.

LEMMA 2.2. Let \mathbf{v} and \mathbf{w} be decreasing diagonal components. Suppose that $S\Delta(\mathbf{v})T = \Delta(\mathbf{w})$ for S and T of U(n). Then

(1)
$$\mathbf{v} = \mathbf{w}$$
. Hence $\Delta(\mathbf{v}) (= \Delta(\mathbf{w}))$ is written as

$$a_1E_{i_1} + a_2E_{i_2} + \cdots + a_sE_{i_s},$$

where a_1, \ldots, a_s are all distinct and $n = i_1 + \cdots + i_s$.

(2) S and T are also matrices of the forms

$$S = S_1 + \cdots + S_s$$
 and $T = T_1 + \cdots + T_s$

respectively, where both S_i and T_j are of ranks i_j (j = 1, ..., s).

(3) If a_i is not zero, then $S_iT_i = E_{i_i}$.

Proof. We shall prove the lemma by comparing the components of $S\Delta(\mathbf{v})$ and $\Delta(\mathbf{w})T^*$. Set $S=(s_{ij})$ and $T^*=(t_{ij})$. Then we have

$$\begin{pmatrix} v_1 s_{11} & \dots & v_n s_{1n} \\ \vdots & & \vdots \\ v_1 s_{n1} & \dots & v_n s_{nn} \end{pmatrix} = \begin{pmatrix} w_1 t_{11} & \dots & w_n t_{1n} \\ \vdots & & \vdots \\ w_1 t_{n1} & \dots & w_n t_{nn} \end{pmatrix}.$$

By comparing the components of p-th rows and q-th columns of the matrices above, we obtain the following inequalities.

$$|v_1|^2 \ge |v_1 s_{p1}|^2 + |v_2 s_{p2}|^2 + \dots + |v_n s_{pn}|^2$$

$$= |w_p t_{p1}|^2 + |w_p t_{p2}|^2 + \dots + |w_p t_{pn}|^2$$

$$= |w_p|^2,$$

$$|w_1|^2 \ge |w_1 t_{1q}|^2 + |w_2 t_{2q}|^2 + \dots + |w_n t_{nq}|^2$$

$$= |v_q s_{1q}|^2 + |v_q s_{2q}|^2 + \dots + |v_q s_{nq}|^2$$

$$= |v_q|^2.$$

Setting p = q = 1, we have $v_1 = w_1$.

Now we prove the lemma by induction on n. Assume that the assertion is true for dimensions less than n. If $v_n = 0$ or $w_n = 0$, then the number of i's with $v_i = 0$ coincides with that of j's with $w_j = 0$. Let i_s denote this number. By the unitarity of S and T it follows that $s_{pq} = t_{pq} = 0$ when only one of p and q is smaller than $n - i_s + 1$ and the other is not. So let $a_s = 0$, S_s and T_s

denote i_s -matrices (s_{pq}) and (t_{pq}) , where $n-i_s+1 \leq p, q \leq n$, respectively. Therefore the assertion for n follows from the induction hypothesis.

Next assume that v_i and w_j are not zero for all i and j. Suppose that

$$v_1 = v_2 = \dots = v_i > v_{i+1}$$
 and $w_1 = w_2 = \dots = w_i > w_{i+1}$

Then we can prove that i=j and $s_{pq}=t_{pq}=0$ when only one of p and q is smaller than i+1 and the other is not. In fact, if $p \leq j$, then (2.3.1) implies $|v_1|^2 \geq |w_p|^2 = |w_1|^2 = |v_1|^2$ and so

$$|v_1|^2 = |v_1 s_{p1}|^2 + |v_2 s_{p2}|^2 + \dots + |v_n s_{pn}|^2$$

= $|v_1|^2 (|s_{p1}|^2 + |s_{p2}|^2 + \dots + |s_{pn}|^2).$

This equality together with $v_i > v_{i+1}$ shows that

$$s_{p,i+1} = \dots = s_{pn} = 0$$
 for $p \le j$.

If $q \le i$, then (2.3.2) again implies $|w_1|^2 \ge |v_q|^2 = |v_1|^2 = |w_1|^2$ and so

$$|w_1|^2 = |w_1 t_{1q}|^2 + |w_2 t_{2q}|^2 + \dots + |w_n t_{nq}|^2$$
$$= |w_1|^2 (|t_{1q}|^2 + |t_{2q}|^2 + \dots + |t_{nq}|^2).$$

Similarly we obtain that

$$t_{j+1,q} = \dots = t_{nq} = 0$$
 for $q \le i$.

Since the first j row vectors of S and the first i column vectors of T^* are linearly independent, we have i = j, which becomes i_1 . The assertions (2) and (3) for S_1 and T_1 also follow from the unitarity of S and T. Therefore the lemma follows from the induction on n, since the case of n = 1 is trivial.

The following lemma is a subtle version of Lemma 2.2 and its proof is technically the same.

LEMMA 2.3. Let \mathbf{v} be decreasing diagonal components given in Lemma 2.2. For two sequences $\{S^k\}$ and $\{T^k\}$ of $\mathrm{U}(n)$ and a sequence of decreasing diagonal components $\{\mathbf{d}^k\}$, suppose that the sequence $\{S^k\Delta(\mathbf{d}^k)T^k\}$ converges to $\Delta(\mathbf{v})$. Then

(1)
$$\{\mathbf{d}^k\}$$
 converges to \mathbf{v} ,

(2) If a pair (p,q) of numbers does not satisfy

$$i_1 + i_2 + \dots + i_j < p, q \le i_1 + i_2 + \dots + i_{j+1}$$

for any number j with $0 \le j < s$, then every sequence $\{s_{pq}^k\}$ (resp. $\{t_{pq}^k\}$) made of (p,q) components of S^k (resp. T^k) converges to zero.

- (3) Let $\delta(S^k)$ (resp. $\delta(T^k)$) denote the new matrix made from S^k (resp. T^k) by replacing every (p,q) component described in (2) with zero. Thus $\delta(S^k)$ and $\delta(T^k)$ have the natural decompositions $\delta(S^k)_1 + \cdots + \delta(S^k)_s$ and $\delta(T^k)_1 + \cdots + \delta(T^k)_s$ respectively. Then for any number j with $a_j \neq 0$, the sequence $\{\delta(S^k)_j\delta(T^k)_j\}$ converges to E_{i_j} .
- *Proof.* (1) The set of eigen values changes continuously with respect to matrices ([W, Appendix V.4]). By considering the eigen values of $(S^k \Delta(\mathbf{d}^k) T^k)^* (S^k \Delta(\mathbf{d}^k) T^k)$ we know that $\{\mathbf{d}^k\}$ converges to \mathbf{v} .
- (2) Let $(\|A\| = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2)^{1/2}$ be the norm of a matrix $A = (a_{ij})$. It is clear that $\|SA\| = \|A\| = \|AS\|$ for S in U(n). Set $\mathbf{d}^k = (d_1^k, \dots, d_n^k)$. We may suppose that v_1 is not zero. By the assumption and (1), given any positive real number ε , there is a number l such that if k > l, then we have

$$||S^k \Delta(\mathbf{d}^k) T^k - \Delta(\mathbf{v})|| < \varepsilon \quad \text{or} \quad ||S^k \Delta(\mathbf{d}^k) - \Delta(\mathbf{v}) (T^k)^*|| < \varepsilon$$

and

$$|d_i^k - v_i| < \varepsilon$$
 for $1 \le i \le n$.

Set $S^k = (s_{pq}^k)$ and $(T^k)^* = (t_{pq}^k)$. Take a number p with $p \leq i_1$. Then we have $v_p = v_1 \neq 0$ and

$$|d_q^k s_{pq}^k - v_p t_{pq}^k| < \varepsilon \quad \text{for} \quad 1 \le q \le n.$$

It yields

$$|(d_q^k/v_p)s_{pq}^k - t_{pq}^k| < \varepsilon/v_p$$

and so

$$|t_{pq}^k| < |(d_q^k/v_p)s_{pq}^k| + \varepsilon/v_p.$$

Hence, we have

$$1 = \sum_{q=1}^{n} |t_{pq}^{k}|^{2} < \sum_{q=1}^{n} (|d_{q}^{k}/v_{p}) s_{pq}^{k}| + \varepsilon/v_{p})^{2}$$

$$\leq \sum_{q=1}^{n} (|(v_q/v_1)s_{pq}^k| + |(d_q^k - v_q)/v_1)s_{pq}^k| + \varepsilon/v_1)^2$$

$$< \sum_{q=1}^{n} (|(v_q/v_1)s_{pq}^k| + 2\varepsilon/v_1)^2$$

$$= \sum_{q=1}^{n} (v_q/v_1)^2 |s_{pq}^k|^2 + (4\varepsilon/v_1) \Big(\sum_{q=1}^{n} |(v_q/v_1)s_{pq}^k|\Big) + 4n\varepsilon^2/v_1^2$$

$$\leq \sum_{q=1}^{i_1} |s_{pq}^k|^2 + \sum_{q=i_1+1}^{n} (v_q/v_1)^2 |s_{pq}^k|^2 + 4n\varepsilon/v_1 + 4n\varepsilon^2/v_1^2$$

$$= 1 + \sum_{q=i_1+1}^{n} (-1 + (v_q/v_1)^2) |s_{pq}^k|^2 + 4n\varepsilon/v_1 + 4n\varepsilon^2/v_1^2.$$

This implies

$$\sum_{q=i_1+1}^{n} (1 - (v_q/v_1)^2) |s_{pq}^k|^2 < 4n\varepsilon/v_1 + 4n\varepsilon^2/v_1^2.$$

Since ε can be any positive real number and $|v_q/v_1|$ is not bigger than $|v_{i_1+1}/v_1| < 1$ for $q > i_1$, $\{s_{pq}^k\}$ converges to 0 for $p \le i_1$ and $q > i_1$ when $k \to \infty$. Similarly s_{pq}^k converges to 0 for such numbers p and q. This fact also holds for T. Hence (2) is proved by induction on n.

(3) It follows from (2) that

$$\begin{split} \Delta(\mathbf{v}) &= \lim_{k \to \infty} S^k \Delta(\mathbf{d}^k) T^k \\ &= \lim_{k \to \infty} \delta(S^k) \Delta(\mathbf{v}) \delta(T^k) \\ &= \lim_{k \to \infty} \Delta(\mathbf{v}) \delta(S^k) \delta(T^k). \end{split}$$

Since **v** is decreasing, $\delta(S^k)_j \delta(T^k)_j$ must converge to E_{i_j} for those numbers j with $a_j \neq 0$.

§3. Homotopy type of Ω^1

In this section we shall study the homology types of Ω^1 and Σ^1 in $\operatorname{Hom}(\mathbf{C}^n,\mathbf{C}^n)$ for $n\geq 2$. Let Ω^1_s (resp. Σ^1_s) denote the space consisting of all matrices $A=(a_{ij})$ such that $A\in\Omega^1$ (resp. $A\in\Sigma^1$) and $\|A\|=1$. Clearly it is a deformation retract of Ω^1 (resp. Σ^1). Hence, we study their homotopy types.

Let Δ denote the contractible space consisting of all decreasing diagonal components \mathbf{d} such that $d_{n-1}>0$ and $\sum_{i=1}^n d_i^2=1$. In Δ we consider the subspace consisting of all special diagonal components of the form $\mathbf{d}_{ab}=(a/\sqrt{n-1},\ldots,a/\sqrt{n-1},b/\sqrt{n})$, where a and b satisfy $a^2+(b^2/n)=1$ and $a/\sqrt{n-1}\geq b/\sqrt{n}$. Note that unless b=1, we have $a/\sqrt{n-1}>b/\sqrt{n}$. For a subset B of [0,1] we define Δ_B to be the subset of Δ consisting of all diagonal components \mathbf{d}_{ab} with $b\in B$.

Lemma 2.1 is a motivation for defining the surjection

$$\mathcal{H}: \mathrm{SU}(n) \times \Delta \times S^1 \times \mathrm{SU}(n) \longrightarrow \Omega^1_s$$

by $\mathcal{H}(S, \mathbf{d}, e^{\sqrt{-1}\theta}, U) = S\Delta(\mathbf{d})I_{-\theta}U$. Here note that given decreasing diagonal components $\mathbf{d} = (d_1, \dots, d_n), S\Delta(\mathbf{d})I_{-\theta}U \in \Omega^1_s$ if and only if $\mathbf{d} \in \Delta$. We denote the image $\mathcal{H}(\mathrm{SU}(n) \times \Delta_B \times S^1 \times \mathrm{SU}(n))$ by K(B).

Theorem 3.1. Let $n \geq 2$. There exists a deformation retraction of Ω^1_s to K([0,1]) whose restriction to Σ^1_s induces a deformation retraction of Σ^1_s to $K(\{0\})$.

Proof. If n=2, then it is clear that Ω_s^1 coincides with K([0,1]) and that Σ_s^1 coincides with $K(\{0\})$. Thus we may assume that $n \geq 3$. Let Δ' be the set of all diagonal components $\mathbf{f} = (f_1, \ldots, f_{n-2}, 0, 0)$ with $f_1 \geq f_2 \geq \cdots \geq f_{n-2} \geq 0$ and $\sum_{i=1}^{n-2} f_i^2 = 1$. First we shall prove that Δ is identified with the space $(\Delta' * \Delta_{[0,1]}) \setminus \Delta'$, where $\Delta' * \Delta_{[0,1]}$ is the join of Δ' and $\Delta_{[0,1]}$ taken on the unit sphere S^{n-1} .

For $\mathbf{d} = (d_1, \dots, d_n)$ of $\Delta \setminus \Delta_{[0,1]}$, there exist uniquely determined \mathbf{f} , \mathbf{d}_{ab} and t with 1 > t > 0 such that if we set $\mathbf{d}' = t\mathbf{f} + (1 - t)\mathbf{d}_{ab}$, then $\mathbf{d} = \mathbf{d}'/\|\mathbf{d}'\|$. In fact, let $t\mathbf{f} + (1 - t)\mathbf{d}_{ab} = c(s\mathbf{f}' + (1 - s)\mathbf{d}_{a'b'})$ with c > 0. Then

$$(1-t)a = c(1-s)a', \quad (1-t)b = c(1-s)b',$$
$$(1-t)^2(a^2 + (b^2/n)) = c^2(1-s)^2(a'^2 + (b'^2/n)).$$

This yields 1 - t = c(1 - s). Hence a = a' and b = b'. So we have $t\mathbf{f} = cs\mathbf{f}'$ and t = cs. Thus we obtain that t = s, a = a', b = b', $\mathbf{f} = \mathbf{f}'$ and c = 1.

Next we show the existence of \mathbf{f} , \mathbf{d}_{ab} and t. By using the equation $\mathbf{d} = \mathbf{d}'/\|\mathbf{d}'\|$, we obtain

$$\|\mathbf{d}'\|d_{n-1} = (1-t)a/\sqrt{n-1}, \quad \|\mathbf{d}'\|d_n = (1-t)b/\sqrt{n}$$

and

$$\|\mathbf{d}'\|^2((n-1)d_{n-1}^2 + d_n^2) = (1-t)^2(a^2 + (b^2/n)) = (1-t)^2.$$

For simplicity, set $u = ((n-1)d_{n-1}^2 + d_n^2)^{1/2} > 0$. It must be that $a = \sqrt{n-1}d_{n-1}/u$ and $b = \sqrt{n}d_n/u$ with $a^2 + (b^2/n) = 1$ and $a/\sqrt{n-1} \ge b/\sqrt{n}$, and that **f** and t satisfy the equation

$$\mathbf{d} = (1/\|\mathbf{d}'\|)t\mathbf{f} + ((1-t)/\|\mathbf{d}'\|)\mathbf{d}_{ab} = (ut/(1-t))\mathbf{f} + u\mathbf{d}_{ab}.$$

Therefore, for \mathbf{d} of $\Delta \setminus \Delta_{[0,1]}$ we define a and b as above, and \mathbf{f} and t so that they satisfy $\mathbf{f} = (\mathbf{d} - u\mathbf{d}_{ab})/\|\mathbf{d} - u\mathbf{d}_{ab}\|$ and $ut/(1-t) = \|\mathbf{d} - u\mathbf{d}_{ab}\|$. By definition, it is easy to see that $f_{n-1} = f_n = 0$, $\|\mathbf{d} - u\mathbf{d}_{ab}\| > 0$ and 0 < t < 1.

In the following we represent \mathbf{d} in Δ as $(t\mathbf{f} + (1-t)\mathbf{d}_{ab})/\|t\mathbf{f} + (1-t)\mathbf{d}_{ab}\|$, where $\mathbf{d} \in \Delta_{[0,1]}$ if and only if t = 0. Now we define the deformation retraction r_{λ} of Δ to $\Delta_{[0,1]}$ with $r = \mathrm{id}_{\Delta}$ by

$$r_{\lambda}(\mathbf{d}) = ((1-\lambda)(t\mathbf{f} + (1-t)\mathbf{d}_{ab}) + \lambda \mathbf{d}_{ab}) / \|(1-\lambda)(t\mathbf{f} + (1-t)\mathbf{d}_{ab}) + \lambda \mathbf{d}_{ab}\|.$$

It has the property that if $d_i = d_j$, then the *i*-th and the *j*-th components of $r_{\lambda}(\mathbf{d})$ denoted by d_i^{λ} and d_j^{λ} respectively coincide with each other. In fact, for the case $i \leq j \leq n-1$ this follows from $\mathbf{f} = (\mathbf{d} - u\mathbf{d}_{ab})/\|\mathbf{d} - u\mathbf{d}_{ab}\|$ and for the case $i \leq n-1$ and j=n, we have $d_i = d_{i+1} = \cdots = d_n$ and so $a/\sqrt{n-1} = b/\sqrt{n}$. This yields $f_i = f_{i+1} = \cdots = f_n$ and so $d_i^{\lambda} = d_{i+1}^{\lambda} = \cdots = d_n^{\lambda}$.

Now we define the deformation retraction R_{λ} of Ω_{s}^{1} to K([0,1]), whose restriction of Σ_{s}^{1} induces a deformation retraction of Σ_{s}^{1} to $K(\{0\})$. We always consider the representation of a matrix A of Ω_{s}^{1} as $A = S\Delta(\mathbf{d})I_{-\theta}U$, where $S, T \in SU(n)$. Then define R_{λ} by $R_{\lambda}(A) = S\Delta(r_{\lambda}(\mathbf{d}))I_{-\theta}U$. This is well defined and continuous as is seen below. Let $A = S'\Delta(\mathbf{d})I_{-\theta}U'$. If $d_{i} = d_{j}$, then $d_{i}^{\lambda} = d_{j}^{\lambda}$. Furthermore, the matrices $(S')^{*}S$ and $I_{-\theta}U(U')^{*}I_{\theta}$ belong to SU(n) and satisfy the properties stated in Lemma 2.2, since $(S')^{*}S\Delta(\mathbf{d})I_{-\theta}U(U')^{*}I_{\theta} = \Delta(\mathbf{d})$. Hence, it follows that $(S')^{*}S\Delta(r_{\lambda}(\mathbf{d})) \times I_{-\theta}U(U')^{*}I_{\theta} = \Delta(r_{\lambda}(\mathbf{d}))$. This implies that $R_{\lambda}(A)$ does not depend on the choice of S and U. It is easy to see that $R_{\lambda}(A)$ keeps Σ_{s}^{1} and that R_{1} maps Σ_{s}^{1} onto $K(\{0\})$.

For the proof of continuity, take a sequence $\{A^k\}$ of Ω^1_s with representation $A^k = S^k \Delta(\mathbf{d}^k) I_{-\theta_k} U^k$ as in Lemma 2.3 and a sequence $\{\lambda_m\}$ such

that $\lim_{k\to\infty} A^k = A$ and $\lim_{m\to\infty} \lambda_m = \lambda$. Then $\{\mathbf{d}^k\}$ converges to \mathbf{d} by Lemma 2.3 (1). Since

(3.1.1)
$$\lim_{k \to \infty} S^* S^k \Delta(\mathbf{d}^k) I_{-\theta_k} U^k U^* I_{\theta} - \Delta(\mathbf{d}),$$

it follows that S^*S^k and $I_{-\theta_k}U^kU^*I_{\theta}$ satisfy the properties of Lemma 2.3, which induce $\delta(S^*S^k)$ and $\delta(I_{-\theta_k}U^kU^*I_{\theta})$. Therefore, we have

(3.1.2)
$$\lim_{k \to \infty, m \to \infty} S^* S^k \Delta(r_{\lambda_m}(\mathbf{d}^k)) I_{-\theta_k} U^k U^* I_{\theta}$$

$$= \lim_{k \to \infty, m \to \infty} \delta(S^* S^k) \Delta(r_{\lambda_m}(\mathbf{d}^k)) \delta(I_{-\theta_k} U^k U^* I_{\theta})$$

$$= \lim_{k \to \infty, m \to \infty} \Delta(r_{\lambda_m}(\mathbf{d}^k)) \delta(S^* S^k) \delta(I_{-\theta_k} U^k U^* I_{\theta})$$

$$= \Delta(r_{\lambda}(\mathbf{d})).$$

Thus (3.1.2) proves that
$$\lim_{k\to\infty, m\to\infty} R_{\lambda_m}(A^k) = R_{\lambda}(A)$$
.

In the following we shall prove that K([0,1]) is the space stated in Theorem 1 (1) in Introduction.

We begin by proving that the restriction of \mathcal{H} to $\mathrm{SU}(n) \times \Delta_{(0,1)} \times S^1 \times \mathrm{SU}(n)$ onto K((0,1)) is a fibre bundle. Let $\mathcal{H}(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = \mathcal{H}(S', \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U')$. Then $(S')^*S\Delta(\mathbf{d}_{ab})I_{-\theta}U(U')^*I_{\theta} = \Delta(\mathbf{d}_{ab})$. By we have that $(S')^*S$ and $I_{-\theta}U(U')^*I_{\theta}$ have the decompositions $S_1 + (z_1)$ and $U_1 + (z_2)$ respectively with $S_1U_1 = E_{n-1}$ and $z_1z_2 = 1$. Hence we have $(S')^*SI_{-\theta}U(U')^*I_{\theta} = E_n$, that is, $SI_{-\theta}U = S'I_{-\theta}U'$ and $S\mathbf{e}_n = S'(S_1 + (z_1))\mathbf{e}_n = z_1S'\mathbf{e}_n$, where $\mathbf{e}_n = {}^t(0, \ldots, 0, 1)$. This observation enables us to define the surjections,

$$P: \mathrm{SU}(n) \times \Delta_{(0,1)} \times S^1 \times \mathrm{SU}(n) \longrightarrow \mathbf{CP}^{n-1} \times \Delta_{(0,1)} \times S^1 \times \mathrm{SU}(n),$$

 $H: \mathbf{CP}^{n-1} \times \Delta_{(0,1)} \times S^1 \times \mathrm{SU}(n) \longrightarrow K((0,1))$

by $P(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = ([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}U)$ and $\mathcal{H} \mid \mathrm{SU}(n) \times \Delta_{(0,1)} \times S^1 \times \mathrm{SU}(n) = H \circ P$, where [*] refers to the element of \mathbf{CP}^{n-1} represented by *. The precise description of H is as follows. Let \mathbf{v} be an element of \mathbf{CP}^{n-1} represented by a vector \mathbf{s} with length 1. Find a matrix S of $\mathrm{SU}(n)$ with $S\mathbf{e}_n = \mathbf{s}$ (this notation will be often used below without stating it explicitly). Then we know that

(3.2)
$$H(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = S\Delta(\mathbf{d}_{ab})S^*I_{-\theta}U.$$

In fact, it does not depend on the choice of s and S, because a direct calculation shows

$$(3.3) S\Delta(x,\ldots,x,y)S^* = xE_n + (y-x)(s_i\bar{s}_i).$$

and we have

$$H \circ P(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = H(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}U)$$

$$= S\Delta(\mathbf{d}_{ab})S^*I_{-\theta}(I_{\theta}SI_{-\theta}U)$$

$$= S\Delta(\mathbf{d}_{ab})I_{-\theta}U$$

$$= \mathcal{H}(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U).$$

Here we note that H is naturally extended to the continuous surjection \widetilde{H} of $OC(\mathbf{CP}^{n-1}) \times S^1 \times SU(n)$ onto K((0,1]) by setting $\widetilde{H}(*,e^{\sqrt{-1}\theta},U) = (1/\sqrt{n})I_{-\theta}U$, where * is the cone point, since we have

$$\lim_{b \to 1} H(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = \lim_{b \to 1} S\Delta(\mathbf{d}_{ab})S^*I_{-\theta}U$$
$$= S(1/\sqrt{n})E_nS^*I_{-\theta}U = (1/\sqrt{n})I_{-\theta}U,$$

which does not depend on the vector \mathbf{v} . Here note that the point $(\mathbf{v}, \mathbf{d}_{ab})$ corresponds to the point $(\mathbf{v}, (1 - b^2)^{1/2})$ in $OC(\mathbf{CP}^{n-1}) = \mathbf{CP}^{n-1} \times [0, 1)/\mathbf{CP}^{n-1} \times 0$.

We define the other map

$$P_{\Sigma}: \mathrm{SU}(n) \times \Delta_{(0,1/2)} \times S^1 \times \mathrm{SU}(n) \longrightarrow \mathbf{CP}^{n-1} \times \Delta_{(0,1/2)} \times S^1 \times \mathrm{SU}(n)$$

by $P_{\Sigma}(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = ([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, SU)$. This map induces the surjection

$$H_{\Sigma}: \mathbf{CP}^{n-1} \times \Delta_{(0,1/2)} \times S^1 \times \mathrm{SU}(n) \longrightarrow K((0,1/2))$$

defined by

(3.4)
$$H_{\Sigma}(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*U$$

so that $\mathcal{H} \mid \mathrm{SU}(n) \times \Delta_{(0,1/2)} \times S^1 \times \mathrm{SU}(n) = H_{\Sigma} \circ P_{\Sigma}$, where S is a matrix of $\mathrm{SU}(n)$ with $[S\mathbf{e}_n] = \mathbf{v}$. In fact, this map is well defined, since

 $S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*U = S\Delta(\mathbf{d}_{ab})S^*SI_{-\theta}S^*U$, and $S\Delta(\mathbf{d}_{ab})S^*$ and $SI_{-\theta}S^*$ depend only on \mathbf{v} by (3.3). Then we have

$$H_{\Sigma} \circ P_{\Sigma}(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = H_{\Sigma}([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, SU)$$
$$= S\Delta(\mathbf{d}_{ab})I_{-\theta}U$$
$$= \mathcal{H}(S, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U).$$

Now H_{Σ} is naturally extended to the continuous surjection

$$\widetilde{H}_{\Sigma}: \mathbf{CP}^{n-1} \times \mathrm{Int}\, D^2_{1/2} \times \mathrm{SU}(n) \longrightarrow K([0,1/2))$$

defined by $\widetilde{H}_{\Sigma}(\mathbf{v}, be^{\sqrt{-1}\theta}, U) = H_{\Sigma}(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U)$ for 0 < b < 1/2 and $\widetilde{H}_{\Sigma}(\mathbf{v}, \mathbf{0}, U) = S\Delta(1/\sqrt{n-1}, \dots, 1/\sqrt{n-1}, 0)S^*U$, since we have

$$\lim_{b \to 0} H_{\Sigma}(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = \lim_{b \to 0} S\Delta(\mathbf{d}_{ab}) I_{-\theta} S^* U$$
$$= S\Delta(1/\sqrt{n-1}, \dots, 1/\sqrt{n-1}, 0) S^* U.$$

LEMMA 3.5. (1) The map $\widetilde{H}: OC(\mathbf{CP}^{n-1}) \times S^1 \times SU(n) \to K((0,1])$ is a continuous bijection.

(2) The map $\widetilde{H}_{\Sigma}: \mathbf{CP}^{n-1} \times \mathrm{Int} \, D^2_{1/2} \times \mathrm{SU}(n) \to K([0,1/2))$ is a continuous bijection.

Proof. (1) Let A be a matrix of K((0,1]), which is represented as $S\Delta(\mathbf{d}_{ab})I_{-\theta}U$ with $S,U\in \mathrm{SU}(n)$. We show that the inverse H_1 of \widetilde{H} is given by

$$H_1(A) = ([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}U)$$
 for $0 < b < 1$,
 $H_1(A) = (*, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}U)$ for $b = 1$.

First we see that H_1 is well defined. By Lemma 2.1, \mathbf{d}_{ab} is determined by A. Let $S'\Delta(\mathbf{d}_{ab})I_{-\theta}U'$ be another representation. Then it follows from Lemma 2.2 that $SI_{-\theta}U = S'I_{-\theta}U'$, and $[S\mathbf{e}_n] = [S'\mathbf{e}_n]$ for 0 < b < 1. Let us see that it is actually the inverse of \widetilde{H} . In fact, for 0 < b < 1, we have

$$\widetilde{H} \circ H_1(A) = \widetilde{H}([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}U)$$

$$= S\Delta(\mathbf{d}_{ab})S^*I_{-\theta}I_{\theta}SI_{-\theta}U$$

$$= A,$$

and for b = 1, we have

$$\widetilde{H} \circ H_1(A) = \widetilde{H}(*, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}U)$$

$$= (1/\sqrt{n})I_{-\theta}I_{\theta}SI_{-\theta}U$$

$$= S(1/\sqrt{n})E_nI_{-\theta}U$$

$$= A.$$

We have, inversely, for 0 < b < 1

$$\begin{split} H_1 \circ \widetilde{H}(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\,\theta}, U) &= H_1(S\Delta(\mathbf{d}_{ab})S^*I_{-\theta}U) \\ &= H_1(S\Delta(\mathbf{d}_{ab})I_{-\theta}I_{\theta}S^*I_{-\theta}U) \\ &= ([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\,\theta}, I_{\theta}SI_{-\theta}I_{\theta}S^*I_{-\theta}U) \\ &= ([S\mathbf{e}_n], \mathbf{d}_{ab}, e^{\sqrt{-1}\,\theta}, U). \end{split}$$

Similarly, for b=1, we see that $H_1 \circ \widetilde{H}(*,e^{\sqrt{-1}\theta},U)=(*,e^{\sqrt{-1}\theta},U)$.

(2) A matrix A of K([0,1/2)) is represented as $S\Delta(\mathbf{d}_{ab})I_{-\theta}U$ as above and the inverse $(H_{\Sigma})_1$ of \widetilde{H}_{Σ} is given by

$$(H_{\Sigma})_1(A) = ([S\mathbf{e}_n]), be^{\sqrt{-1}\theta}, SU).$$

It follows from Lemma 2.2 that this is well defined. In fact, let $A = S'\Delta(\mathbf{d}_{ab})I_{-\theta'}U'$ be another representation of A. Then we have $S^*S'\Delta(\mathbf{d}_{ab})I_{-\theta'}U'U^*I_{\theta} = \Delta(\mathbf{d}_{ab})$. We can represent as $S^*S' = S_1 + (z_1)$ and $I_{-\theta'}U'U^*I_{\theta} = U_1 + (z_2)$, that is, $U'U^* = U_1 + (z_2)$ with $S_1U_1 = E_{n-1}$, and $z_1z_2 = 1$ by Lemma 2.2 for b > 0 and by $z_1 \det S_1 = z_2 \det S_2 = 1$ for b = 0. Hence, we have $S^*S'U'U^* = E_n$ and so SU = S'U'. $(H_{\Sigma})_1$ is actually the inverse of \widetilde{H}_{Σ} , since we have

$$\widetilde{H}_{\Sigma} \circ (H_{\Sigma})_1(A) = \widetilde{H}_{\Sigma}([S\mathbf{e}_n], be^{\sqrt{-1}\theta}, SU)$$

$$= S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*SU$$

$$= A$$

and

$$(H_{\Sigma})_1 \circ \widetilde{H}_{\Sigma}(\mathbf{v}, be^{\sqrt{-1}\theta}, U) = (H_{\Sigma})_1(S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*U)$$

= $([S\mathbf{e}_n], be^{\sqrt{-1}\theta}, U).$

Consequently we have two bijections of $\mathbf{CP}^{n-1} \times \Delta_{(0,1/2)} \times S^1 \times \mathrm{SU}(n)$ onto K((0,1/2)) by H and H_{Σ} . Here recall the matrix $G(\mathbf{v}, e^{\sqrt{-1}\theta}) = I_{\theta}(E_n + (e^{-\sqrt{-1}\theta} - 1)(s_i\bar{s}_j))$ in Introduction, which is equal to $I_{\theta}SI_{-\theta}S^*$ by (3.3) for all S with $[S\mathbf{e}_n] = \mathbf{v}$. Let us determine the map $H^{-1} \circ H_{\Sigma}$ by using (3.2), (3.4) and Lemma 3.5. We have

(3.6)
$$H^{-1} \circ H_{\Sigma}(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) = H^{-1}(S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*U)$$
$$= (\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, I_{\theta}SI_{-\theta}S^*U)$$
$$= (\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, G(\mathbf{v}, e^{\sqrt{-1}\theta})U).$$

It is easy to see that $H^{-1} \circ H_{\Sigma} \mid \mathbf{CP}^{n-1} \times \Delta_{(0,1/2)} \times S^1 \times \mathrm{SU}(n)$ is a homeomorphism.

THEOREM 3.7. Let $n \geq 2$. Under the notation in Introduction, the space K([0,1]) is homeomorphic to $\mathbf{CP}^{n-1} \times \mathrm{Int} D^2_{1/2} \times \mathrm{SU}(n) \cup_g \mathrm{OC}(\mathbf{CP}^{n-1}) \times S^1 \times \mathrm{SU}(n)$ and the space $K(\{0\})$ is homeomorphic to $\mathbf{CP}^{n-1} \times \{\mathbf{0}\} \times \mathrm{SU}(n)$.

Proof. We define the map $j_n: \mathbf{CP}^{n-1} \times \mathrm{Int} \, D_{1/2}^2 \times \mathrm{SU}(n) \cup_g \mathrm{OC}(\mathbf{CP}^{n-1}) \times S^1 \times \mathrm{SU}(n) \to K([0,1]) \text{ by } j_n(\mathbf{v}, be^{\sqrt{-1}\theta}, U) = \widetilde{H}_{\Sigma}(\mathbf{v}, be^{\sqrt{-1}\theta}, U) \text{ for } 0 \leq b < 1/2 \text{ and } j_n(\mathbf{v}, (1-b^2)^{1/2}, e^{\sqrt{-1}\theta}, U) = \widetilde{H}(\mathbf{v}, \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U) \text{ for } 0 < b \leq 1.$ It follows from Lemma 3.5 and (3.6) that j_n is well defined and is a continuous bijection. Since $\mathbf{CP}^{n-1} \times \mathrm{Int} \, D_{1/2}^2 \times \mathrm{SU}(n) \cup_g \mathrm{OC}(\mathbf{CP}^{n-1}) \times S^1 \times \mathrm{SU}(n)$ is compact, we have that j_n is a homeomorphism. Furthermore, j_n maps $\mathbf{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ onto $K(\{0\})$.

Proof of Theorem 1(1). The assertion follows from Theorems 3.1 and 3.7. $\hfill\Box$

Remark 3.8. Let $\mathbf{v} = [S\mathbf{e}_n]$ as above. The kernel of $\widetilde{H}_{\Sigma}(\mathbf{v}, \mathbf{0}, U)$ is generated by $U^*S\mathbf{e}_n$ and the orthogonal complement of its image is generated by $S\mathbf{e}_n$.

§4. Structure of the fibre bundle SU(n+1) over SU(n+1)/SU(n)

In this section let $n \ge 1$. In contrast to the canonical basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of \mathbb{C}^n , we write the canonical basis of \mathbb{C}^{n+1} by $\{\mathbf{e}'_1, \dots, \mathbf{e}'_{n+1}\}$. Let E_{n+1} be the unit matrix of rank n+1. We shall consider the fibre bundle π : $\mathrm{SU}(n+1) \to \mathrm{SU}(n+1)/\mathrm{SU}(n) \times (1) \cong S^{2n+1}$ and specify its structure. In

this paper a point of S^{2n+1} will be written as $\mathbf{z} = {}^t(x_1, \dots, x_n, z_{n+1})$ with $\mathbf{x} = {}^t(x_1, \dots, x_n) \in \mathbf{C}^n$ and $z_{n+1} = be^{\sqrt{-1}\theta}$. Let $S_{\mathcal{R}}$ and S_{Σ} be the subsets of S^{2n+1} consisting of all points z such that $0 < b \le 1$ and $0 \le b < 1/2$ respectively.

For a point **z** of $S_{\mathcal{R}}$ with $0 < b \leq 1$, we define the matrix $r(\mathbf{z})$ of SU(n+1) so that

$$(4.1-(i)) r(\mathbf{z})(\mathbf{e}'_{n+1}) = e^{-\sqrt{-1}\theta}\mathbf{z},$$

(4.1-(ii))
$$r(\mathbf{z})(\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1}) = b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1},$$

(4.1-(iii)) if 0 < b < 1, then $r(\mathbf{z})$ is the identity on the orthogonal complement of the subspace generated by the two vectors \mathbf{e}'_{n+1} and $\mathbf{z} - z_{n+1} \mathbf{e}'_{n+1}$ over \mathbf{C} and if b = 1, then $r(z) = E_{n+1}$.

For a point **z** of S_{Σ} with $0 \leq b < 1/2$, we define the matrix $r_{\Sigma}(\mathbf{z})$ of SU(n+1) so that

$$(4.2-(i)) r_{\Sigma}(\mathbf{z})(\mathbf{e}'_{n+1}) = \mathbf{z},$$

(4.2-(ii))
$$r_{\Sigma}(\mathbf{z})(\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1}) = \bar{z}_{n+1}\mathbf{z} - \mathbf{e}'_{n+1},$$

(4.2-(iii)) $r_{\Sigma}(\mathbf{z})$ is the identity on the orthogonal complement of the subspace generated by the two vectors \mathbf{e}'_{n+1} and $\mathbf{z} - z_{n+1} \mathbf{e}'_{n+1}$ over \mathbf{C} .

The explicit formulas of the matrices $r(\mathbf{z})$ and $r_{\Sigma}(\mathbf{z})$ are as follows:

$$r(\mathbf{z}) = \begin{pmatrix} R(\mathbf{z}) & e^{-\sqrt{-1}\theta}\mathbf{x} \\ -e^{\sqrt{-1}\theta}({}^t\bar{\mathbf{x}}) & b \end{pmatrix} \text{ and } r_{\Sigma}(\mathbf{z}) = \begin{pmatrix} R_{\Sigma}(\mathbf{x}) & \mathbf{x} \\ -{}^t\bar{\mathbf{x}} & be^{\sqrt{-1}\theta} \end{pmatrix},$$

where the (i, j) components of $R(\mathbf{z})$ and $R_{\Sigma}(\mathbf{z})$ are $\delta_{ij} - x_i \bar{x}_j/(1+b)$ and $\delta_{ij} - x_i \bar{x}_j/(1-be^{-\sqrt{-1}\theta})/(1-b^2)$) respectively.

LEMMA 4.3. The determinants of $r(\mathbf{z})$ and $r_{\Sigma}(\mathbf{z})$ are equal to 1.

Proof. First we show $\det(r(\mathbf{z})) = 1$. For $b \neq 1$, let $\mathbf{f}_1, \dots, \mathbf{f}_{n-1}$ denote vectors such that $(\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{e}'_{n+1}, (\mathbf{z} - z_{n+1} \mathbf{e}'_{n+1}) / ||x||)$ is an orthonormal basis. Then by definition we have

$$r(\mathbf{z})(\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{e}'_{n+1}, (\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})/\|\mathbf{x}\|)$$

$$= (\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, e^{-\sqrt{-1}\theta}\mathbf{z}, (b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1})/\|\mathbf{x}\|).$$

Hence,

$$\|\mathbf{x}\|^{2} \det(r(\mathbf{z}))$$

$$= \det((\mathbf{f}_{1}, \dots, \mathbf{f}_{n-1}, \mathbf{e}'_{n+1}, \mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})^{*}$$

$$\times (\mathbf{f}_{1}, \dots, \mathbf{f}_{n-1}, e^{-\sqrt{-1}\theta}\mathbf{z}, b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1}))$$

$$= \det(E_{n-1} + ({}^{t}(\mathbf{e}'_{n+1}, \mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})(e^{-\sqrt{-1}\theta}\mathbf{z}, b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1})))$$

$$= \det({}^{t}(\mathbf{e}'_{n+1}, \mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})(e^{-\sqrt{-1}\theta}\mathbf{z}, b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1}))$$

$$= \det\begin{pmatrix} b & (-\|\mathbf{x}\|^{2})e^{\sqrt{-1}\theta} \\ \|\mathbf{x}\|^{2}e^{-\sqrt{-1}\theta} & b\|\mathbf{x}\|^{2} \end{pmatrix}$$

$$= \|\mathbf{x}\|^{2}(b^{2} + \|\mathbf{x}\|^{2})$$

$$= \|\mathbf{x}\|^{2}.$$

Next let us show that $\det(r_{\Sigma}(\mathbf{z})) = 1$. Take an orthonormal basis $(\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{e}'_{n+1}, (\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})/\|\mathbf{x}\|)$. Then by definition we have

$$r_{\Sigma}(\mathbf{z})(\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{e}'_{n+1}, (\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})/||\mathbf{x}||)$$

= $(\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{z}, (\bar{z}_{n+1}\mathbf{z} - \mathbf{e}'_{n+1})/||\mathbf{x}||).$

Hence,

$$\begin{aligned} \|\mathbf{x}\|^2 \det(r_{\Sigma}(\mathbf{z})) \\ &= \det((\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{e}'_{n+1}, \mathbf{z} - z_{n+1} \mathbf{e}'_{n+1})^* \\ &\times (\mathbf{f}_1, \dots, \mathbf{f}_{n-1}, \mathbf{z}, \bar{z}_{n+1} \mathbf{z} - \mathbf{e}'_{n+1})) \\ &= \det(E_{n-1} + ({}^t(\overline{\mathbf{e}'_{n+1}}, \mathbf{z} - z_{n+1} \mathbf{e}'_{n+1})(\mathbf{z}, \bar{z}_{n+1} \mathbf{z} - \mathbf{e}'_{n+1}))) \end{aligned}$$

$$= \det({}^{t}(\overline{\mathbf{e}'_{n+1}}, \mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})(\mathbf{z}, \overline{z}_{n+1}\mathbf{z} - \mathbf{e}'_{n+1}))$$

$$= \det\begin{pmatrix} be^{\sqrt{-1}\theta} & -\|\mathbf{x}\|^{2} \\ \|\mathbf{x}\|^{2} & be^{-\sqrt{-1}\theta}\|\mathbf{x}\|^{2} \end{pmatrix}$$

$$= \|\mathbf{x}\|^{2}.$$

LEMMA 4.4. For a point $\mathbf{z} = {}^t(x_1, \dots, x_n), be^{\sqrt{-1}\,\theta})$ of S^{2n+1} with 0 < b < 1/2, set $\mathbf{s} = \mathbf{x}/\|\mathbf{x}\|$ and let S be a matrix of $\mathrm{SU}(n)$ with $S\mathbf{e}_n = \mathbf{s}$. Then we have

$$r(\mathbf{z})^{-1}r_{\Sigma}(\mathbf{z}) = SI_{-\theta}S^* + (e^{\sqrt{-1}\theta}).$$

Proof. Let T be the matrix $(S+(1))^*r(\mathbf{z})^{-1}r_{\Sigma}(\mathbf{z})(S+(1))(I_{\theta}+(1))$. Then we have

(1)
$$T(\mathbf{e}'_{n+1}) = e^{\sqrt{-1}\theta} \mathbf{e}'_{n+1},$$

(2)
$$T(\|\mathbf{x}\|\mathbf{e}'_{n}) = (S + (1))^{*}r(\mathbf{z})^{-1}r_{\Sigma}(\mathbf{z})(S + (1))(\|\mathbf{x}\|e^{\sqrt{-1}\theta}\mathbf{e}'_{n})$$
$$= (S + (1))^{*}r(\mathbf{z})^{-1}r_{\Sigma}(\mathbf{z})(e^{\sqrt{-1}\theta}(\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1}))$$
$$= (S + (1))^{*}r(\mathbf{z})^{-1}(b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1})$$
$$= (S + (1))^{*}(\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1})$$
$$= \|\mathbf{x}\|\mathbf{e}'_{n}.$$

Since $(S + (1))\mathbf{e}'_i$ (i = 1, ..., n - 1) belong to the orthogonal complement of the space generated by \mathbf{e}'_{n+1} and $\mathbf{z} - z_{n+1}\mathbf{e}'_{n+1}$, we obtain by (4.1-(iii)) and (4.2-(iii) that

(3)
$$T\mathbf{e}'_i = \mathbf{e}'_i$$
 $(i = 1, ..., n-1).$

Therefore, it follows that $T = E_n + (e^{\sqrt{-1}\theta})$.

For a matrix $M \in \mathrm{SU}(n+1)$, let $M\mathbf{e}'_{n+1}$ be written as $\mathbf{z} = {}^t(x_1,\ldots,x_n,z_{n+1})$ with $\mathbf{x}(M) = {}^t(x_1,\ldots,x_n)$ and $z_{n+1} = be^{\sqrt{-1}\theta}$. If $0 < b \le 1$, then $r(\mathbf{z})^{-1}M\mathbf{e}'_{n+1} = r(\mathbf{z})^{-1}\mathbf{z} = e^{\sqrt{-1}\theta}\mathbf{e}'_{n+1}$ and $r(\mathbf{z})^{-1}M$ is written as $I_{-\theta}U(M) + (e^{\sqrt{-1}\theta})$ by some matrix U(M) of $\mathrm{SU}(n)$. If $0 \le b < 1/2$, then $r_{\Sigma}(\mathbf{z})^{-1}M\mathbf{e}'_{n+1} = r_{\Sigma}(\mathbf{z})^{-1}\mathbf{z} = \mathbf{e}'_{n+1}$ and $r_{\Sigma}(\mathbf{z})^{-1}M$ is written as $U_{\Sigma}(M) + \mathbf{e}'_{n+1}$

(1) by some matrix $U_{\Sigma}(M)$ of SU(n). If ||x(M)|| is not 0, then set $\mathbf{s}(M) = \mathbf{x}(M)/||\mathbf{x}(M)||$. We define the trivializations

$$(4.5) t_{\mathcal{R}} : \pi^{-1}(S_{\mathcal{R}}) \longrightarrow \operatorname{Int} D_1^{2n} \times S^1 \times \operatorname{SU}(n) \text{ and}$$

$$t_{\Sigma} : \pi^{-1}(S_{\Sigma}) \longrightarrow S^{2n-1} \times \operatorname{Int} D_{1/2}^2 \times \operatorname{SU}(n)$$

of $\pi^{-1}(S_{\mathcal{R}})$ and $\pi^{-1}(S_{\Sigma})$ by $t_{\mathcal{R}}(M) = (x(M), e^{\sqrt{-1}\theta}, U(M))$ and $t_{\Sigma}(M) = (\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M))$ respectively. It is not difficult to see that they are really trivializations. From now on, when a vector \mathbf{s} representing $[\mathbf{s}]$ is specified, the matrix $I_{\theta}SI_{-\theta}S^*$ is denoted by $G(\mathbf{s}, e^{\sqrt{-1}\theta})$ in place of $G([\mathbf{s}], e^{\sqrt{-1}\theta})$.

Proposition 4.6. If 0 < b < 1/2 then we have

$$t_{\mathcal{R}} \circ t_{\Sigma}^{-1}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma}) = ((1 - b^2)^{1/2}\mathbf{s}, e^{\sqrt{-1}\theta}, G(\mathbf{s}, e^{\sqrt{-1}\theta})U_{\Sigma}).$$

Proof. There exists a matrix M of SU(n+1) such that $\mathbf{s} = \mathbf{s}(M)$, $U_{\Sigma} = U_{\Sigma}(M)$ and ${}^t\mathbf{z} = {}^t(M\mathbf{e}'_{n+1}) = ({}^t\mathbf{x}(M), be^{\sqrt{-1}\theta})$. By definition, we have $t_{\Sigma}^{-1}(\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M)) = M = r_{\Sigma}(\mathbf{z})(U_{\Sigma}(M) + (1))$. Again by definition of U(M), we have

$$I_{-\theta}U(M) + (e^{\sqrt{-1}\theta}) = r(\mathbf{z})^{-1}M = r(\mathbf{z})^{-1}r_{\Sigma}(\mathbf{z})(U_{\Sigma}(M) + (1))$$

and so

$$U(M) + (1) = (I_{\theta} + (e^{-\sqrt{-1}\theta}))r(\mathbf{z})^{-1}r_{\Sigma}(\mathbf{z})(U_{\Sigma}(M) + (1)).$$

By Lemma 4.4 this is equal to

$$(I_{\theta} + (e^{-\sqrt{-1}\theta}))(SI_{-\theta}S^* + (e^{\sqrt{-1}\theta}))(U_{\Sigma}(M) + (1))$$

$$= (I_{\theta}SI_{-\theta}S^*U_{\Sigma}(M)) + (1)$$

$$= G(\mathbf{s}(M), e^{\sqrt{-1}\theta})U_{\Sigma}(M) + (1).$$

Hence,
$$t_{\mathcal{R}}(M) = (\mathbf{x}(M), e^{\sqrt{-1}\theta}, G(\mathbf{s}(M), e^{\sqrt{-1}\theta})U_{\Sigma}(M))$$
 with $\mathbf{x}(M) = (1 - b^2)^{1/2}\mathbf{s}(M)$.

Let \widetilde{g} be the diffeomorphism

(4.7)
$$\widetilde{g}: S^{2n-1} \times \operatorname{Int}(D^{2}_{1/2} \setminus \{0\}) \times \operatorname{SU}(n) \longrightarrow \operatorname{Int}(D^{2n}_{1} \setminus D^{2n}_{\sqrt{3}/2}) \times S^{1} \times \operatorname{SU}(n)$$

defined by $\widetilde{g}(\mathbf{s},be^{\sqrt{-1}\theta},U_{\Sigma})=((1-b^2)^{1/2}\mathbf{s},e^{\sqrt{-1}\theta},G(\mathbf{s},e^{\sqrt{-1}\theta})U_{\Sigma})\ (0< b< 1/2).$ Let $S^{2n-1}\times\operatorname{Int} D^2_{1/2}\times\operatorname{SU}(n)\cup_{\widetilde{g}}\operatorname{Int} D^{2n}_1\times S^1\times\operatorname{SU}(n)$ denote the space obtained by pasting the two spaces written above by \widetilde{g} . Then we can define the diffeomorphism $k:\operatorname{SU}(n+1)\to S^{2n-1}\times\operatorname{Int} D^2_{1/2}\times\operatorname{SU}(n)\cup_{\widetilde{g}}\operatorname{Int} D^{2n}_1\times S^1\times\operatorname{SU}(n)$ by

(4.8)
$$k(M) = \begin{cases} (\mathbf{x}(M), e^{\sqrt{-1}\theta}, U(M)) & \text{for } 0 < b \le 1, \\ (\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M)) & \text{for } 0 \le b < 1/2. \end{cases}$$

The map $\pi': S^{2n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n) \cup_{\widetilde{g}} \operatorname{Int} D^{2n}_1 \times S^1 \times \operatorname{SU}(n) \to S^{2n+1}$ defined by $\pi'(\mathbf{x}, e^{\sqrt{-1}\theta}, U) = (\mathbf{x}, (1 - \|\mathbf{x}\|^2)^{1/2} e^{\sqrt{-1}\theta})$ for $0 < b \le 1$ and $\pi'(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma}) = ((1 - b^2)^{1/2} \mathbf{s}, be^{\sqrt{-1}\theta})$ for $0 \le b < 1/2$ becomes a principal bundle with fibre $\operatorname{SU}(n)$. Then the following proposition follows from the arguments above.

PROPOSITION 4.9. Let $n \geq 1$. The map k above gives a C^{∞} bundle map of the principal bundle $\pi: \mathrm{SU}(n+1) \to \mathrm{SU}(n+1)/\mathrm{SU}(n) \times (1) \cong S^{2n+1}$ to the principal bundle $\pi': S^{2n-1} \times \mathrm{Int} \ D^2_{1/2} \times \mathrm{SU}(n) \cup_{\widetilde{g}} \mathrm{Int} \ D^{2n}_1 \times S^1 \times \mathrm{SU}(n) \to S^{2n+1}$.

§5. Homotopy type of Ω^{10}

We first review the homotopy type of Σ^{10} in the context of Sections 3 and 4. Let π_1^2 be the canonical forgetting map of $J^2(n,n)$ onto $J^1(n,n)$. Now we see what fibre bundle the restriction $\pi_1^2 \mid \Sigma^{10} : \Sigma^{10} \to \Sigma^1$ is. When $(\pi_1^2)^{-1}(\Sigma^1)$ is identified with $\Sigma^1 \times \operatorname{Hom}(\mathbf{C}^n \circ \mathbf{C}^n, \mathbf{C}^n)$, we have two line bundles \mathbf{K} and \mathbf{Q} over Σ^1 defined by

$$\mathbf{K} = \{(\alpha, \mathbf{k}) \mid \alpha \in \Sigma^1, \ \mathbf{k} \in \operatorname{Ker} \alpha\}$$

and

$$\mathbf{Q} = \{(\alpha, \mathbf{v}) \mid \alpha \in \Sigma^1, \ \mathbf{v} \in \operatorname{Cok} \alpha\}$$

respectively. Then we have the following exact sequence of vector bundles over Σ^1 :

$$0 \longrightarrow \mathbf{K} \longrightarrow \Sigma^1 \times \mathbf{C}^n \stackrel{h}{\longrightarrow} \Sigma^1 \times \mathbf{C}^n \longrightarrow \mathbf{Q} \longrightarrow 0,$$

where h is the fibrewise homomorphism defined by $h(\alpha, \mathbf{x}) = (\alpha, \alpha(\mathbf{x}))$. Consider the map $C : \Sigma^1 \to \mathbf{CP}^{n-1}$ defined as $C(\alpha)$ being the line orthogonal to $\mathrm{Im}(\alpha)$ in \mathbf{C}^n . Then $C_1(\mathbf{K}) = C_1(\mathbf{Q}) = C^*(c_1)$, where c_1 is the first Chern class of the canonical line bundle over \mathbb{CP}^{n-1} . It is known that the normal bundle of Σ^1 in $J^1(n,n)$ is equivalent to $\operatorname{Hom}(\mathbf{K},\mathbf{Q})$ (see [L, p.11, 2. Proof of Proposition 2] and [Bo, p.50, Lemma 7.13 and Theorem 7.14). Since $C_1(\operatorname{Hom}(\mathbf{K}, \mathbf{Q})) = C_1(\mathbf{Q}) - C_1(\mathbf{K}) = 0$, this normal bundle is trivial. Restricting the map \widetilde{H}_{Σ} to $\mathbf{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ in Section 3, we have an embedding of $\mathbb{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ into Σ^1 inducing a homotopy equivalence. The composition of C and $\widetilde{H}_{\Sigma} \mid \mathbf{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ coincides with the canonical projection of $\mathbb{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ onto \mathbb{CP}^{n-1} , since $C \circ \widetilde{H}_{\Sigma}(\mathbf{v}, \mathbf{0}, U_{\Sigma}) = C(S\Delta(\mathbf{d}_{10})S^*U_{\Sigma}) = [S\mathbf{e}_n] = \mathbf{v}$. This implies $(\widetilde{H}_{\Sigma} | \mathbf{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n))^*(C_1(\mathbf{Q})) = c_1 \times 1$. We define the fibrewise homomorphism r of $\Sigma^1 \times \operatorname{Hom}(\mathbf{C}^n \cap \mathbf{C}^n, \mathbf{C}^n)$ onto $\operatorname{Hom}(\mathbf{K} \cap \mathbf{K}, \mathbf{Q})$ over Σ^1 by $r(\alpha, \beta) = \operatorname{pr} \circ \beta \mid \operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\alpha)$, where pr denotes the projection of \mathbb{C}^n onto $\mathrm{Cok}(\alpha)$. Let \mathfrak{R} be the subspace of $\mathrm{Hom}(\mathbb{K} \cap \mathbb{K}, \mathbb{Q})$ consisting of all isomorphisms. By the definition of Σ^{10} we know that Σ^{10} coincides with $r^{-1}(\mathfrak{R})$. Since $C_1(\operatorname{Hom}(\mathbf{K} \cap \mathbf{K}, \mathbf{Q})) = -2C_1(\mathbf{K}) + C_1(\mathbf{Q}) = -C_1(\mathbf{K})$, $\operatorname{Hom}(\mathbf{K} \cap \mathbf{K}, \mathbf{Q})$ is equivalent to $\operatorname{Hom}(\mathbf{K}, \mathbf{C})$ as vector bundles, and there is an orientation reversing bundle map between the associated sphere bundles $S(\operatorname{Hom}(\mathbf{K},\mathbf{C}))$ and $S(\mathbf{K})$. Hence the fibre bundle Σ^{10} over Σ^1 is homotopy equivalent to the S^1 -bundle $S^{2n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ over $\mathbf{CP}^{n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ induced from the S^1 -bundle of S^{2n-1} over \mathbb{CP}^{n-1} associated with c_1 of $H^2(\mathbf{CP}^{n-1}; \mathbf{Z})$. Furthermore Σ^{10} has $S^{2n-1} \times \mathbf{0} \times \mathrm{SU}(n)$ as its deformation retract.

In Ω^{10} , $\Sigma^0 \times \operatorname{Hom}(\mathbf{C}^n \bigcirc, \mathbf{C}^n, \mathbf{C}^n)$ over Σ^0 has a contractible fibre. Hence by the arguments above, Ω^{10} has, as its deformation retract, the subspace which is the total space of the above S^1 -bundle over $\mathbf{CP}^{n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n) \cup_g \operatorname{OC}(\mathbf{CP}^{n-1}) \times S^1 \times \operatorname{SU}(n)$ except for over $\{*\} \times S^1 \times \operatorname{SU}(n)$ with * being the cone point of $\operatorname{OC}(\mathbf{CP}^{n-1})$. It is nothing but $S^{2n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n) \cup_{\widetilde{g}} \operatorname{Int} D^{2n}_1 \times S^1 \times \operatorname{SU}(n)$. Hence it follows from Proposition 4.9 that Ω^{10} is homotopy equivalent to $\operatorname{SU}(n+1)$. This is an intuitive proof of Theorem 1 (2).

Now we shall specify the embedding

$$h: S^{2n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n) \bigcup_{\widetilde{g}} \operatorname{Int} D^{2n}_1 \times S^1 \times \operatorname{SU}(n) \longrightarrow \Omega^{10}.$$

For a point $(\mathbf{x}, e^{\sqrt{-1}\theta}, U)$ of $\operatorname{Int} D_1^{2n} \times S^1 \times \operatorname{SU}(n)$, we define the map $\beta(\mathbf{x}, e^{\sqrt{-1}\theta}, U) : \mathbf{C}^n \bigcirc \mathbf{C}^n \to \mathbf{C}^n$ by

(5.1)
$$\beta(\mathbf{x}, e^{\sqrt{-1}\theta}, U)(\mathbf{a}, \mathbf{b})$$

170 Y. ANDO

$$= \{ {}^{t}\mathbf{a}^{t}(G(\mathbf{s}, e^{\sqrt{-1}\theta})^{*}U)\bar{S}\Delta(0, \dots, 0, \|\mathbf{x}\|)S^{*}(G(\mathbf{s}, e^{\sqrt{-1}\theta})^{*}U)\mathbf{b} \}\mathbf{s}$$
for $\mathbf{x} \neq \mathbf{0}$ and $\beta(\mathbf{0}, e^{\sqrt{-1}\theta}, U)(\mathbf{a}, \mathbf{b}) = \mathbf{0}$.

where if $\|\mathbf{x}\| \neq 0$, then $\mathbf{s} = \mathbf{x}/\|\mathbf{x}\|$ and $S\mathbf{e}_n = \mathbf{s}$. The matrix

$${}^{t}(G(\mathbf{s}, e^{\sqrt{-1}\theta})^{*}U)\bar{S}\Delta(0, \dots, 0, \|\mathbf{x}\|)S^{*}(G(\mathbf{s}, e^{\sqrt{-1}\theta})^{*}U)$$

is equal to

$$tUI_{-\theta}\bar{S}I_{\theta}^{t}S\bar{S}\Delta(0,\ldots,0,\|\mathbf{x}\|)S^{*}SI_{\theta}S^{*}I_{-\theta}U$$

$$= tUI_{-\theta}\bar{S}I_{\theta}\Delta(0,\ldots,0,\|\mathbf{x}\|)I_{\theta}S^{*}I_{-\theta}U$$

$$= tUI_{-\theta}(e^{2\sqrt{-1}\theta}\|\mathbf{x}\|(\bar{s}_{i}\bar{s}_{j}))I_{-\theta}U.$$

For a point $(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma})$ of $S^{2n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n)$, we define the map $\beta_{\Sigma}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma}) : \mathbf{C}^n \bigcirc \mathbf{C}^n \to \mathbf{C}^n$ by

$$(5.2) \quad \beta_{\Sigma}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma})(\mathbf{a}, \mathbf{b}) = \{^t \mathbf{a}^t U_{\Sigma} \bar{S} \Delta(0, \dots, 0, (1 - b^2)^{1/2}) S^* U_{\Sigma} \mathbf{b} \} \mathbf{s},$$

which is equal to

$$\{^t \mathbf{a}^t U_{\Sigma}((1-b^2)^{1/2}(\bar{s}_i \bar{s}_j)) U_{\Sigma} \mathbf{b}\} \mathbf{s}.$$

If 0 < b < 1/2, then we have that $\beta(\mathbf{x}, e^{\sqrt{-1}\theta}, U) = \beta_{\Sigma}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma})$, since $U = G(\mathbf{s}, e^{\sqrt{-1}\theta})U_{\Sigma} = I_{\theta}SI_{-\theta}S^*U_{\Sigma}$, where $\|\mathbf{x}\| = (1 - b^2)^{1/2}$ by definition. Hence, β and β_{Σ} define the well-defined map of $S^{2n-1} \times \operatorname{Int} D^2_{1/2} \times \operatorname{SU}(n) \cup_{\widetilde{g}} \operatorname{Int} D^{2n}_{1/2} \times SU(n)$ to $\operatorname{Hom}(\mathbf{C}^n \cap \mathbf{C}^n, \mathbf{C}^n)$.

The motivation for the definition above is the facts that when b=0, we have $\widetilde{H}_{\Sigma}([\mathbf{s}], \mathbf{0}, U_{\Sigma}) = S\Delta(\mathbf{d}_{10})I_{-\theta}S^*U_{\Sigma} = S\Delta(\mathbf{d}_{10})S^*U_{\Sigma}$ and that its kernel vector is $U_{\Sigma}^*S\mathbf{e}_n$ and its cokernel vector is \mathbf{s} . Hence, if b=0, then we should have that $\beta_{\Sigma}(\mathbf{s}, \mathbf{0}, U_{\Sigma})(U_{\Sigma}^*S\mathbf{e}_n, U_{\Sigma}^*S\mathbf{e}_n) = \mathbf{s}$. If b=1, then $\widetilde{H}(\mathbf{0}, e^{\sqrt{-1}\theta}, U) = (1/\sqrt{n})I_{-\theta}U$ and we must require $\beta(\mathbf{0}, e^{\sqrt{-1}\theta}, U)$ to be the null-homomorphism.

From now on, we often use the notation $\widetilde{H}(\mathbf{x},e^{\sqrt{-1}\,\theta},U)$ (resp. $\widetilde{H}(\mathbf{0},e^{\sqrt{-1}\,\theta},U)$) in place of $H([\mathbf{s}],\mathbf{d}_{ab},e^{\sqrt{-1}\,\theta},U)$ (resp. $(1/\sqrt{n})I_{-\theta}U$) for 0< b<1 (resp. b=1) and $\widetilde{H}_{\Sigma}(\mathbf{s},be^{\sqrt{-1}\,\theta},U_{\Sigma})$ in place of $\widetilde{H}_{\Sigma}([\mathbf{s}],be^{\sqrt{-1}\,\theta},U_{\Sigma})$ for simplicity, when a vector \mathbf{x} or \mathbf{s} representing $[\mathbf{x}]$ or $[\mathbf{s}]$ is specified respectively. Then

the map h is defined by

$$(5.3) \quad (h \mid \operatorname{Int} D_{1}^{2n} \times S^{1} \times \operatorname{SU}(n))(\mathbf{x}, e^{\sqrt{-1}\theta}, U)$$

$$= (\widetilde{H}(\mathbf{x}, e^{\sqrt{-1}\theta}, U), \beta(\mathbf{x}, e^{\sqrt{-1}\theta}, U)) \qquad (0 < b \le 1),$$

$$(h \mid S^{2n-1} \times \operatorname{Int} D_{1/2}^{2} \times \operatorname{SU}(n))(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma})$$

$$= (\widetilde{H}_{\Sigma}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma}), \beta_{\Sigma}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma})) \quad (0 \le b < 1/2).$$

We have the following proposition by the definition of h together with the observation above.

Proposition 5.4. The map h is a topological embedding $(n \ge 2)$.

We define the topological embedding $i_n : SU(n+1) \to \Omega^{10}$ as follows.

For
$$n = 1, i_n(M) = (be^{\sqrt{-1}\theta}, \bar{\mathbf{x}}),$$

for $n \ge 2,$
 $i_n(M) = h \circ k(M)$

$$= \begin{cases}
(\widetilde{H}(\mathbf{x}(M), e^{\sqrt{-1}\theta}, U(M)), \beta(\mathbf{x}(M), e^{\sqrt{-1}\theta}, U(M))) \\
(0 < b \le 1) \\
(\widetilde{H}_{\Sigma}(\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M)), \beta_{\Sigma}(\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M))) \\
(0 \le b < 1/2).
\end{cases}$$

Theorem 5.5. The map i_n is a topological embedding and the image of i_n is a deformation retract of Ω^{10} .

Proof. We only need to prove the second assertion. The case n=1 is easy to prove. Hence, we assume $n \geq 2$. By Proposition 4.9 and the definition of i_n , the image of i_n coincides with that of h. By Theorem 3.1, it is enough to construct a deformation retraction of $(\pi_1^2 \mid \Omega^{10})^{-1}(K([0,1]))$ to the image of h. We identify an element β of $\text{Hom}(\mathbf{C}^n \bigcirc \mathbf{C}^n, \mathbf{C}^n)$ with the n-tuple (B_1, \ldots, B_n) of symmetric n-matrices. Then the norm $\|\beta\|$ is defined to be $\sum_{i=1}^n \|B_i\|$.

We first consider the homotopy h_{λ} of $(\pi_1^2 \mid \Omega^{10})^{-1}(K([0,1]))$ defined as follows. For an element (α, β) of $(\pi_1^2 \mid \Omega^{10})^{-1}(K(\{b\}))$, we set

$$h_{\lambda}(\alpha,\beta)$$

$$= \begin{cases} (\alpha, ((1-\lambda)+\lambda(1-b^2)^{1/2})(\|\beta\|-2(1-b^2)^{1/2})(\beta/\|\beta\|) \\ +2(1-b^2)^{1/2}(\beta/\|\beta\|)) & \text{if } \|\beta\| \geq 2(1-b^2)^{1/2} \text{ and } \|\beta\| \neq 0, \\ (\alpha, \beta) & \text{if } \|\beta\| \leq 2(1-b^2)^{1/2}. \end{cases}$$

It is easy to see that the image of h_1 coincides with $(\pi_1^2 \mid \Omega^{10})^{-1}(K([0,1))) \cup K(\{1\}) \times \{\mathbf{0}\}.$

Next we construct a deformation retraction R_{λ} of $(\pi_1^2 \mid \Omega^{10})^{-1}(K([0,1)))$ $\cup K(\{1\}) \times \{\mathbf{0}\}$ to the image of h. Take an element (α, β) of $(\pi_1^2 \mid \Omega^{10})^{-1}$ $K(\{b\})$) such that α is written as $\widetilde{H}([\mathbf{x}], \mathbf{d}_{ab}, e^{\sqrt{-1}\theta}, U)$ with $\|\mathbf{x}\| = 0$ $(1-b^2)^{1/2}$ for 0 < b < 1 or $\widetilde{H}_{\Sigma}([\mathbf{s}], be^{\sqrt{-1}\theta}, U_{\Sigma})$ for $0 \le b < 1/2$. Let \widetilde{K}_{α} be the subspace generated by $U^*G(\mathbf{s}, e^{\sqrt{-1}\theta})\mathbf{x}$ for 0 < b < 1 and the subspace generated by $U_{\Sigma}^* \mathbf{s}$ for $0 \leq b < 1/2$. Let \widetilde{Q}_{α} be the subspace generated by \mathbf{x} or s for $0 \le b < 1$. Let $\widetilde{\mathbf{K}}$ and $\widetilde{\mathbf{Q}}$ be the complex line bundles over K([0,1)) defined by $\widetilde{\mathbf{K}}_{(\alpha,\beta)} = \widetilde{\mathbf{K}}_{\alpha}$ and $\widetilde{\mathbf{Q}}_{(\alpha,\beta)} = \widetilde{\mathbf{Q}}_{\alpha}$ respectively. By definition, we have $\mathbf{K}|_{K(\{0\})} = \mathbf{K}$ and $\widetilde{\mathbf{Q}}|_{K(\{0\})}$ is identified with \mathbf{Q} by Remark 3.8. Then we have a canonical isomorphism $K([0,1))\times \mathbf{C} \to \mathrm{Hom}(\widetilde{\mathbf{K}},\widetilde{\mathbf{Q}})$ such that $\alpha\times 1$ is mapped to the isomorphism sending $U^*G(\mathbf{s}, e^{\sqrt{-1}\theta})\mathbf{x}$ to \mathbf{x} for 0 < b < 1 and sending $U_{\Sigma}^* \mathbf{s}$ to \mathbf{s} for $0 \le b < 1/2$, which does not depend on the choice of \mathbf{x} or s representing [x] or [s] respectively and is uniquely determined by α . Let us recall the following R-linear bundle map of Hom(K, C) to K. Define the hermitian form $h_{\widetilde{\mathbf{K}}}$ on $\widetilde{\mathbf{K}}$ by $h_{\widetilde{\mathbf{K}}}(z_1\mathbf{v}, z_2\mathbf{v}) = z_1\bar{z}_2\|\mathbf{v}\|^2 = z_1\bar{z}_2$, where \mathbf{v} is any vector of length 1 in $\widetilde{\mathbf{K}}_{\alpha}$. Then we have the orientation reversing bundle map over $\mathbf{R}, B_h : \widetilde{\mathbf{K}} \to \mathrm{Hom}(\widetilde{\mathbf{K}}, \mathbf{C})$ defined by $B_h(z\mathbf{v}) = h_{\widetilde{\mathbf{K}}}(z\mathbf{v})$, where we note that $h_{\widetilde{\mathbf{x}}}(z\mathbf{v})$ is a C-homomorphism. Then we have $B_h(z\mathbf{v}) = \bar{z}B_h(\mathbf{v})$. These observations induce the map

$$\Psi: \operatorname{Hom}(\widetilde{\mathbf{K}} \bigcirc \widetilde{\mathbf{K}}, \widetilde{\mathbf{Q}}) \cong \operatorname{Hom}(\widetilde{\mathbf{K}}, \operatorname{Hom}(\widetilde{\mathbf{K}}, \widetilde{\mathbf{Q}})) \cong \operatorname{Hom}(\widetilde{\mathbf{K}}, \mathbf{C}) \stackrel{B_h^{-1}}{\longrightarrow} \widetilde{\mathbf{K}}.$$

For a non-zero vector \mathbf{x} of \mathbf{C}^n , let $\operatorname{pr}(\mathbf{x})$ denote the orthogonal projection of \mathbf{C}^n onto the subspace of dimension 1 generated by \mathbf{x} over \mathbf{C} . Since the element (α, β) induces the map $\operatorname{pr}(\mathbf{x}) \circ \beta \mid \widetilde{\mathbf{K}}_{\alpha} \bigcirc \widetilde{\mathbf{K}}_{\alpha} : \widetilde{\mathbf{K}}_{\alpha} \bigcirc \widetilde{\mathbf{K}}_{\alpha} \to \widetilde{\mathbf{Q}}$, Ψ determines the vector $\Psi(\operatorname{pr}(\mathbf{x}) \circ \beta \mid \widetilde{\mathbf{K}}_{\alpha} \bigcirc \widetilde{\mathbf{K}}_{\alpha})$ in $\widetilde{\mathbf{K}}_{\alpha}$. This is written as $u(\alpha, \beta)\mathbf{k}$ by some real number $u(\alpha, \beta) \geq 0$ and some vector \mathbf{k} with length 1 such that $[\mathbf{k}] = [U^*G(\mathbf{s}, e^{\sqrt{-1}\theta})\mathbf{x}]$ for 0 < b < 1 and $[\mathbf{k}] = [U^*\mathbf{s}]$ for $0 \leq b < 1/2$. We note that \mathbf{k} is determined only when $u(\alpha, \beta) > 0$. Let $\mathbf{s}(\alpha, \beta)$ denote $G(\mathbf{s}, e^{\sqrt{-1}\theta})^*U\mathbf{k}$ for 0 < b < 1 and $U_{\Sigma}\mathbf{k}$ for $0 \leq b < 1/2$. If $u(\alpha, \beta) > 0$, then we have that

$$\operatorname{pr}(\mathbf{s}(\alpha, \beta))(\beta(\mathbf{k}, \mathbf{k})) = u(\alpha, \beta)\mathbf{s}(\alpha, \beta)$$
 for $0 \le b < 1$.

Here set $\bar{u}(\alpha,\beta) = u(\alpha,\beta)/(b^2 + u(\alpha,\beta)^2)^{1/2}$ for $0 \leq b < 1$, where $b^2 + u(\alpha,\beta)^2$ never vanishes. Now we set $\mathbf{x}(\alpha,\beta) = (1-b^2)^{1/2}\mathbf{s}(\alpha,\beta)$. If $u(\alpha,\beta) = 0$, then $\mathbf{x}(\alpha,\beta)$ or $\mathbf{s}(\alpha,\beta)$ represents any vector of length $(1-b^2)^{1/2}$ or 1 in \widetilde{Q}_{α} respectively. Furthermore, we set $\mathbf{y}(\alpha,\beta) = u(\alpha,\beta)\mathbf{s}(\alpha,\beta)$, which is always defined. The motivation for this notation is the fact that

$$\beta(\mathbf{x}, e^{\sqrt{-1}\theta}, U)(U^*G(\mathbf{s}, e^{\sqrt{-1}\theta})S\mathbf{e}_n, U^*G(\mathbf{s}, e^{\sqrt{-1}\theta})S\mathbf{e}_n) = \|\mathbf{x}\|\mathbf{s}$$
 for $0 < b < 1$,

$$\beta_{\Sigma}(\mathbf{s}, be^{\sqrt{-1}\theta}, U_{\Sigma})(U_{\Sigma}^* S\mathbf{e}_n, U_{\Sigma}^* S\mathbf{e}_n) = \|\mathbf{x}\|\mathbf{s}$$
 for $0 \le b < 1/2$.

We note that

- (1) The vector $\mathbf{y}(\alpha, \beta)$ is continuous on $(\pi_1^2 \mid \Omega^{10})^{-1}(K([0, 1))) \cup K(\{1\}) \times \{\mathbf{0}\},$
- (2) If $0 < \|\mathbf{x}(\alpha, \beta)\| < 1$, equivalently 0 < b < 1, then $\|\mathbf{y}(\alpha, \beta)\| = u(\alpha, \beta)/(b^2 + u(\alpha, \beta)^2)^{1/2} < 1$,
- $(3) \ u(\widetilde{H}(\mathbf{x}(\alpha,\beta),e^{\sqrt{-1}\theta},U),\beta(\mathbf{x}(\alpha,\beta),e^{\sqrt{-1}\theta},U)) = (1-b^2)^{1/2},$
- (4) $u(\widetilde{H}_{\Sigma}(\mathbf{s}(\alpha,\beta),be^{\sqrt{-1}\theta},U_{\Sigma}),\beta_{\Sigma}(\mathbf{s}(\alpha,\beta),be^{\sqrt{-1}\theta},U_{\Sigma})) = (1-b^2)^{1/2}$ and
- (5) Consider the case where $b^2 + u(\alpha, \beta)^2 = 1$, which is, in particular, satisfied for (α, β) in Im(h). Then we have $u(\alpha, \beta) = \bar{u}(\alpha, \beta)$ and $\mathbf{x}(\alpha, \beta) = \mathbf{y}(\alpha, \beta)$.

For an element (α, β) of $(\pi_1^2 \mid \Omega^{10})^{-1}(K(\{b\}))$ given above, we define $R_{\lambda}(\alpha, \beta)$ to be

$$\begin{cases} (\widetilde{H}((1-\lambda) \mathbf{x}(\alpha,\beta) + \lambda \mathbf{y}(\alpha,\beta), e^{\sqrt{-1}\theta}, U), \\ (1-\lambda)\beta + \lambda \beta(\mathbf{y}(\alpha,\beta), e^{\sqrt{-1}\theta}, U)) & \text{for } 0 < b < 1, \\ (\alpha, \mathbf{0}) & \text{for } b = 1 \text{ and } \beta = \mathbf{0}, \\ (\widetilde{H}_{\Sigma}(\mathbf{s}(\alpha,\beta), \mathbf{0}, U_{\Sigma}), (1-\lambda)\beta + \lambda \beta_{\Sigma}(\mathbf{s}(\alpha,\beta), \mathbf{0}, U_{\Sigma})) & \text{for } b = 0, \end{cases}$$

where if $u(\alpha, \beta) = 0$, then $\widetilde{H}((1 - \lambda)\mathbf{x}(\alpha, \beta), e^{\sqrt{-1}\theta}, U)$ refers to $\widetilde{H}([(1 - \lambda)\mathbf{x}(\alpha, \beta)], \mathbf{d}_{a'b'}, e^{\sqrt{-1}\theta}, U)$ with $b' = (1 - (1 - \lambda)^2(1 - b^2))^{1/2}$.

Let us see that R_{λ} is well defined and continuous. Set $b_{\lambda}(\alpha, \beta) = \{1 - \|(1 - \lambda)\mathbf{x}(\alpha, \beta) + \lambda\mathbf{y}(\alpha, \beta)\|^2\}^{1/2}$. If $0 \leq b_{\lambda}(\alpha, \beta) < 1/2$ and $0 \leq b_{\lambda}(\alpha, \beta) < 1/2$

174 Y. ANDO

 $1 - \|\mathbf{y}(\alpha, \beta)\|^2 < 1/2$, then we may write $R_{\lambda}(\alpha, \beta)$ as a different form $(\widetilde{H}_{\Sigma}(\mathbf{s}(\alpha, \beta), b_{\lambda}(\alpha, \beta)e^{\sqrt{-1}\theta}, U_{\Sigma}), (1-\lambda)\beta+\lambda\beta_{\Sigma}(\mathbf{s}(\alpha, \beta), (1-\|\mathbf{y}(\alpha, \beta)\|^2)^{1/2} \times e^{\sqrt{-1}\theta}, U_{\Sigma}))$ by (3.6), (5.1) and (5.2). In particular, if $u(\alpha, \beta) = 0$, then $0 < b < 1, \mathbf{y}(\alpha, \beta) = \mathbf{0}$ and $\beta(\mathbf{y}(\alpha, \beta), e^{\sqrt{-1}\theta}, U = \mathbf{0}$. If b = 0, then $u(\alpha, \beta) > 0$ and $(1-\lambda)\mathbf{x}(\alpha, \beta)+\lambda\mathbf{y}(\alpha, \beta) = (1-\lambda)\mathbf{x}(\alpha, \beta)+\lambda\mathbf{x}(\alpha, \beta) = \mathbf{x}(\alpha, \beta) = \mathbf{s}(\alpha, \beta)$. Therefore, R_{λ} is well defined and continuous.

We see that R_{λ} maps $(\pi_1^2 \mid \Omega^{10})^{-1}(K((0,1)))$ into $(\pi_1^2 \mid \Omega^{10})^{-1}(K((0,1)))$ $\cup K(\{1\}) \times \{\mathbf{0}\}$. If $0 < \|\mathbf{x}(\alpha,\beta)\| < 1$, or equivalently 0 < b < 1, then $\|(1-\lambda)\mathbf{x}(\alpha,\beta) + \lambda\mathbf{y}(\alpha,\beta)\|$ is less than 1 and is equal to 0 only when $\lambda = 1$ and $u(\alpha,\beta) = 0$. Furthermore, if $\lambda = 1$, $\bar{u}(\alpha,\beta) = 0$ and $0 < \|\mathbf{x}(\alpha,\beta)\| < 1$, then $R_1(\alpha,\beta) = (\tilde{H}(\mathbf{0},e^{\sqrt{-1}\theta},U),\mathbf{0})$, since $\beta(\mathbf{0},e^{\sqrt{-1}\theta},U) = \mathbf{0}$.

We see that R_{λ} maps $(\pi_1^2 \mid \Omega^{10})^{-1}(K(\{0\}))$ into $(\pi_1^2 \mid \Omega^{10})^{-1}(K(\{0\}))$. By definition, we have that $\operatorname{pr}(\mathbf{s}(\alpha,\beta)))((1-\lambda)\beta + \lambda\beta_{\Sigma}(\mathbf{s}(\alpha,\beta),\mathbf{0},U_{\Sigma}))(U_{\Sigma}^*\mathbf{s}(\alpha,\beta),U_{\Sigma}^*\mathbf{s}(\alpha,\beta)) = ((1-\lambda)u(\alpha,\beta) + \lambda)\mathbf{s}(\alpha,\beta)$. Since $(\alpha,\beta) \in \Sigma^{10}$, we have $u(\alpha,\beta) > 0$ and so $(1-\lambda)u(\alpha,\beta) + \lambda > 0$.

By definition, the image of R_1 is contained in Im(h). It is easy to see that $R_0 = \text{id}$. It follows from (3), (4) and (5) that $R_{\lambda} \mid \text{Im}(h)$ is constantly equal to $\text{id}_{\text{Im}(h)}$.

§6. $SU(n) \times SU(n)$ action

In this section the unit vector \mathbf{e}'_{n+1} of \mathbf{C}^{n+1} in Section 4 is written as \mathbf{e}_{n+1} to avoid confusion. We consider the following action of $\mathrm{SU}(n) \times \mathrm{SU}(n)$ on $J^2(n,n)$. An element (O',O^*) of $\mathrm{SU}(n) \times \mathrm{SU}(n)$ acts on each element (α,β) of $J^2(n,n)$ by

$$((O', O^*) \cdot (\alpha, \beta))(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (O'\alpha(O\mathbf{a}), O'\beta(O\mathbf{b}, O\mathbf{c}))$$

and also acts on each element M of SU(n+1) by

$$(O', O^*) \cdot M = (O' + (1))M(O + (1)).$$

Note that Ω^{10} is invariant with respect to this action. We will prove that i_n is equivariant with respect to these actions of $\mathrm{SU}(n) \times \mathrm{SU}(n)$. Its proof needs a complicated observation about the embedding i_n . First we prepare two lemmas.

LEMMA 6.1. Let $M\mathbf{e}_{n+1}$ be written as $\mathbf{z} = {}^t(x_1,\ldots,x_n,z_{n+1})$ with $z_{n+1} = be^{\sqrt{-1}\,\theta}$ as above. Let \mathbf{w} be $(O'+(1))\mathbf{z}$ for an element O' of $\mathrm{SU}(n)$. Then we have

$$(1) \ r(\mathbf{w})^{-1}(O' + (1)) = (O' + (1))r(\mathbf{z})^{-1} \qquad \textit{ for } \ 0 < b \leq 1,$$

(2)
$$r_{\Sigma}(\mathbf{w})^{-1}(O' + (1)) = (O' + (1))r_{\Sigma}(\mathbf{z})^{-1}$$
 for $0 \le b < 1/2$,

Proof. (1) It is enough to prove $(O' + (1))r(\mathbf{z})(O' + (1))^* = r(\mathbf{w})$. By the property (4.1) of $r(\mathbf{w})$ we have

$$r(\mathbf{w})(\mathbf{e}_{n+1}) = e^{-\sqrt{-1}\theta}\mathbf{w} = e^{-\sqrt{-1}\theta}(O' + (1))\mathbf{z},$$

$$r(\mathbf{w})(\mathbf{w} - be^{\sqrt{-1}\theta}\mathbf{e}_{n+1}) = b\mathbf{w} - e^{\sqrt{-1}\theta}\mathbf{e}_{n+1}$$

$$= b(O' + (1))\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}_{n+1} \quad \text{and}$$

 $r(\mathbf{w})\mathbf{f} = \mathbf{f}$ if \mathbf{f} is orthogonal to \mathbf{e}_{n+1} and $\mathbf{w} - be^{\sqrt{-1}\theta}\mathbf{e}_{n+1}$.

On the other hand, we have

$$(O' + (1))r(\mathbf{z})(O' + (1))^*(\mathbf{e}_{n+1})$$

$$= (O' + (1))r(\mathbf{z})(\mathbf{e}_{n+1})$$

$$= (O' + (1))e^{-\sqrt{-1}\theta}\mathbf{z}$$

$$= e^{-\sqrt{-1}\theta}(O' + (1))\mathbf{z},$$

$$(O' + (1))r(\mathbf{z})(O' + (1))^*(\mathbf{w} - be^{\sqrt{-1}\theta}\mathbf{e}_{n+1})$$

$$= (O' + (1))r(\mathbf{z})(O' + (1))^*(O' + (1))(\mathbf{z} - z_{n+1}\mathbf{e}_{n+1})$$

$$= (O' + (1))r(\mathbf{z})(\mathbf{z} - z_{n+1}\mathbf{e}_{n+1})$$

$$= (O' + (1))(b\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}_{n+1})$$

$$= b(O' + (1))\mathbf{z} - e^{\sqrt{-1}\theta}\mathbf{e}_{n+1}.$$

Since \mathbf{f} satisfies $(\mathbf{f}, \mathbf{e}_{n+1}) = (\mathbf{f}, (O' + (1))(\mathbf{z} - z_{n+1}\mathbf{e}_{n+1})) = 0$, we have $((O' + (1))^*\mathbf{f}, \mathbf{e}_{n+1}) = ((O' + (1))^*\mathbf{f}, \mathbf{z} - z_{n+1}\mathbf{e}_{n+1}) = 0$. It follows from the property (4.1-(iii)) of $r(\mathbf{z})$ that

$$(O' + (1))r(\mathbf{z})(O' + (1))^*\mathbf{f} = (O' + (1))(O' + (1))^*\mathbf{f} = \mathbf{f}.$$

Thus we obtain

$$r(\mathbf{w}) = (O' + (1))r(\mathbf{z})(O' + (1))^*.$$

(2) The proof is similar. By definition we have

$$r_{\Sigma}(\mathbf{w})(\mathbf{e}_{n+1}) = \mathbf{w} = (O' + (1))\mathbf{z},$$

$$r_{\Sigma}(\mathbf{w})(\mathbf{w} - be^{\sqrt{-1}\theta}\mathbf{e}_{n+1}) = be^{\sqrt{-1}\theta}\mathbf{w} - \mathbf{e}_{n+1}$$

$$= be^{-\sqrt{-1}\theta}(O' + (1))\mathbf{z} - \mathbf{e}_{n+1} \quad \text{and}$$

$$r_{\Sigma}(\mathbf{w})\mathbf{f} = \mathbf{f} \text{ if } \mathbf{f} \text{ is orthogonal to } \mathbf{e}_{n+1} \text{ and } \mathbf{w} - be^{\sqrt{-1}\theta}\mathbf{e}_{n+1}.$$

On the other hand, we have

$$(O' + (1))r_{\Sigma}(\mathbf{z})(O' + (1))^{*}(\mathbf{e}_{n+1})$$

$$= (O' + (1))r_{\Sigma}(\mathbf{z})(\mathbf{e}_{n+1})$$

$$= (O' + (1))(\mathbf{z}),$$

$$(O' + (1))r_{\Sigma}(\mathbf{z})(O' + (1))^{*}(O' + (1))(\mathbf{z} - z_{n+1}\mathbf{e}_{n+1})$$

$$= (O' + (1))r_{\Sigma}(\mathbf{z})(\mathbf{z} - z_{n+1}\mathbf{e}_{n+1})$$

$$= (O' + (1))(\bar{z}_{n+1}\mathbf{z} - \mathbf{e}_{n+1})$$

$$= \bar{z}_{n+1}(O' + (1))\mathbf{z} - \mathbf{e}_{n+1}.$$

Similarly we have that $((O' + (1))^* \mathbf{f}, \mathbf{e}_{n+1}) = ((O' + (1))^* \mathbf{f}, \mathbf{z} - z_{n+1} \mathbf{e}_{n+1}) = 0$. It follows from the property (4.2-(iii)) of $r_{\Sigma}(\mathbf{z})$ that

$$(O' + (1))r_{\Sigma}(\mathbf{z})(O' + (1))^*\mathbf{f} = (O' + (1))(O' + (1))^*\mathbf{f} = \mathbf{f}.$$

Thus we obtain

$$r_{\Sigma}(\mathbf{w}) = (O' + (1))r_{\Sigma}(\mathbf{z})(O' + (1))^*.$$

Lemma 6.2. Set M' = (O' + (1))M(O + (1)) for O and O' in SU(n). Then we have

(1)
$$U(M') = I_{\theta}O'I_{-\theta}U(M)O$$
 for $0 < b \le 1$,
(2) $U_{\Sigma}(M') = O'U_{\Sigma}(M)O$ for $0 < b < 1/2$.

Proof. It follows from Lemma 6.1 that

(1)
$$r(\mathbf{w})^{-1}M' = r(\mathbf{w})^{-1}(O' + (1))M(O + (1))$$

$$= (O' + (1))r(\mathbf{z})^{-1}M(O + (1))$$

$$= (O' + (1))(I_{-\theta}U(M) + (e^{\sqrt{-1}\theta}))(O + (1))$$

$$= O'I_{-\theta}U(M)O + (e^{\sqrt{-1}\theta})$$

$$= I_{-\theta}(I_{\theta}O'I_{-\theta}U(M)O) + (e^{\sqrt{-1}\theta}).$$

(2)
$$r_{\Sigma}(\mathbf{w})^{-1}M' = r_{\Sigma}(\mathbf{w})^{-1}(O' + (1))M(O + (1))$$
$$= (O' + (1))r_{\Sigma}(\mathbf{z})^{-1}M(O + (1))$$
$$= (O' + (1))(U_{\Sigma}(M) + (1))(O + (1))$$
$$= O'U_{\Sigma}(M)O + (1).$$

Thus (1) and (2) follow from the definitions of U(M') and $U_{\Sigma}(M')$ respectively.

We are ready to prove the following.

PROPOSITION 6.3. The embedding i_n is equivariant with respect to the actions of $SU(n) \times SU(n)$ on SU(n+1) and $J^2(n,n)$.

Proof. We use the notations given in the definition of i_n and let M, O', O and M' with $\mathbf{w} = M'\mathbf{e}_{n+1}$ and $\mathbf{z} = M\mathbf{e}_{n+1}$ be as above. We have that if b < 1, then $\mathbf{s}(M') = O'\mathbf{s}(M)$. Then we obtain the following.

If 0 < b < 1, then

$$\begin{split} \widetilde{H}(\mathbf{x}(M'), e^{\sqrt{-1}\theta}, U(M')) &= O'S\Delta(\mathbf{d}_{ab})S^*O'^*I_{-\theta}U(M') \\ &= O'S\Delta(\mathbf{d}_{ab})S^*O'^*I_{-\theta}I_{\theta}O'I_{-\theta}U(M)O \\ &= O'S\Delta(\mathbf{d}_{ab})S^*I_{-\theta}U(M)O \\ &= O'\widetilde{H}(\mathbf{x}(M), e^{\sqrt{-1}\theta}, U(M))O. \end{split}$$

If b = 1, then

$$\widetilde{H}(\mathbf{0}, e^{\sqrt{-1}\theta}, U(M')) = (1/\sqrt{n})I_{-\theta}U(M')$$

$$= O'(1/\sqrt{n})I_{-\theta}U(M)O$$

$$= O'\widetilde{H}(\mathbf{0}, e^{\sqrt{-1}\theta}, U(M))O.$$

Let 0 < b < 1. Since

$$G(\mathbf{s}(M'), e^{\sqrt{-1}\theta})^* U(M') = O'SI_{\theta}S^*O'^*I_{-\theta}I_{\theta}O'I_{-\theta}U(M)O$$
$$= O'SI_{\theta}S^*I_{-\theta}U(M)O,$$

we have

$$\begin{split} \beta(\mathbf{x}(M'), e^{\sqrt{-1}\theta}, U(M'))(\mathbf{a}, \mathbf{b}) \\ &= \{^t \mathbf{a}^t (G(\mathbf{s}(M'), e^{\sqrt{-1}\theta})^* U(M')) \bar{O}' \bar{S} \\ &\quad \times \Delta(0, \dots, 0, \|\mathbf{x}(M')\| S^* O'^* G(\mathbf{s}(M'), e^{\sqrt{-1}\theta})^* U(M') \mathbf{b} \} \mathbf{s}(M') \\ &= \{^t \mathbf{a}^t O^t U(M) I_{-\theta} \bar{S} I_{\theta}^{\ t} S \bar{S} \\ &\quad \times \Delta(0, \dots, 0, \|\mathbf{x}(M)\|) S^* S I_{\theta} S^* I_{-\theta} U(M) O \mathbf{b} \} O' \mathbf{s}(M) \\ &= \{^t (O \mathbf{a})^t (G(\mathbf{s}(M), e^{\sqrt{-1}\theta})^* U(M)) \bar{S} \\ &\quad \times \Delta(0, \dots, 0, \|\mathbf{x}(M)\|) S^* G(\mathbf{s}(M), e^{\sqrt{-1}\theta})^* U(M) O \mathbf{b} \} O' \mathbf{s}(M) \\ &= O' \beta(\mathbf{x}(M), e^{\sqrt{-1}\theta}, U(M)) (O \mathbf{a}, O \mathbf{b}). \end{split}$$

This equality also holds in the case of b = 1.

If
$$0 \le b < 1/2$$
, then

$$\begin{split} \widetilde{H}_{\Sigma}(\mathbf{s}(M'), be^{\sqrt{-1}\theta}, U_{\Sigma}(M')) &= O'S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*O'^*U_{\Sigma}(M') \\ &= O'S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*O'^*O'U_{\Sigma}(M)O \\ &= O'S\Delta(\mathbf{d}_{ab})I_{-\theta}S^*U_{\Sigma}(M)O \\ &= O'\widetilde{H}_{\Sigma}(\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M))O \end{split}$$

and

$$\beta_{\Sigma}(\mathbf{s}(M'), be^{\sqrt{-1}\theta}, U_{\Sigma}(M'))(\mathbf{a}, \mathbf{b})$$

$$= \{^t \mathbf{a}^t U_{\Sigma}(M') \bar{O}' \bar{S} \Delta(0, \dots, 0, \|\mathbf{x}(M')\|) S^* O'^* U_{\Sigma}(M') \mathbf{b} \} \mathbf{s}(M')$$

$$= \{^t \mathbf{a}^t O^t U_{\Sigma}(M)^t O' \bar{O}' \bar{S} \Delta(0, \dots, 0, \|\mathbf{x}(M)\|) S^* O'^* O' U_{\Sigma}(M) O \mathbf{b} \} O' \mathbf{s}(M)$$

$$= \{^t (O \mathbf{a})^t U_{\Sigma}(M) \bar{S} \Delta(0, \dots, 0, \|\mathbf{x}(M)\|) S^* U_{\Sigma}(M) O \mathbf{b} \} O' \mathbf{s}(M)$$

$$= O' \beta_{\Sigma}(\mathbf{s}(M), be^{\sqrt{-1}\theta}, U_{\Sigma}(M)) (O \mathbf{a}, O \mathbf{b}).$$

This proves that i_n is equivariant with respect to the actions of $SU(n) \times SU(n)$.

Proof of Theorem 1(2). The assertion follows from Theorem 5.5 and Proposition 6.3.

§7. Holomorphic fold maps

Let $J^2(N,P)$ be the complex 2-jet space of complex manifolds N and P. Let π_N and π_P be the projections mapping a jet to its source and target respectively. Let $L^2(n)$ be the group of 2-jets of all biholomorphic map germs $(\mathbf{C}^n, 0) \to (\mathbf{C}^n, 0)$. The map $\pi_N \times \pi_P : J^2(N, P) \to N \times P$ gives the structure of a fibre bundle with fibre $J^2(n,n)$ having the structure group $L^2(n) \times L^2(n)$. Let $Hom(TN \oplus (TN \cap TN), TP)$ be the vector bundle over $N \times P$ with structure group $GL(n; \mathbf{C}) \times GL(n; \mathbf{C})$, which is the union of all spaces $\operatorname{Hom}(T_xN \oplus (T_xN \bigcirc T_xN), T_yP)$ for (x,y) of $N \times P$, where $T_xN \cap T_xN$ denotes the 2-fold symmetric product of T_xN . If a basis of \mathbb{C}^n is fixed, then we have the canonical C-linear isomorphism $j: J^2(n,n) \to$ $\operatorname{Hom}(\mathbf{C}^n \oplus (\mathbf{C}^n \bigcirc \mathbf{C}^n), \mathbf{C}^n)$ by considering Taylor expansions. It is clear that j is equivariant with respect to the actions of $GL(n; \mathbf{C}) \times GL(n; \mathbf{C})$ on both spaces $J^2(n,n)$ and $\text{Hom}(\mathbf{C}^n \oplus (\mathbf{C}^n \cap \mathbf{C}^n), \mathbf{C}^n)$. Since $GL(n;\mathbf{C})$ is naturally a subgroup of $L^2(n)$ and the quotient space $L^2(n)/GL(n; \mathbb{C})$ is contractible, the structure group $L^2(n) \times L^2(n)$ of the fibre bundle $\pi_N \times \pi_P$: $J^2(N,P) \to N \times P$ is reduced to $GL(n; \mathbf{C}) \times GL(n; \mathbf{C})$. Hence it follows from [St, 12.6 Corollary] that we obtain a bundle map

$$J: J^2(N, P) \longrightarrow \operatorname{Hom}(TN \oplus (TN \cap TN), TP),$$

which is uniquely determined up to homotopy.

Let $z = j_x^2 f$ with y = f(x) be a 2-jet in $J_{x,y}^2(N,P)$, which is the subset of $J^2(N,P)$ consisting of all 2-jets of germs of (N,x) to (P,y). Set $\mathbf{D} = \pi_N^*(TN)$ and $\mathbf{P} = \pi_P^*(TP)$. Then there is a homomorphism $d_1 : \mathbf{D} \to \mathbf{P}$ defined as follows. Let \mathbf{D}_z and \mathbf{P}_z be the fibres of \mathbf{D} and \mathbf{P} over z respectively. Then $d_{1,z} : \mathbf{D}_z \to \mathbf{P}_z$ refers to $df : T_x N \to T_y P$. We define $\Sigma^i(N,P)$ to be the set of all jets z with $\dim(\mathrm{Ker}(d_{1,z})) = i$. Then we have the subbundle $\mathbf{K} = \mathrm{Ker}(d_1)$ and the cokernel bundle $\mathbf{Q} = \mathrm{Cok}(d_1)$ over $\Sigma^i(N,P)$. In [Bo, p.50, Lemma 7.13 and Theorem 7.14] (see also [Ma, §2]) the second intrinsic derivative $d_2 : \mathbf{K} \to \mathrm{Hom}(\mathbf{K}, \mathbf{Q})$ has been defined by using the second derivative of z. We define $\Sigma^{10}(N,P)$ to be the set of all jets z such that $\dim(\mathrm{Ker}(d_{1,z})) = 1$ and $d_{2,z} : \mathbf{K}_z \to \mathrm{Hom}(\mathbf{K}_z, \mathbf{Q}_z)$ is an isomorphism. Let $\Omega^{10}(N,P)$ be the union of the set of all regular jets and $\Sigma^{10}(N,P)$.

There is a canonical identification of $J^k(n,n)$ with $J^k_{0,0}(\mathbf{C}^n,\mathbf{C}^n)$. In $\operatorname{Hom}(TN \oplus (TN \bigcirc TN), TP)$ we can also define $\Sigma^1(N,P)'$, $\Sigma^{10}(N,P)'$ and $\Omega^{10}(N,P)'$ associated with Σ^1 , Σ^{10} and Ω^{10} in Section 1 respectively. The

two constructions above associated with Σ^1 , Σ^{10} and Ω^{10} correspond with each other by J. Then $\Omega^{10}(N,P)$ and $\Omega^{10}(N,P)'$ are the subbundles of $J^2(N,P)$ and $\mathrm{Hom}(TN\oplus (TN\bigcirc TN),TP)$ respectively. Then J induces a bundle map of $\Omega^{10}(N,P)$ to $\Omega^{10}(N,P)'$.

For an n-dimensional complex manifold M, let us recall that an $\mathrm{SU}(n)$ -structure of TM is a reduction (E,φ) of the structure group $GL(n;\mathbf{C})$ to $\mathrm{SU}(n)$, where E is an n-dimensional $\mathrm{SU}(n)$ -vector bundle over M and $\varphi:TM\to E$ is a bundle map covering id_M (see [St, 9.2]). Two $\mathrm{SU}(n)$ -structures (E_1,φ_1) and (E_2,φ_2) of TM are equivalent if there exists an $\mathrm{SU}(n)$ -bundle map $B:E_1\to E_2$ such that $\varphi_2=B\circ\varphi_1$. Consider the spherical fibre space $p':\mathrm{BSU}(n)\to\mathrm{BU}(n)$ with fibre S^1 induced from the inclusion of $\mathrm{SU}(n)$ into $\mathrm{U}(n)$. Let $c_{TM}:M\to\mathrm{BU}(n)$ be the classifying map of TM. It is well known that equivalence classes of $\mathrm{SU}(n)$ -structures of TM correspond bijectively to homotopy classes of continuous maps $c:M\to\mathrm{BSU}(n)$ with $p'\circ c=c_{TM}$.

Suppose that SU(n)-structures (E, φ_N) and (F, φ_P) of TN and TP are given respectively. Then we can define the canonical bundle map

$$\Phi: \operatorname{Hom}(TN \oplus (TN \bigcirc TN), TP) \longrightarrow \operatorname{Hom}(E \oplus (E \bigcirc E), F)$$

by using φ_N and φ_P . The map $\Phi \circ J$ induces a biholomorphic map between fibres $J^2_{x,y}(N,P)$ and $\operatorname{Hom}(E_x \oplus (E_x \bigcirc E_x), F_y)$ (however, Φ may not be biholomorphic in general). On the other hand, we have the subbundle $\operatorname{SU}(E \oplus \theta_N, F \oplus \theta_P)$ of $\operatorname{Hom}(E \oplus \theta_N, F \oplus \theta_P)$ associated with $\operatorname{SU}(n+1)$.

We shall apply the embedding $i_n: \mathrm{SU}(n+1) \to \Omega^{10}$ ($\subset \mathrm{Hom}(\mathbf{C}^n \oplus (\mathbf{C}^n \bigcirc \mathbf{C}^n), \mathbf{C}^n)$) to $\mathrm{SU}(E \oplus \theta_N, F \oplus \theta_P)$ and $\mathrm{Hom}(E \oplus (E \bigcirc E), F)$. Let i(N,P)' be the map of $\mathrm{SU}(E \oplus \theta_N, F \oplus \theta_P)$ to $\Phi(\Omega^{10}(N,P)')$ associated with i_n . Then we obtain a subspace homeomorphic to $\mathrm{SU}(n+1)$ denoted by $\mathrm{SU}_{x,y}(E,F)$ in $\mathrm{Hom}(E_x \oplus (E_x \bigcirc E_x), F_y)$. This space is well defined by Proposition 6.3. The space $\mathrm{SU}(E,F)$ is defined to be the union of all spaces $\mathrm{SU}_{x,y}(E,F)$ in $\Phi(\Omega^{10}(N,P)')$, where (x,y) varies all over $N \times P$. It becomes a subbundle with structure group $\mathrm{SU}(n) \times \mathrm{SU}(n)$ coming from those of E and E. It is clear that the image of E of E is homotopy equivalent to E in E in

$$(\Phi \circ J \mid \Omega^{10}(N, P))^{-1} \circ i(N, P)' : SU(E \oplus \theta_N, F \oplus \theta_P) \longrightarrow \Omega^{10}(N, P).$$

Proof of Theorem 2. (1) The map i(N, P) gives a homotopy equivalence of fibre bundles, since $\Phi \circ J \mid \Omega^{10}(N, P)$ is a bundle map and i(N, P)' is a fibre homotopy equivalence.

(2) Let $i(N,P)^{-1}: \Omega^{10}(N,P) \to \mathrm{SU}(E \oplus \theta_N, F \oplus \theta_P)$ be the homotopy inverse of i(N,P). For a holomorphic fold map f, the section j^2f determines the homotopy class of a section $i(N,P)^{-1} \circ j^2f$ of $\mathrm{SU}(E \oplus \theta_N, F \oplus \theta_P)$. This gives the homotopy class of an $\mathrm{SU}(n+1)$ -bundle map $\widetilde{f}: E \oplus \theta_N \to F \oplus \theta_P$ covering f in Theorem 2 (2).

Proof of Corollary 3. Since the first Chern classes of N and P vanish, there exist SU(n)-structures (E, φ_N) and (F, φ_P) of TN and TP respectively. Consider the spherical fibre space $p: \mathrm{BSU}(n) \to \mathrm{BSU}(n+1)$ with fibre S^{2n+1} induced from the inclusion of SU(n) into SU(n+1). Let $c_N: N \to \mathrm{BSU}(n)$ and $c_P: P \to \mathrm{BSU}(n)$ denote the classifying maps of E and F respectively. Then $p \circ c_N$ and $p \circ c_P \circ f$ are the classifying maps of $TN \oplus \theta_N^1$ and $f^*(TP) \oplus \theta_N^1$ respectively. By Theorem 2(2), there is a homotopy $c: N \times I \to BSU(n+1)$ between $p \circ c_N$ and $p \circ c_P \circ f$. Let $c^*(p): c^*(\mathrm{BSU}(n)) \to N \times I$ be the induced fibre space. By applying the obstruction theorem ([St]), the obstructions to extending the induced sections $c^*(c_N)$ and $c^*(c_P \circ f)$ to a section defined on $N \times I$ lie in $H^{i}(N \times I, N \times \{0, 1\}; \pi_{i-1}(S^{2n+1}))$ (i = 0, ..., 2n+1), which vanish for all i. Hence, there exists a section $c': N \times I \to c^*(\mathrm{BSU}(n))$ with $c' \mid N \times 0 = c^*(c_N)$ and $c' \mid N \times 1 = c^*(c_P \circ f)$. This implies that there exists an SU(n)-bundle map of E to $f^*(F)$, which yields an SU(n)-bundle map $B: E \to F$. Thus we obtain a bundle map $\varphi_P^{-1} \circ B \circ \varphi_N : TN \to TP$ covering f. П

Remark 7.1. Theorem 2 does not hold for general complex manifolds. The holomorphic fold map $f: \mathbf{CP}^1 \to \mathbf{CP}^1$ defined by $f([z]) = [z^2]$ has the property that $f^*(C_1(\mathbf{CP}^1)) = 2C_1(\mathbf{CP}^1)$. Hence $T(\mathbf{CP}^1)$ is not even stably equivalent to $f^*(T(\mathbf{CP}^1))$.

EXAMPLE 7.2. (1) We consider the following Hopf manifolds (cf. [K, Example 2.9]). Let G be the infinite cyclic group generated by the automorphism g of $\mathbb{C}^n \setminus \{\mathbf{0}\}$ defined by $g(z_1, \ldots, z_n) = (\alpha_1 z_1, \ldots, \alpha_n z_n)$, where $\alpha_1, \ldots, \alpha_n$ are constants with $|\alpha_i| > 1$ $(i = 1, \ldots, n)$. Then $M(\alpha_1, \ldots, \alpha_n)$ is defined to be the quotient manifold $\mathbb{C}^n \setminus \{\mathbf{0}\}/G$, which is diffeomorphic to $S^1 \times S^{2n-1}$. Hence, its first Chern class vanishes (cf. [H]). There is a holomorphic fold map $f: M(\alpha_1, \ldots, \alpha_{n-1}, \alpha_n) \to M(\alpha_1, \ldots, \alpha_{n-1}, \alpha_n^2)$ defined by $f([z_1, \ldots, z_{n-1}, z_n]) = [z_1, \ldots, z_{n-1}, z_n^2]$, where [*] refers to the

element represented by *. The singularity submanifold of f is identified with $M(\alpha_1, \ldots, \alpha_{n-1})$, which consists of the points of the form $[z_1, \ldots, z_{n-1}, 0]$.

(2) Given integers $a_1, \ldots, a_n \geq 2$, consider the Brieskorn polynomial $p(z) = z_1^{a_1} + \cdots + z_n^{a_n} \ (n \geq 2)$ and the hypersurface $p^{-1}(0)$. Let r be a real number greater than 1 and $\alpha_1, \ldots, \alpha_n$ be n complex numbers with $\alpha_i^{a_i} = r \ (i = 1, \ldots, n)$. Then the group G in (1) acts on $p^{-1}(0) \setminus \{\mathbf{0}\}$. Let $B(a_1, \ldots, a_n; \alpha_1, \ldots, \alpha_n)$ denote the quotient space $(p^{-1}(0) \setminus \{\mathbf{0}\})/G$. Since G is properly discontinuous (see [K, Theorem 2.2]), it is a compact complex n-1 dimensional submanifold of $M(\alpha_1, \ldots, \alpha_n)$. Let $K(a_1, \ldots, a_n)$ be the Brieskorn manifolds $p^{-1}(0) \cap S_{\varepsilon}^{2n-1}$, where ε is a sufficiently small positive real number (see [Br] and [Mi]). We can prove that $B(a_1, \ldots, a_n; \alpha_1, \ldots, \alpha_n)$ is C^{∞} -diffeomorphic to $S^1 \times K(a_1, \ldots, a_n)$. We give a sketch of the proof, which is analogous to the arguments found in [K, Example 2.9].

For a real number u and $(z_1, \ldots, z_n) \neq \mathbf{0}$, define the function $\mathcal{G}(u, z_1, \ldots, z_n) = |z_1|^2 |\alpha_1|^{-2u} + \cdots + |z_n|^2 |\alpha_n|^{-2u}$. Since $\lim_{u \to \infty} \mathcal{G}(u, z_1, \ldots, z_n) = 0$, $\lim_{u \to -\infty} \mathcal{G}(u, z_1, \ldots, z_n) = \infty$ and $\mathcal{G}(u, z_1, \ldots, z_n)$ is strictly decreasing with respect to u, the equation $\mathcal{G}(u, z_1, \ldots, z_n) = \varepsilon^2$ induces the unique implicit function $u(z) = u(z_1, \ldots, z_n)$. Consider the two C^{∞} -maps,

$$\Phi: \mathbf{R} \times K(a_1, \ldots, a_n) \longrightarrow p^{-1}(0) \setminus \{\mathbf{0}\},$$

$$\Phi_1: p^{-1}(0) \setminus \{\mathbf{0}\} \longrightarrow \mathbf{R} \times K(a_1, \dots, a_n)$$

defined by $\Phi(u,\zeta_1,\ldots,\zeta_n)=(\alpha_1^u\zeta_1,\ldots,\alpha_n^u\zeta_n)$ and $\Phi_1(z_1,\ldots,z_n)=(u(z),\alpha_1^{-u(z)}z_1,\ldots,\alpha_n^{-u(z)}z_n)$ respectively. Since $\mathcal{G}(u,\alpha_1^u\zeta_1,\ldots,\alpha_n^u\zeta_n)=|\zeta_1|^2+\cdots+|\zeta_n|^2=\varepsilon^2$, they satisfy that $\Phi_1\circ\Phi(u,\zeta_1,\ldots,\zeta_n)=(u,\zeta_1,\ldots,\zeta_n)$ and $\Phi\circ\Phi_1(z_1,\ldots,z_n)=(z_1,\ldots,z_n)$. Furthermore, we have the following commutative diagram:

$$p^{-1}(0) \setminus \{\mathbf{0}\} \xrightarrow{\Phi_1} \mathbf{R} \times K(a_1, \dots, a_n)$$

$$\downarrow^{g^m} \qquad \qquad \downarrow^{\widetilde{m}}$$

$$p^{-1}(0) \setminus \{\mathbf{0}\} \xrightarrow{\Phi_1} \mathbf{R} \times K(a_1, \dots, a_n),$$

where $g^m(z_1, \ldots, z_n) = (\alpha_1^m z_1, \ldots, \alpha_n^m z_n)$ and $\widetilde{m}(u, \zeta) = (u + m, \zeta)$. This is what we want.

Note that the first Chern class of $B(a_1, \ldots, a_n; \alpha_1, \ldots, \alpha_n)$ vanishes at least for $n \geq 4$ and n = 2, since $K(a_1, \ldots, a_n)$ is simply connected

for $n \geq 4$ ([Mi, Theorem 5.2]) and $\dim K(a_1, \ldots, a_n) = 1$ for n = 2. Furthermore $\operatorname{grad}(p(z))$ is equal to ${}^t(a_1z_1^{a_1-1}, \ldots, a_nz_n^{a_n-1})$, which cannot be orthogonal to all of the vectors $\mathbf{e}_1, \ldots, \mathbf{e}_{n-1}$. Hence, for any point z of $p^{-1}(0) \setminus \{\mathbf{0}\}$, there exists a number j with $1 \leq j \leq n-1$ such that $(z_1, \ldots, z_{j-1}, z_{j+1}, \ldots, z_n)$ is a local coordinate system both for $p^{-1}(0) \setminus \{\mathbf{0}\}$ near z and for $B(a_1, \ldots, a_n; \alpha_1, \ldots, \alpha_n)$ near [z].

Let β be a complex number with $\beta^2 = \alpha_n$. Then we have the fold map $f: B(a_1, \ldots, a_{n-1}, 2a_n; \alpha_1, \ldots, \alpha_{n-1}, \beta) \to B(a_1, \ldots, a_{n-1}, a_n; \alpha_1, \ldots, \alpha_{n-1}, \alpha_n)$ defined by $f([z_1, \ldots, z_{n-1}, z_n]) = ([z_1, \ldots, z_{n-1}, z_n^2])$. The singularity submanifold of f is identified with $B(a_1, \ldots, a_{n-1}; \alpha_1, \ldots, \alpha_{n-1})$, which consists of the points of the form $[z_1, \ldots, z_{n-1}, 0]$ with $z_1^{a_1} + \cdots + z_{n-1}^{a_{n-1}} = 0$.

In a forthcoming paper we will deal with a complex analogy of the results in [An2, §4]. Let F_k^m denote the space consisting of all continuous maps $(S^{k-1},*) \to (S^{k-1},*)$ of degree m, where S^{k-1} is the unit sphere of dimension k-1 and * is the base point. Let F^m denote the space $\lim_{k\to\infty} F_k^m$. Let N and P be compact complex manifolds of dimension n and P be, in addition, connected. Then we will show that a holomorphic fold map $f: N \to P$ of degree m determines a homotopy class of $[P, F^m]$, which depends only on a certain equivalence class of f.

References

- [A1] Y. Ando, The homotopy type of the space consisting of regular jets and folding jets in $J^2(n,n)$, Japan. J. Math., **24** (1998), 169–181.
- [A2] _____, Folding maps and the surgery theory on manifolds, J. Math. Soc. Japan, 53 (2001), 357–382.
- [Bo] J. M. Boardman, Singularities of smooth mappings, Publ. Math. I.H.E.S., 33 (1967), 21–57.
- [Br] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., 2 (1966), 1–14.
- [E] J. M. Eliashberg, On singularities of folding types, Math. USSR. Izv., 4 (1970), 1119–1134.
- [H] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
- [K] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer-Verlag, 1986.
- [L] H. I. Levine, Singularities of differentiable maps, Lecture Notes in Math., Springer-Verlag, 192 (1971), 1–89.
- [Ma] J. Mather, Stability of C^{∞} mappings: VI. The nice dimensions, Lecture Notes in Math., Springer-Verlag, **192** (1971), 207–253.

- [Mi] J. Milnor, Singular Points of Complex Hypersurfaces, Princeton Univ. Press, Princeton, 1968.
- [Sa] O. Saeki, Notes on the topology of folds, J. Math. Soc. Japan, 44 (1992), 551–566.
- [St] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951
- [W] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972.

Department of Mathematics
Faculty of Science
Yamaguchi University
Yamaguchi, 753-8512
Japan
andoy@po.cc.yamaguchi-u.ac.jp