A RECURRENCE FORMULA FOR q-BERNOULLI NUMBERS ATTACHED TO FORMAL GROUP

JUNYA SATOH

Abstract

Kaneko [2] proved a new recurrence formula for the Bernoulli numbers and gave two proofs. One of them was due to Don Zagier. We shall apply Zagier's idea to the q-Bernoulli numbers attached to formal group.

1. Generalization of Kaneko's recurrence formula

Let $\mathfrak{B}=\mathfrak{B}(X)$ be the generating function of the Bernoulli numbers, i.e.,

$$
\mathfrak{B}=\frac{X}{e^{X}-1}
$$

then it is anti-invariant under a map: $\mathfrak{B} \mapsto \mathfrak{B} e^{X}$, i.e.,

$$
\mathfrak{B}(X) e^{X}=\mathfrak{B}(-X)
$$

Zagier gave another proof of Kaneko's recurrence formula for the Bernoulli numbers by using this property [2]. On the other hand because of $\mathfrak{B}(-X)=$ $\mathfrak{B}(X)+X$, we can see that \mathfrak{B} is transformed to the sum of a polynomial and itself under the above map. We use the second property in order to generalize Kaneko's recurrence formula and prove a formula for the q-Bernoulli numbers attached to formal group.

First we suppose a power series B in X which satisfies the following:
Assumption 1.

$$
B e^{X}=B+C
$$

where C is a polynomial.
If $C=X$, then B is equal to \mathfrak{B}, and if $C=X^{2}$, then B is essentially equal to the generating function of \tilde{B}_{n} which was defined in [2], i.e.,

$$
\sum_{n \geq 0} \tilde{B}_{n} \frac{X^{n}}{n!}=\left(\frac{X^{2}}{e^{X}-1}\right)^{\prime}
$$

Received November 4, 1998.

The starting point of our argument is the following trivial lemma:
Lemma 1. For any power series A and non-negative integer n, we have

$$
A^{(n)} e^{X}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i}\left(A e^{X}\right)^{(i)}
$$

where $A^{(n)}$ means the n-th derivative of A.
Proof. Because of $A=\left(A e^{X}\right) e^{-X}$, we can get what we want.
Set $A=B$ and compare the coefficient of $\frac{X^{m}}{m!}$ for any non-negative integer m, then we have a generalization of Kaneko's recurrence formula as follows:

Proposition 1. If B satisfies Assumption 1, then we have

$$
\sum_{i=0}^{m}\binom{m}{i} b_{n+i}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i}\left(b_{m+i}+c_{m+i}\right)
$$

where $B=\sum_{n \geq 0} b_{n} \frac{X^{n}}{n!}$ and $C=\sum_{n \geq 0} c_{n} \frac{X^{n}}{n!}$.
If $m>\operatorname{deg} C$, then we have
Corollary 1.

$$
\sum_{i=0}^{m}\binom{m}{i} b_{n+i}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} b_{m+i}
$$

Furthermore if $m=n$, then we have

Corollary 2.

$$
\sum_{\substack{i=0 \\ i \neq n \bmod 2}}^{n}\binom{n}{i} b_{n+i}=0
$$

If $C=X$, then there is no new information about the Bernoulli numbers. But if $C=X^{2}$, then this is equivalent to Kaneko's recurrence formula.

2. q-recurrence formula

In this section we shall extend results in the previous section for the q-Bernoulli numbers attached to formal group. Let q be an indeterminate and let \mathfrak{o} be the formal power series ring in $q-1$ over some \mathbb{Q}-algebra. Furthermore let $\mathfrak{F}(X, Y)$ be a 1-dimensional commutative formal group defined over \mathfrak{o} and let $\mathfrak{f}(X)$ be an isomorphism from the additive formal group $X+Y$ to $\mathfrak{F}(X, Y)$. We note that there exists a unique isomorphism $\mathfrak{f}_{\mathfrak{F}}(X)$ from $X+Y$ to $\mathfrak{F}(X, Y)$ defined over \mathfrak{o} such that $\mathfrak{f}_{\mathfrak{F}}^{\prime}(0)=1$. And $\mathfrak{f}(X)$ is equal to $\mathfrak{f}_{\mathfrak{F}}(c X)$ for some invertible element $c \in \mathfrak{o}^{\times}$. Conversely for any $c \in \mathfrak{o}^{\times}$, $\mathfrak{f}_{\mathfrak{F}}(c X)$ is an isomorphism from $X+Y$ to $\mathfrak{F}(X, Y)$. Throughout this paper we assume that

Assumption 2.

$$
\operatorname{ord}_{q-1} \mathfrak{f}_{\tilde{F}}^{(n)}(0) \geq n-1 \quad \text { for all } n \geq 1
$$

We note that by this assumption $\mathfrak{F}_{n}(A, B)$ (see Definition 1 below) and $\mathfrak{f}(a)$ are convergent in \mathfrak{o} for any $A, B \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$ as formal power series (see [6, Remark 3]).

Definition 1. For each non-negative integer n, we denote the expansion of $\mathfrak{F}(X, Y)^{n}$ by

$$
\mathfrak{F}(X, Y)^{n}=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} X^{i} Y^{j}
$$

and we set

$$
\mathfrak{F}_{n}(A, B)=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} a_{i} b_{j}
$$

for any power series $A=\sum_{n \geq 0} a_{n} \frac{X^{n}}{n!}$ and $B=\sum_{n \geq 0} b_{n} \frac{X^{n}}{n!}$ in $\mathfrak{o}[[X]]$. Then we define the $*_{\mathfrak{F}}$-product by

$$
A *_{\mathfrak{F}} B=\sum_{n \geq 0} \mathfrak{F}_{n}(A, B) \frac{X^{n}}{n!}
$$

We can prove $\left(\mathfrak{o}[[X]],+, *_{\mathfrak{F}}\right)$ is an \mathfrak{o}-algebra (see $[6$, Proposition 1]). Next we extend the following map:

$$
X^{n} \mapsto c^{n} \underbrace{X *_{\mathfrak{F}} \cdots *_{\mathfrak{F}} X}_{n \text { times }}
$$

\mathfrak{o}-linearly. Hence we can get a natural homomorphism from $(\mathfrak{o}[[X]],+, \cdot)$ to $\left(\mathfrak{o}[[X]],+, *_{\mathfrak{F}}\right)$. We call this map q-operator and denote the image of $A \in \mathfrak{o}[[X]]$ under the q-operator by $A_{\mathfrak{F}, c}$. We define a q-analogue of power series A attached to \mathfrak{F} and c by $A_{\mathfrak{F}, c}$. The following proposition is essential for our theory of q-analogue (see [6, Theorem 1 and Proposition 2]).

Proposition 2. For any $a, b \in \mathfrak{o}$, we have
(i) $\left(e^{a X}\right)_{\mathfrak{F}, c}=e^{\mathfrak{f}(a) X}$,
(ii) $e^{\mathfrak{f}(a) X} *_{\mathfrak{F}} e^{\mathfrak{f}(b) X}=e^{\mathfrak{f}(a+b) X}$.

We define the q-Bernoulli numbers $\beta_{n}(\mathfrak{F}, c)$ attached to \mathfrak{F} and c as follows:

Definition 2. For each non-negative integer n, we define the n-th q Bernoulli number $\beta_{n}(\mathfrak{F}, c)$ attached to $\mathfrak{F}(X, Y) \in \mathfrak{o}[[X, Y]]$ and $c \in \mathfrak{o}^{\times}$by the coefficient of $\frac{X^{n}}{n!}$ in $\mathfrak{B}_{\mathfrak{F}, c}=\left(\frac{X}{e^{X}-1}\right)_{\mathfrak{F}, c}$.

We note that if $\mathfrak{F}=X+Y+(q-1) X Y$ and $c=\frac{\log q}{q-1}$, then $\mathfrak{f}(X)=\frac{q^{X}-1}{q-1}$ and $\beta_{n}(\mathfrak{F}, c)$ satisfies the following recurrence formula:

$$
\beta_{0}(\mathfrak{F}, c)=1, \quad(q \beta(\mathfrak{F}, c)+1)^{n}-\beta_{n}(\mathfrak{F}, c)= \begin{cases}\frac{\log q}{q-1} & \text { for } \quad n=1 \\ 0 & \text { for } \quad n>1\end{cases}
$$

where we use the usual convention about replacing $\beta(\mathfrak{F}, c)^{i}$ by $\beta_{i}(\mathfrak{F}, c)$ for each non-negative integer i.

Proof. Apply the q-operator to $\mathfrak{B} e^{X}-\mathfrak{B}=X$, then we have $\mathfrak{B}_{\mathfrak{F}, c} *_{\mathfrak{F}}$ $e^{X}-\mathfrak{B}_{\mathfrak{F}, c}=c X$ and $\mathfrak{F}_{n}\left(\mathfrak{B}_{\mathfrak{F}, c}, e^{X}\right)=(q \beta(\mathfrak{F}, c)+1)^{n}$. Hence the above recurrence formula holds.

Now we may get a q-analogue of Proposition 1 by applying the q operator to Lemma 1, but it is unknown the commutativity of the q-operator and the derivative on $\mathfrak{o}[[X]]$. So we need to take another approach to get a q-analogue of Lemma 1 .

Lemma 2. For any power series A, B and non-negative integer n, we have

$$
\begin{equation*}
\left(A *_{\mathfrak{F}} B\right)^{(n)}=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} A^{(i)} *_{\mathfrak{F}} B^{(j)} \tag{1}
\end{equation*}
$$

Proof. For any non-negative integer m, the coefficient of $\frac{X^{m}}{m!}$ in the left hand side of (1) is equal to

$$
\mathfrak{F}_{m+n}(A, B)=\sum_{i, j \geq 0}\binom{m+n}{i, j}_{\mathfrak{F}} a_{i} b_{j}
$$

On the other hand that in the right hand of (1) is equal to

$$
\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} \mathfrak{F}\left(A^{(i)}, B^{(j)}\right)=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} \sum_{k, l \geq 0}\binom{m}{k, l}_{\mathfrak{F}} a_{i+k} b_{j+l} .
$$

Hence it is sufficient to show that

$$
\binom{m+n}{i, j}_{\mathfrak{F}}=\sum_{\substack{0 \leq k \leq i \\ 0 \leq l \leq j}}\binom{m}{k, l}_{\mathfrak{F}}\binom{n}{i-k, j-l}_{\mathfrak{F}}
$$

for all $i \geq 0$ and $j \geq 0$. Because of $\mathfrak{F}(X, Y)^{m+n}=\mathfrak{F}(X, Y)^{m} \mathfrak{F}(X, Y)^{n}$, we can get what we want.

Apply this lemma to $A *_{\mathfrak{F}} e^{\mathfrak{f}(1) X}$ and $e^{\mathfrak{f}(-1) X}$, then we have
Lemma 3.

$$
A^{(n)} *_{\mathfrak{F}} e^{\mathfrak{f}(1) X}=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} \mathfrak{f}(-1)^{j}\left(A * \mathfrak{F} e^{\mathfrak{f}(1) X}\right)^{(i)}
$$

This is a q-analogue of Lemma 1. If B satisfies Assumption 1, by applying the q-operator, we have

$$
B_{\mathfrak{F}, c} * \mathfrak{F} e^{\mathfrak{f}(1) X}=B_{\mathfrak{F}, c}+C_{\mathfrak{F}, c} .
$$

If C is a polynomial, then $C_{\mathfrak{F}, c}$ is also a polynomial and $\operatorname{deg} C=\operatorname{deg} C_{\mathfrak{F}, c}$ (see [6, Lemma 2]). Hence we have the following:

Proposition 3. If B satisfies Assumption 1, then we have

$$
\sum_{i, j \geq 0}\binom{m}{i, j}_{\mathfrak{F}} \mathfrak{f}(1)^{j} \beta_{n+i}=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} \mathfrak{f}(-1)^{j}\left(\beta_{m+i}+\gamma_{m+i}\right)
$$

for any non-negative integer m and n, where $B_{\mathfrak{F}, c}=\sum_{n \geq 0} \beta_{n} \frac{X^{n}}{n!}$ and $C_{\mathfrak{F}, c}=$ $\sum_{n \geq 0} \gamma_{n} \frac{X^{n}}{n!}$.

If $m>\operatorname{deg} C$, then we have
Corollary 3.

$$
\sum_{i, j \geq 0}\binom{m}{i, j}_{\mathfrak{F}} \mathfrak{f}(1)^{j} \beta_{n+i}=\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}} \mathfrak{f}(-1)^{j} \beta_{m+i}
$$

Furthermore if $m=n$, then we have
Corollary 4.

$$
\sum_{i, j \geq 0}\binom{n}{i, j}_{\mathfrak{F}}\left\{\mathfrak{f}(1)^{j}-\mathfrak{f}(-1)^{j}\right\} \beta_{n+i}=0
$$

Hence if $C=X$, then we get a recurrence formula for $\beta_{n}=\beta_{n}(\mathfrak{F}, c)$. On the other hand if $C=X^{2}$, then β_{n} is the coefficient of $\frac{X^{n}}{n!}$ in

$$
\left(\frac{X^{2}}{e^{X}-1}\right)_{\mathfrak{F}, c}=c X *_{\mathfrak{F}} \mathfrak{B}_{\mathfrak{F}, c}=c X d_{\mathfrak{F}}\left(\mathfrak{B}_{\mathfrak{F}, c}\right)
$$

where $d_{\mathfrak{F}}=\sum_{i \geq 0}\binom{1}{i, 1}_{\mathfrak{F}} \frac{d^{i}}{d X^{i}}$ (see [6, Lemma 1]). Furthermore if $\mathfrak{F}(X, Y)=$ $X+Y+(q-1) X Y$ and $c=\frac{\log q}{q-1}$, then $\frac{1}{c} d_{\mathfrak{F}}\left(\mathfrak{B}_{\mathfrak{F}, c}\right)$ is equal to the generating function of Carlitz's q-Bernoulli numbers (see the next section). This means that we get a Kaneko's type of recurrence formula for Carlitz's q-Bernoulli numbers.
3. $X+Y+(q-1) X Y$

If $\mathfrak{F}(X, Y)=X+Y+(q-1) X Y$ and $c=\frac{\log q}{q-1}$, then we can state results in the previous section as follows:

Corollary 5. If B satisfies Assumption 1, then we have
(i) $\sum_{i=0}^{m}\binom{m}{i} q^{n+i} \beta_{n+i}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i}\left(\beta_{m+i}+\gamma_{m+i}\right)$,
(ii) $\sum_{i=0}^{m}\binom{m}{i} q^{n+i} \beta_{n+i}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} \beta_{m+i} \quad$ if $\quad m>\operatorname{deg} C$,
(iii) $\sum_{i=0}^{n}\binom{n}{i}\left\{q^{n+i}-(-1)^{n-i}\right\} \beta_{n+i}=0 \quad$ if $\quad m=n>\operatorname{deg} C$,
where $B_{\mathfrak{F}, c}=\sum_{n \geq 0} \beta_{n} \frac{X^{n}}{n!}$ and $C_{\mathfrak{F}, c}=\sum_{n \geq 0} \gamma_{n} \frac{X^{n}}{n!}$.
Proof. If $\mathfrak{F}(X, Y)=X+Y+(q-1) X Y$, then, by the definition of $\binom{m}{i, j}_{\mathfrak{F}}$, we have

$$
\begin{equation*}
\binom{m}{i, j}_{\mathfrak{F}}=\binom{m}{i}\binom{i}{i+j-m}(q-1)^{i+j-m} \tag{2}
\end{equation*}
$$

Hence for any $a \in \mathfrak{o}$, we have

$$
\begin{aligned}
& \sum_{i, j \geq 0}\binom{m}{i, j}_{\mathfrak{F}} \mathfrak{f}(a)^{j} \beta_{n+i} \\
= & \sum_{i, j \geq 0}\binom{m}{i}\binom{i}{i+j-m}(q-1)^{i+j-m} \mathfrak{f}(a)^{j} \beta_{n+i} \\
= & \sum_{i=0}^{m}\binom{m}{i} \mathfrak{f}(a)^{n-i} \beta_{n+i} \sum_{j=m-i}^{m}\binom{i}{i+j-m}\{(q-1) \mathfrak{f}(a)\}^{i+j-m} \\
= & \sum_{i=0}^{m}\binom{m}{i} \mathfrak{f}(a)^{n-i} \beta_{n+i} q^{a i} .
\end{aligned}
$$

Hence we can get what we want.
Let $\bar{\beta}_{n}(\mathfrak{F}, c)$ be the coefficient of $\frac{X^{n}}{n!}$ in $\frac{1}{c} d_{\mathfrak{F}}\left(\mathfrak{B}_{\mathfrak{F}, c}\right)$, i.e., that of $c^{2} \frac{X^{n+1}}{n!}$ in $\left(\frac{X^{2}}{e^{X}-1}\right)_{\mathfrak{F}, c}$, then $\bar{\beta}_{n}(\mathfrak{F}, c)$ satisfies the following Carlitz's recurrence formula ([1]):

$$
\bar{\beta}_{0}(\mathfrak{F}, c)=1, \quad q(q \bar{\beta}(\mathfrak{F}, c)+1)^{n}-\bar{\beta}_{n}(\mathfrak{F}, c)= \begin{cases}1 & \text { for } \quad n=1 \\ 0 & \text { for } \quad n>1\end{cases}
$$

Hence $\bar{\beta}_{n}(\mathfrak{F}, c)$ is equal to the n-th Carlitz's q-Bernoulli number. To prove this we need the following:

Lemma 4. If $\mathfrak{F}(X, Y)=X+Y+(q-1) X Y$, then $d_{\mathfrak{F}}$ is a homomorphism on $\left(\mathfrak{o}[[X]],+, *_{\mathfrak{F}}\right)$.

Proof. In this case we can write

$$
d_{\mathfrak{F}}(A)=A+(q-1) A^{\prime}
$$

for any power series $A \in \mathfrak{o}[[X]]$. Hence by Lemma 2 we have

$$
\begin{aligned}
d_{\mathfrak{F}}\left(A *_{\mathfrak{F}} B\right) & =A *_{\mathfrak{F}} B+(q-1)\left(A *_{\mathfrak{F}} B\right)^{\prime} \\
& =A *_{\mathfrak{F}} B+(q-1)\left\{A^{\prime} *_{\mathfrak{F}} B+A *_{\mathfrak{F}} B^{\prime}+(q-1) A^{\prime} *_{\mathfrak{F}} B^{\prime}\right\} \\
& =\left(A+(q-1) A^{\prime}\right) *_{\mathfrak{F}}\left(B+(q-1) B^{\prime}\right) \\
& =d_{\mathfrak{F}}(A) *_{\mathfrak{F}} d_{\mathfrak{F}}(B)
\end{aligned}
$$

for any A and B in $\mathfrak{o}[[X]]$. Hence $d_{\mathfrak{F}}$ is a homomorphism on $\left(\mathfrak{o}[[X]],+, *_{\mathfrak{F}}\right)$.

Proof (Carlitz's recurrence formula). Apply $d_{\mathfrak{F}}$ to $\mathfrak{B}_{\mathfrak{F}, c} *_{\mathfrak{F}} e^{X}-\mathfrak{B}_{\mathfrak{F}, c}=$ $c X$, then we have

$$
d_{\mathfrak{F}}\left(\mathfrak{B}_{\mathfrak{F}, c}\right) *_{\mathfrak{F}} q e^{X}-d_{\mathfrak{F}}\left(\mathfrak{B}_{\mathfrak{F}, c}\right)=c X-\log q
$$

Hence $\bar{\beta}_{n}(\mathfrak{F}, c)$ satisfies Carlitz's recurrence formula.
Finally we give another proof of Corollary 5.
Lemma 5. If $\mathfrak{F}(X, Y)=X+Y+(q-1) X Y$, then the $*_{\mathfrak{F}}$-product is written by

$$
A *_{\mathfrak{F}} X^{n}=d_{\mathfrak{F}}^{n}(A) X^{n}
$$

for any non-negative integer n.
Proof. It is sufficient to prove for $\frac{X^{i}}{i!} *_{\mathfrak{F}} \frac{X^{j}}{j!}(i \geq 0$ and $j \geq 0)$. By the definition of $*_{\mathfrak{F}}$ and (2), we have

$$
\begin{aligned}
\frac{X^{i}}{i!} *_{\mathfrak{F}} \frac{X^{j}}{j!} & =\sum_{m \geq 0}\binom{m}{i, j}_{\mathfrak{F}} \frac{X^{m}}{m!} \\
& =\sum_{m=j}^{i+j}\binom{m}{i}\binom{i}{i+j-m}(q-1)^{i+j-m} \frac{X^{m}}{m!}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
d_{\mathfrak{F}}^{i}\left(\frac{X^{j}}{j!}\right) \frac{X^{i}}{i!} & =\sum_{m=0}^{i}\binom{i}{m}(q-1)^{m} \frac{d^{m}}{d X^{m}}\left(\frac{X^{j}}{j!}\right) \frac{X^{i}}{i!} \\
& =\sum_{m=0}^{i}\binom{i}{m}\binom{i+j-m}{i}(q-1)^{m} \frac{X^{i+j-m}}{(i+j-m)!}
\end{aligned}
$$

Hence we have what we want.
Remark 1. If $\mathfrak{F}=X+Y+(q-1) X Y$ and $c=\frac{\log q}{q-1}$, then, by Lemma 5, we can get

$$
A(X) *_{\mathfrak{F}} e^{\mathfrak{f}(a)}=A\left(q^{a} X\right) e^{\mathfrak{f}(a)}
$$

for any power series $A \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$. By this we can get Corollary 5 from Lemma 1 not using Lemma 2.

Remark 2. Lemma 4 and Lemma 5 hold only for $\mathfrak{F}(X, Y)=X+Y+$ $(q-1) X Y$ (see [6, Lemma 1 and Proposition 4]).

References

[1] L. Carlitz, q-Bernoulli numbers and polynomials, J. Duke Math. J., 15 (1948), 987-1000.
[2] M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71,Ser. A, No. 8 (1995), 192-193.
[3] J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory, 31 (1989), 346-362.
[4] _, A construction of q-analogue of Dedekind sums, Nagoya Math. J., 127 (1992), 129-143.
[5] —, Construction of q-analogue by using Stirling numbers, Japan. J. Math., 20, No. 1 (1994), 73-91.
[6] _, Another look at the q-analogue from the viewpoint of formal groups, Preprint Ser. in Math. Sciences, Nagoya Univ. (1999-4).

Graduate School of Human Informatics

Nagoya University
Furo-cho Chikusa-ku
Nagoya 464-8601, Japan
jsatoh@math.human.nagoya-u.ac.jp

