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HILBERT-ASAI EISENSTEIN SERIES,

REGULARIZED PRODUCTS,

AND HEAT KERNELS

JAY JORGENSON and SERGE LANG

Abstract. In a famous paper, Asai indicated how to develop a theory of Eisen-
stein series for arbitrary number fields, using hyperbolic 3-space to take care of
the complex places. Unfortunately he limited himself to class number 1. The
present paper gives a detailed exposition of the general case, to be used for many
applications. First, it is shown that the Eisenstein series satisfy the authors’
definition of regularized products satisfying the generalized Lerch formula, and
the basic axioms which allow the systematic development of the authors’ theory,
including the Cramér theorem. It is indicated how previous results of Efrat and
Zograf for the strict Hilbert modular case extend to arbitrary number fields,
for instance a spectral decomposition of the heat kernel periodized with respect
to SL2 of the integers of the number field. This gives rise to a theta inversion
formula, to which the authors’ Gauss transform can be applied. In addition, the
Eisenstein series can be twisted with the heat kernel, thus encoding an infinite
amount of spectral information in one item coming from heat Eisenstein series.
The main expected spectral formula is stated, but a complete exposition would
require a substantial amount of space, and is currently under consideration.

The Hilbert modular case for totally real number fields has been

well understood for many decades. Asai gave a beautiful treatment showing

how to deal with the general case [As 70], but unfortunately he limited him-

self to number fields of class number one. As far as a general exposition is

concerned, matters were not much improved in [EGM 85], which limited it-

self to imaginary quadratic fields. Of course, [EGM 87] then pushed matters

in a deeper way in the direction of special values of Eisenstein series.

As shown below, a general exposition of the Eisenstein series for arbi-

trary number fields turns out not to be more difficult without any restriction

and doing so actually forces a clarification of the terminology and the no-

tation. We shall deal with applications in a different direction from that
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of [EGM 85]. Asai ran across theta-type series formed with the K-Bessel

function, aside from the Eisenstein series. Bessel functions play a dual role.

On the one hand, they give rise to series playing the role of Dirichlet series.

In [JoL 96], we showed that taking the Gauss transform of ordinary theta

series yields Bessel series in lieu of Dirichlet series, and we showed how these

Bessel series fit in our general framework of regularized products. Here we

shall first take the usual Mellin transform of Bessel theta series to get the

corresponding Dirichlet series. As mentioned in [JoL 96], we leave to an-

other paper the fuller theory which arises from taking the Gauss transform

of the Bessel series in general, yielding Legendre series. The tabulations of

the present paper will be useful in this subsequent work.

In §1 and §2, we carry out the Riemann-Hecke arguments for a func-

tional equation in a fairly broad context, applying to Bessel theta series.

Independently, in §3, §4 and §5 we formulate the general properties of

Hilbert-Asai Eisenstein series. In §6, we show how the Eisenstein series

fit in the theory of regularized products as developed beginning in the

articles [JoL 93] and [JoL 94]. In §7, we show how the heat kernel on

the symmetric space associated to the number field can be defined in terms

of the Eisenstein series, so that we can apply the general theory and espe-

cially [JoL 96]. Finally, in §8, we reformulate the results of §7 in terms of

a new Eisenstein series which we call the heat Eisenstein series, thus nat-

urally leading to work in progress concerning spectral expansion on other

symmetric spaces.

Thus we can take the Gauss transform of the heat kernel inversion

formula to obtain new zeta functions with functional equations. In the case

of Riemann surfaces, these functions correspond to logarithmic derivatives

of Selberg zeta functions.

Among other things, the present paper provides significant examples

for the general theory of regularized products and series. We note that

these examples also serve to emphasize the sufficiency of a Dirichlet series

representation, as opposed to the more classical emphasis on the existence

of Euler products as such. So far, Euler products have not played a role in

the general theory we are developing.
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§1. Functional equation and Mellin transform on a product of G+
m

Let S = {v} be a finite set and let

Y =
∏

v∈S

Yv where Yv = R+.

Let

d∗yv =
dyv

yv
and d∗y =

∏

v∈S

dyv

yv
.

For each v we let Nv be a positive real number and we let N =
∑

Nv.

We define the norm

Ny =
∏

v∈S

yNv
v .

Thus the norm N:Y → R+ is a continuous homomorphism. We let

Y 0 = KerN = {y ∈ Y such that
∏

v∈S

yNv
v = 1}.

Let U be an abelian group with a fixed homomorphism onto a discrete

subgroup V of Y 0 such that Y 0/V is compact. Since there is an isomorphism

log:Y → R#(S),

our assumption on U amounts to saying that log Y 0 is a hyperplane in log Y

and the image of U in log Y 0 is a lattice. Thus, Y 0/V is isomorphic to a

real torus of dimension #(S) − 1.

We note that R+ acts on Y and can even be embedded as a subgroup

of Y , namely for a ∈ R+ we let

ay = (. . . , a1/Nyv, . . .),

so a is embedded as (. . . , a1/N , . . .) in Y . Then Na = a. This embedding

splits the sequence

0 → Y 0 → Y → R+ → 0,

so an element y ∈ Y can be written uniquely in the form y = ty0 with

t ∈ R+, y0 ∈ Y 0.

The measure d∗y determines a measure on Y/V . It can also be written

as a product measure

d∗y = d∗y0dt

t
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where y0 is the variable in Y 0, and d∗y0 is a Haar measure on Y 0, uniquely

determined by d∗y.

Before carrying out a general theorem, we recall two distinct special

cases arising in classical situations. Let us call a pair of functions h, h0 on

Y admissible if they satisfy the conditions:

ADM 1: h, h0 are invariant under the action of V , so are defined on Y/V ;

ADM 2: h0 extends continuously to Y 0/V × [0,∞);

ADM 3: h0(y) decreases exponentially as Ny → ∞.

For algebraic number fields: The function h satisfies the inversion con-

ditions:

INV 1: (Number Fields) h(y) = h0(y) + c0 for some constant c0;

INV 2: (Number Fields) Ny−
1
2h(y−1) = h(y).

For Eisenstein series as in [As 70], see also Theorem 4.4 below.

INV 1: (Eisenstein) h(y) = h0(y) + c0Ny;

INV 2: (Eisenstein) h(y−1) + logNy = h(y).

We define the Mellin transform on Y/V , with respect to N:

MY/V h0(s) =

∫

Y/V

h0(y)Ny
sd∗y.

The next theorem covers the special case considered in Asai [As 70].

Theorem 1.1. Under the Eisenstein conditions INV 1, INV 2 above,

the function MY/V h0 has a meromorphic continuation and satisfies the

functional equation

MY/V h0(−s) = MY/V h0(s).

The above theorem extends easily to the case when we include a char-

acter as follows. By a Hecke character χ on Y , with respect to the given

action of V and R+, we mean a continuous homomorphism

χ:Y −→ C1

into the unit circle, such that χ is R+- and V -invariant, that is,

χ(ay) = χ(uy) = χ(y)
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for all y ∈ Y , a ∈ R+ and u ∈ V . Then χ induces a character on Y 0/V ,

and since Y 0/V is a real torus, it follows that the group of Hecke characters

is isomorphic to Zr, where r = #(S) − 1.

For a Hecke character χ, we define

MY/V h0(s, χ) =

∫

Y/V

h0(y)χ(y)Nysd∗y.

Then one obtains the functional equation with Hecke characters:

Theorem 1.2. Under the Eisenstein conditions, assume that χ is non-

trivial. Then

MY/V h0(s, χ) =

∫

Ny
�

1

h0(y)[χ(y)Nys + χ(y)Ny−s]d∗y.

In particular,

MY/V h0(s, χ) = MY/V h0(−s, χ).

Recall that a quasi character

Y/V −→ C∗

is simply a continuous homomorphism. It is therefore uniquely determined

by a vector β = (. . . , βv , . . .) of complex numbers, not necessarily of absolute

value 1, satisfying the orthogonality relations

OR 1.
∑

v∈S βvNv log uv ≡ 0 mod 2πiZ for all u ∈ V .

The value of the quasi character [β] corresponding to β is given by

[β](y) =
∏

v∈S

yNvβv
v .

If we let χ be the Hecke character induced on Y 0/V , and such that χ(R+) =

1, then there exists a unique complex number s such that

[β](ty0) = χ(y0)ts, that is [β] = χ · Ns.

The quasi character is equal to the Hecke character if and only if we also

have the orthogonality relation
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OR 2.
∑

v∈S βvNv = 0.

Thus we say χ = [β] if and only if OR 1 and OR 2 are satisfied.

Under these two conditions, it follows that Re(βv) = 0 for all v, that is

βv is pure imaginary for all v, so evidently [β] has values on the unit circle.

The above situation can be further generalized in a manner necessary

for certain applications. For one thing, one need not deal only with the

pair (h, h0), but two pairs can intervene. Furthermore, the powers of Ny

or logNy need not be 1. So we consider the following more general for-

mulations of INV 1, INV 2. For this, we need the notion of generalized

polynomials as they have appeared systematically in the [JoL] series, namely

a finite sum

P (T ) =
∑

cp,m(log T )mT p =
∑

Bp(log T )T p,

with p ∈ C, cp,m ∈ C, m ∈ Z �
0, and a polynomial Bp for each p. The

conditions then read:

INV 1. There is a generalized polynomial P (T ) such that

h(y) = h0(y) + P (Ny).

and there are admissible functions h̃, h̃0 such that

h̃(y) = h̃0(y) + P̃ (Ny)

for some generalized polynomial P̃ .

INV 2. There is a generalized polynomial Q and s0 ∈ C such

that

Ny−s0/2h̃(y−1) +Q(Ny) = h(y).

Define the truncated Mellin transform of a generalized polynomial P (T )

as written above on the interval [0, 1] to be

M1
0P (s) =

∑

cp,m

(

d

ds

)m 1

s+ p
=
∑

cp,m
(−1)mm!

(s+ p)m+1
.
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Lemma 1.3. Let Re(s+ p) > 0 for all p such that cp,m 6= 0. Then
∫

Ny � 1

P (Ny)χ(y)Nysd∗y = δχµ
∗(Y 0/V )M1

0P (s).

where δχ = 1 if χ is trivial and 0 otherwise

Proof. Immediate.

We define

P−(T ) = P (T−1).

Theorem 1.4. We have the meromorphic continuation

MY/V h0(s, χ) =

∫

Ny
�

1

[h0(y)χ(y)Nys + h̃0(y)χ(y)Ny−s+s0/2] d∗y

+ δχµ
∗(Y 0/V )M1

0(Q+ P̃− − P )(s).

The integral is entire in s and in particular

MY/V h0(s, χ) = MY/V h̃0(−s, χ) + Rat(s),

where Rat(s) is a rational function in s.

Proof. The proof follows a classical pattern and runs as follows:

MY/V h0(s, χ)

=

∫

Ny � 1

+

∫

Ny
�

1

h0(y)χ(y)Nys d∗y

=

∫

Ny � 1

h(y)χ(y)Nys d∗y −
∫

Ny � 1

P (Ny)χ(y)Nys d∗y

+

∫

Ny
�

1

h0(y)χ(y)Nys d∗y(1)

=

∫

Ny � 1

Ny−s0/2h̃(y−1)χ(y)Nys d∗y +

∫

Ny � 1

Q(y)χ(y)Nys d∗y

−
∫

Ny � 1

P (Ny)χ(y)Nys d∗y +

∫

Ny
�

1

h0(y)χ(y)Nys d∗y.

First integral on right
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=

∫

Ny
�

1

h̃(y)χ(y)Ny−s+s0/2d∗y

=

∫

Ny
�

1

h̃0(y)χ(y)Ny−s+s0/2d∗y +

∫

Ny
�

1

P̃ (Ny)χ(y)Ny−s d∗y(2)

=

∫

Ny
�

1

h̃0(y)χ(y)Ny−s+s0/2d∗y +

∫

Ny � 1

P̃−(Ny)χ(y)Nys d∗y.

Putting (1) and (2) together yields the asserted result.

Note that Theorem 1.4 covers both Theorem 1.1 and Theorem 1.2,

except that the formulations in the previous theorems are simpler because

the rational function disappears due to the simpler conditions on h and h0.

§2. Bessel theta series and Mellin transforms

In this section we see how one can form Bessel series which play the

role of theta series.

We let Kα be the K-Bessel function, with α ∈ C, which is normalized

as in [La 73/87] and [JoL 96], that is, for c > 0:

Kα(c) =

∞
∫

0

e−c(t+1/t)tα
dt

t
.

If KB
α denotes the one found in classical tables, then

2KB
α (2c) = Kα(c).

We suppose given a real number σ1 > 0. We suppose that h0 is a function

which can be expressed as a Bessel theta series, meaning the following.

There are constants ak ∈ C, ck,v ∈ R+, αv ∈ C such that

h0(y) =
∞
∑

k=1

ak

∑

v∈V

∏

v

Kαv (ck,vyv)y
Nvσ1
v .(1)

satisfies the Bessel-theta convergence condition:

B-TH. There is a number σ′0 = 0 such that for Re(s) > σ′0 the

series
∞
∑

k=1

|ak|Nc−(s+σ1)
k



HILBERT-ASAI EISENSTEIN SERIES 163

converges absolutely and thus uniformly in any half plane Re(s) =

σ′0 + ε.

Of course, we put

ck = (. . . , ck,v, . . .) and Nck = Πvc
Nv

k,v.

Note that the condition σ1 > 0 implies that h0 extends continuously to the

space Y 0 × [0,∞), and h0 is invariant under the action of V . Furthermore,

from K7 of [La 73/87], Chapter 20, §3, it follows that h0(y) is exponentially

decreasing for Ny → ∞, so h0 is admissible.

By a standard Bessel indentity, we know that for Re(s) > |Re(α)|,
∞
∫

0

Kα(ct)ts
dt

t
=

1

2
c−sΓ

(

s− α

2

)

Γ

(

s+ α

2

)

.(2)

A proof follows by the same technique as in [La 73], Chapter 20, §3.

Since
∫

Y

=

∫

Y/V

∑

V

and d∗y = d∗y0dt

t

the above Bessel identity immediately allows us to compute the Mellin

transform of the Bessel series on Y/V . We assume that d∗y is normalized

the usual way,

d∗y =
∏ dyv

yv
.

Then for a Hecke character χ = [β], remembering that OR 1 and OR 2

are satisfied, we get

MY/V h0((s, χ)) =

∞
∑

k=1

ak

∏

v

∫

Yv

Kαv (ck,vyv)y
Nvσ1
v yNvs

v yNvβv
v

dyv

yv
.

We have

χ(ck) =
∏

v

cnvβv

k,v .

We let

sv = Nv(s+ σ1 + βv).

We then obtain:
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Theorem 2.1. Let Z(s) be the Dirichlet series

Z(s) =

∞
∑

k=1

2−#(S)χ(c−1
k )ak

Ncs+σ1
k

and let

Gv(s) = Γ

(

1

2
(sv − αv)

)

Γ

(

1

2
(sv + αv)

)

G(s) =
∏

v

Gv(sv).

Then for Re(s) > σ′0,

MY/V h0(s, χ) = G(s)Z(s).

Remark. When α = 1/2 then K1/2 collapses to the exponential func-

tion and the Gauss duplication formula shows that the product of the two

gamma factors actually collapses to one gamma factor. This is precisely

what happens in the most classical case of the Dedekind zeta function of

number fields.

Theorems 1.1 and 1.2 apply to the Bessel series which will be defined

below, but the rest of this paper is logically independent of what precedes.

For the convenience of the reader, we now recall Hecke’s functional

equation for the Dedekind zeta function of a number field F , to be used

below. We let DF denote the absolute value of the discriminant and we

let K denote an ideal class. We let d be the different. As usual, r1 and r2
denote the number of real resp. complex conjugate embeddings of F . We

recall the classical zeta function associated with a fractional ideal a 6= (0),

namely

ζ(s, a) = Nas
∑

(µ)

N(µ)−s,

where N is the absolute norm and the sum is taken over all principal ideals

(µ) ⊂ a with µ 6= 0. Because of the factor Nas, one sees that ζ(s, a) depends

only on the ideal class of a. If a ∈ K−1 with an ideal class K, we set

ζ(s, a) = ζ(s,K).
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Theorem 2.2. (Hecke functional equation) Let G be the function

G(s) = GF (s) = D
s/2
F

(

π−s/2Γ(s/2)
)r1 (

(2π)−sΓ(s)
)r2

= As/2Γ(s/2)r1Γ(s)r2

where A = DFπ
−r1(2π)−2r2 . Let

ξ(s,K) = G(s)ζ(s,K).

Let K′ be the dual class, i.e. the ideal class d−1K−1. Then ξ(s,K) is holo-

morphic in s except for simple poles at s = 0 and s = 1 and

ξ(s,K) = ξ(1 − s,K′).

§3. Hyperbolic spaces, number fields and Eisenstein series

Let F be a number field of degree N over Q. We let S = S∞ be the

set of absolute values of absolute values at infinity and to each v ∈ S∞ we

suppose chosen a fixed embedding

F ↪→ R or F ↪→ C

according as v is real or complex. We let o = ov be the ring of algebraic

integers in F at a finite place v and we let d = d � /Z be the different as

above.

We need certain spaces from differential geometry. We let:

h2 = upper half plane = R × R+ with its usual Poincaré metric.

h3 = hyperbolic 3-space = C× R+, on which we make more comments.

The unique simply connected Riemannian manifold of dimension 3, with

constant negative curvature −1, up to isometry, has many models, of which

the following is the relevant one, as described in Kubota [Ku 68]. We let

h3 be the space of matrices

z =

(

x −y
y x

)

with x ∈ C and y ∈ R, y > 0.

We then write y = y(z).

The group SL2(C) operates on h3 in a natural way as follows. Let

σ =

(

α β

γ δ

)

∈ SL2(C).
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Let α be a complex number. We write

α̃ =

(

α 0

o α

)

We define

σ〈z〉 =
(

α̃z + β̃
)(

γ̃z + δ̃
)−1

.

Quite generally, let γ, δ ∈ C not both 0. For z ∈ h3 define

y(γ, δ; z) =
y(z)

|γx+ δ|2 + |γ|2y2
.

Then a straightforward calculation shows that

y(σ〈z〉) = y(γ, δ; z).

This is the analogue of the standard formula for the imaginary part of the

image of a complex number under an element of SL2(R).

Having the above simple notions we relate them to the number field F

as follows. We let:

hv = h2 if v is real, and = h3 if v is complex.

hF =
∏

v∈S∞

hv.

An element z of hF is thus a vector, z = (. . . , zv , . . .), and

zv = (xv , yv).

For v real, xv ∈ R and for v complex, xv ∈ C. In both cases, yv ∈ R+.

We define y(z) to be the vector

y(z) = (. . . , y(zv), . . .)v∈S∞
.

We define the Norm

Ny(z) =
∏

v∈S∞

y(zv)
Nv ,

where Nv = 1 or 2 according as v is real or complex.

If µ, ν ∈ F are not both 0 and z ∈ hF , then we put

y(µ, ν; z) =

(

. . . ,
yv

|µvxv + νv|2 + |µv|2y2
v

, . . .

)
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where yv = y(zv).

Given a pair of elements (µ, ν) in F × F not both 0 we define the

equivalence class

{µ, ν}

to consist of all pairs (µ1, ν1) such that there exists a unit ε for which

(µ1, ν1) = ε(µ, ν) = (εµ, εν).

Let a be a fractional ideal 6= 0. We define:

Equ(a) = equivalence classes of pairs {µ, ν} with µ, ν ∈ a;

Equ∗(a) = equivalence classes of pairs {µ, ν} with (µ, ν) = a.

We define the Eisenstein series

E(z, s, a) =
∑

{µ,ν}∈Equ( � )

Ny(µ, ν; z)sNa2s.(1)

Thus the Eisenstein series is a higher dimensional version of the zeta series

ζ(s, a). Like the zeta series, the Eisenstein series converges absolutely for

Re(s) > 1.

Let K be an ideal class of F . Let a ∈ K−1 be a fractional ideal. We

define the K-Eisenstein series

E(z, s,K) = E(z, s, a).

The fact that we put a factor Na2s in the definition of the Eisenstein series

shows immediately that the series depend only on the ideal class of a, or

that of a−1. We now define the primitive Eisenstein series

E∗(z, s,K) =
∑

{µ,ν}= �

Ny(µ, ν; z)sNa2s(2)

where the sum is taken over all equivalence classes of pairs

{µ, ν} ∈ Equ∗(a),

namely such that (µ, ν) generates precisely the ideal a. Thus E∗(z, s,K)

is a partial sum of the complete Eisenstein series E(z, s,K). Immediately
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from the definition, since a fractional ideal (µ, ν) in a can be written in the

form ab with some ideal b ⊂ o, we obtain

E(z, s,K) =
∑

�

E∗(z, s, ab)

Nb ���
(3)

where the sum is taken over all ideals b 6= 0 in o. Since E∗(z, s, ab) depends

only on the ideal class of ab, which is bK−1, we therefore obtain the relation

E(z, s,K) =
∑

�

∑

�
∈
�
Nb−2sE∗(z, s,L−1K)(4)

=
∑

�
ζ(2s,L)E∗(z, s,L−1K).

Summing over K, let us define the total Eisenstein series, independent

of the class, by

EF (z, s) =
∑

�
E(z, s; K) and E∗

F (z, s) =
∑

�
E∗(z, s; K).(5)

Since
∑

� ζ(s,L) = ζF (s), we obtain

EF (z, s) = ζF (2s)E∗
F (z, s).(6)

Thus the zeta function of F appears as a natural factor of the Eisenstein

series.

We shall derive a meromorphic continuation for E(z, s, a), by a certain

inversion of theta series. We shall thus be led to a dual notion of equiv-

alence of pairs, as follows. For µ, ν ′ ∈ F and µν ′ 6= 0, we define [µ, ν ′] =

equivalence class of pairs under the equivalence relation

(µ, ν ′) ∼ (εµ, ε−1ν ′)

for all units ε. Observe that the product µν ′ depends only on the class.

We shall obtain a Bessel series for E(z, s, a). For this purpose, with

µ, ν ′ ∈ F and µν ′ 6= 0 we let the v-Bessel factor be

Bv(µ, ν
′, y, s) = yNv/2

v

∞
∫

0

exp(−Nvπyv(|µv|2tv + |ν ′v|2/tv)tNvS
v

dtv
tv

= yNv/2
v

∣

∣

∣

∣

ν ′v
µv

∣

∣

∣

∣

Nvs

KNvs(Nvπyv|µvν
′
v|).
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Note that the product

∏

v

Bv(µ, ν
′, y, s) = Ny1/2

(

N(ν ′)

N(µ)

)s
∏

v

KNvs(Nvπyv|µvν
′
v|)

depends only on the equivalence class [µ, ν ′], because the absolute value of

the norm of a unit is equal to 1.

We let R(a) be a set of representatives of elements 6= 0 in a for the

equivalence

µ1 ∼ µ if and only if µ1 = εµ for some unit ε ∈ o.

The sum over (µ) in the definition of ζ(s, a) could also be taken for µ ∈ R(a).

We also define the fudge factor at infinity

GF,∞(s) =
(

π−s/2Γ(s/2)
)r1 (

(2π)−sΓ(s)
)r2

GF,∞(2s) =
∏

v

(Nvπ)−NvsΓ(Nvs).

The full fudge factor is

GF (s) = D(o)s/2GF,∞(s),

with the discriminant appearing at the finite places. Thus

GF (2s) = Ds
(

π−sΓ(s)
)r1
(

(2π)−2sΓ(2s)
)r2 .

This factor will be the relevant one for the Eisenstein series.

We recall the functional equation for ζ(s, a). Let a′ be the complemen-

tary fractional ideal, that is a′ = d−1a−1, where d is the different. Then

GF (s)ζ(s, a) = GF (1 − s)ζ(1 − s, a′).

For the next theorem, we define the set of equivalence classes:

[Equ](a, a′) = equivalence classes of pairs [µ, ν ′] with

µ ∈ a, ν ′ ∈ a′, and µν ′ 6= 0.

We let S be the trace of F/Q as usual.
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Theorem 3.1. The Eisenstein series have an expression:

E(z, s, a) = Ny(z)sζ(2s, a) + Ny(z)1−s

+ D−1/2GF,∞(2s)−1GF,∞(2s− 1)ζ(2s− 1, a)

+ D−1/2GF,∞(2s)−1Na2s−1
∑

[µ,ν′]

e2πiS(µν′x)
∏

v

Bv(µ, ν
′, y, s − 1

2
),

where the sum is taken for [µ, ν ′] ∈ [Equ](a, a′). The first two terms have

the meromorphic continuation coming from the Dedekind zeta function, and

the sum over [µ, ν ′] is entire in s.

Proof. We decompose the sum in (1) as follows:
∑

{µ,ν}

=
∑

ν∈R( � )
µ=0

+
∑

µ∈R( � )

∑

ν∈ �

.

Then for Re(s) > 1 we get:

E(z, s, a) =
∑

ν∈R( � )

Ny(0, ν; z)sNa2s +
∑

µ∈R( � )

∑

ν∈ �

Ny(µ, ν; z)sNa2s

= Ny(z)sζ(2s, a) +

∑

µ∈R( � )

∑

ν∈ �

∏

v

(Nvπ)NvsΓ(Nvs)
−1

∞
∫

0

exp(−πNvtvy(µv, νv; zv)
−1)tNvs

v

dtv
tv

Na2s.

We now let

T =
∏

v

Tv with Tv = R+, and d∗tv =
dtv
tv
.

Thus t = (. . . , tv, . . .) is the variable in T . With this notation, we have

E(z, s, a) = Ny(z)sζ(2s, a) +

GF,∞(2s)−1
∑

µ∈R( � )

∫

T

exp
(

−πTr(ty|µ|2
)

Θ
(

y−1t, a + µx
)

Ntsd∗tNa2s,

where for x = (. . . , xv , . . .) we define the Hecke theta series

Θ(c, a + x) =
∑

α∈ �

exp

(

−π
∑

v

Nvcv|αv + xv|2
)

.
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By the Poisson summation formula-Hecke inversion (Cf. [La 70/94], Chap-

ter XIII, §2) we get

Θ(y−1t, a + µx)

= D(a)−1/2Ny(z)1/2Nt−1/2
∑

ν′∈ � ′

e2πiS(µν′x) exp
(

−πTr(yt−1|ν ′|)
)

.

We have D(a)−1/2 = D−1/2Na−1. We can write the double sum over µ, ν ′

as
∑

µ∈R( � )

∑

ν′∈ �

=
∑

µ∈R( � )

ν′=0

+
∑

[µ,ν′]

.

The sum over µ ∈ R(a) on the right, with ν ′ = 0, is again a Mellin transform.

The factors involving Ny(z)1/2 and Nt−1/2 have the effect of translating s

by −1/2. The sum over [µ, ν ′] is a Bessel sum. Both these sums are the

ones stated in the theorem, which is proved.

If we multiply both sides of Theorem 3.1 with DsGF,∞(2s) = GF (2s),

we obtain a more symmetric expression as in the next theorem. In addition,

it is convenient to introduce the usual abbreviations, namely we let

ξE(z, s, a) = GF (2s)E(z, s, a) and ξF (s, a) = GF (s)ζF (s, a).

Theorem 3.2. We have the expression:

ξE(z, s, a)

= Ny(z)sξF (2s, a) + Ny(z)1−sξF (2s− 1, a) +

D(a)s−1/2
∑

[µ,ν′]

(

N(ν ′)

N(µ)

)s−1/2

e2πiS(µν′x)
∏

v

yNv/2
v KNv(s−1/2)(Nvπyv|µvν

′
v|).

Furthermore, we have the functional equation

ξE(z, s, a) = ξE(z, 1 − s, a′).

Proof. Let us replace s by 1−s on the right side. Then by the functional

equation

G(w)ζ(w, a) = G(1 − w)ζ(1 − w, a′),

with w = 2 − 2s, we find the term with 2s− 1 on the right and a replaced

by a′. A similar process starting with this term yields the first term with
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2s and also with a replaced with a′. Thus sending s 7→ 1 − s interchanges

the first two terms on the right, while replacing a by a′.

As to the Bessel sum, we use the functional equation of the Bessel

function

K−w = Kw,

with w = s − 1/2, changed into −w by s 7→ 1 − s. The products µν ′ are

unchanged when we interchange a and a′. The factors

D(a)s−1/2 and (N(ν ′)/N(µ))s−1/2

go to their inverses. Since D(a)−1 = D(a′) and the pairs [µ, ν ′] go to [ν ′, µ],

while a′′ = a, the Bessel sum also gets transformed to the corresponding

Bessel sum with a replaced by a′. This concludes the proof.

From Theorem 3.2, we may read the residue and constant term for the

Laurent expression at s = 1 We have:

Ny1−s = 1 − (log Ny)(s− 1) +O(|s− 1|2)

ξF (2s− 1, a) =
1

2
ress=1ξF (s, a)

1

s − 1
+ CTs=1 ξF (s, a) +O(|s− 1|),

where CTs=1 denotes the constant term in a Laurent expansion about s = 1.

Therefore at s = 1, the function ξE(z, s, a) has only a simple pole and the

first terms of the expansion are as in the next theorem. We introduce the

following functions.

The Bessel series Bess(z, a), defined by

Bess(z, a) = D(a)
1
2

∑

[µ,ν′]

(

N(ν ′)

N(µ)

)1/2

e2πiS(µν′x)
∏

yNv/2
v KNv/2(Nvπyv|µvν

′
v|),

where the sum is taken over [µ, ν ′] ∈ [Equ](a, a′).

The Asai function hF (z, a), defined by

res
s=1

ξF (s, a)hF (z, a) = ξF (2, a)Ny + Bess(z, a).

Theorem 3.3. At s = 1, the expansion of the Eisenstein series is

given by:

ξE(z, s, a) = res
s=1

ξF (s, a)

[

1/2

s− 1
− 1

2
logNy + hF (z, a)

]

+O(|s− 1|).

Note. Our normalization of the Asai function is 1/2 that of Asai’s

normalization in [As 70].
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§4. Modularity of hF (z, a)

Before dealing with hF (z, a), we mention some properties of the Eisen-

stein series which will now become relevant. First an invariance property.

We let:

Gv = SL2(R) if v is real, and SL2(C) if v is complex;

GF,∞ =
∏

v∈S∞

Gv.

We let o = oF be the ring of algebraic integers of F . Then SL2(o)

gets imbedded into Gv for each v by our fixed imbedding of o into R or C

corresponding to v, so we have an imbedding

SL2(o) ↪→ GF,∞

on the diagonal. An element σ ∈ SL2(o) will be identified with its image,

so we can write σ as a vector

σ = (. . . , σv, . . . , ),

where σv is the image of σ in Gv. It is immediate that SL2(o) is a discrete

subgroup of GF,∞, which we also denote by Γ.

The group GF operates on hF via diagonal action and then operates

as a discrete subgroup on hF .

Let a be a fractional ideal 6= (0). Let

S(F, a) = the set of all matrices

σ =

(

ξ η

µ ν

)

∈ SL2(F ) such that (µ, ν) = a,

S∞(F, o) = subgroup of SL2(F ) consisting of matrices of the form
(

ε−1 λ

0 ε

)

with λ ∈ F and a unit ε.

Then we have a bijection

S∞(F, o) \ S(F, a) −→ Equ∗(a)

which to each matrix in S(F, a) as above associates the pair (µ, ν).

Note that SL2(o) operates on the right of Equ∗(a), in a manner corre-

sponding to matrix multiplication on the right of S(F, a).
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With the above notation, we may then express the primitive Eisen-

stein series as a sum

E∗(z, s, a) =
∑

σ∈S∞\S( � )

Ny(σ〈z〉)sNa2s,(1)

where we abbreviated S∞(F, o) = S∞ and S(F, a) = S(a).

Although strictly speaking, we shall not need the following remarks

leading to Proposition 4.1, and they are essentially well-known, we include

them here for the convenience of the reader. They have to do with the

operation of SL2(o) on the projective line P1(F ), and have to do with the

compactification of SL2(o)\hF by the cusps, which correspond to the ideal

classes, but we do not go into these considerations here.

The group SL2(F ) operates on the projective line P1(F ) as usual. If

z ∈ F and

M =

(

ξ η

µ ν

)

∈ SL2(F ),

then the operation is given by z 7→ (ξx + η)/(µz + ν), with the possible

value ∞. We may also represent this operation on vectors

(

α1

α2

)

7−→M

(

α1

α2

)

where

(

α1

α2

)

represents the element α = α1/α2 ∈ F ∪ {∞}.
To each α ∈ F , α 6= 0 we associate an ideal class cα as follows. We

write α = α1/α2 with α1, α2 ∈ o, α1α2 6= 0, and we let a = (α1, α2) be the

ideal generated by α1 and α2. If we write α = β1/β2 with β1, β2 ∈ o, then

there exists λ ∈ F ∗ such that

b = λa, where b = (β1, β2),

namely λ = β2α
−1
2 , so the ideal class cα of a is well defined.

Proposition 4.1. The association α 7→ cα induces a bijection between

orbits of SL2(o) in F ∗ and the set of ideal classes of F .

The proof is routine and well-known. Cf. for instance [Si 61/80], Chap-

ter III, §1, Proposition 20, and [Ge 80], Chapter I, Proposition 1.1. But the

matter is older, cf. Siegel’s comment p. 207: “It was Blumenthal who first
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gave a method of constructing a fundamental domain for Γ in Hn, but his

proof contained an error since he obtained a fundamental domain with just

one cups and not h cusps. This was set right by Maass.”

Proposition 4.2. The Eisenstein series are invariant under the ac-

tion of SL2(o), that is for σ ∈ SL2(o) and any non-zero fractional ideal a,

we have

E∗(σ〈z〉, s, a) = E∗(z, s, a),

and similarly when E∗ is replaced by E.

Proof. It is clear that the result for E∗ implies the result for E. As

for E∗, the result comes from the fact that multiplication by σ on the right

permutes the elements of S∞ \ S(a).

Theorem 4.3. For σ ∈ SL2(o), σ =

(

∗ ∗
γ δ

)

, let

Jv(σ, z) = |γvxv + δv |2 + |γv|2 y2
v ,

and

NJ(σ, z) =
∏

v

Jv(σ, z)
Nv .

Then hF (z, a) satisfies the modular relation

hF (σ〈z〉, a) +
1

2
log NJ(σ, z) = hF (z, a).

Proof. Let a−1 and a0(z) denote the residue and constant term respec-

tively for the Eisenstein series E(z, s, a), so

E(z, s, a) =
a−1

s− 1
+ a0(z) +O(|s− 1|).

From Proposition 4.2, we conclude that for σ ∈ SL2(o),

a0(σ〈z〉) = a0(z).(2)

Up to a constant factor C, by Theorem 3.3, we know that

Ca0(z) = −1

2
log Ny + hF (z, a).

Applying (2) proves the theorem.
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Finally, we want to apply the transformation theory of §1, §2 to the

present case, as does Asai, so we restrict hF (z, a) to z = y so then x = 0,

which we write as hF (y, a). We let

c−1(a) = res
s=1

ξF (s, a)

h0(y, a) = c−1(a)−1D(a)1/2
∑

[µ,ν′]

(

N(ν ′)

N(µ)

)1/2

Ny1/2
∏

KNv/2(Nvπyv|µvν
′
v|),

= c−1(a)−1 Bess(y, a),

where the sum is taken over [µ, ν ′] ∈ [Equ](a, a′). Let

c0 = c0(a) = ξF (2, a)/c−1(a).

Theorem 4.4. The function h0(y, a) has exponential decay whenever

Ny → ∞, and we have

hF (y, a) = h0(y, a) + c0Ny.

Furthermore, we have the transformation rule

hF (y−1, a) + logNy = hF (y, a).

Proof. This comes from the definitions and Theorem 3.3, as well as

applying Theorem 4.3 with

σ =

(

0 −1

1 0

)

.

§5. Harmonicity of hF (z, a)

So far we have dealt only with the algebraic properties of hF . Now we

deal with differential geometric properties and we consider the behavior of

E(z, s, a) vis a vis the Laplace operators corresponding to each factor.

The metric form on h3 is represented by

1

y2

(

dx2
1 + dx2

2 + dy2
)

,

and the corresponding volume form by dx1dx2dy/y
2. The formulas for h2

are even better known. The positive Laplace operator on h2 is given by

∆2 = −y2

(

∂2

∂x2
+

∂2

∂y2

)

.
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The positive Laplacian ∆3 on h3 is given by

∆3 = −y2

(

4
∂2

∂x∂x
+

∂2

∂y2

)

+ y
∂

∂y

= −y2

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)

+ y
∂

∂y
.

It is the unique (up to constant factor) SL2(C)-invariant differential op-

erator on h3. For each absolute value v, we let ∆v be the corresponding

Laplacian.

We can exhibit eigenfunctions of the Laplace operator as follows. Let

α 6= 0 be a complex number and let

es(α, z) = yK2s−1(|α|y)e2i Re(αx).

Note that if we denote by eBs (α, z) the corresponding function in Asai, then

his normalization is related to ours by 2eBs (α, z) = es(α, z).

Proposition 5.1. We have the eigenfunctions

∆vy
Nvs
y = N2

v s(1 − s)yNvs
v and ∆ves(α, z) = Nvs(1 − s)es(α, z).

Proof. The first formula follows from a direct computation. The second

one is a consequence of the differential equation satisfied by the K-Bessel

functionKs(y), which is standard, and is derived directly from our definition

of the K-Bessel function in [JoL 96], Lemma 3.1.

From (1) in §4, applying the above eigenfunction relation to each term

in the sum, and to all fractional ideals ab with b integral 6= 0, we find:

Proposition 5.2. For all v and all Laplacians ∆v we have

∆vE(z, s, a) = N2
v s(1 − s)E(z, s, a),

and similarly for E∗ instead of E.

We then obtain the corresponding result for the function hF (z, a).

Proposition 5.3. This function is harmonic for each ∆v, that is

∆vhF (z, a) = 0.
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Proof. Let a−1 and a0(z) be as in the proof of Theorem 4.3. From

Proposition 5.2 we find

∆vE(z, s, a) = −N2
v a−1 +O(|s− 1|),

since the right side of the first formula in Proposition 5.1 contains a factor

−(s− 1). But we also have

∆vE(z, s, a) = ∆va0(z) +O(|s− 1|).

Therefore

∆va0(z) = −N2
v a−1.

Furthermore, by direct computation,

∆v log Ny(z) = N2
v .

Hence

∆v(a0(z) + a−1 logNy(z)) = 0.

But from Theorem 3.3, one sees that

a0(z) + a−1 log Ny(z)

up to a constant factor is equal to

−1

2
log Ny + hF (z, a) +

1

2
logNy.

This proves that ∆vhF (z, a) = 0, and concludes the proof of the proposi-

tion.

§6. Regularized products

We show here that the Eisenstein series give examples of regularized

products, as defined in [JoL 93a] and [JoL 93b]. See also the definition of

regularized product type in [JoL 94], Chapter I, §6. To save space, we do

not reproduce the relevant definitions here.

Theorem 6.1. For each z and a, the Eisenstein functions E∗(z, s, a),

E(z, s, a) are of regularized product type. So are E∗
F (z, s) and E(z, s). Fur-

thermore, E(z, s, a) is of order 1 and has polynomial growth in vertical

strips.
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Proof. We first prove the property of regularized product type for

E(z, s, a). This property is actually a corollary of our general Cramér the-

orem from [JoL 93b]. It suffices to verify the conditions of this theorem.

By combining equation (1) in §4 and (6) in §3, we see that E(z, s, a) has a

Dirichlet series representation in a right half plane (see also (1) in §3). By

Theorem 3.2, the function

ξE(z, s, a) = GF (2s)E(z, s, a)

satisfies a functional equation, actually is invariant under s 7→ 1 − s. Since

GF is of regularized product type, it remains to show that E(z, s, a) is of

finite order, actually order 1, and has polynomial growth in vertical strips.

This is done by classical routine arguments as follows.

Since E(z, s, a) has a Dirichlet series representation in a right half plane,

it is bounded in a slightly smaller right half plane. By the functional equa-

tion, we have

E(z, 1 − s, a) = GF (2 − 2s)−1G(2s)E(z, s, a).

Since GF (2s)/GF (2− 2s) has a polynomial growth in vertical strips and is

of order 1, the function E(z, s, a) has polynomial growth in vertical strips in

some left half plane and is of order 1 in this left half plane, i.e. O(e|s|
1+ε

) for

|s| → ∞, s in that left half plane. Observe that the proof of Theorem 3.1,

or Theorem 3.2, expresses E as a sum of terms involving the Dedekind zeta

function and gamma function, and a Bessel series times GF,∞(2s)−1. For

σ = Re(s) in a finite interval (so s itself is in a vertical strip), the Bessel

function satisfies an exponential estimate

|Ks(c)| ≤ Ce−2c,

uniformly for σ in the interval. The number of elements in a fractional

ideal with absolute values bounded by B (with B → ∞) is polynomial in

B, and the absolute values of elements in such a Z-lattice are bounded from

below. The elements can be split up into annuli according to the maximum

absolute value, and one can estimate the Bessel series by an integral

∞
∫

δ

∞
∫

δ

x±My±M ′

e−cxydxdy, with some c,M,M ′ > 0,
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and with some fixed δ > 0. In the application, M,M ′ are bounded when σ

lies in a finite interval. Hence, the Bessel series is bounded in the strip.

The factor GF (2s)−1 has order 1 in vertical strips. Theorem 3.2 shows

that the function ξE (as a function of s) is entire, except for trivial poles

of ξF . Hence, the Eisenstein function has only a finite number of poles in

a given vertical strip. Thus, we have proved that the Eisenstein function is

of order 1. Finally, the functional equation

E(1 − s) = Φ(s)E(s)

with a fudge factor Φ(s) which is a quotient of gamma factors shows that

E has polynomial growth on vertical lines far to the right and to the left.

Since it has order 1, we can apply the Phragmen-Lindelöf theorem to see

that it has polynomial growth in vertical strips. This concludes the proof.

Note that the fudge factors in the functional equation of the Eisenstein

functions involve both gamma factors and zeta factors with the Riemann

zeta function. Thus we are already on the third rung of the ladder of

functions which are regularized products.

Note also that the functional equations are multiplicative and we are not

dealing with the logarithmic derivatives, which are of regularized harmonic

series type.

The Eisenstein functions satisfy not only the ladder theorem, but they

satisfy conditions which allow us to get an asymptotic expansion for the

associated theta series. More precisely, combining (1) from §4 and the

Dirichlet series representation of ζF (s, a) we obtain a Dirichlet series repre-

sentation for E(z, s, a), which we write in the form

E(z, s, a) = ζF (s, a)E∗(z, s, a)

= Nas
∑

(µ)

N(µ)−s
∑

S∞\S( � )

Ny(σ〈z〉)s

=
∑

k

akλ
−s
k .

Thus we have the associated theta series defined by

Θ(z, t, a) = Θ(t) =
∑

ake
−λkt.

In [JoL 93a], [JoL 93b] and [JoL 94], we have systematically used the three

axioms AS 1, AS 2, AS 3, of which the main axiom is AS 2, asserting
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the existence of an asymptotic expansion for Θ(t) at the origin, in terms of

generalized polynomials. In [JoL 93a], we gave a criterion to get such an

asymptotic expansion. We can now use this criterion to prove:

Theorem 6.2. The theta series Θ(z, t, a) satisfies the asymptotic con-

ditions AS 1, AS 2 and AS 3.

Proof. The result comes from a direct application of [JoL 93a], §7.

By the polynomial growth asserted in Theorem 6.1, the Eisenstein series

E(z, s, a) is in the domain of the inverse Mellin transform. Hence, The-

orem 7.4 and Theorem 7.5 of [JoL 93a] apply to conclude the proof of

Theorem 6.2.

The above two results show how easily our axioms can be applied in

certain concrete specific situations.

One can further apply the results of [JoL 94] to obtain an explicit

formula and theta inversion formula associated to the Dirichlet series ex-

pansion for E(z, s, a). Thus one can do for the Eisenstein series themselves

what we pointed out for the scattering determinant in another special case,

see [JoL 96], §7.

§7. Heat kernel, spectral theoretic applications and associated

zeta functions

We describe how one can introduce the heat kernel to produce theta

relations via a spectral decomposition and then we can apply the Gauss

transform to get zeta functions, as we pointed out already in [JoL 94] and

[JoL 96].

Let LF be the heat operator on hF , acting on functions u(t, x) of a real

variable t and variable x ∈ hF . Specifically, LF acts via an operator Lv at

each place v, and

Lv = ∆v +N2
v

∂

∂t
,

so

Lv = ∆v +
∂

∂t
if v is real,

Lv = ∆v + 4
∂

∂t
if v is complex.
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Let KhF
be the heat kernel on hF , associated to the Laplacian which

acts on C∞
c (hF ) (smooth compactly supported functions). It is immediate

that

KhF
=
∏

v∈S∞

Khv
,

where Khv
is the heat kernel on the hyperbolic half plane h2 if v is real and

the heat kernel on hyperbolic h3 if v is complex. We recall that

et/4Kh2(t, ρ) =
1

4πt
e−ρ2/4tg(t, ρ),

where

g(t, ρ) = t−1/2

∞
∫

ρ

ue(ρ
2−u2)/4t

(cosh u− cosh ρ)1/2

du√
2π

and

et/4Kh3(t, ρ) =
1

(πt)3/2
e−ρ2/t ρ

sinh ρ
.

Warning. The factor Nv in the definition of the norm on hF was nat-

ural (and follows Asai), since, for example, all Eisenstein series then have a

functional equation which amounts to invariance under the map s 7→ 1− s.

Other normalizations occur in the literature. For instance, if we let EEGM

denote the Eisenstein series as defined in [EGM 85], then

EEGM(z, s, a) = E(z, s/2, a).

Our normalization entails a scaling of the heat kernel when v is complex.

Note that the usual ρ2/4t (present for h2) becomes ρ2/t for h3 (the complex

case) and (4πt)3/2 becomes (πt)3/2. If one denotes by KR the real heat

kernel, found elsewhere in the literature (e.g. [JoL 94], [JoL 96]), then

KC,h3(t, ρ) = Kh3(t, ρ) = KR,h3(ρ, t/4).

More appropriately, we may then use the notation Kv for the heat kernel

at the place v, where Kv is Kh2 or KC,h3 according as v is real or complex.

Given a Hecke character χ = [β] (notation of §1, see the OR condi-

tions), we define the corresponding primitive Hecke-Eisenstein series as

in §4, (1) by

E∗(z, s,K, χ) =
∑

σ∈S∞\S( � )

χ(y(σ〈z〉))Ny(σ〈z〉)sNa2s(1)
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where, as in §2, χ(y) =
∏

yNvβv
v = N(yβ). By relations OR 1 and OR

2 of §1, the series (1) is, at least formally, invariant under the action of

SL2(o). The formalism of §1 applies directly and similar estimates as before

extend the results of §3 through §6 to the Eisenstein series with Hecke

characters to yield meromorphic continuations, functional equations and

Fourier expansions. These were actually carried out in the Hilbert modular

case (when F is totally real) in [Ef 87] and [Zo 82].

Let

XF = SL2(o) \ hF .

In the Hilbert modular case, [Ef 87] and [Zo 82] also deal with the eigen-

function expansion in L2(XF ). See especially [Ef 87] p. 41, Definition 1.7,

p. 83, Theorem 9.8 for one cusp and p. 100 in the general case. Similar re-

sults are valid in the general case with arbitrary number fields. The proofs

are similar and we merely summarize the situation.

The space L2(XF ) has an orthogonal decomposition consisting of a

discrete part and a continuous part, as follows. The discrete part is the

direct sum orthogonal decomposition of the subspace of L2(XF ) generated

by the eigenfunctions. The continuous part is determined by the family

E∗(z,
1

2
+ ir,K, χ)

parametrized by the ideal classes K all r ∈ R and all Hecke characters χ.

As recalled in §1, the group of Hecke characters is isomorphic to Zr1+r2−1,

and thus it constitutes a discrete family, but the variable r parametrizes

a continuous family. Note that by using r to parametrize the continuous

family, we give priority to the notation of the spectral gang. (Too many

r’s!)

In particular, we may periodize the heat kernel KhF
with respect to

SL2(o) to get the heat kernel KXF
on XF . The following result is obtained

in the Hilbert modular case in [Ef 87], III. 4, and can be proved similarly in

the general case. We let {ϕk} be total orthonormal family of eigenfunctions

in L2(XF ). We let {λk} be the eigenvalues and we let

µk = λk − 1/4,

following our standard normalization.
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Theorem 7.1. Let KXF
(t, z, w) be the heat kernel on XF . Define

E∗
tot(z,w, s, χ) =

∑

�
E∗(z, s,K, χ)E∗(w, s,K, χ).

Let rχ = r − iβχ where βχ is the sum of the exponents of the character

associated to χ. Then there is a constant cF such that one has the expansion:

et/4KXF
(t, z, w) =

∑

γ∈SL2( � )/{±1}

et/4KhF
(t, γz̃, w̃)

=
∑

k

ϕk(z)ϕk(w) e−µkt

+ cF

∞
∫

−∞

∑

χ

E∗
tot(z,w,

1

2
+ ir, χ) e−r2

χtdr.

The convergence of the series (i.e., the sum over all Hecke characters

χ) is addressed in [Ef 87] and [Zo 82]. It is similar to the convergence of

a Fourier series. No new convergence problems arise by using the complex

places of the number field.

Note that the equality of the two expansions for KXF
is a theta in-

version formula. For a totally imaginary number field, it fits exactly our

previous formalism considered in [JoL 94] and [JoL 96]. The integral involv-

ing the Eisenstein series in Theorem 7.1 above corresponds precisely to the

term EΦ(t) in [JoL 94], Chapter IV, Theorem 1.2; and to the term EARleft

or E−aRright in [JoL 96], see the “Basic Assumptions” of §5. The notation

in these references was not accidental. We had in mind the Eisenstein series

as an eventual manifestation of such terms, which do not occur for compact

quotients.

For arbitrary F , because of the real places, the theta inversion formula

is generalized because of the integral expression for the heat kernel on the

hyperbolic upper half plane. Hence our formalism has to be extended to the

more general situation involving such integral representations. We have al-

ready mentioned this possibility explicitly in the above cited references. See

for instance [JoL 94], Chapter V, §4, Remark 1 and [JoL 96], §8 Remark 1.

Having the theta inversion, we may proceed as in [JoL 94] and [JoL 96].

We take the Gauss transform. Let

Θ(t, z, w) = et/4KXF
(t, z, w).
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Then the Gauss transform is formally defined by

Gauss(Θ)(s) = 2s

∞
∫

0

e−s2tΘ(t, z, w) dt.

It is explained in [JoL 94] and [JoL 96] how to regularize such an integral.

Then Gauss(Θ)(s) is a generalized zeta-type function which admits an ad-

ditive functional equation under s 7→ −s and has a generalized Bessel series

representation in a right half plane. For z 6= w, the additive fudge term in

the functional equation is expressible in terms of E∗
spec(z,w, s), which is the

Gauss transform of

cF

∞
∫

−∞

∑

χ

E∗
tot(z,w,

1

2
+ ir, χ)e−r2tdr.

If the number field F is totally complex, then the heat kernel is split, in

the terminology of [JoL 96] and hence the extra spectral integrals for h2 do

not occur. In this totally complex case, the Gauss transform is equal to a

Bessel series in the sense of [JoL 96], in a right half plane and hence the

results of [JoL 96] apply directly.

The theta inversion formula of Theorem 7.1 comes from the heat kernel

itself, before taking the trace of the heat kernel (integrating the diagonal

over the manifold). As a result, we avoid various difficulties which occur

because of the presence of elliptic elements in the group SL2(o) (see remarks

of Gangolli [Ga 68], pp. 153 and 190). If we take z 6= w, then all elements in

the group side of the theta inversion formula contribute to a Bessel series,

or more generally to an integral of a Bessel series expansion. If we take

z = w, then we must consider separately the case when z is or is not a

fixed point of some elliptic element. If z is not a fixed point, then one

separates out the identity element alone. If z is a fixed point, then one

must consider as well all elliptic elements which fix z. The totality of these

elements, together with the integral involving E∗
spec, form the EΦ or EAR

terms, in the notation of [JoL 94] and [JoL 96]. Further theta inversion

formulas which occur from the regularized trace of the heat kernel thus do

cause additional complications caused by elliptic elements.

A detailed exposition for the above results and further applications

belongs to subsequent publications.
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§8. Heat Eisenstein series

To conclude this paper, let us reformulate the spectral expansion of

Theorem 7.1 in terms of a new Eisenstein series which we call the heat

Eisenstein series. By doing so, we obtain a spectral expansion involving

only a finite number of terms representing the continuous spectrum. In fact,

the number of terms is equal to the number of points at infinity, namely

the class number. We are developing this approach currently in the setting

of other symmetric spaces, most notably the symmetric space associated to

SLn(R).

In the notation of §7, let χ be any Hecke character. The space of all

Hecke characters is parameterized by Zr1+r2−1. In other words, there is

a torus T � isomorphic to (R/Z)r1+r2−1 such that any Hecke character is

an eigenfunction of the Euclidean Laplacian on T � . Let KT � denote the

associated heat kernel on T � , and let p � denote the projection which maps

points in XF to points onto the torus T � . The map p � amounts to first

decomposing the space hF in terms of its Iwasawa coordinates and then

projecting any point z ∈ hF onto the associated quotient of a unipotent

subgroup. Consider the (formal) series

E � (t, z, w, s)(1)

= Na2sNa2s
∑

σ,σ′∈S∞\S( � )

KT � (t, p � (z), p � (w))Ny(σ〈z〉)sNy(σ′〈w〉)s,

which we take to be defined for Re(s) sufficiently large. By taking t → 0,

we obtain the formal equality

lim
t→0

E � (t, z, w, s) =
∑

χ

E∗(z, s,K, χ)E∗(w, s,K, χ).(2)

This suggests that one can use the heat Eisenstein series defined in (1)

to reformulate the spectral expansion obtained in Theorem 7.1. Indeed,

there is considerable work which needs to be completed in the study of the

heat Eisenstein series. At this point, we assert the following property of

(1). The series (1) admits a meromorphic continuation to all s ∈ C and

for any smooth, bounded function ψ on XF , we have, in the notation of

Theorem 7.1, the spectral expansion

ψ(z) =
∑

�
〈ψ,ϕk〉ϕk(z) + cF

∑

�
lim
t→0

∞
∫

−∞

〈ψ ∗E � 〉(t, z, 1
2

+ ir)dr,(3)
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where

〈ψ ∗ E � 〉(t, z, s) =

∫

XF

ψ(w)E � (t, z, w, s)dµ(w)

denotes the usual convolution (symmetric L2 inner product) onXF . Various

questions which naturally arise in the study of Eisenstein series, namely

results analogous to those obtained in this paper, can be asked about our

heat Eisenstein series and are currently under consideration as well as the

verification of (3).
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