H. UmemuraNagoya Math. J.Vol. 157 (2000), 15–46

ON THE TRANSFORMATION GROUP OF THE SECOND PAINLEVÉ EQUATION

HIROSHI UMEMURA

Abstract. We show that for the second Painlevé equation $y'' = 2y^3 + ty + \alpha$, the Bäcklund transformation group G, which is isomorphic to the extended affine Weyl group of type \hat{A}_1 , operates regularly on the natural projectification $\mathcal{X}(c)/\mathbb{C}(c,t)$ of the space of initial conditions, where $c = \alpha - 1/2$. $\mathcal{X}(c)/\mathbb{C}(c,t)$ has a natural model $\mathcal{X}[c]/\mathbb{C}(t)[c]$. The group G does not operate, however, regularly on $\mathcal{X}[c]/\mathbb{C}(t)[c]$. To have a family of projective surfaces over $\mathbb{C}(t)[c]$ on which G operates regularly, we have to blow up the model $\mathcal{X}[c]$ along the projective lines corresponding to the Riccati type solutions.

§1. Introduction

As is well known, the (extended) affine Weyl group of type \tilde{A}_1 appears as a transformation group of solutions of the second Painlevé equation

$$P_{II}(\alpha): y'' = 2y^3 + ty + \alpha,$$

where t is the independent variable, $y'' = d^2y/dt^2$ and $\alpha \in \mathbb{C}$ is a parameter. If y is a solution of the second Painlevé equation $P_{II}(\alpha)$, then

$$T_{+}(y) = -y - \frac{\alpha + \frac{1}{2}}{y' + y^{2} + \frac{t}{2}}$$

is a solution of $P_{II}(\alpha+1)$,

$$T_{-}(y) = -y + \frac{\alpha - \frac{1}{2}}{y' - y^2 - \frac{t}{2}}$$

is a solution of $P_{II}(\alpha - 1)$ and I(y) = -y is a solution of $P_{II}(-\alpha)$. Let G be the subgroup of the affine transformation group of the affine line \mathbb{A}^1 generated by the translations

$$t_{+}(\alpha) = \alpha + 1, \quad t_{-}(\alpha) = \alpha - 1$$

Received July 14, 1997.

and the reflection

$$i(\alpha) = -\alpha$$

at 0 for $\alpha \in \mathbb{C}$. So G is the affine Weyl group of type \tilde{A}_1 . We consider the affine space \mathbb{A}^4 with coordinate system (y, y', t, α) as well as the affine plane with coordinate system (t, α) . We have a vector field

$$\delta(\alpha) = \frac{\partial}{\partial t} + y' \frac{\partial}{\partial y} + (2y^3 + ty + \alpha) \frac{\partial}{\partial y'}$$

on \mathbb{A}^4 and a natural fibration $\pi: \mathbb{A}^4 \to \mathbb{A}^2$ by projection $(y, y', t, \alpha) \mapsto (t, \alpha)$. The affine Weyl group G operates on the affine plane \mathbb{A}^2 through the second coordinate. The transformations T_+ , T_- , I define a birational operation of the affine Weyl group G on \mathbb{A}^4 compatible with the derivation $\delta(c)$ such that the fibration $\pi: \mathbb{A}^4 \to \mathbb{A}^2$ is G-equivariant. We construct in this note a projective model of the fibration $\pi: \mathbb{A}^4 \to \mathbb{A}^2$ on which the Weyl group G operates regularly. In fact we construct a projective model \mathcal{X} of the generic fiber of the fibration $\pi: \mathbb{A}^4 \to \mathbb{A}^2$ such that the affine Weyl group G operates regularly on \mathcal{X} (Theorem 2.11). The model \mathcal{X} is the projective surface studied by Okamoto [O1]. More precisely his space of initial conditions is our projective surface \mathcal{X} minus 8 non-singular rational curves with self-intersection number -2 whose dual graph is the extended Dynkin diagram of type \widetilde{E}_7 . We recall the construction of \mathcal{X} in §2. We first projectify the affine plane $\mathbb{A}^2_{\mathbb{C}(\alpha,t)}$ to a ruled surface isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ and then blow up it 8 times to get \mathcal{X} . The construction of such a model \mathcal{Y} over \mathbb{A}^2 is more subtle. We construct a model \mathcal{Y} that is a complex manifold but is not an algebraic variety (Theorem 4.10). In this paper the ground field is an arbitrary field K of characteristic 0. So $K = \mathbb{Q}$ is the most natural but the readers who are interested in analysis may assume $K = \mathbb{C}$.

§2. Construction of the model

We know that the Painlevé equation

$$P_{II}(\alpha): y'' = 2y^3 + ty + \alpha$$

is equivalent to both

$$S_{II}(\alpha): \begin{cases} \frac{dq}{dt} = p - q^2 - \frac{t}{2}, \\ \frac{dp}{dt} = 2pq + \alpha + \frac{1}{2}, \end{cases}$$

and

$$S_2(c): \begin{cases} \frac{dq}{dt} = q^2 + p + \frac{t}{2}, \\ \frac{dp}{dt} = -2qp + c, \end{cases}$$

where $c = \alpha - 1/2$ that is denoted by ε by Okamoto (cf. [O1, p. 50]).

Remark. We consider that the parameter α or c belongs to an extension field or more generally to an over ring of the base field K consisting of constants.

We used $S_{II}(\alpha)$ in [UW]. In this paper we adopt $S_2(\alpha)$. Let us denote by $Sol_2(c)$ the set of solutions of the system $S_2(c)$. We have transformations

$$T_{+}(c, c+1): Sol_{2}(c) \longrightarrow Sol_{2}(c+1),$$

 $T_{-}(c, c-1): Sol_{2}(c) \longrightarrow Sol_{2}(c-1),$
 $I(c, -c): Sol_{2}(c) \longrightarrow Sol_{2}(-c).$

The definition of these transformations is as follows. Let $(q, p) \in Sol_2(c)$. (i) If $2q^2 + q + 1 \neq 0$, then

$$(2.1) T_{+}(c,c+1)(q,p) = \left(-q - \frac{c+1}{2q^2 + p + t}, -2q^2 - p - t\right).$$

If $2q^2 + p + t = 0$, then c = -1 and

$$T_{+}(-1,0)(q,p) = (-q, -2q^2 - p - t).$$

(ii) If $p \neq 0$, then

(2.2)
$$T_{-}(c,c-1)(q,p) = \left(-q + \frac{c}{p}, -p - 2\left(q - \frac{c}{p}\right)^{2} - t\right).$$

If p = 0, then c = 0 and

$$T_{-}(0,-1)(q,p) = (-q,-2q^2 - p - t).$$

(iii) If
$$p \neq 0$$
,
$$I(c,-c)(q,p) = \left(q - \frac{c}{p},p\right).$$

If p = 0, then c = 0 and I(c, -c)(q, p) = (q, p). It is easy to check that

$$(2.3) I(-c,c) \circ I(c,-c) = \operatorname{Id}_{Sol_2(c)},$$

(2.4)
$$\begin{cases} T_{-}(c+1,c) \circ T_{+}(c,c+1) = \operatorname{Id}_{Sol_{2}(c)}, \\ T_{+}(c-1,c) \circ T_{-}(c,c-1) = \operatorname{Id}_{Sol_{2}(c)}, \end{cases}$$

and

$$I(-c+1,c-1) \circ T_{+}(-c,-c+1) \circ I(c,-c) = T_{-}(c,c-1)$$

for every c. From now on, we assume that we assume that the parameter c is a variable over K(t) and it is convenient to set L = K(c,t). Let now q_c , p_c be variables over L and we consider the polynomial ring $R(c) := L[q_c, p_c]$. If we consider the derivation

$$D(c) = \frac{\partial}{\partial t} + \left(q_c^2 + p_c + \frac{t}{2}\right) \frac{\partial}{\partial q_c} + \left(-2q_c p_c + c\right) \frac{\partial}{\partial p_c} : R(c) \longrightarrow R(c),$$

R(c) is a differential algebra and we have

(2.5)
$$\begin{cases} D(c)(q_c) = q_c^2 + q_c + \frac{t}{2}, \\ D(c)(p_c) = -2q_c p_c + c, \end{cases}$$

i.e., (q_c, p_c) is a solution of the system $S_2(c)$ and for every solution (q, p) of $S_2(c)$ we have a differential L-morphism

$$(2.6) L[q_c, p_c] \longrightarrow L[q, p]$$

of differential algebras sending q_a , p_a respectively to q, p. In fact let Q, P be differential variables over L so that $L\{Q,P\} = L[Q,P,Q',P',\ldots]$ is a differential polynomial ring and we have a differential L-morphism

$$\Phi: L\{Q,P\} \longrightarrow L[q,p]$$

of differential L-algebras sending Q, P respectively to q, p. Since the differential ideal I(c) of the differential algebra $L\{q,p\}$ that is differentially generated by

$$\delta Q - Q^2 - P - \frac{t}{2}$$
, and $\delta P + 2QP - c$

of the differential polynomial ring $L\{Q, P\}$ is in Ker Φ , the morphism Φ factors through the residue class map

$$L{Q,P} \longrightarrow L{Q,P}/I(c) = R(c)$$

and induces a differential L-morphism (2.6). We denote the quotient field of R(c) by Q(c), which is a differential field. We consider $X(c) := \operatorname{Spec} L[q_c, p_c]$ that is nothing but the affine plane \mathbb{A}^2_L over L with the coordinate system (q_c, p_c) endowed with the derivation $\delta(c)$. Since (q_c, p_c) is a solution of $S_2(c)$, it follows from (2.1)

$$T_{+}(c, c+1)(q_c, p_c) = \left(-q_c - \frac{c+1}{2q_c^2 + p_c + t}, -2q_c^2 - p_c - t\right)$$

is a solution of $S_2(c+1)$. So by (2.6) we have an L-differential morphism

$$(2.7) R(c+1) \longrightarrow Q(c)$$

sending

$$q_{c+1}$$
 to $-q_c - \frac{c+1}{2q_c^2 + p_c + t}$ and p_{c+1} to $-2q_c^2 - p_c - t$.

Now by (2.4) the morphism (2.7) is birational or it induces an isomorphism

$$Q(c+1) \longrightarrow Q(c)$$

of the differential quotient fields. In other words we have an L-birational map

$$(2.8) X(c) = \mathbb{A}_L^2 = \operatorname{Spec} R(c) \cdots \to X(c+1) = \mathbb{A}_L^2 = \operatorname{Spec} R(c+1)$$

compatible with the derivations $\delta(c+1)$ and $\delta(c)$. On the other hand the K(t)-isomorphism

$$(2.9) L = K(c,t) \longrightarrow L = K(c,t), \quad c \longmapsto c+1$$

induces a differential K(t)-isomorphism

$$R(c) = L[q_c, p_c] \longrightarrow R(c+1) = L[q_{c+1}, p_{c+1}]$$

sending

$$(2.10) q_c \longmapsto q_{c+1}, \quad p_c \longmapsto p_{c+1} \quad \text{and} \quad c \longmapsto c+1.$$

Composing the isomorphism (2.9) and the L-birational map (2.8), we get a K(t)-birational map

$$T_+: X(c) = \operatorname{Spec} L[q_c, p_c] \longrightarrow X(c+1) = \operatorname{Spec} L[q_{c+1}, p_{c+1}]$$

 $\cdots \longrightarrow X(c) = \operatorname{Spec} L[q_c, p_c]$

compatible with the derivations such that the diagram

$$X(c) \xrightarrow{T_{+}} X(c)$$

$$\downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow$$

$$\operatorname{Spec} L \xrightarrow{t_{+}} \operatorname{Spec} L$$

is commutative, where the vertical arrow p is the projection and the lower horizontal arrow is the morphism of schemes induced by the isomorphism (2.9). Similarly we have a differential birational map

$$T_-: X(c) \cdots \to X(c)$$

such that the diagram

$$\begin{array}{ccc}
X(c) & \xrightarrow{T_{-}} & X(c) \\
\downarrow & & \downarrow \\
\operatorname{Spec} L & \xrightarrow{t_{-}} & \operatorname{Spec} L
\end{array}$$

is commutative, where the lower horizontal arrow is the morphism of schemes induced by the K(c)-morphism $L \to L$ of differential fields sending c to c+1. We also have a differential birational map

$$I:X(c)\cdot\cdot\cdot\to X(c)$$

such that the diagram

$$X(c) \xrightarrow{I} X(c)$$

$$\downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow$$

$$\operatorname{Spec} L \xrightarrow{i} \operatorname{Spec} I$$

is commutative, where the lower horizontal map is induced by the K(t)-isomorphism $L \to L$ of differential fields sending c to -c. Let

$$t_{+}^{*}, \quad t_{-}^{*}, \quad i^{*}$$

be respectively K-automorphisms of K(c) such that

$$t_{+}^{*}(c) = c + 1, \quad t_{-}^{*}(c) = c - 1, \quad i^{*}(c) = -c.$$

They define K-automorphisms t_+ , t_- , i of the scheme Spec K(c). Let G be the subgroup of the automorphism of the scheme Spec K(t) generated by the automorphisms t_+ , t_- , i so that G is the affine Weyl group of type \tilde{A}_1 . We have

$$t_{+}^{2} = t_{-}^{2} = t_{+} \circ t_{-} = t_{-} \circ t_{+} = i^{2} = \text{Id}, \quad i \circ t_{+} \circ i = t_{-}$$

and $G = \langle t_+, t_- \rangle \rtimes \langle i \rangle \simeq \mathbb{Z}^2 \rtimes \mathfrak{S}_2$, where \mathfrak{S}_2 is the symmetric group of degree 2. Let \widetilde{G} be the subgroup of the birational automorphisms of X(c) generated by T_+, T_-, I . So we have a natural morphism $\varphi : \widetilde{G} \to G$ of groups by the commutative diagrams above. We can check

$$T_+ \circ T_- = T_- \circ T_+ = S^2 = \operatorname{Id}, \quad \text{and} \quad S \circ T_+ \circ S = T_-$$

so that φ is an isomorphism. Namely the (extended) affine Weyl group G of type \tilde{A}_1 birationally operates on the scheme $X(c) = \mathbb{A}^2_L$ in such a way that the diagram

$$X(c) \xrightarrow{\phi_g} X(c)$$

$$\downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow$$

$$\operatorname{Spec} L \xrightarrow{\psi_g} \operatorname{Spec} L$$

is commutative for every $g \in G$, where ϕ_g is the birational automorphism of X(c) induced the element $g \in G$ and ψ_g is the K(t)-automorphism of Spec L defined by the operation of the element $g \in G$. We projectify the affine plane $X(c) = \mathbb{A}^2_L$ with derivation. We prepare four copies W_i $(1 \le i \le 4)$ of the affine plane \mathbb{A}^2_L and glue them by the following rule to get the projective model Z(c) that is denoted by $\Sigma_{(\varepsilon)}^{(2)}$ in [O1] with $\varepsilon = c$. Let (y_i, z_i) be the coordinate system of W_i $(1 \le i \le 4)$ so that $W_i = \operatorname{Spec} L[y_i, z_i]$.

(i) A point $(y_1, z_1) \in W_1$ and a point $(y_2, z_2) \in W_2$ are identified if

$$y_1 = y_2$$
 and $z_1 z_2 = 1$.

(ii) A point $(y_1, z_1) \in W_1$ and a point $(y_3, z_3) \in W_3$ are identified if

$$y_1y_3 = 1$$
 and $z_1 = cy_3 - y_3^2 z_3$.

We notice here that the latter condition is equivalent to $z_3 = cy_1 - y_1^2 z_1$.

(iii) A point $(y_3, z_3) \in W_3$ and a point $(y_4, z_4) \in W_4$ are identified if

$$y_3 = y_4$$
 and $z_3 z_4 = 1$.

The projections

$$W_i \longrightarrow \mathbb{A}^1_L, \quad (y_i, z_i) \longmapsto y_i$$

for $1 \le i \le 4$ glue together and give a morphism

$$Z(c) \longrightarrow \mathbb{P}^1_L$$
.

Namely Z(c) is a \mathbb{P}^1_L -bundle over \mathbb{P}^1_L or Z(c) is a rational ruled surface known to be isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. The curves $z_2 = 0$ in W_2 and $z_4 = 0$ in W_4 also glue together and give a section D_1 of the ruled surface $Z(c) \to \mathbb{P}^1_L$ such that $D_1^2 = 2$. We embed the affine plane X(c) over L in Z(c) by identifying it with W_1 by an L-isomorphism

$$L[y_1, z_1] \longrightarrow L[q_c, p_c], \quad y_1 \longmapsto q_c, \ z_1 \longmapsto p_c.$$

The derivation $\delta(c)$ of $L[q_c, p_c]$ defines a rational derivation on the scheme Z(c). We notice here that since $\delta(t)=1$, the rational derivation on Z(c) is not a vector field on an variety over L even on an open set of Z(c), for Z(c) is defined over the field L=K(t,c). Okamoto constructed the space of initial conditions of the second Painlevé equation $P_{II}(\alpha)$ by blowing up the projective surface Z(c) over L at 8 points. They are infinitely near points of $(y_4, z_4) = (0, 0)$ on $W_4 \subset Z(c)$. Namely they are the point $(y_4, z_4) = (0, 0)$ in W_4 and 7 other points lying on the exceptional divisor that is contracted to the point $(y_4, z_4) = (0, 0) \in W_4$. Let us denote the thus obtained surface by $\mathcal{X}(c)$. On $\mathcal{X}(c)$ there are 8 curves D_i isomorphic to \mathbb{P}^1_L with $D_i^2 = -2$ $(1 \leq i \leq 8)$. The space of initial conditions of the second Painlevé equation is defined as $\mathcal{X}(c) - \bigcup_{i=1}^8 D_i$ (cf. [O1, Chap. III, §1]).

THEOREM 2.11. The rational operation of the group G on X(c) gives a regular operation of G on the projective model $\mathcal{X}(c)$ of X(c).

We prove the Theorem in §3. To explain the construction of $\mathcal{X}(c)$, we need the notation. Let W be the affine plane A_M^2 with a coordinate system (y, z), i.e., $W = \operatorname{Spec} M[y, z]$, where M is a field. The blow-up $p: \widetilde{W} \to W$ of W at (y, z) = (0, 0) is by definition

$$\widetilde{W} = \{ (y, z; (x_0, x_1)) \in W \times \mathbb{P}^1_M \mid yx_0 = zx_1 \}$$

and the morphism $p:\widetilde{W}\to W$ is induced by the projection $W\times\mathbb{P}^1_M\to W$. Let us denote by W(y) the open subset

$$\{(y, z; (x_0, x_1)) \in \widetilde{W} \mid x_0 \neq 0\}$$

of \widetilde{W} . Then writing $x_1/x_0 = Y$, we have an isomorphism

$$W(y) \longrightarrow \mathbb{A}_M^2, \quad (y, z; (x_0, x_1)) \longmapsto \left(\frac{x_1}{x_0}, z\right) = (Y, z).$$

In fact the inverse map $\mathbb{A}^2_M \to W(y)$ is given by $(Y,z) \mapsto (Yz,z;(1,Y))$. Namely the open subset $W(y) \in \widetilde{W}$ is isomorphic to the affine plane \mathbb{A}^2_M with the coordinate system (Y,z). Similarly we write $x_0/x_1 = Z$. Then the open subset

$$W(z) := \{(y, z; (x_0, x_1)) \in \widetilde{W} \mid x_1 \neq 0\}$$

of \widetilde{W} is isomorphic to \mathbb{A}^2_M by sending $(y,z;(x_0,x_1))$ to $(y,x_0/x_1)=(y,Z)$. In other words the open subset $W(z)\subset \widetilde{W}$ is isomorphic to the affine plane \mathbb{A}^2_M with the coordinate system (y,Z). So \widetilde{W} is covered by the two open subsets W(y),W(z) isomorphic to the affine plane \mathbb{A}^2_M . On the open subset $W(y)\simeq \mathbb{A}^2_L$ of \widetilde{W} the projection

$$p: \widetilde{W} \longrightarrow W, \quad (y, z; (x_0, x_1)) \longmapsto (y, z)$$

is written in terms of the coordinate system (Y, z) as

$$(Y,z) \longmapsto (Yz,z)$$

and similarly on the other open subset W(z) of \widetilde{W} the projection $p:\widetilde{W}\to W$ is written in terms of the coordinate system (y,Z) on \mathbb{A}^2_M as

$$(y,Z)\longmapsto (y,yZ).$$

Here is the construction of $\mathcal{X}(c)$. The center a_1 of the first blow-up of Z(c) is the point $(y_4, z_4) = (0, 0)$ on $W_4 = \mathbb{A}^2$. Let $Z_1(c)$ be the blow-up of Z(c) at $(y_4, z_4) = (0, 0)$. Ignoring the index 4, we use the above convention for W_4 and M = L. We have the blow-up

$$p_4:\widetilde{W}_4\longrightarrow W_4$$

and \widetilde{W}_4 is covered by two open subsets $W_4(y)$, $W_4(z)$ both isomorphic to \mathbb{A}^2_L with the coordinate systems (Y,z) and (y,Z). So $Z_1(c)$ is covered by 5 open subsets isomorphic to \mathbb{A}^2 : W_1 , W_2 , W_3 , $W_4(y)$, $W_4(z)$. Then the center a_2 of the second blow-up of $Z_1(c)$ is the point (y,Z)=(0,0) on $W_4(z)=\mathbb{A}^2$. We denote by $Z_2(c)$ the thus obtained surface. To simplify the notation, we set $W_5=W_4(z)$ that is the affine plane, and we denote the coordinate system (y,Z) of the affine plane W_5 by (y,z) which we should not confuse with the coordinate system on W_4 . So we get the blow-up

$$p_5:\widetilde{W}_5\longrightarrow W_5$$

of W_5 at (y, z) = (0, 0). \widetilde{W}_5 is covered by two open subsets $W_5(y)$ and $W_5(z)$ with the coordinate systems (Y, z) and (y, Z) respectively both isomorphic to the affine plane \mathbb{A}^2 . Therefore $Z_2(c)$ is covered by 6 affine planes:

$$W_1, W_2, W_3, W_4(y), W_5(y), W_5(z).$$

This procedure is repeated to get the third and fourth centers a_3 , a_4 . Namely $W_5(z)$ is the affine plane with the coordinate system (y, Z) and we set $W_6 = W_5(z)$ and denote Z by z so that the coordinate system on the affine plane W_6 is (y, z). The center a_3 of the third blow-up is the point (y, z) = (0, 0) of the affine plane $W_6 = W_5(z) \subset Z_2(c)$. So we blow up $Z_2(c)$ at the point (y, z) = (0, 0) in W_6 to obtain $Z_3(c)$. Locally on W_6 , we get the blow-up

$$p_6:\widetilde{W}_6\longrightarrow W_6,$$

which is covered by two open subsets $W_6(y)$ and $W_6(z)$ that are affines planes with coordinate systems (Y, z) and (y, Z). So $Z_3(c)$ is covered by 7 affine planes

$$W_1, W_2, W_3, W_4(y), W_5(y), W_6(y), W_6(z).$$

The center a_4 of the fourth blow-up to get $Z_4(c)$ is the point (y, Z) = (0, 0) on $W_6(z) \subset Z_3(c)$. So it is convenient to denote Z by z and we set $W_7 =$

 $W_6(z)$ so that W_7 is the affine plane with the coordinate system (y, z). Locally we have the blow-up

$$p_7:\widetilde{W}_7\longrightarrow W_7.$$

Then \widetilde{W}_7 is covered by two open subsets $W_7(y)$ and $W_7(z)$ isomorphic to the affine plane with the coordinate systems (Y, z) and (y, Z). So $Z_4(c)$ is covered by 8 affine planes:

$$W_1, W_2, W_3, W_4(y), W_5(y), W_6(y), W_7(y), W_7(z).$$

The center of the fifth blow-up is the point (y, Z) = (0, 1/2) of $W_7(z)$. So we denote $W_7(z)$ by W_8 . Now we introduce a new coordinate system (y, z) on the affine plane $W_7(z)$ by setting y = y, Z = (z+1)/2. We use this new coordinate system on W_8 so that the center a_5 of the fifth blow-up is the point (y, z) = (0, 0) on W_8 in terms of the new coordinate system. Therefore we get the blow-up

$$Z_5(c) \longrightarrow Z_4(c)$$
.

Locally on W_8 we have the blow-up

$$p_8:\widetilde{W}_8\longrightarrow W_8$$

and \widetilde{W}_8 is covered by two open subsets $W_8(y)$ and $W_8(z)$ that have the coordinate systems (Y, z) and (y, Z) respectively. So $Z_5(c)$ is covered by 9 affine planes:

$$W_1, \ W_2, \ W_3, \ W_4(y), \ W_5(y), \ W_6(y), \ W_7(y), \ W_8(y), \ W_8(z).$$

The center a_6 of the sixth blow-up to get $Z_6(c)$ is the point (y, Z) = (0, 0) of $W_8(z)$. Therefore to simplify the notation, we set $W_9 = W_8(z)$ and we denote Z by z so that W_9 is the affine plane with the coordinate system (y, z). We get the blow-up

$$Z_6(c) \longrightarrow Z_5(c)$$

and locally we have a blow-up morphism

$$p_9:\widetilde{W}_9\longrightarrow W_9.$$

So the surface \widetilde{W}_9 is covered by two open subsets $W_9(y)$ and $W_9(z)$ isomorphic to the affine plane with coordinate systems (Y, z) and (z, Y) respectively. The surface Z(6) is covered by 10 affine planes:

$$W_1, W_2, W_3, W_4(y), W_5(y), W_6(y), W_7(y), W_8(y), W_9(y), W_9(z).$$

The center of the seventh blowing up is (y, Z) = (0, -t/2) on $W_9(z) \subset Z_6(c)$. So we set $W_{10} = W_9(z)$ and introduce z by Z = (z - t)/2 and we use a new coordinate system (y, z) on the affine plane W_{10} . So the center a_7 of the seventh blow-up is (y, z) = (0, 0) on W_{10} . In this way we get the blow-up

$$Z_7(c) \longrightarrow Z_6(c)$$
.

Locally we have the blow-up

$$p_{10}: \widetilde{W}_{10} \longrightarrow W_{10}$$

and the surface \widetilde{W}_{10} is covered by open subsets $W_{10}(y)$ and $W_{10}(z)$ both isomorphic to the affine plane \mathbb{A}^2 with the coordinate systems (Y, z) and (y, Z). So $Z_7(c)$ is covered by 11 affine planes:

$$W_1, W_2, W_3, W_4(y), W_5(y), W_6(y), W_7(y), W_8(y), W_9(y), W_{10}(y), W_{10}(z).$$

The center of the eighth and hence the last blow-up is the point (y, Z) = (0, -2c - 1) on $W_{10}(z)$. So we get

$$Z_8(c) \longrightarrow Z_7(c)$$
.

This the definition of $Z_8(c) = \mathcal{X}(c)$.

§3. Proof of the Theorem

The group G is a Coxeter group generated by two reflections i and j:

$$i:K(c)\longrightarrow K(c),\ i(c)=-c,\quad \text{and}\quad j:K(c)\longrightarrow K(c),\ j(c)=-1-c.$$

So we have to show that the birational automorphisms of $\mathcal{X}(c)$ corresponding to i, j are in fact biregular automorphisms of $\mathcal{X}(c)$. Let us first study the reflection j. The operation of the reflection j comes from the transformation

$$J(c, -1 - c) = I(c + 1, -1 - c) \circ T_{+}(c, c + 1) : Sol_{2}(c) \longrightarrow Sol_{2}(-1 - c),$$

 $(q, p) \longmapsto (-q, -2q^{2} - p - t).$

Keeping the notation of $\S 2$, we consider a differential L-morphism

$$(3.1) L\{Q,P\} \longrightarrow L(q_c,p_c)$$

sending

$$Q \longmapsto -q_c, \quad P \longmapsto -2q_c^2 - p_c - t.$$

Since $J(c, -1 - c)(q_c, p_c) = (-q_c, -2q_c^2 - p_c - t) \in Sol_2(-1 - c)$, the morphism (3.1) factors through the residue class morphism

$$L\{Q,P\} \longrightarrow L\{Q,P\}/I(-1-c) = R(-1-c)$$

so that we have a differential L-morphism

$$(3.2) R(-1-c) \longrightarrow K(c).$$

Since $J(-1-c,c) \circ J(c,-1-c)(q,p) = (q,p)$ for a generic solution (q,p) of $S_2(c)$ over L, the L-morphism (3.2) is birational. Geometrically we have a differential L-birational map

$$J_X(c, -1 - c) : X(c) = \operatorname{Spec} R(c) \cdots \to X(-1 - c) = \operatorname{Spec} R(-1 - c)$$

and therefore differential L-birational maps

(3.3)
$$J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c), \text{ and}$$
$$J_{\mathcal{X}}(c, -1 - c) : \mathcal{X}(c) \cdots \to \mathcal{X}(-1 - c),$$

as Z(c) and $\mathcal{X}(c)$ are models of $X(c) = \operatorname{Spec} R(c)$. Since we have a natural differential K(t)-isomorphism

$$R(c) = L[q_c, p_c] \longrightarrow R(-c - 1) = L[q_{-1-c}, p_{-1-c}],$$

$$q_c \longmapsto q_{-1-c}, \quad p_c \longmapsto p_{-1-c}, \quad c \longmapsto -1 - c,$$

and thus a K(t)-isomorphism $X(-1-c) = \operatorname{Spec} R(-1-c) \to X(c) = \operatorname{Spec} R(c)$. This isomorphism gives further differential K(t)-isomorphisms

$$(3.4) J'_Z: Z(-1-c) \longrightarrow Z(c) \text{and} J'_{\mathcal{X}}: \mathcal{X}(-c-1) \longrightarrow \mathcal{X}(c)$$

Composing the morphisms (3.3), (3.4), we get birational maps

$$J_Z: Z(c) \cdots \to Z(c)$$
 and $J_X: \mathcal{X}(c) \cdots \to \mathcal{X}(c)$

that is by definition the birational operation of j on $\mathcal{X}(c)$. We must show that $J=J_{\mathcal{X}}$ is an isomorphism. Since the morphisms (3.4) are isomorphisms, we have to show that the birational map $J_{\mathcal{X}}(c,-1-c):\mathcal{X}(c)\cdots\rightarrow\mathcal{X}(-1-c)$ is biregular. To this end we look for the minimum resolution of the rational map

$$J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c).$$

Indeed we see below that the blow-up $\mathcal{X}(c) \to Z(c)$ is the minimum resolution of the birational map $J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$.

LEMMA 3.5. The blow-up $\mathcal{X}(c) \to Z(c)$ is the minimum resolution of the birational map $J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$.

Let us admit for a moment Lemma 3.5. We have a regular map

$$J_{\mathcal{X}Z}(c,-1-c):\mathcal{X}(c)\longrightarrow Z(-1-c)$$

such that

$$J_Z(c, -1 - c) \circ p = J_{XZ}(c, -1 - c),$$

 $p: \mathcal{X}(c) \to Z(c)$ being the blow-up morphism. Since

$$J(-1-c,c) \circ J(c,-1-c) = \mathrm{Id}_{\mathcal{X}(c)},$$

the blow-up $\mathcal{X}(-1-c) \to Z(-1-c)$ is the minimum resolution of the birational map

$$J_Z(c,-1-c)^{-1} = J_Z(-1-c,c) : Z(-1-c) \cdots \to Z(c).$$

Therefore the birational map $J_{\mathcal{X}}(c, -1-c) : \mathcal{X}(c) \to \mathcal{X}(-1-c)$ is biregular. So it remains to prove Lemma 3.5.

Proof of Lemma 3.5. To study the rational map $J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$, we simplify the notation. The ruled surfaces Z(c) and Z(-1 - c) are defined by coverings W_i $(1 \le i \le 4)$. To distinguish the covering of Z(c) from that of Z(-1 - c), we denote the covering of Z(c) by W_i , $1 \le i \le 4$, and the covering of Z(-1 - c) by \overline{W}_i , $1 \le i \le 4$. So it follows from the definition that the L-morphism $J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$ is defined by

$$J_{11}: W_1 \longrightarrow \overline{W}_1, \quad (y_1, z_1) \longmapsto (\overline{y}_1, \overline{z}_1) = (-y_1, -2y_1^2 - z_1 - t).$$

So $J_Z(c, -1 - c)$ is regular on the open subset W_1 of Z(c). As $y_2 = y_1$, $z_2 = z_1^{-1}$, on W_2 we have

$$J_{21}: W_2 \cdots \to \overline{W}_1, \quad (y_2, z_2) \longmapsto (\overline{y}_1, \overline{z}_1) = \left(-y_2, -2y_2^2 - \frac{1}{z_2} - t\right).$$

So J_{21} is not defined on $W_2 \cap \{z_2 = 0\}$. On the other hand since $\overline{y}_2 = \overline{y}_1$, $\overline{z}_2 = \overline{z}_1^{-1}$, we have

$$J_{22}: W_2 \longrightarrow \overline{W}_2, \quad (y_2, z_2) \longmapsto \left(-y_2, \frac{z_2}{-2y_2z_2 - 1 - tz_2}\right).$$

So on $W_2 \cap \{-2y_2^2z_2 - 1 - tz_2 = 0\}$ the map $J_Z(c, -1 - c)$ is not defined and the set of base points of $J_Z(c, -1 - c)$ on W_2 is

$${2y_2^2 + 1 + tz_2 = 0} \cap {z_2 = 0} = \emptyset.$$

Namely $J_Z(c, -1 - c)$ is regular on W_2 . Similarly it follows from the definition of the ruled surface Z(c) that we have on W_3

$$J_{31}: W_3 \cdots \to \overline{W}_1, \ (y_3, z_3) \longmapsto \left(-\frac{1}{y_3}, \frac{-2 - (cy_3 - y_3^2 z_3)y_3^3 - ty_3^2}{y_3^2}\right),$$

$$J_{32}: W_3 \cdots \to \overline{W}_2, \ (y_3, z_3) \longmapsto \left(-\frac{1}{y_3}, \frac{y_3^2}{-2 - (c - y_3 z_3)y_3^3 - ty_3^2}\right),$$

$$J_{33}: W_3 \cdots \to \overline{W}_3, \ (y_3, z_3) \longmapsto \left(-y_3, \frac{2 - z_3 y_3^4 + ty_3^2 + (2c + 1)y_3^2}{y_3^4}\right)$$

and

$$J_{34}: W_3 \cdots \to \overline{W}_4, \ (y_3, z_3) \longmapsto \left(-y_3, \frac{y_3^4}{2 - z_3 y_3^4 + t y_3^2 + (2c+1)y_3^2}\right).$$

So the rational map $J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$ is regular on the open subset W_3 of Z(c). Similarly an easy calculation shows

$$J_{41}: W_4 \cdots \to \overline{W}_1, \ (y_4, z_4) \longmapsto \left(-\frac{1}{y_4}, \frac{-2z_4 - (cz_4 - y_4)y_4^3 - ty_4^2 z_4}{y_4^2 z_4}\right)$$

$$J_{42}: W_4 \cdots \to \overline{W}_2, \ (y_4, z_4) \longmapsto \left(-\frac{1}{y_4}, \frac{y_4^2 z_4}{-2z_4 - (cz_4 - y_4)y_4^3 - ty_4^2 z_4}\right)$$

$$J_{43}: W_4 \cdots \to \overline{W}_3, \ (y_4, z_4) \longmapsto \left(-y_4, \frac{2z_4 - y_4^4 + ty_4^2 z_4 + (2c+1)y_4^3 z_4}{y_4^4 z_4}\right)$$

and

$$J_{44}: W_4 \cdots \to \overline{W}_4, \ (y_4, z_4) \longmapsto \left(-y_4, \frac{y_4^4 z_4}{2z_4 - y_4^4 + ty_4^2 z_4 + (2c+1)y_4^3 z_4}\right).$$

We conclude now that on W_4 the rational map

$$J_Z(c,-1-c):Z(c)\cdots \to Z(-1-c)$$

has a base point at $(y_4, z_4) \in W_4$ for which

$$y_4^4 z_4 = 0$$
 and $2z_4 - y_4^4 + ty_4^2 z_4 + (2c+1)y_4^3 z_4 = 0$.

Namely $(y_4, z_4) = (0, 0) \in W_4$ is the unique base point of the rational map $J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$. This point is the center a_1 of the first blow-up in the construction of $\mathcal{X}(c)$ as well as in the resolution of the rational map $J_Z(c, -1 - c)$. We have proved

Sublemma 3.6. The resolution of the rational map

$$J_Z(c, -1 - c) : Z(c) \cdots \to Z(-1 - c)$$

is equivalent to the resolution of the rational function

$$F: W_4 \cdots \to \mathbb{P}^1, \quad (y_4, z_4) \longmapsto (y_4^4 z_4, 2z_4 - y_4^4 + ty_4^2 z_4 + (2c+1)y_4^3 z_4)$$

on W_4 .

We use the notation of the construction of the model $\mathcal{X}(c)$. We blow up W_4 at $a_1 = (y_4, z_4) = (0, 0)$ to get

$$p_4:\widetilde{W}_4\longrightarrow W_4.$$

 \widetilde{W}_4 is covered by the two affine planes $W_4(y)$ and $W_4(z)$ with the coordinate systems respectively (Y, z) and (z, Y). In terms of these coordinate systems the morphism p_4 is written as

(3.7)
$$W_4(y) = \mathbb{A}^2 \longrightarrow W_4 = \mathbb{A}^2, \quad (Y, z) \longmapsto (y_4, z_4) = (Yz, z)$$

on $W_4(y)$ and

$$(3.8) W_4(z) = \mathbb{A}^2 \longrightarrow W_4 = \mathbb{A}^2, (y, Z) \longmapsto (y_4, z_4) = (y, yZ)$$

on $W_4(z)$. So we substituting (3.7) and (3.8), the rational function F on \widetilde{W}_4 is given on $W_4(y)$ by

(3.9)
$$W_4(y) = \mathbb{A}^2 \cdots \to \mathbb{P}^1,$$
$$(Y,z) \longmapsto (Y^4 z^4, 2 - Y^4 z^3 + tY^2 z^2 + (2c+1)Y^3 z^3)$$

and on $W_4(z)$ by

(3.10)
$$W_4(z) = \mathbb{A}^2 \cdots \to \mathbb{P}^1,$$
$$(y, Z) \longmapsto (y^4 Z, 2Z - y^3 + ty^2 Z + (2c+1)y^3 Z).$$

It follows from (3.10) that the unique base point of the rational function F on $W_4(z)$ is (y, Z) = (0, 0) and by (3.9) the point $(Y, z) = (0, 0) \in W_4(y)$ is not a base point. Thus (y, Z) = (0, 0) on $W_4(z)$ is the unique base point of the rational function F on \widetilde{W}_4 . This point coincides with the center a_2 of the second blow-up in the construction of $\mathcal{X}(c)$. Now we set $W_5 = W_4(z)$ and denote Y again by y. We blow up $W_5 = \mathbb{A}^2$ with coordinate system (y, z) at $a_2 = (y, z) = (0, 0) \in W_5$ to solve the singularity of the rational map (3.10), which is given by

(3.11)
$$W_4(z) = \mathbb{A}^2 \cdots \to \mathbb{P}^1,$$
$$(y, z) \longmapsto (y^4 z, 2z - y^3 + ty^2 z + (2c+1)y^3 z)$$

because we denote Y by y. Let $p_5: \widetilde{W}_5 \to W_5$ be the blow-up so that \widetilde{W}_5 is covered by the two affine planes $W_5(y)$ and $W_5(z)$ with the coordinate systems (Y, z) and (y, Z). The morphism

$$p_5:\widetilde{W}_5\longrightarrow W_5$$

is given on the open subsets of W_5 by

$$W_5(y) = \mathbb{A}^2 \longrightarrow W_5 = \mathbb{A}^2, \quad (Y, z) \longmapsto (Yz, z)$$

on $W_5(y)$ and

$$W_5(z) = \mathbb{A}^2 \longrightarrow W_5 = \mathbb{A}^2, \quad (y, Z) \longmapsto (y, yZ)$$

on $W_5(z)$. So if we substitute (y,z) = (Yz,z) and (y,z) = (y,yZ) into (3.11), we get the expressions of the rational function F:

$$W_5(y) = \mathbb{A}^2 \cdots \to \mathbb{P}^1, \quad (Y, z) \longmapsto (Y^4 z^4, 2 - Y^2 z - t Y^2 z^2 + (2c + 1) Y^3 z^3)$$

on $W_5(y)$ and

$$W_5(z) = \mathbb{A}^2 \cdots \to \mathbb{P}^1, \quad (y, Z) \longmapsto (y^4 Z, 2Z - y^2 + ty^2 Z + (2c + 1)y^3 Z)$$

on $W_5(z)$. So $(y, Z) = (0, 0) \in W_5(z)$ is the unique base point of the rational function F on W_5 . This point coincides with the center a_3 of the third blow-up in the construction of $\mathcal{X}(c)$. Now we use the notation of the construction of $\mathcal{X}(c)$. We denote Z by z so that $W_6 = W_5(z)$ is the affine plane with coordinate system (y, z). We blow up W_6 at $a_3 = (y, z) = (0, 0)$. Then the rational function F on W_6 is written on the open subsets $W_6(y)$ and $W_6(z)$ as

$$W_6(y) = \mathbb{A}^2 \cdots \to \mathbb{P}^1, \quad (Y, z) \longmapsto (Y^4 z^4, 2 + O(1)),$$

where O(1) is an element of the ideal (y, z) of L[Y, z], and

$$W_6(z) = \mathbb{A}^2 \cdots \to \mathbb{P}^1, \quad (y^4 Z, 2Z - y + ty^2 Z + (2c+1)y^3 Z).$$

So (y, Z) = (0, 0) is the unique base point of the rational function F on \widetilde{W}_6 . This point is the center a_4 of the fourth blow-up in the construction of $\mathcal{X}(c)$. Hence we denote Z by z so that $W_7 = W_6(z)$ is the affine plane with coordinate system (y, z). We blow up W_7 at $a_4 = (y, z) = (0, 0)$ to get $\widetilde{W}_7 \to W_7$. Then on \widetilde{W}_7 the representations of the rational function F are as follows.

$$W_7(y) \cdots \rightarrow \mathbb{P}^1, \quad (Y,z) \longmapsto (Y^4 z^4, 2 + O(1))$$

and

$$W_7(z) \cdots \to \mathbb{P}^1$$
, $(y, Z) \longmapsto (y^4 Z, 2Z - y + ty^2 Z + (2c + 1)y^3 Z)$,

where O(1) is an element of the ideal (Y, z) of L[Y, z]. Hence the unique base point of the rational function F on \widetilde{W}_7 is (y, Z) = (0, 0) on $W_7(z)$ that is the center a_5 of the fifth blow-up in the construction of $\mathcal{X}(c)$. We denote Z by z so that $W_7(z) = W_8$ is the affine plane with coordinate system (y, z). We blow up W_8 at (y, z) = (0, 0). We then have local expressions of the rational function F on the open subsets $W_7(y)$ and $W_7(z)$ of \widetilde{W}_7 . Namely

$$W_7(y) \cdots \rightarrow \mathbb{P}^1, \quad (Y,z) \longmapsto (Y^4 z^4, 2 + O(1)),$$

where O(1) is an element of the ideal (Y, z) of L[Y, z], and

$$W_7(z) \cdots \to \mathbb{P}^1$$
, $(y, Z) \longmapsto (y^4 Z, 2Z - 1 + ty^2 Z + (2c + 1)y^3 Z)$.

Therefore the unique base point of the rational function F on \widetilde{W}_8 is the point (y, Z) = (0, 1/2) on $W_7(z)$. So we blow up $W_7(z)$ at $a_5 = (y, Z) = (0, 1/2)$. We introduced the coordinate system (y, z) on $W_7(z)$ such that Z = (z + 1)/2 and denote the affine plane $W_7(z)$ with this coordinate system (y, z) by W_8 . So on $W_8 = \mathbb{A}^2$ the rational function F is expressed as

$$W_8 \cdots \to \mathbb{P}^1,$$

 $(y,z) \longmapsto (y^4z + y^4, 2z + ty^2 + (2c+1)y^3 + ty^2z + (2c+1)y^3z).$

On the open subsets $W_9(y)$ and $W_9(z)$ of the blow-up $\widetilde{W}_8 \to W_8$, the rational function F is written as

$$W_8(y) \cdots \to \mathbb{P}^1, \quad (Y^4z^4 + Y^4z^3, 2 + O(1)),$$

where O(1) is an element of the ideal (Y, z) of L[Y, z], and

$$W_8(z) \cdots \to \mathbb{P}^1,$$

 $(y, Z) \longmapsto (y^4 Z + y^3, 2Z + ty + (2c+1)y^2 + ty^2 z + (2c+1)y^3 z).$

So the unique base point of the rational function F on W_8 is the point (y, Z) = (0, 0) in $W_8(z)$. This is the center a_6 of the sixth blow-up in the construction of $\mathcal{X}(c)$. So we denote Z by z and blow up the affine plane $W_8(z) = W_9$ with coordinate system (y, z) at $a_6 = (y, z) = (0, 0)$. Then the local expression of the rational function F on the open subsets $W_9(y)$ and $W_9(z)$ are as follows.

$$W_9(y) \cdots \to \mathbb{P}^1, \quad (Y,z) \longmapsto (Y^4 z^4 + Y^4 z^3, 2 + O(1)),$$

where O(1) is an element of the ideal (Y, z) of L[Y, z], and

$$W_9(z) \cdots \to \mathbb{P}^1,$$

 $(y, Z) \longrightarrow (y^4 Z + y^2, 2Z + t + (2c+1)y + ty^2 z + (2c+1)y^3 z).$

So the unique base point of the rational function F on \widetilde{W}_9 is the point (y, Z) = (0, -t/2) on $W_9(z)$. This point is the center of the seventh blow-up in the construction of $\mathcal{X}(c)$. We introduced z by Z = (z - t)/2 and the affine plane $W_9(z)$ with the coordinate system (y, z) was denoted by W_{10} . So the rational function F on W_{10} is given by

$$W_{10} \cdots \to \mathbb{P}^1,$$

 $(y,z) \longmapsto (y^4(z-t) + 2y^2, 2z + 2(2c+1)y + (t+(2c+1)y)y^2(z-t)).$

We blow up W_{10} at $a_7 = (y, z) = (0, 0)$ to get $\widetilde{W}_{10} \to W_{10}$. The local representation of the rational function F on \widetilde{W}_{10} are

$$W_{10} \cdots \rightarrow \mathbb{P}^1$$
, $(Y,z) \longmapsto (O(1), 2 + O(1)')$,

where O(1), O(1)' are elements of the ideal (Y, z) of L[Y, z], and

$$W_{10}(z) \cdots \to \mathbb{P}^1,$$
 $(y, Z) \longmapsto (y^3(yZ - t) + 2y, 2Z + 2(2c + 1) + (t + (2c + 1)y)y(yZ - t)).$

So the unique base point of the rational function F on \widetilde{W}_{10} is the point (y,Z)=(0,-2c-1) of $\widetilde{W}_{10}(z)$. This is the center of the eighth blow-up in the construction of $\mathcal{X}(c)$. We introduced z by Z=z-2c-1 and denoted the affine plane $W_{10}(z)$ with this new coordinate system (y,z) by W_{11} . Then we blew up W_{11} at (y,z)=(0,0) to get $\widetilde{W}_{11} \to W_{11}$. The rational function F on W_{11} is written as

$$W_{11} \cdots \to \mathbb{P}^1,$$

 $(y,z) \longmapsto (y^3(y(z-2c-1)-t)+2y,$
 $2z + (t+(2c+1)y)y(y(z-2c-1)-t)).$

Now the local expressions of the rational function F on \widetilde{W}_{11} are

$$W_{11}(y) \cdots \rightarrow \mathbb{P}^1, \quad (y,z) \longmapsto (O(1), 2 + O(1)'),$$

and

$$W_{11}(z) \cdots \to \mathbb{P}^1,$$
(3.12) $(y, Z) \longmapsto (y^2(y(yZ - 2c - 1) - t) + 2,$

$$2Z + (t + (2c + 1)y)(y(yZ - 2c - 1) - t)),$$

where O(1), O(1)' are elements of the ideal (Y, z) of L[Y, z]. So the point (Y, z) = (0, 0) of $W_{11}(y)$ is not a base point of the rational function F. We show that there is no base point of F on $W_{11}(z)$ either, i.e., F has no base point on $\mathcal{X}(c)$. In fact let $(y, Z) \in W_{11}(z)$ be a base point of the rational function F. Then $y \neq 0$. Equating the coordinates of \mathbb{P}^1 in (3.12) equals to 0, we have

(3.13)
$$y^{2}(y(yZ - 2c - 1) - t) + 2 = 0$$

and

$$(3.14) 2Z + (t + (2c+1)y)(y(yZ - 2c - 1) - t) = 0.$$

It follows from (3.13)

(3.15)
$$y(yZ - 2c - 1) - t = -\frac{2}{y^2}.$$

We substitute (3.15) into (3.14) to get

$$2Z + (t + (2c+1)y)\left(-\frac{2}{y^2}\right) = 0$$

and hence

$$(3.16) -Zy^2 + (2c+1)y + t = 0,$$

which contradicts (3.15). So Lemma 3.5 is proved.

Now we have to study the operation of the reflection i. The operation of the reflection i comes from the transformation I(c, -c) in §2. In fact keeping the notation in §2, we consider a differential L-morphism

$$(3.17) L\{Q,P\} \longrightarrow L(q_c,p_c)$$

sending

$$Q \longmapsto q_c - \frac{c}{p_c}, \quad P \longmapsto p_c.$$

Since

$$\left(q_c - \frac{c}{p_c}, p_c\right)$$

is a solution of the system $S_2(c)$, the morphism (3.1) factors through the residue class morphism

$$L(c,t)\{Q,P\} \longrightarrow L\{Q,P\}/I(-c) = R(-c)$$

so that we have a differential L-morphism

$$(3.18) R(-c) \cdots \to K(c).$$

Since $I \circ I(q,p) = (q,p)$ for a generic solution (q,p) of $S_2(c)$ over L, the L-morphism (3.18) is birational. Namely we have a differential L-birational morphism

$$(3.19) X(c) = \operatorname{Spec} R(c) \cdots \to \operatorname{Spec} R(-c) = X(-c)$$

as we have a natural L-isomorphism

$$R(c) = L(q_c, p_c) \longrightarrow R(-c) = L(q_{-c}, p_{-c})$$

sending

$$q_c \longmapsto q_{-c}, \quad p_c \longmapsto p_{-c}, \quad c \longmapsto -c$$

and thus a natural L-morphism

$$(3.20) X(-c) = \operatorname{Spec} R(-c) \longrightarrow X(c) = \operatorname{Spec} R(c).$$

Composing the morphisms (3.19) and (3.20), we get the birational map $I: X(c) \cdots \to X(c)$. It follows from the construction that the isomorphism (3.20) induces an isomorphism $Z(-c) \to Z(c)$. So we have to show that the birational morphism $I_{\mathcal{X}}(c,-c): \mathcal{X}(c) \to \mathcal{X}(-c)$ arising from (3.19) is biregular. The *L*-birational map (3.19) defines an *L*-birational map

$$(3.21) I_Z(c,-c): Z(c) \cdots \to Z(-c)$$

of the projective surfaces. We denote the charts $W_i \simeq \mathbb{A}^2_L$ of Z(c) by $W_i(c)$ and the coordinate system of the affine plane $W_i(c) = \mathbb{A}^2$ by (y_i, z_i) and the coordinate system of the affine plane $W_i(-c) = \mathbb{A}^2$ by $(\overline{y}_i, \overline{z}_i)$ for $1 \le i \le 4$. So the rational map $I_Z(c, -c)$ is given by a rational map

$$W_1(c) = \mathbb{A}^2 \cdots \longrightarrow W_1(-c) = \mathbb{A}^2, \quad (y_1, z_1) \longmapsto (\overline{y}_1, \overline{z}_1) = \left(y_1 - \frac{c}{z_1}, z_1\right)$$

in terms of the charts $W_1(c)$ and $W_1(-c)$. Since

$$\overline{y}_3 = \frac{1}{\overline{y}_1}, \quad \overline{z}_3 = -c\overline{y}_1 - \overline{y}_1^2 \overline{z}_1,$$

it follows from (3.22) that the rational map (3.21) gives

$$W_1(c) = \mathbb{A}^2 \cdots \to W_3(-c) = \mathbb{A}^2,$$

$$(y_1, z_1) \longmapsto (\overline{y}_3, \overline{z}_3) = \left(\frac{z_1}{y_1 z_1 - c}, -y_1(y_1 z_1 - c)\right).$$

So the rational map (3.21) has no base point on $W_1(c)$. Substituting $y_1 = y_2$, $z_1 = 1/z_2$, we conclude that the rational map (3.21) gives rational maps

$$W_2(c) \cdots \rightarrow W_1(-c), \quad (y_2, z_2) \longmapsto \left(y_2 - cz_2, \frac{1}{z_2}\right).$$

and

$$W_2(c) \cdots \to W_2(-c), \quad (y_2, z_2) \longmapsto (y_2 - cz_2, z_2).$$

So there is no base point of rational map (3.21) on $W_2(c)$ either. A similar calculation shows that the rational map (3.21) is written as a rational map

$$W_3(c) \cdots \to W_1(-c), \quad (y_3, z_3) \longmapsto \left(\frac{z_3}{y_3 z_3 - 1}, (c - y_3 z_3) y_3\right)$$

and

$$W_3(c) \cdots \rightarrow W_3(-c), \quad (y_3, z_3) \longmapsto \left(-\frac{c - y_3 z_3}{z_3}, z_3\right).$$

Therefore there is no base point of the rational map (3.21) on $W_3(c)$. Similarly in terms of $W_4(c)$ and $W_4(-c)$, the rational map (3.21) gives an isomorphism

$$(3.23) W_4(c) \longrightarrow W_4(-c), (y_4, z_4) \longmapsto (y_4 - cz_4, z_4)$$

so that there is no base point of the rational map (3.21) on $W_4(c)$ either. Namely the rational map (3.21) is indeed regular. Now since $I_Z(-c,c) \circ I_Z(c,-c) = \text{Id}$, the rational map (3.21) is biregular. We have to show that the rational map (3.21) induces the biregular morphism $\mathcal{X}(c) \to \mathcal{X}(-c)$. Let $C_0(c)$ be the Zariski closure of the curve

$$\{(y_4, z_4) \in W_4 \mid 2z_4 - y_4^4 + ty_4^4 z_4 + (2c+1)y_4^3 z_4 = 0\}$$

in $Z_0(c)$, $E_i(c) \subset Z_i(c)$ the exceptional curve of the *i*-th blow-up $Z_i(c) \to Z_{i-1}(c)$, and $C_i(c)$ the proper transform of $C_0(c)$ by the blow-up

$$Z_i(c) \longrightarrow Z_{i-1}(c) \longrightarrow \cdots \longrightarrow Z_0(c) = Z(c)$$

for $1 \leq i \leq 8$. In the course of the proof of Lemma 3.5, we have proved

LEMMA 3.24. The center a_1 of the first blow-up is the point $(y_4, z_4) = (0,0) \in W_4$ and the center a_i of the i-th blow-up $Z_i(c) \to Z_{i-1}(c)$ is the intersection of the curve $C_{i-1}(c)$ and the exceptional divisor E_{i-1} for $2 \le i \le 8$. Namely we have $a_i = E_{i-1} \cap C_{i-1}(c)$ for $2 \le i \le 8$.

We denote the center a_i on $Z_{i-1}(c)$ by $a_i(c)$ and the center a_i on $Z_{i-1}(-c)$ by $a_i(-c)$ to distinguish them. Therefore we must show that at each step of blow-up the center $a_{i+1}(c)$ on $Z_i(c)$ is mapped to the center

 $a_{i+1}(-c)$ on $Z_i(-c)$. In fact (3.23) shows that the first center a_1 on Z(c) is mapped to the first center on Z(-c). To see the image of the successive centers, in view of Lemma 3.24 let us consider the image of the curve

$$C_0(c) \cap W_4 = \{2z_4 - y_4^4 + ty_4^2 z_4 + (2c+1)y_4^3 z_4 = 0\} \subset W_4 \subset Z(c).$$

Since $I_Z(c,-c)(y_4,z_4)=(y_4-cz_4,z_4)=(\overline{y}_4,\overline{z}_4)$, we substitute

$$y_4 = \overline{y}_4 + cq\overline{z}_4, \quad z_4 = \overline{z}_4$$

to get

$$(3.25) 2\overline{z}_4 - \overline{y}_4^4 - t\overline{y}_4^2\overline{z}_4 + (-2c+1)\overline{y}_4^3\overline{z}_4 + (2t+3c\overline{y}_4)\overline{y}_4\overline{z}_4^2 + 3(ct + (2c+1)c\overline{y}_4)\overline{z}_4^3 + (-2c+1)c^3\overline{z}_4^4 = 0.$$

The Zariski closure of this curve is the image \overline{C} of the curve $C_0(c)$. We show that the birational map $I_i: Z_i(c) \cdots \to Z_i(-c)$ induced by (3.21) is a biregular isomorphism for $0 \le i \le 8$ by induction. More precisely we prove by induction on j that $I_j: Z_j(c) \to Z_j(-c)$ is a biregular isomorphism and $I_j(a_{j+1}(c)) = a_j(-c)$ for $0 \le j \le 7$, which implies $I_8 = I_{\mathcal{X}}(c, -c): \mathcal{X}(c) = Z_8(c) \to \mathcal{X}(-c) = Z_8(-c)$ is a biregular isomorphism. In fact we have seen that the assertion holds for i = 0. Hence we assume that for a number i with $0 \le i \le 7$, the birational map $I_j: Z_j(c) \cdots \to Z_j(-c)$ is a biregular isomorphism and $I_j(a_{j+1}(c)) = a_{j+1}(-c)$ for $0 \le j \le i$. Then the birational map $I_{i+1}: Z_{i+1}(c) \cdots \to Z_{i+1}(-c)$ is a biregular isomorphism. We have to show that $I_{i+1}(a_{i+2}(c)) = a_{i+2}(-c)$. Since $a_{i+2}(c) = Z_{i+1}(c) \cap C_{i+1}(c)$ and since $I_j(E_j(c)) = E_j(-c)$ for $j \le i+1$, we have to show that the proper transform $\overline{C}_l(c)$ of $\overline{C}_0(c)$ and the curve $C_l(-c)$, which is the proper transform of $C_0(-c)$, under the blow-up

$$Z_l(-c) \longrightarrow Z_{i-1}(-c) \longrightarrow \cdots \longrightarrow Z_0(-c) = Z(-c)$$

both intersect with $E_l(-c)$ at the same point for $1 \leq l \leq 7$. This follows from the defining equation (3.25) of the curve $\overline{C}_0(c)$ and from the defining equation

$$2\overline{z}_4 - \overline{y}_4^2 - t\overline{y}_4^2\overline{z}_4 + (-2c+1)\overline{y}_4^3\overline{z}_4 = 0$$

of the curve C(-c) on $W_4(-c)$.

§4. Equivariant fibration over the affine line

We proved that the affine Weyl group of type \tilde{A}_1 operates regularly on the projective surface $\mathcal{X}(c)$ in such a way that the fibration $\mathcal{X}(c) \to \operatorname{Spec} L = \operatorname{Spec} K(t)(c)$ is equivariant. It is, however, more natural to look for an equivariant model

$$\mathcal{Y}[c] \longrightarrow \operatorname{Spec} K(t)[c]$$

of

$$\mathcal{X}(c) \longrightarrow \operatorname{Spec} L = \operatorname{Spec} K(t)(c)$$

such that the affine Weyl group operates biregularly on $\mathcal{Y}[c]$. We constructed the projective surface $\mathcal{X}(c)$ over the field K(t)(c). The construction works over the ring K(t)[c] so that we get a model

$$\mathcal{X}[c] \longrightarrow \operatorname{Spec} K(t)[c]$$

that is a scheme with derivation. So the affine Weyl group operates on the scheme $\mathcal{X}[c]$ with derivation birationally such that the fibration

$$\mathcal{X}[c] \longrightarrow \operatorname{Spec} K(t)[c]$$

is equivariant. Namely first we construct Z[c] over $\operatorname{Spec} K(t)[c] = \mathbb{A}^1_{K(t)}$ by gluing 4 copies of $\mathbb{A}^2_{K(t)} \times_{K(t)} \operatorname{Spec} K(t)[c] = \mathbb{A}^3_{K(t)}$, which we denote by $W_i \times \mathbb{A}^1_{K(t)}$ or by $W_i[c]$, $1 \leq i \leq 4$, by the same rule as in the construction of the ruled surface Z(c). Then we blow up Z[c] 8 times along the sections of $Z[c] \to \mathbb{A}^1_{K(t)}$. So $W_i[c]$ is the affine space $\mathbb{A}^3_{K(t)}$ with the coordinate system (y_i, z_i, c) , $1 \leq i \leq 4$. Similarly we have rational maps over $\operatorname{Spec} K(t)[c]$

$$J_{\mathcal{X}}[c,-1-c]:\mathcal{X}[c]\cdots\to\mathcal{X}[-1-c]$$

and

$$I_{\mathcal{X}}[c,-c]:\mathcal{X}[c]\cdots\to\mathcal{X}[-c].$$

In other words, locally on $W_1[c]$, $W_1[-c]$ and $W_1[-1-c]$, $J_{\mathcal{X}}[c,-1-c]$, $I_{\mathcal{X}}[c,-c]$ are given respectively by

$$J_{\mathcal{X}}[c, -1 - c] : W_1[c] \cdots \to W_1[-1 - c],$$

 $(y_1, z_1, c) \longmapsto (-y_1, -2y_1^2 - z_1 - t, -1 - c)$

and

$$I_{\mathcal{X}}[c,-c]:W_1[c]\cdots \to W_1[-c], \quad (y_1,z_1,c)\longmapsto \left(y_1-\frac{c}{z_1},z_1,-c\right).$$

The argument of §3 allows us to prove the following

LEMMA 4.1. $J_{\mathcal{X}}[c,-1-c]:\mathcal{X}[c]\cdots\rightarrow\mathcal{X}[-1-c]$ is a biregular isomorphism.

The curves

$$\{(y_1, z_1, c) \in W_1[c] \mid z_1 = c = 0\}$$

on $W_1[c]$ and

$$\{(y_3, z_3, c) \in W_3[c] \mid z_3 = c = 0\}$$

glue together to define a curve F on $\mathcal{X}[c]$ isomorphic to $\mathbb{P}^1_{K(t)}$, for $z_3 = cy_1 - y_1^2 z_1$ on $W_1[c] \cap W_3[c]$. Unfortunately the rational map $I_{\mathcal{X}}[c, -c]$: $\mathcal{X}[c] \cdots \to \mathcal{X}[-c]$ is not biregular.

LEMMA 4.2. The base locus of the rational map $I_{\mathcal{X}}[c,-c]:\mathcal{X}[c]\cdots\rightarrow\mathcal{X}[-c]$ is the curve F.

Proof. Locally on $W_1[c]$ and $W_1[-c]$, the rational map $I_{\mathcal{X}}[c,-c]$ is given by

(4.3)
$$W_1[c] \cdots \to W_1[-c], \quad (y_1, z_1, c) \longmapsto \left(y_1 - \frac{c}{z_1}, z_1, -c\right)$$

and on $W_3[c]$ and $W_3[-c]$

$$W_3[c] \cdots \rightarrow W_3[-c], \quad (y_3, z_3, c) \longmapsto \left(y_3 - \frac{c}{z_3}, z_3, -c\right).$$

The argument of §3 shows that there is no base point outside $W_1[c] \cup W_3[c]$. So the rational map $I_{\mathcal{X}}[c,-c]$ is not regular only on the curve F.

Since $I_{\mathcal{X}}[c,-c]$ is not regular, we have to modify the model $\mathcal{X}[c] \to \mathbb{A}^1_{K(t)}$. To this end we blow up $\mathcal{X}[c]$ along the curve F to get $\mathcal{X}^1[c] \to \mathcal{X}[c]$.

Lemma 4.4. The rational map

$$I_{\mathcal{X}}[c,-c]:\mathcal{X}[c]\cdots\to\mathcal{X}[-c]$$

induces a biregular isomorphism

$$I^1_{\mathcal{X}}[c,-c]:\mathcal{X}^1[c]\longrightarrow\mathcal{X}^1[-c].$$

Proof. Locally on $W_1[c]$, we blew up $W_1[c]$ along $z_1 = c = 0$. The blow-up of $W_1[c]$ along the curve $z_1 = c = 0$ is by definition

$$\widetilde{W}_1[c] = \{(y_1, z_1, c; (x_0, x_1)) \in W_1[c] \times \mathbb{P}^1_{K(t)} \mid z_1 x_0 = cx_1\}$$

and the projection $p: \widetilde{W}_1[c] \to W_1[c]$ is the restriction to $\widetilde{W}_1[c]$ of the projection $p_1: W_1[c] \times \mathbb{P}^1_{K(t)} \to W_1[c]$ on to the first factor. Let us denote by $\widetilde{W}_1[c](z_1)$ the open subset

$$\{(y_1, z_1, c; (x_0, x_1)) \in \widetilde{W}_1[c] \mid x_0 \neq 0\}$$

of $\widetilde{W}_1[c]$. Then setting $Z_1 = x_1/x_0$, we have an isomorphism

$$W_1[c][z_1] \longrightarrow \mathbb{A}^3_{K(t)}, \quad (y_1, z_1, c; (x_0, x_1)) \longmapsto (y, x_1/x_0, c) = (y_1, Z_1, c).$$

Namely $W_1[c](z_1)$ is the affine space with the coordinate system (y_1, Z_1, c) . Similarly if we denote x_0/x_1 by C, then the open subset

$$Wc := \{(y_1, z_1, c; (x_0, x_1)) \in \widetilde{W}_1[c] \mid x_1 \neq 0\}$$

is isomorphic to $\mathbb{A}^3_{K(t)}$ by sending $(y_1, z_1, c; (x_0, x_1))$ to $(y_1, z_1, x_0/x_1)$. So W_1c is isomorphic to the affine space $\mathbb{A}^3_{K(t)}$ with the coordinate system (y_1, z_1, C) . So the blow-up $\widetilde{W}_1[c]$ is covered by two open subsets $W_1[c](z_1)$ and W_1c isomorphic to $\mathbb{A}^3_{K(t)}$. On each open subsets the projection p is given by

$$W_1[c](z) \longrightarrow W_1[c], \quad (y, Z, c) \longmapsto (y, cZ, c)$$

on $W_1[c](z)$ and

$$W_1c \longrightarrow W_1[c], \quad (y, z, C) \longmapsto (y, z, zC)$$

on W_1c. Let us check that the rational map $\mathcal{X}^1[c] \cdots \to \mathcal{X}^1[-c]$ is regular on $W_1[c](z)$. Locally we have an expression

$$W_1[c](z) \longrightarrow W_1[c] \cdots \longrightarrow W_1[-c],$$

 $(y, Z, c) \longmapsto (y, Zc, c) \longmapsto \left(y - \frac{1}{Z}, Zc, -c\right)$

so that the rational map $W_1[c](z) \cdots \to W_1[-c](z)$ is given by

$$(y, Z, c) \longmapsto \left(y - \frac{1}{Z}, -Z, -c\right)$$

and $W_1[c](z) \cdots \rightarrow W_3[-c]$ by

$$(y, Z, c) \longmapsto \left(\frac{1}{yZ - 1}, -c\left(y - \frac{1}{Z}\right) - \left(y - \frac{1}{Z}\right)^2 Zc, -c\right)$$
$$= \left(\frac{1}{yZ - 1}, cy(1 - yZ), -c\right).$$

This shows that the rational map

$$I^1_{\mathcal{X}}[c,-c]:\mathcal{X}^1[c]\cdots\to\mathcal{X}^1[-c]$$

is regular on $W_1[c](z)$. On the other hand the composite rational map

$$W_1c \longrightarrow W_1[c] \cdots \longrightarrow W_1[-c]$$

is given by

$$(y, z, C) \longmapsto (y, z, zC) \longmapsto (y - C, z, -zC)$$

and hence $W_1c \cdots \to W_1-c$ is given by

$$(y, z, C) \longrightarrow (y - C, z, -zC).$$

So the rational map

$$I^1_{\mathcal{X}}[c,-c]:\mathcal{X}^1[c]\cdots\to\mathcal{X}^1[-c]$$

is regular on $W_1[c](C)$ and consequently on $\widetilde{W}_1[c].$ We have a local expression of

$$I^1_{\mathcal{X}}: \mathcal{X}^1[c] \cdots \rightarrow \mathcal{X}^1[c]$$

in terms of $W_3[c]$ and $W_3[-c]$:

$$W_3[c] \cdots \to W_3[-c], \quad (y_3, z_3, c) \longmapsto \left(-\frac{c - y_3 z_3}{z_3}, z_3, c\right) = \left(y_3 - \frac{c}{z_3}, z_3, c\right)$$

as we have seen in §3. So the above argument shows that the rational map $I_{\mathcal{X}}^1[c,-c]: \mathcal{X}^1[c] \cdots \to \mathcal{X}^1[-c]$ is regular locally on the blow-up of $W_3[c]$ too. If we notice here that in the construction of $\mathcal{X}^1[c]$ the centers $a_i[c]$ are on $W_4[c]$ and hence outside of the $W_1[c] \cup W_3[c]$ and that $I_{\mathcal{X}}[c,-c]$ induces an isomorphism $W_4[c] \to W_4[-c]$ mapping the centers $a_i[c]$ to the centers $a_i[-c]$, the rational map

$$I^1_{\mathcal{X}}[c,-c]:\mathcal{X}^1[c]\cdots\to\mathcal{X}^1[-c]$$

is regular. Since

$$I^1_{\mathcal{X}}[-c,c] \circ I^1_{\mathcal{X}}[c,-c] = \mathrm{Id},$$

$$I_{\mathcal{X}}^{1}[c,-c]$$
 is biregular.

Now

$$I^1_{\mathcal{X}}[c,-c]:\mathcal{X}^1[c]\longrightarrow\mathcal{X}^1[-c]$$

is biregular but the birational map

$$J_{\mathcal{X}}^{1}[c, -1 - c] : \mathcal{X}^{1}[c] \cdots \to \mathcal{X}^{1}[-1 - c]$$

corresponding to $J_{\mathcal{X}}$ is not regular. To remedy this, we have to blow up $\mathcal{X}^1[c]$ at infinitely many curves that are mutually disjoint. So the resulting object is not a scheme any more but a pro-scheme, i.e., the projective limit of schemes. In our case what we are going to get is a complex manifold if $K = \mathbb{C}$. Similarly as we obtained $\mathcal{X}[c]$, we can construct the ruled surface Z(c) and its blow-ups $Z_i(c)$, $1 \leq i \leq 8$ over $\mathbb{A}^1_{K(t)}$. We denote the corresponding varieties by Z[c] and $Z_i[c]$, the exceptional divisors on $Z_i[c]$ by $E_i[c]$ for $1 \leq i \leq 8$ so that $\mathcal{X}[c] = Z_8[c]$. The proper transform of $E_i[c]$ on $\mathcal{X}[c] = Z_8[c]$ is denoted by $D_{i+1}[c]$ for $1 \leq i \leq 8$. The proper transform by the blow-up morphism $p: \mathcal{X}[c] \to Z[c]$ of the divisor

$$\overline{\{z_2 = 0 \text{ on } W_2[c]\}} = \overline{\{z_4 = 0 \text{ on } W_4[c]\}}$$

on Z[c] is denoted by $D_1[c]$. For $\overline{c} \in \overline{K}$, we denote by $\mathcal{X}[\overline{c}]$ the reduction of $\mathcal{X}[c]/K(t)[c]$ at $c = \overline{c}$, i.e., $\mathcal{X}[\overline{c}]$ is the fiber $\mathcal{X}[c]_{\overline{c}}$ over the rational point $c = \overline{c}$ of $\mathbb{A}^1_{K(t)} = \operatorname{Spec} K(t)[c]$. $\mathcal{X}[\overline{c}]$ is a projective surface over $K(t)[\overline{c}] = K(t)$ with the derivation $D(\overline{c})$ that is written as

$$D(\overline{c}) = \frac{\partial}{\partial t} + \left(y_1^2 + z_1 + \frac{t}{2}\right) \frac{\partial}{\partial y_1} + (-2y_1z_1 + c) \frac{\partial}{\partial z_1}$$

on the open subset $W_1(\overline{c})$. The following result is due to Okamoto ([O1, Chap. III, §1]).

PROPOSITION 4.5. For every $\overline{c} \in \overline{K}$ regarded as a \overline{K} -rational point of $\mathbb{A}^1_{K(t)}$ so that we can speak of the reduction $\mathcal{X}[\overline{c}]$, the Zariski open subset $\mathcal{X}[\overline{c}] - \bigcup_{i=1}^8 D_i[c]$ is the set of points P of $\mathcal{X}[c]$ where the rational vector field $D[\overline{c}]$ is regular at P. Namely we have

$$\mathcal{X}[\overline{c}] - \bigcup_{i=1}^{8} D_i[\overline{c}] = \{ P \in \mathcal{X}[\overline{c}] \mid D(\overline{c})\mathcal{O}_P \subset \mathcal{O}_P \}.$$

COROLLARY 4.6. Let $\overline{c}_1, \overline{c}_2 \in \overline{K}$ and $f : \mathcal{X}[\overline{c}_1] \to \mathcal{X}[\overline{c}_2]$ be an isomorphism of schemes with derivation. Then

$$f\bigg(\bigcup_{i=1}^{8} D_i[\overline{c}_1]\bigg) = \bigcup_{i=1}^{8} D_i[\overline{c}_2]$$

and f induces an isomorphism

$$\left(\mathcal{X}[\overline{c}_1] - \bigcup_{i=1}^8 D_i[\overline{c}_1]\right) \longrightarrow \left(\mathcal{X}[\overline{c}_2] - \bigcup_{i=1}^8 D_i[\overline{c}_2]\right).$$

П

Proof. This is a direct consequence of the Proposition.

Lemma 4.7. For $\overline{c} \in \overline{K}$, the reduction

$$J_{\mathcal{X}}(\overline{c}, -1 - \overline{c}) : \mathcal{X}[\overline{c}] \longrightarrow \mathcal{X}[-1 - \overline{c}]$$

of the birational map $J_{\mathcal{X}}[c,-1-c]$ is an isomorphism of schemes with derivation.

Proof. This is a consequence of Lemma 4.1.

Lemma 4.8. For $\overline{c} \in \overline{K}$, the reduction

$$I_{\mathcal{X}}(\overline{c}, -\overline{c}) : \mathcal{X}[\overline{c}] \longrightarrow [-\overline{c}]$$

of the birational map $I_{\mathcal{X}}[c,-c]$ is an isomorphism of schemes with derivation.

Proof. The birational map I[c, -c] has the base locus F lying over the point c = 0 but the reduction $I_{\mathcal{X}}[0, 0]$ is equivalent to the identity. Now the lemma follows from Lemma 4.2.

Lemma 4.9. For every integer n, the open subset

$$\mathcal{X}^0[n] := \mathcal{X}[n] - \bigcup_{i=1}^8 D_i[n]$$

contains a curve F[n] that is isomorphic to $\mathbb{P}^1_{K(t)}$, tangent to the vector field D(n). Moreover the curve F[n] is the unique complete curve on $\mathcal{X}^0[n]$ tangent to the vector field D[n].

Proof. We know that the assertion of the corollary holds for n=0 (see [UW]). Now the assertion follows from Corollary 4.6, Lemmas 4.7 and 4.8.

Now we blow up $\mathcal{X}[c]$ at the infinitely many curves F[n], $n \in \mathbb{Z}$ to get $\mathcal{Y}[c] \to \mathcal{X}[c]$.

THEOREM 4.10. The affine Weyl group of type \tilde{A}_1 regularly operates on $\mathcal{Y}[c]$ such that the fibration $\mathcal{Y}[c] \to \operatorname{Spec} K(t)[c]$ is equivariant.

Proof. It follows from Lemmas 4.1 and 4.4 that $I_{\mathcal{X}}(c,-c)$ and $J_{\mathcal{X}}(c,-1-c)$ induce biregular morphisms

$$I_{\mathcal{Y}}[c, -c] : \mathcal{Y}[c] \longrightarrow \mathcal{Y}[-c]$$
 and $J_{\mathcal{Y}}[c, -1 - c] : \mathcal{Y}[c] \longrightarrow \mathcal{Y}[-1 - c]$.

For two variables c, c' over K(t), we have a natural isomorphism $\mathcal{Y}[c] \to \mathcal{Y}[c']$ covering the isomorphism

$$f^* : \operatorname{Spec} K(t)[c] \longrightarrow \operatorname{Spec} K(t)[c'],$$

where $f: K(t)[c'] \to K(t)[c]$ is the K(t)-isomorphism sending c' to c. So combining morphisms of this type with $I_{\mathcal{Y}}[c, -c]$ and $Y_{\mathcal{Y}}[c, -1 - c]$, we get the morphisms

$$I_{\mathcal{Y}}: \mathcal{Y}[c] \longrightarrow \mathcal{Y}[-c]$$
 and $J_{\mathcal{Y}}: \mathcal{Y}[c] \longrightarrow \mathcal{Y}[-1-c]$

covering respectively i^* and j^* , where i, j are automorphisms of K(t)[c] such that i(c) = -c, j(c) = -1 - c. $I_{\mathcal{Y}}$ and $J_{\mathcal{Y}}$ are operations of i and j. So the theorem is proved.

What is the fiber $\mathcal{Y}[0]$ over c = 0 of the fibration $\mathcal{Y}[c] \to \mathbb{A}^1_{K(t)}$? $\mathcal{Y}[0]$ has two irreducible components $\mathcal{X}[0]$ and the exceptional divisor contracted to the curve F. We describe the differential equation on the exceptional divisor. Let us work over W_1c that is the affine space with the coordinate system (y_1, z_1, C) , where $c = z_1 C$. So on W_1c we have,

(4.11)
$$\begin{cases} \frac{dy_1}{dt} = y_1^2 + z_1 + \frac{t}{2}, \\ \frac{dz_1}{dt} = -2y_1z_1 + Cz_1, \\ \frac{dC}{dt} = -2y_1C + C. \end{cases}$$

The fibration $W_1c \to \mathbb{A}^1$ is given by $(y_1, z_1, C) \mapsto c = z_1 C$. So

$$\mathcal{Y}[0] \cap W_1c$$

$$= \{(y_1, z_1, C) \in W_1c \mid C = 0\} \cup \{(y_1, z_1, C) \in W_1c \mid z_1 = 0\}.$$

Here

$$\mathcal{X}[0] \cap W_1[c] \simeq \{(y_1, z_1, C) \in W_1c \mid C = 0\}$$

and

(the exceptional fibre)
$$\cap W_1c = \{(y_1, z_1, C) \in W_1c \mid z_1 = 0\}$$

Therefore on

(the exceptional fibre)
$$\cap W_1c$$

that is the affine plane with the coordinate system (y_1, C) the differential equation (4.11) reduces to the system

$$\begin{cases} \frac{dy_1}{dt} = y_1^2 + \frac{t}{2}, \\ \frac{dC}{dt} = -2y_1C + C. \end{cases}$$

So the differential equation on the exceptional divisor is of little interest.

References

- [MMT] T. Matano, A. Matsumiya and K. Takano, On some Hamiltonian structures on Painlevé systems II, to appear, J. Math. Soc. Japan.
- [Mu] Y. Murata, Rational solutions of the second and the fourth Painlevé equations, Funkcial. Ekvac., 28 (1985), 1–32.
- [O1] K. Okamoto, Sur les feuilletages associeés aux équation du second ordre à points critiques fixes de P. Painlevé, Jap. J. Math., 5 (1979), 1–79.
- [O2] _____, Studies on the Painlevé equations, Math. Ann., 275 (1986), 221–255.
- [ST] T. Shioda and K. Takano, On some Hamiltonian structures of Painlevé systems I, Funkcial. Ekvac., 40 (1997), 271–291.
- [US] H. Umemura and M. Saito, Painlevé equations and deformations of rational surfaces with rational double points, preprint.
- [UW] H. Umemura, and H. Watanabe, Solutions of the second and fourth Painlevé equations, Nagoya Math. J., 148 (1997), 151–198.

Graduate School of Mathematics Nagoya University Nagoya, 464-8602 Japan

umemura@math.nagoya-u.ac.jp