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SPECIAL POLYNOMIALS AND

THE HIROTA BILINEAR RELATIONS OF

THE SECOND AND THE FOURTH

PAINLEVÉ EQUATIONS

SATOSHI FUKUTANI, KAZUO OKAMOTO and

HIROSHI UMEMURA

Abstract. We give a purely algebraic proof that the rational functions Pn(t),
Qn(t) inductively defined by the recurrence relation (1), (2) respectively, are
polynomials. The proof reveals the Hirota bilinear relations satisfied by the
τ -functions.

§1. Introduction

We consider the sequences {Pn(t)}n∈Z, {Qn(t)}n∈Z, {Rn(t)}n∈Z of func-

tions of a variable t defined by the following recursion formulas:

PnPn+2 = −4(Pn+1P
′′

n+1 − P ′2
n+1) + tP 2

n+1,

P0 = P1 = 1,
(1)

QnQn+2 = Qn+1Q
′′

n+1 − Q′2
n+1 + (t2 + 2(n + 1) − 1)Q2

n+1,

Q0 = Q1 = 1,
(2)

RnRn+2 = Rn+1R
′′

n+1 − R′2
n+1 + (t2 + 2(n + 1))R2

n+1,

R0 = 1, R1 = t.
(3)

Here we denote respectively by f ′ and f ′′ the 1st derived function df/dt

and the 2nd derived function d2f/dt2 of a function f(t).

These functions Pn, Qn, Rn are clearly rational functions of t. We know

that they are indeed polynomials of t for all n. Namely we have the following

theorems.

Theorem 1. (Yablonskii-Vorob’ev) For every integer n, the rational

function Pn(t) is a polynomial.
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Theorem 2. (Okamoto) For every integer n, the rational functions

Qn(t) and Rn(t) are polynomials.

The Pn(t)’s are called the Yablonskii-Vorob’ev polynomials, and the

Qn(t)’s and Rn(t)’s are called the Okamoto polynomials. These give rational

solutions of the 2nd and the 4th Painlevé equations:

(PII(α))
d2y

dt2
= 2y3 + ty + α,

(PIV (α, β))
d2y

dt2
=

1

2y

(

dy

dt

)2

+
3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
.

For example, for every integer n, Pn−1
′/Pn−1−Pn

′/Pn is the unique rational

solution of PII(n). The Okamoto polynomials offer sequences of interesting

rational solutions of the 4th Painlevé equation. The theorems follow from

the regularity of the τ -function, which is a general result in the theory of

monodromy preserving deformation (cf. §2.1 and [O2], [U]).

In this paper, we discuss other proofs of these theorems. We give a

purely algebraic proof of Theorems 1 and 2 (cf. §2.2 and §3.4). We notice

that the relations RII(n) and RIV (n) in §2.1, §3.4 which play important

roles in the algebraic proofs are nothing but the Hirota bilinear relations of

τ -functions (§2.3 and §3.3). But in our proof for the Okamoto polynomials,

the calculations are already so hard that we can not apply this method to the

other Painlevé equations. In fact, we succeeded in constructing analogous

sequences of rational functions for the 3rd, 5th, and 6th Painlevé equations

and we must show that they are in fact polynomials. For these equations

the regularity of the τ -functions gives only insufficient results. So we need

a simplest proof of Theorems 1 and 2 (cf. §2.4 and §3.2).

We applied this principle to show that analogous sequences of rational

functions for the 3rd, 5th, and 6th Painlevé equations are, indeed, those of

polynomials ([U2]). For the Hirota bilinear representations of the Painlevé

equations we refer to [O3]. An interesting problem is to develop the whole

theory of the Painlevé equations starting from the bilinear relations of τ -

functions.
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§2. Yablonskii-Vorob’ev polynomials

2.1. Preliminaries for the second Painlevé equations

Definition 1. We consider a system

(SII(v))















dq

dt
=

∂H

∂p
= p − q2 − 1

2
t,

dp

dt
= −∂H

∂q
= 2qp + v

of ordinary differential equations, where

H = HII(v, t, q, p) :=
1

2
p2 − (q2 +

1

2
t)p − vq.

Namely the system SII(v) is a Hamiltonian system with Hamiltonian H

parametrized by v ∈ C. For a solution (q(t), p(t)) of SII(v) we set h(v, t; q(t),

p(t)) := HII(v, t, q(t), p(t)) and call it the Hamilton function associated

with the solution (q(t), p(t)). We define a τ -function τ(v, t; q(t), p(t)) of the

solution (q(t), p(t)) as a solution of

(4) h(t) =
d

dt
log τ

so that τ(v, t; q(t), p(t)) is uniquely determined up to a nonzero constant.

When there is no danger of confusion, we denote h(v, t; q(t), p(t)), τ(v, t; q(t),

p(t)), . . . by h(v), τ(v), . . . or more simply by h, τ, . . . .

Proposition 1. ([O2] Proposition 1.1. and [U1] §3)

(i) The 2nd Painlevé equation PII(α) is equivalent to the Hamiltonian

system SII(v), where α and v are related by v = α + 1
2 .

(ii) The Hamilton function h satisfies the equation

(EII(v))

(

d2h

dt2

)2

+ 4

(

dh

dt

)3

+ 2
dh

dt

(

t
dh

dt
− h

)

− 1

4
v2 = 0.

(iii) If dh/dt 6= 0, we can express the solution q, p of SII(v) by h,

(5)































q(v) =
2
d2h

dt2
+ v

4
dh

dt

,

p(v) = −2
dh

dt
.
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Now we recall birational transformations between solutions.

Proposition 2. ([O2] Proposition 1.4. ,[U] §5) Let Σ(v) be the set of

solutions of the system SII(v).

If (q, p) ∈ Σ(v), then (−q−(v−1)/(2q2−p+ t), 2q2−p+ t) ∈ Σ(v−1).

Namely we have a rational mapping

(6.1)

T−1(v) : Σ(v) → Σ(v − 1),











(q, p) 7−→
(

− q − v − 1

2q2 − p + t
, 2q2 − p + t

)

if v 6= 1 ,

(q, p) 7−→ (−q, 2q2 − p + t) if v = 1 .

If (q, p) ∈ Σ(v), then (−q− v/p, 2(q + v/p)2 − p + t) ∈ Σ(v + 1). So we

have a rational mapping

(6.2)

T+1(v) : Σ(v) → Σ(v + 1),











(q, p) 7−→ (−q − v

p
, 2

(

q +
v

p

)2
− p + t) if v 6= 0 ,

(q, p) 7−→ (−q, 2q2 − p + t) if v = 0 .

We have the following formulas:

T+1(v − 1) ◦ T−1(v) = IdΣ(v), T−1(v + 1) ◦ T+1(v) = IdΣ(v).

Let (q(v, t), p(v, t)) be a solution of SII(v), which we denote by (q(v),

p(v)), and h(v) the associated Hamilton function. We set (q(v − 1), p(v −
1)) := T−1(v)(q(v), p(v)) and h(v − 1) := h(v − 1, t;T−1(v)(q(v), p(v))),

which is the Hamilton function associated with (q(v − 1), p(v − 1)) . Then

we have

(7) q(v) = h(v − 1) − h(v).

Definition 2. When we fix a parameter v and a solution (q, p) of

SII(v), we set

T−1(v)(τ(v)) := τ(v − 1, t, T−1(v)(q, p)),

which we denote by τ(v − 1) briefly. Similarly we also define the τ -function

τn(v, t; q(t), p(t)), which we briefly denote by τn, by
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τn(v, t; q(t), p(t))

:=























τ(v) if n = 0,

T−1(v − n + 1) ◦ T−1(v − n + 2) ◦ · · · ◦ T−1(v)(τ(v))

if n is a positive integer,

T+1(v − n − 1) ◦ T+1(v − n − 2) ◦ · · · ◦ T+1(v)(τ(v))

if n is a negative integer.

Then we have the following

Proposition 3. ([O2] Proposition 1.8.) The sequence {τn}n∈Z of τ -

functions satisfies the Toda Equation

(

d

dt

)2

log τn = c(n)
τn−1τn+1

τ2
n

,

where c(n) is a nonzero constant.

In the remaining part of this subsection, we review fundamental prop-

erties of the rational solutions of the 2nd Painlevé equations and we prove

the Proposition 8 which is our starting point.

Proposition 4. ([UW] Theorem 6.1.)

(i) The Painlevé equation PII(α) has a rational solution if and only if

α is integer.

(ii) For every integer n, PII(n) has the unique rational solution.

Example. When α = 0 or v = 1/2, the Hamilton function associ-

ated with the unique rational solution, (q(1/2, t), p(1/2, t)) = (0, t/2), of

SII(1/2) is

h(v) =
1

2
p(

1

2
, t)2 −

(

q(
1

2
, t)2 +

1

2
t

)

p(
1

2
, t) − 1

2
q(

1

2
, t) = −1

8
t2,

and since

h(v, t) =
τ(v, t)′

τ(v, t)
,

we have

τ(
1

2
, t) = exp

(

− 1

24
t3

)

.
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Then, by virtue of Proposition 2, h(v − 1) = h(−1/2) = h(1/2) + q(1/2) =

−t2/8 and we have

τ(v − 1) = τ(−1

2
) = exp

(

− 1

24
t3

)

.

We can also explain this fact by direct computation, without using Proposi-

tion 2, from the unique rational solution (q(v), p(v)) = (0, t/2) of SII(1/2).

Proposition 5. Let v = 1/2 and we define the τn’s by the Toda equa-

tion in which c(n) = −1/4, with initial conditions τ0 = τ1 = τ(−1/2). Then

the sequence {τn/τ0} satisfies the recursion formula (1) of §1. Therefore we

conclude that

Pn =
τn

τ0
= τn exp

(

1

24
t3

)

.

Proof. The Toda equation with c(n) = −1/4 is

(

d

dt

)2

log τn = −1

4

τn−1τn+1

τ2
n

.

Let P̃n = τn/τ0 so that we have τn = P̃nτ0 and P̃0 = P̃1 = 1. We substitute

this into the Toda equation. Then we have

(

d

dt

)2

log
(

P̃nτ0

)

=
(

− 1

4

) P̃n−1τ0P̃n+1τ0
(

P̃nτ0

)2 ,

that is,

P̃nP̃n+2 = −4(P̃n+1P̃
′′

n+1 − P̃ ′2
n+1) + tP̃ 2

n+1.

Namely the P̃n’s satisfy the recursion formula (1). Therefore we conclude

that Pn = τn/τ0 = τn exp(t3/24).

Remark. We notice that Theorem 1 easily follows from the regularity

([O1]) of the τ -function: the function τ(v, t) of t is holomorphic on C. By

virtue of the recursion formula, Pn is a rational function of t. On the other

hand, τn and exp(t3/24) are holomorphic on C. So the rational function

Pn = τn exp(t3/24) is holomorphic by Proposition 5. Therefore Pn is a

polynomial of t.
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We give a purely algebraic proof of Theorem 1 without using the reg-

ularity of τ -function in §2.2.

By using the local Laurent expansion of a solution of PII(α), we have

the following proposition.

Proposition 6. ([V]) If a solution of the equation PII(α) has a pole

at a point t = t0 ∈ C, then its order is 1 with residue ±1. No solutions of

PII(α) have a pole at t = ∞.

Proposition 7. ([V]) For any integer n, the unique rational solution

y of the equation PII(n) is of the form y = A′/A − B′/B, where A and B

are square-free and coprime polynomials with coefficients in C.

Yablonskii and Vorob’ev [V] discovered the following relations RII(n)

for nonnegative integers n and the recursion formula (1) to find rational

solutions of the 2nd Painlevé equations.

Definition 3. (Relations RII(α)) For a complex number α, the rela-

tions

(RII(α).1) A′′B − 2A′B′ + AB′′ = 0,

(RII(α).2) A′′′B − 3A′′B′ + 3A′B′′ − AB′′′ − t(A′B − AB′) − αAB = 0

of a pair (A, B) of functions of t are called the Hirota bilinear relations

RII(α).

For a nonnegative integer n, we introduce the symbol the so-called

Hirota bilinear operator

Dna.b =

n
∑

k=0

(

n

k

)

(−1)k
dn−ka

dtn−k

dkb

dtk
.

The relations RII(α) are written as

(RII(α).1) D2A.B = 0,

(RII(α).2) D3A.B − tDA.B − αAB = 0.

We give a proof of the following proposition, which is our starting point.
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Proposition 8. If rational function y = A′/A − B′/B, where A, B

are coprime and square-free polynomials, satisfies the 2nd Painlevé equation

PII(α), then the pair (A, B) satisfies the relations RII(α).

Conversely if a pair (A, B) of functions, not necessarily polynomials,

satisfy the relations RII(α), then y = A′/A−B′/B satisfies the 2nd Painlevé

equation PII(α).

Proof. Substituting y = A′/A − B′/B to PII(α), we have

−αA2B2 − tA′AB2 + tA2B′B + 6A′2B′B − 6A′AB′2

− 3A′A′′B2 + 3A2B′′B′ + A′′′AB2 − A2B′′′B = 0.

Arranging the equation, we have

(7)
AB(−αAB − tA′B + tAB′ + A′′′B − AB′′′)

+ 3A′B(2A′B′ − A′′B) − 3AB′(2A′B′ − AB′′) = 0.

By making skew symmetric factors in this equation and rearranging it, we

get

(8)
AB(−αAB − tA′B + tAB′ + A′′′B − 3A′′B′ + 3A′B′′ − AB′′′)

+ 3(AB′ − A′B)(AB′′ − 2A′B′ + A′′B) = 0.

As AB and AB′ −A′B are coprime, AB divides AB′′ − 2A′B′ + A′′B. But

the degree of AB′′ − 2A′B′ + A′′B is less than that of AB. So we have

AB′′ − 2A′B′ + A′′B = 0. Now from the equation (8) we have

A′′′B − 3A′′B′ + 3A′B′′ − AB′′′ − t(A′B − AB′) − αAB = 0.

Conversely, suppose that a pair (A, B) of functions satisfy the relations

RII(α). The left-hand side of (8) is the numerator of the left-hand side of the

PII(α) when we substitute y = A′/A − B′/B. Therefore y = A′/A − B′/B

is a solution of PII(α).

Remark. As we will see in §2.3, another way of deriving the relations

RII(α) is as follows. First we deduce from the Hamiltonian system SII(v)

the Hirota bilinear forms TII(v) for a pair (τ(v − 1), τ(v)) of successive

τ -functions. Then (A, B) := (exp(t3/24)τ(v − 1), exp(t3/24)τ(v)) gives the

relations RII(α) , v being equal to α + 1/2.

The point is, however, that we arrived at the bilinear relations RII(α)

by only studying rational solutions of PII(α) without passing through the

Hamilton system SII(v).
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2.2. Purely algebraic proof of Theorem 1

This subsection is logically independent of §2.1 except for the definition

of the relations RII(n). We use only elementary properties of polynomials

and induction. Whereas our ground field is C, all the arguments work over

any field of characteristic 0. Since we know Pn = P−n+1, by the recursion

formula (1) of §1, we only prove Theorem 1 for every nonnegative integer

n.

Lemma 1. If a pair (A, B) of coprime polynomials satisfies the rela-

tion (RII(n).1), then A and B are square-free.

Proof. Suppose that the equation B = 0 has a multiple root t0.

Then t0 satisfies that B(t0) = B′(t0) = 0. By the relation (RII(n).1), we

have A(t0)B
′′(t0) = 0. As A, B are coprime, B′′(t0) = 0. Differentiating

(RII(n).1) with respect to t several times, then also we have B(m)(t0) = 0

for every natural number m. Since the ground field is of characteristic 0, the

r-th derived function of the polynomial of degree r is a nonzero constant. So

we have B(r)(t0) 6= 0, which is a contradiction. A similar argument allows

us to prove that A is square-free.

The following proposition is the key of our induction.

Proposition 9. We assume that a pair (A, B) of coprime polynomi-

als of t satisfies the relations RII(n). If we set

C =
tB2 − 4(B′′B − B′2)

A
,

then C is a square-free polynomial and B,C are coprime. Moreover, the

pair (B, C) satisfies the relations RII(n + 1).

Proof. We show that C is a polynomial. By differentiating the relation

(RII(n).1) with respect to t, we have

(RII(n).1′) A′′′B − A′′B′ − A′B′′ + AB′′′ = 0.

By eliminating A′′, A′′′ from three equalities (RII(n).1), (RII(n).1′), and

(RII(n).2), we have

A(tB′B + 2B′′B′ − 2B′′′B) − A′(tB2 + 4B′2 − 4B′′B) − nAB2 = 0.
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Since A and B are coprime, tB2 +4B′2 −4BB′′ is divisible by A. Therefore

C is a polynomial.

Now, we show that B and C are coprime. Suppose that they are not

coprime. The definition of C gives

CA = tB2 − 4(B′′B − B′2).

Hence, B and tB2−4(B′′B−B′2) have a nonconstant common factor. So B

and B′ have a nonconstant common factor. Therefore B is not square-free.

This contradicts Lemma 1.

We have to show that (B, C) satisfies the relations RII(n + 1). By the

definition of C and the relations RII(n), we have

C ′ =
(2n + 1)B2 + A′C

A
,

C ′′ =
2(2n + 1)B′B + A′′C

A
,

C ′′′ =
2(2n + 1)B′2 + (2n + 1)B′′B + A′′′C

A
.

Substituting these expressions into the left-hand side of (RII(n+1).1),

we have

B′′C − 2B′C ′ + BC ′′

= B′′C − 2B′
(2n + 1)B2 + A′C

A
+ B

2(2n + 1)B′B + A′′C

A

=
C

A
{B′′A − 2B′A′ + BA′′}

= 0,

so that (B, C) satisfies the (RII(n + 1).1).

Similarly, we have

B′′′C − 3B′′C ′ + 3B′C ′′ − BC ′′′ − t(B′C − BC ′) − (n + 1)BC

= B′′′C − 3B′′
(2n + 1)B2 + A′C

A

+3B′
2(2n + 1)B′B + A′′C

A

−B
2(2n + 1)B′2 + (2n + 1)B′′B + A′′′C

A
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−t(B′C − B
(2n + 1)B2 + A′C

A
) − (n + 1)BC

=
1

A
{C(B′′′A − 3B′′A′ + 3B′A′′ − BA′′′ + tBA′ − tB′A + nBA)

−(2n + 1)BCA + (2n + 1)B(4B′2 − 4B′′B + tB2)}

=
1

A
{C 0 − (2n + 1)ABC + (2n + 1)ABC}

= 0.

So (B, C) in fact satisfies the relation (RII(n + 1).2). Since the pair

(B, C) of coprime polynomials satisfies (RII(n + 1).1), C is square-free by

Lemma 1.

We have thus proved the proposition.

Now we give a purely algebraic proof of Theorem 1. The theorem follows

from the successive applications of the previous proposition and the trivial

fact that (P0, P1) = (1, 1) satisfies RII(0).

2.3. Equivalence of the Hirota bilinear relations RII(α) and

TII(v)

Definition 4. The relations

(TII(v).1) tτaτb + 2(τaτ
′′

b − 2τ ′

aτ
′

b + τ ′′

a τb) = 0,

(TII(v).2) 2(v− 1

2
)τaτb+t(τaτ

′

b−τ ′

aτb)+2(τaτ
′′′

b −3τ ′

aτ
′′

b +3τ ′′

a τ ′

b−τ ′′′

a τb) = 0

of a pair (τa, τb) of functions are called the Hirota bilinear relations TII(v).

The relations TII(v) are written as

(TII(v).1) (2D2 + t)τa.τb = 0,

(TII(v).2) (2D3 + tD − 2(v − 1

2
))τa.τb = 0.

We keep the notation of §2.1.

Proposition 10. The pair (τ(v−1), τ(v)) of the τ -functions satisfies

the Hirota bilinear relation TII(v).
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Proof. By the equation (7) and (4) of §2.1, we have

(9.1)

q(v) = h(v − 1) − h(v)

=
d

dt
log

(

τ(v − 1)

τ(v)

)

.

By differentiating the Hamilton function h(t), we get, by SII(v),

dh(v)

dt
=

∂h(v)

∂q(v)

dq(v)

dt
+

∂h(v)

∂p(v)

dp(v)

dt
+

∂h(v)

∂t

= 0 +
∂h(v)

∂t

= −1

2
p(v).

So we have

(9.2) p(v) = −2
dh(v)

dt
= −2

d2 log τ(v)

dt2
.

Substituting (9.1) and (9.2) into the Hamiltonian system SII(v):















dq

dt
= p − (q2 +

1

2
t),

dp

dt
= 2qp + v,

we have















(

d
dt

)2
log

(

τ(v−1)
τ(v)

)

= −2
(

d
dt

)2
log(τ(v)) −

(

(

d
dt log

(

τ(v−1)
τ(v)

))2
+ 1

2t

)

,

−2
(

d
dt

)3
log(τ(v)) = 2

(

d
dt log

(

τ(v−1)
τ(v)

)) (

−2
(

d
dt

)2
log(τ(v))

)

+ v.

Clearing denominators, we have















tτ(v − 1)τ(v) − 4τ(v − 1)′τ(v)′ + 2τ(v − 1)′′τ(v)

+2τ(v − 1)τ(v)′′ = 0, (10.1)

v(τ(v − 1)τ(v)2) + 4τ(v − 1)′(τ(v)′2 − τ(v)τ(v)′′)

−2τ(v − 1)(τ(v)′τ(v)′′ − τ(v)τ(v)′′′) = 0. (10.2)
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The equation (10.1) coincides with (TII(v).1). Multiplying (10.1) by τ(v)′

and adding it to (10.2), we get

(11)
vτ(v − 1)τ(v) + tτ(v − 1)τ(v) + 2τ(v − 1)′′τ(v)′

−4τ(v − 1)′′τ(v)′′ + 2τ(v − 1)τ(v)′′′ = 0.

Differentiating both sides of (10.1), we have

(12)

τ(v − 1)τ(v) + tτ(v − 1)′τ(v) + tτ(v − 1)τ(v)′

− 2(τ(v − 1)′′′τ(v) − τ(v − 1)′′τ(v)′

− τ(v − 1)′τ(v)′′ + τ(v − 1)τ(v)′′′) = 0.

Multiplying (11) by 2 and subtracting it from (12), we get (TII(v).2).

A direct calculation shows us the equivalence of the relations RII(α)

and TII(v).

Proposition 11. Let (A, B) =
(

τa exp(t3/24), τb exp(t3/24)
)

. Then,

v being equal to α + 1/2, the following conditions are equivalent.

(i) The pair (A, B) satisfies the relations RII(α).

(i) The pair (τa, τb) satisfies the relations TII(v).

2.4. Simplest proof of Theorem 1

The purely algebraic proof of §2.2 is elementary. It requires only calcu-

lation of polynomials. However there is a simplest proof of Theorem 1 that

depends on the differential equation EII . We can apply this method to the

Painlevé equations of other types.

In §2.1 we have shown how the regularity of the τ -function over C

leads to Theorem 1. In fact we notice that we can prove the regularity of

τ -function without using the general theory of monodromy preserving de-

formation. It is sufficient to show that τn is holomorphic over C by Remark

after Proposition 5.

Proposition 12. For every integer n the τ -function τn is holomorphic

over C.

Proof. Under the assumption of the proposition, h = τ ′/τ is a single-

valued meromorphic function on C. Moreover the Hamilton function h satis-

fies the differential equation EII by Proposition 1. Substituting the Laurent
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expansion h = an0
(t − t0)

n0 + an0+1(t − t0)
n0+1 + · · · (an0

6= 0) at t0 ∈ C

into EII and comparing the coefficients, we find that every pole of h is a

simple pole with residue 1. Therefore the τ is a holomorphic function with

only simple zeros. So it is holomorphic over C.

So we have the second proof of Theorem 1.

§3. Okamoto polynomials

3.1. Preliminaries for the fourth Painlevé equations

For the 4th Painlevé equation we need slightly complicated preliminar-

ies analogous to those of the 2nd Painlevé equation ([O2][U]).

Definition 5. We consider a system

(SIV (v))















dq

dt
=

∂H

∂p
= 4qp − (q2 + 2tq + 2(v2 − v1)) ,

dp

dt
= −∂H

∂q
= −2p2 + b(2q + 2t)p − (v3 − v1)

of ordinary differential equations, where

H = HIV (v) := 2qp2 − (q2 + 2tq + 2(v2 − v1))p + (v3 − v1)q

and v = (v1, v2, v3) ∈ V = {(v1, v2, v3)|v1 + v2 + v3 = 0}. Namely the

system SIV (v) is a Hamiltonian system with Hamiltonian H parametrized

by v ∈ V = {(v1, v2, v3)|v1 + v2 + v3 = 0}.
For a solution (q(t), p(t)) of SIV (v) we set H(v, t; q(t), p(t)) := HIV (v,

t, q(t), p(t)) and call it the Hamilton function associated with the solution

(q(t), p(t)). We also set h(v) = H(v)−2v1t and call it the auxiliary Hamil-

ton function. We define a τ -function τ(v, t; q(t), p(t)) of (q(t), p(t)) as a

solution of

H(t) =
d

dt
log τ

so that τ(v, t; q(t), p(t)) is uniquely determined up to a nonzero constant.

Proposition 13. ([O2] Proposition 3.1.)

(i) The 4th Painlevé equation PIV (α, β) is equivalent to the Hamiltonian

system SIV (v), where (α, β) and (v1, v2, v3) are related by

(α, β) = (3v3 + 1,−2(v2 − v1)
2).
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(ii) The auxiliary Hamilton function h satisfies the equation

(EIV (v))

(

d2h

dt2

)2

− 4

(

t
dh

dt
− h

)2

+ 4
3

∏

k=1

(

dh

dt
+ 2vk

)

= 0 .

For the 4th Painlevé equation we have also birational transformations

between solutions ([O2], cf.§2.1).

Proposition 14. ([O2] Proposition 3.4.) Let Σ(v) be the set of

solutions of the system SIV (v). We set l = (1/3)(−1,−1, 2) and

l′ = (1/3)(−1,2,−1). We have birational transformations

Tl(v) : Σ(v) → Σ(v + l)

and

Tl′(v) : Σ(v) → Σ(v + l′).

For example, the explicit generic form of Tl(v)(q, p) as follows

(−2pq+q2+2qt+2(v2−v3)−2

2(2p−q−2t)
,
(2p−q−2t)(2pq−q2−2qt+2v1−2v2)

q(2p−q−2t)+2(1−v2+v3)

)

.

Let (q(v, t), p(v, t)) be a solution of SIV (v), which we denote by

(q(v), p(v)) briefly, and h(v) the associated Hamilton function. We set

(q(v+l), p(v+l)) := Tl(v)(q(v), p(v)) and we denote the Hamilton function

associated with (q(v + l), p(v + l)) by H(v + l) . Then we have

(13) q(v) = H(v + l) − H(v).

Using similar notations to those of §2.1, we can define Tl(τ(v))) and τn

as follows:

Definition 6. When we fix a parameter v ∈ V and a solution (q, p)

of SIV (v), we define

Tl(v)(τ(v)) := τ(v, t;Tl(v)(q, p)),

which we denote by τ(v + l) briefly. Similarly we also define the τ -function

τn(v, t; q(t), p(t)), which we briefly denote by τn, by

τn(v, t; q(t), p(t))
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:=























τ(v) if n = 0,

Tl(v + (n − 1)l) ◦ Tl(v + (n − 2)l) ◦ · · · ◦ Tl(v)(τ(v))

if n is a positive integer ,

Tl(v + nl)−1 ◦ Tl(v + (n − 1)l)−1 ◦ · · · ◦ Tl(v − l)−1(τ(v))

if n is a negative integer.

Proposition 15. ([O2] Proposition 3.5.) The sequence {τn}n∈Z of

τ -functions satisfies the following Toda Equation:

(

d

dt

)2

log τn + (v3 − v1 + n) = c(n)
τn−1τn+1

τ2
n

.

As for the translation by l′, we have an analogue of Proposition 15.

3.2. Simplest method of calculating rational solutions of the

fourth Painlevé equations

All the rational solutions of the 4th Painlevé equations are known.

The operation of the affine Weyl group allows us to prove that there is

a unique rational solution when and only when the parameter vector v is

either a vertex or the center of a Weyl chamber ([UW]). Roughly speaking,

the Hermite polynomials appear at vertexes and the Okamoto polynomials

appear at centers.

As trivial example we have the unique rational solution (q, p) = (0, 0)

of Hamiltonian system SIV at v = (0, 0, 0). Let us consider other eas-

iest nontrivial examples. We have the unique rational solution (q, p) =

(−(2/3)t, t/3 + 1/2t) at v0 = (1/3,0,−1/3) and its Hamilton function and

τ -function are

H(v0) =
4

27
t3 +

2

3
t,

τ(v0) = exp

(

1

27
t4 +

1

3
t2

)

.

We take v0 as the reference point. Then we have

τ0 = exp(
1

27
t4 +

1

3
t2),

τ1 = exp(
1

27
t4).

Assume c(n) = 1 in the Toda equation. So the sequence {τn}n∈Z is deter-

mined uniquely. We put

(14) Q̃n =
τn

exp( 1
27 t4 − (n − 1)1

3 t2)
.
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Substituting it into the Toda equation,

Q̃nQ̃n+2 = Q̃n+1Q̃
′′

n+1 − Q̃′2
n+1 + (

4

9
t2 +

2

3
(2(n + 1) − 1))Q̃2

n+1,

Q̃0 = Q̃1 = 1.

Define the polynomial Q̄n as t =
√

3/2X and define Q̃n(t) = Q̄n(X).

Proposition 16. The sequence of {Q̄n} satisfies the recursion for-

mula (2) of §1. That is,

Qn(t) = Q̄n.

Now we give a simplest proof of Theorem 2. Using the differential equa-

tion EIV instead of EII , the proof is same as that of §2.4. We conclude that

the auxiliary Hamilton function h, which satisfies the relation EIV , has only

simple pole with residue 1, so the τ -function is holomorphic over C. Since

the rational function Q̃n is a product of two holomorphic functions on C,

the Q̃n is a polynomial. Therefore Qn is a polynomial.

Similarly, we can prove the assertion of Theorem 2 for Rn of §1.

3.3. Fourth Painlevé equation and Hirota bilinear relations

We encountered the Hirota bilinear relations RII(α) and TII(v) for the

2nd Painlevé equation. We have the Hirota bilinear relations generalizing

TII(v) for all the Painlevé equations ([O3]). Let us study the Hirota bilinear

relations for the 4th Painlevé equation to give a purely algebraic proof of

Theorem 2.

Definition 7. The relations

(TIV (v).1)
(

D2 + 2tD + 2(v2 − v1)
)

τaτb = 0,

(TIV (v).2)
(D3 + 2tD2 + 2(v2 − v1)D)τa.τb

= 2
d

dt
(τa.τb) − 4(v3 + v̄3 − v1 − v̄1)Dτa.τb,

of a pair (τa, τb) of functions are called TIV (v) where,

v = (v1, v2, v3),

v̄ = v + l = (v̄1, v̄2, v̄3).
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We can prove the following Proposition 17 by the similar argument

§2.3. Our task is mechanical except for a few essential points.

Proposition 17. ([O3]) Let a parameter v and a τ -function τ(v) be

fixed. Using the notation of Definition 7, the pair (τ(v + l), τ(v)) satisfies

the relations TIV (v).

Now we would like to find the Hirota bilinear relations satisfied by the

pair (Qn−1, Qn) of Okamoto polynomials. We use the same notation of §3.2.

From Proposition 17 we have the relation of (τn−1, τn):

(D2 − 2tD − 2

3
)τn−1.τn = 0,

(D3 − 2tD2 − 2

3
D)τn−1.τn = −2

d

dt
(τn−1τn) − 4

6n − 7

3
Dτn−1.τn.

Since

Q̃n =
τn

exp( 1
27 t4 − 1

3(n − 1)t2)

from (14), we deduce relations satisfied by Q̃n instead of those of Qn. The

relations of (A, B) = (Q̃n−1, Q̃n) are as follows,

(RIV (n).1)
4AB − 4n AB − 2 t B A′ + 2 t AB′

− 6A′ B′ + 3B A′′ + 3AB′′ = 0,

(RIV (n).2)

8 t AB − 8n t AB + 6B A′ − 12n B A′ − 4 t2 B A′

− 18AB′ + 12n AB′ + 4 t2 AB′

+ 9B′ A′′ − 9A′ B′′ − 3B A′′′ + 3AB′′′ = 0,

or equivalently,

(RIV (n).1) (3D2 + 2tD + 4(1 − n))B.A = 0,

(RIV (n).2)
(3D3 + (4t2 + 12n − 12)D)B.A

− 6(B′A + BA′) + 8t(1 − n)BA = 0.
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3.4. Purely algebraic proof of Theorem 2

This subsection is logically independent of §3.3. At first we discovered

the Hirota bilinear relations RIV (n) in §3.3 as in the Proof of Proposi-

tion 8, which give us the purely algebraic proof as we see below and later

Okamoto[O3] deduce them in a general framework. We have to show that

Q̃n is a polynomial.

We recall the definition of rational function Q̃n of t:

Q̃nQ̃n+2 = Q̃n+1Q̃
′′

n+1 − Q̃′2
n+1 +

(

4

9
t2 +

2

3
(2(n + 1) − 1)

)

Q̃2
n+1,

Q̃0 = Q̃1 = 1.

Lemma 2. Let (A, B) be a pair of nonzero polynomials which are co-

prime. If the pair satisfies the relation (RIV (n).1), then A and B are square-

free.

Proof. The proof is the same as that of Lemma 1 of §2.2.

Hence the following proposition is the key of our induction.

Proposition 18. We assume that a pair (A, B) of coprime polyno-

mials of t satisfying the relation RIV (n). If we set

C =
B′′B − B′2 + (4

9 t2 + 2
3 (2n − 1))B2

A
,

then C is a square-free polynomial of t and B, C are coprime. Moreover the

pair (B, C) satisfies the relation RIV (n + 1).

Proof. Differentiating the relation (RIV (n).1) with respect to t, we

have

(RIV (n).1′).
3(A′′′ B − A′′ B′ − A′ B′′ + AB′′′) − 2 t(B A′′ − AB′′)

+(2 − 4n)A′B + (6 − 4n)AB′ = 0

By eliminating A′′′, A′′ from three relations, (RIV (n).1), (RIV (n).2),

(RIV (n).1′) and arranging with respect to A and A′, we get

(15)

A(−16tB2 + 16ntB2 + 30BB′ − 24nBB′ − 9BB′′′

+9B′B′′ − 6tBB′′ − 8t2BB′ + 6tB′2)

+18A′(B B′′ − B′2 + 4
9 t2 B2 − 2

3 B2 + 4
3 n B2) = 0 .
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Since A and A′ are coprime, we conclude that

B′′B − B′2 + (
4

9
t2 +

2

3
(2n − 1))B2

is divisible of A. Therefore C is a polynomial.

We show that (B, C) satisfies the relation RIV (n+1). By the definition

of C and the relation RII(n), we have the formulas for C ′′′, C ′′, and C ′:

C ′′′ =
1

27A

(

C ′′(−27A′) + C ′(27A′′ − 36tA′)

+C(27A′′′ − 36tA′′ − 36A′)

+B′′′B(36 + 12t2) + B′′B′(180 − 12t2)

+B′′B(−84t + 144nt + 16t3)

+B′2(−132t + 144nt + 112t2 − 64nt2)

+B2(64 − 64nt)
)

,

C ′′ =
1

27A

(

C(27A′′ − 36tA′)

+B′′B(36 + 12t2)

+B′2(72 − 12t2)

+B′B(−108t + 144nt + 16t3)

+B2(−24 + 48n + 32t2 − 32nt2)
)

,

C ′ =
1

9A

(

C(9A′) + B′′B(−6t) + B′2(6t)

+B′B(18) + B2(−8t + 16nt)
)

.

By successive substitution for C ′′, C ′, and C in the left-hand side of

(RIV (n + 1).1), we have

(16)
4B C − 4 (n + 1)B C − 2 t C B′ + 2 t B C ′ − 6B′ C ′ + 3C B′′ + 3B C ′′

=
1

9A2

(

−6B2 + 12n B2 + 4 t2 B2 − 9B′2 + 9B B′′

)

(4AB − 4n AB − 2 t B A′ + 2 t AB′ − 6A′ B′ + 3B A′′ + 3AB′′) .
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The second factor of the right-hand side of (16) is just the left-hand

side of (RIV (n).1). So the pair (B, C) satisfies (RIV (n + 1).1).

Now we have to show that the pair (B, C) satisfies the equation

(RIV (n + 1).2).

We need lengthy calculation. The left-hand side of (RIV (n + 1).2) is

(17)

8tBC − 8(n + 1)tBC + 6CB′ − 12(n + 1)CB′

− 4t2CB′ − 18BC ′ + 12(n + 1)BC ′ + 4t2BC ′

+ 9C ′B′′ − 9B′C ′′ − 3CB′′′ + 3BC ′′′.

By successive substitution for C ′′′, C ′′, C ′, and C in (17), we have a long

expression which can be modified to the following form:

1

6A2

(

−(9B′′B − 9B′2 + (2t2 + 12n − 12)B2)Ex2

−(2t2 + 6)B2Ex1d

−2(9tB′′B − 9tB′2 + (2t2 − 3)B′B + (2t3 − 2t)B2)Ex1
)

,

where Ex1, Ex2, and Ex1d are respectively the left-hand side of the as-

sumed expressions (RIV (n).2), (RIV (n).1), and (RIV (n).1′). So it must be

0, i.e. (B, C) satisfies (RIV (n + 1).2).

The same argument as §2.2 gives that B and C are coprime and C is

square-free.

We remark that Qn(
√
−1t) = (−1)n(n−1)/2Q−n+1 by the recursion for-

mula (2). So we only have to prove for every nonnegative integer n that

Q̃n is a polynomial. For n = 0 we can easily check that (Q̃0, Q̃1) = (1, 1)

satisfies the relation RIV (0). Using Proposition 18, the theorem is proved

by induction on n.

We can prove the theorem for {Rn} in the same manner.

Remark. The calculation of this purely algebraic proof for the 4th

Painlevé is complicated. To clarify the structure of the algebraic proof we

should treat general theory of the Hirota bilinear relations for the Painlevé

equations. We are trying to clarify the relation among the Toda equations,

the Hirota bilinear relations, and the differential equations E’s.
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