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LOG DEL PEZZO SURFACES OF RANK ONE
CONTAINING THE AFFINE PLANE

HIDEO KOJIMA AND TAKESHI TAKAHASHI

Abstract. Let X be a log del Pezzo surface of rank one. In [8], the first author

determined the possible singularity type of X when X contains the affine plane

as a Zariski open subset. In this paper, we prove that, if X contains a non-cyclic

quotient singular point and its singularity type is one of the list of [8, Appendix

C], then it contains the affine plane as a Zariski open subset.

1. Introduction

This paper is a continuation of the paper [8] of the first author. We work over the

complex number field C.
Let X be a normal projective surface with only quotient singular points. Then

X is called a log del Pezzo surface if its anticanonical divisor −KX is ample. A log

del Pezzo surface is said to have rank one if its Picard number equals one. In this

paper, we call a log del Pezzo surface of rank one an LDP1-surface.

A pair (X,Γ) of a normal compact complex surface X and a subvariety Γ of X is

called a compactification of the complex affine plane C2 if X \Γ is biholomorphic to

C2. A compactification (X,Γ) of C2 is said to be minimal if Γ is irreducible.

In [8], the first author proved that if (X,Γ) is a minimal compactification of C2

and X has only quotient singular points, then X is an LDP1-surface and the com-

pactification (X,Γ) is algebraic. Moreover, he determined the possible singularity

types of X. See [8, Appendix C]. In this paper, we consider the following problem.

Problem 1. Let X be an LDP1-surface whose the singularity type is one of the

list of [8, Appendix C]. Is then X a compactification of C2, i.e., X has a subvariety

Γ such that X \ Γ is biholomorphic to C2?

The first author [8] proved that Problem 1 is true provided the index of X ≤ 3.

However, Problem 1 is false in general. See [8, Example 4.2]. In this paper, we prove
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that Problem 1 is true if X contains a non-cyclic quotient singular point. The main

result of this paper is the following theorem.

Theorem 1.1. Let X be an LDP1-surface and let π : (V,D) → X be the minimal

resolution of X, where D is the reduced exceptional divisor. Assume that X contains

at least one non-cyclic quotient singular point. Then X is a compactification of C2

if and only if the weighted dual graph of D is one of the following (1)−(28), where

we omit the weight of the vertex corresponding to a (−2)-curve.
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If a normal algebraic surface contains C2 as a Zariski open subset, then its smooth

locus is simply connected. So we obtain the following result as a consequence of

Theorem 1.1.

Corollary 1.1. Let X be an LDP1-surface. If the singularity type of X is one of

(1)–(28) in Theorem 1.1, then X \ SingX is simply connected.

It is well-known that the fundamental group of the smooth locus of every log del

Pezzo surface is finite. See [5] and [6]. A short proof of the result is given in [4].

Terminologies. A (−n)-curve is a smooth complete rational curve with self-

intersection number −n. A reduced effective divisor D is called an SNC divisor if

D has only simple normal crossings. We employ the following notations:
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KV : the canonical divisor on V .

ρ(V ): the Picard number of V .

κ(S): the logarithmic Kodaira dimension of S.

#D: the number of all irreducible components in SuppD.

Σn: the Hirzebruch surface of degree n.

2. Preliminary results on LDP1-surfaces

In this section, we recall some basic results on LDP1-surfaces given in [14] and [15].

The results given in this section are generalized for the normal del Pezzo surfaces of

rank one with only rational singularities. See [9] and [10].

Let X be an LDP1-surface and let π : V → X be the minimal resolution of

singularities on X.

Lemma 2.1. With the same notation and assumptions as above, the following as-

sertions hold true.

(1) X is a rational surface.

(2) X is projective.

(3) X is Q-factorial, i.e., for any Weil divisor L on X, there exists an integer

n > 0 such that nL is a Cartier divisor.

Proof. Since X has only quotient singular points, it has only rational singular points

by [3]. So the assertions follow from results of [1]. □

Let D =
∑

iDi be the reduced exceptional divisor with respect to π, where the

Di are irreducible components of D. It is well-known that D is an SNC divisor and

each connected component of D is a tree of smooth rational curves (cf. [2], [3]). We

often denote (V,D) and X interchangeably.

There exists uniquely an effective Q-divisor D# =
∑

i αiDi such that D#+KV ≡
π∗KV .

Lemma 2.2. The following assertions hold true.

(1) −(D# +KV ) is a nef and big Q-Cartier divisor.

(2) For any irreducible curve F on V , −F (D# +KV ) = 0 if and only if F is a

component of D.

(3) Any (−n)-curve with n ≥ 2 on V is a component of D.

Proof. See [15, Lemma 1.1]. □

Lemma 2.3. Let E be a (−1)-curve on V . Then the connected component of

Supp(E + D) containing E supports a big divisor. In particular, the intersection

matrix of E +D is neither negative definite nor negative semi-definite.
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Proof. The assertions follow from ρ(V ) = 1 + #D. □

Let p the smallest positive integer such that pD# is an integral divisor. By

Lemmas 2.1 (3) and 2.2 (2), we know that, if C is an irreducible curve not contained

in SuppD, then −C(D# +KV ) takes value in {n/p| n ∈ Z>0}. So we can find an

irreducible curve C such that −C(D#+KV ) attains the smallest positive value. We

denote the set of all such irreducible curves by MV(V,D).

Definition 2.1. (cf. [15, Definitions 1.2 and 3.2]) Let (V,D) and X be the same

as above. (V,D) is said to be of the first kind if there exits a curve C ∈ MV(V,D)

such that |C +D+KV | ≠ ∅. (V,D) is said to be of the second kind if (V,D) is not

of the first kind, i.e., |C +D +KV | = ∅ for any curve C ∈ MV(V,D).

Lemma 2.4. Assume that (V,D) is of the first kind. Then there exists uniquely a

decomposition of D as a sum of effective integral divisors D = D′ + D′′ such that

the following conditions are satisfied.

(i) CDi = D′′Di = KVDi = 0 for every component Di of D
′.

(ii) C +D′′ +KV ∼ 0.

Proof. See [14, Lemma 2.1]. □

Following lemmas are useful to consider the case where (V,D) is of the second

kind.

Lemma 2.5. If ρ(V ) ≥ 3 and (V,D) is of the second kind, every curve of MV(V,D)

is a (−1)-curve.

Proof. The assertion can be proved by using the proof of [14, Lemma 2.2]. See [9,

Lemma 3.6] for a direct proof of the assertion. □

Lemma 2.6. Let Φ : V → P1 be a P1-fibration (i.e., Φ is a fibration from V onto

P1 whose general fiber is isomorphic to P1). Then the following assertions hold true.

(1) The number of irreducible components of D not in any fiber of Φ equals

1 +
∑

F (#{(−1)-curves in F} − 1), where F moves over all singular fibers

of Φ.

(2) If a singular fiber F of Φ consists only of (−1)-curves and (−2)-curves, then

its weighted dual graph has one of the configurations (i)–(iii) in Figure 2.1.
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Figure 2.1.
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Proof. See [14, Lemma 1.5]. □

Lemma 2.7. Let Φ : V → P1 be a P1-fibration. Assume that there exists a singular

fiber F of Φ such that it is of type (i) or (ii) in Figure 2.1 and that C ∈ MV(V,D),

where C is the unique (−1)-curve in SuppF . Then every singular fiber G consists of

(−2)-curves and (−1)-curves, i.e., the weighted dual graph of G is one of (i), (ii) and

(iii) in Figure 2.1. Moreover, if E1 and E2 (possibly E1 = E2) are the (−1)-curves

⊂ SuppG, then Ei ∈ MV(V,D) for i = 1, 2.

Proof. See [14, Lemma 1.6]. □

Lemma 2.8. Let Φ : V → P1 be a P1-fibration and let C be a (−1)-curve in

MV(V,D). Assume that Φ has a singular fiber F such that F = 3C+∆, where ∆ is

an effective divisor with Supp∆ ⊂ SuppD. Then every singular fiber of Φ consists

of (−1)-curves, (−2)-curves and at most one (−3)-curve.

Proof. See [9, Lemma 3.8]. The assertion can be proved by using the same argument

as in the proof of [14, Lemma 1.6]. □

3. Proof of Theorem 1.1, part I

In Sections 3 and 4, we prove Theorem 1.1. Let X and π : (V,D) → X be the same

as in Theorem 1.1. Let D# be the Q-divisor defined in Section 2 (see before Lemma

2.2). If X contains at least one non-cyclic quotient singular points and is a minimal

compactification of C2, then [8, Theorem 1.1] implies that the weighted dual graph

of D is one of (1)–(28) in Theorem 1.1.

From now on, we assume that the weighted dual graph of D is one of (1)–(28) in

Theorem 1.1 and prove that X contains C2 as a Zariski open subset.

3.1. Case where #SingX = 1

In this subsection, we consider the case where #SingX = 1. Namely, we consider

the case where the weighted dual graph of D is one of (1)–(11) of Theorem 1.1. We
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consider the case (1) only; the other cases can be treated similarly. Let D =
∑4

i=0Di

be the decomposition of D into irreducible components such that the weighted dual

graph of D is given as in Figure 3.1, where n ≥ 2 and the weight of the vertex

corresponding to a (−2)-curve is omitted. In this case, ρ(V ) = 6.

Figure 3.1.
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By [7, Main Theorem and Appendix B], there exists a (−1)-curve C such that

CD = CDi = 1 for i = 1 or 4. We may assume that CD1 = 1. Then the divisor

F = D2 +D4 + 2(C +D1 +D0) defines a P1-fibration Φ := Φ|F | : V → P1 and D3

becomes a section of Φ. Since 6 = ρ(V ) = 2 + (#F − 1), Φ has no singular fibers

other than F . Hence V \ Supp(C +D) ∼= C2. Therefore, X contains C2 as a Zariski

open subset.

3.2. Case where #SingX = 2, part I

We consider the case where the weighted dual graph of D is one of (13), (16), (19),

(21) and (23) in Theorem 1.1. Although the arguments given in this subsection are

similar to those given in Section 4, we treat the above cases separately because some

of the arguments are different to those given in Section 4. Let D = D(1) +D(2) be

the decomposition of D into connected components such that D(2) is a linear chain

and consists only of (−2)-curves.

Let C be a curve of MV(V,D). Then, by Lemma 2.3, X \π∗(C) is a normal affine

surface with only quotient singular points. So the connected component of C +D

containing C supports a big divisor. Since D(1) is not a linear chain and contains a

(−m)-curve (m ≥ 3), (V,D) is of the second kind. Lemma 2.5 implies that C is a

(−1)-curve and |C +D +KV | = ∅. In particular, CD(i) ≤ 1 for i = 1, 2.

3.2.1. Case (13). Let D =
∑5

i=0Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 3.2, where

the weight of the vertex corresponding to a (−2)-curve is omitted. In this case,

ρ(V ) = 7.

Figure 3.2.
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If CD(1) = 0, then CD = CD(2) = 1. So the divisor C +D(2) is contracted to a

smooth point. This contradicts Lemma 2.3. Hence, CD(1) = 1.

We assume that CD(2) = 0. Then CD = CDi = 1 for some i ∈ {0, 1} by Lemma

2.3. We consider the following subcases separately.

Subcase 1: i = 1. The divisor F1 := D0 +D2 + 2(C +D1) defines a P1-fibration

Φ := Φ|F1| : V → P1 and D3 and D4 become sections of Φ. Let F2 be the fiber

of Φ containing D(2) = D5. Then SuppF2 consists only of D5 and some (−1)-

curves. We infer from Lemma 2.6 (2) that F2 = E2,1 + D5 + E2,2, where E2,1 and

E2,2 are (−1)-curves and E2,1D5 = E2,2D5 = 1. Since D3 is a section of Φ, we

may assume that E2,1D3 = 1. Then E2,2D4 = 1 by Lemma 2.3. We know that

E2,1, E2,2 ∈ MV(V,D). Set G := D1 + D4 + 2(D0 + D3 + D5) + 4E2,1. Then G

defines a P1-fibraton Ψ := Φ|G| : V → P1 and D2 becomes a section of Ψ. Since

7 = ρ(V ) = 2 + (#G − 1), we see that V \ Supp(E1 + D) ∼= C2. Therefore, X

contains C2 as a Zariski open subset.

Subcase 2: i = 0. The divisor F1 := D2 + D3 + 2D1 + 3(C + D0) defines a P1-

fibration Φ := Φ|F1| : V → P1, D4 becomes a 3-section of Φ and D−D4 is contained

in fibers of Φ. Let F2 be the fiber of Φ containing D(2) = D5. By the argument as

in Subcase 1, we know that #F2 = 3. So

7 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 8.

This is a contradiction. Therefore, this subcase does not take place.

From now on, we assume that CD(2)(= CD5) = 1. If CD(1) = CD3 = 1,

then V \ Supp(C + D) ∼= C2 by the argument as in Subcase 1. Suppose that

CD(1) = CDi = 1 for some i ∈ {1, 2, 4}. Then the divisor Di + D5 + 2C defines

a P1-fibtation Φ|Di+D5+2C| : V → P1. Then D3, that is a (−3)-curve, is a fiber

component of Φ|Di+D5+2C|. This contradicts Lemma 2.7.

Suppose that CD(1) = CD0 = 1. Then the divisor F1 := D0 + D5 + 2C defines

a P1-fibration Φ := Φ|F1| : V → P1, D1, D3 and D4 become sections of Φ and

D− (D0 +D3 +D4) is contained in fibers of Φ. Let F2 be the fiber of Φ containing

D2. By using the same argument as in Subcase 1, we know that F2 = E2,1+D2+E2,2,

where E2,1 and E2,2 are (−1)-curves and E2,1D2 = E2,2D2 = 1. Since the intersection

matrix of E2,i+D is not negative semi-definite for i = 1, 2 andD3 andD4 are sections

of Φ, we may assume that E2,1D3 = E2,2D4 = 1. Since

7 = ρ(V ) > 2 + (#F1 − 1) + (#F2 − 1) = 6,

Φ has a singular fiber F3 = E3,1 + E3,2 consisting of two (−1)-curves E3,1 and E3.2.

Since

7 = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1),
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F1, F2 and F3 exhaust the singular fibers of Φ. By Lemma 2.3, we may assume that

E3,1D3 = E3,2D4 = 1. Let ν : V → Σ3 be a relatively minimal model of Φ : V → P1

onto the Hirzebruch surface Σ3 of degree 3 such that f∗(D3) = M3, the minimal

section of Σ3. By the construction of ν, we know that ν∗(D4)
2 = 1. However, this

is a contradiction because ν∗(D4) is a section of the ruling Φ ◦ ν−1 : Σ3 → P1.

Therefore, X contains C2 as a Zariski open subset.

3.2.2. Case (16). Let D =
∑6

i=0Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 3.3, where

the weight of the vertex corresponding to a (−2)-curve is omitted. In this case,

ρ(V ) = 8.

Figure 3.3.
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Let αi (i = 0, 1, . . . , 6) be the coefficient of Di in D#. Then

α0 =
6

7
, α1 =

4

7
, α2 =

2

7
, α3 =

5

7
, α4 =

3

7
, α5 = α6 = 0.

If CD(1) = 0, then CD = CD(2) = 1. So the divisor C +D(2) is contracted to a

smooth point. This contradicts Lemma 2.3. Hence, CD(1) = 1.

We assume that CD(2) = 0. Then CD = CDi = 1 for some i ∈ {0, 1} by Lemma

2.3. We consider the following subcases separately.

Subcase 1: i = 1. The divisor F1 := D0 +D2 + 2(C +D1) defines a P1-fibration

Φ := Φ|F1| : V → P1 and D3 and D4 become sections of Φ. Let F2 be the fiber

of Φ containing D(2) = D5 + D6. By Lemmas 2.7 and 2.6 (2), we know that F2 =

E2,1+D5+D6+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D5 = E2,2D6 = 1.

Since

8 = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1),

F1 and F2 exhaust the singular fibers of Φ. By Lemma 2.3, we know that E2,j(D3+

D4) > 0 for j = 1, 2. Since D3 and D4 are sections of Φ, we may assume that

E2,1D3 = E2,2D4 = 1.

Let ν : V → Σ4 be a relatively minimal model of Φ : V → P1 such that f∗(D3) =

M4, the minimal section of Σ4. By the construction of ν, we know that ν∗(D4)
2 = 1.

However, this is a contradiction because ν∗(D4) is a section of the ruling Φ ◦ ν−1 :

Σ4 → P1. Therefore, this subcase does not take place.

Subcase 2: i = 0. The divisor F1 := D1 +D4 + 2(C +D0) defines a P1-fibration

Φ := Φ|F1| : V → P1, D3 becomes a 2-section of Φ, D2 becomes a section of Φ
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and D − (D2 +D3) is contained in fibers of Φ. Let F2 be the fiber of Φ containing

D(2) = D5 + D6. By the same argument as in Subcase 1, we know that F2 =

E2,1+D5+D6+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D5 = E2,2D6 = 1.

Since

8 = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1),

F1 and F2 exhaust the singular fibers of Φ.

Since D2 is a section of Φ, we may assume that E2,1D2 = 1. Since E2,1D
# < 1,

E2,1D3 = 0. So E2,2D3 > 0. Since D3 is a 2-section of Φ and the coefficient of E2,2

in F2 equals one, we know that E2,2D3 = 2. Then E2,2D
# = 2α3 = 10/7 > 1, which

is a contradiction. Therefore, this subcase does not take place.

Therefore, we know that CD(2) = 1. We may assume that CD5 = 1. Let

i ∈ {0, 1, 2, 3, 4} be the integer such that CDi = 1, here we note that CD(1) = 1.

If i = 3, then the divisor F := D1 +D4 + 2(D0 +D3 +D6) + 4D5 + 6C defines

a P1-fibraton Φ|F | : V → P1 and D2 becomes a section of Φ|F |. It is then clear that

V \ Supp(C +D) ∼= C2.

Suppose that i ∈ {1, 2, 4}. Then the divisor Di +D5 + 2C defines a P1-fibration

Φ|Di+D5+2C| : V → P1 and D3, that is a (−4)-curve, becomes a fiber component of

Φ|Di+D5+2C|. This contradicts Lemma 2.7. Suppose that i = 0. Then the divisor

F1 := D0 + D5 + 2C defines a P1-fibration Φ := Φ|F1| : V → P1, D1, D3, D4 and

D6 become sections of Φ and D − (D1 +D3 +D4 +D6) is contained in fibers of Φ.

Let F2 be the fiber of Φ containing D2. By Lemmas 2.7 and 2.6 (2), we know that

F2 = E2,1+D2+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D2 = E2,2D2 = 1.

Since D3 is a section of Φ, we may assume that E2,1D3 = 1. Then

E2,1D
# ≥ E2,1(α2D2 + α3D3) = 1,

which is a contradiction.

Therefore, X contains C2 as a Zariski open subset.

3.2.3. Case (19). Let D =
∑5

i=0Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 3.4, where

the weight of the vertex corresponding to a (−2)-curve is omitted. In this case,

ρ(V ) = 7.

Figure 3.4
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Let αi (i = 0, 1, . . . , 5) be the coefficient of Di in D#. Then

α0 =
16
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17
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If CD(1) = 0, then CD = CD(2) = 1. So the divisor C +D(2) is contracted to a

smooth point. This contradicts Lemma 2.3. Hence, CD(1) = 1.

We assume that CD(2) = 0. Then CD = CDi = 1 for some i ∈ {0, 1} by Lemma

2.3. We consider the following subcases separately.

Subcase 1: i = 0. The divisor F1 := D1 +D4 + 2(C +D0) defines a P1-fibration

Φ|F1| : V → P1, D3 becomes a 2-section of Φ, D2 becomes a section of Φ and

D − (D2 + D3) is contained in fibers of Φ. Let F2 be the fiber of Φ containing

D(2) = D5. By Lemmas 2.7 and 2.6 (2), we know that F2 = E2,1 +D5 +E2,2, where

E2,1 and E2,2 are (−1)-curves and E2,1D5 = E2,2D5 = 1. Since D2 is a section of Φ,

we may assume that E2,1D2 = 1. Since E2,1D
# < 1, E2,1D3 = 0. So E2,2D3 > 0.

Since D3 is a 2-section of Φ and the coefficient of E2,2 in F2 equals one, we see that

E2,2D3 = 2. Then

E2,2D
# = 2α3 = 22/17 > 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 2: i = 1. The divisor F1 := D2 + D4 + 2D0 + 3(C + D1) defines a P1-

fibration Φ := Φ|F1| : V → P1, D3 becomes a 2-section of Φ and D−D3 is contained

in fibers of Φ. Let F2 be the fiber of Φ containing D(2) = D5. By the same argument

as in Subcase 1, we know that #F2 = 3. Then

7 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 8,

which is a contradiction. Therefore, this subcase does not take place.

Therefore, we know that CD(2) = CD5 = 1. Let i ∈ {0, 1, 2, 3, 4} be the integer

such that CDi = 1, here we note that CD(1) = 1. By Lemma 2.3, i ̸= 2.

If i = 3, then the divisor F := D1 + D4 + 2(D0 + D3 + D5) + 4C defines a

P1-fibraton Φ|F | : V → P1 and D2 becomes a section of Φ|F |. It is then clear that

V \ Supp(C +D) ∼= C2.

Suppose that i ∈ {0, 1, 4}. Then the divisor Di +D5 + 2C defines a P1-fibration

Φ|Di+D5+2C| : V → P1. If i ∈ {1, 4} (resp. i = 0), then D3 (resp. D2), that is a

(−3)-curve, becomes a fiber component of Φ|Di+D5+2C|. This contradicts Lemma

2.7.

Therefore, X contains C2 as a Zariski open subset.

3.2.4. Case (23). Let D =
∑6

i=0Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 3.5, where

the weight of the vertex corresponding to a (−2)-curve is omitted. In this case,

ρ(V ) = 8.
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Figure 3.5
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Let αi (i = 0, 1, . . . , 6) be the coefficient of Di in D#. Then

α0 =
42

43
, α1 =

28

43
, α2 =

14

43
, α3 =

34

43
, α4 =

17

43
, α5 =

21

43
, α6 = 0.

If CD(1) = 0, then CD = CD(2) = 1. So the divisor C + D(2) is contracted to

a smooth point. This contradicts Lemma 2.3. Hence CD(1) = 1. If CD(2) = 0,

then we easily see that the intersection matrix of C +D is negative definite, which

contradicts Lemma 2.3. Hence CD(2) = CD6 = 1. Let i ∈ {0, 1, 2, 3, 4, 5} be the

integer such that CDi = 1. We consider the following subcases separately

Subcase: i = 3. The divisor F := D1+D5+2(D0+D4)+4(D3+D6)+8C defines

a P1-fibration Φ|F | : V → P1 and D2 becomes a section of Φ|F |. It is then clear that

V \ Supp(C +D) ∼= C2.

Subcase: i ∈ {1, 2, 4, 5}. The divisor 2C+Di+D6 defines a P1-fibration Φ|2C+Di+D6| :

V → P1. Then D(1) has a (−3)-curve that is a fiber component of Φ. This contra-

dicts Lemma 2.7. Therefore, this subcase does not take place.

Subcase: i = 0. The divisor F1 := D1+D5+2(D0+D6)+4C defines a P1-fibration

Φ := Φ|F1| : V → P1, D3 becomes a 2-section of Φ, D2 becomes a section of Φ and

D − (D2 +D5) is contained in fibers of Φ. Let F2 be the fiber of Φ containing D4.

Since SuppF2 consists only of D4 and some (−1)-curves, F2 = E2,1+D4+E2,2, where

E2,1 and E2,2 are (−1)-curves and E2,1D4 = E2,2D4 = 1. Since D3 is a 2-section

of Φ, D2D3 = 0 and the coefficient of D4 in F2 equals one, we may assume that

E2,1D3 = 1. Then

E2,1D
# ≥ E2,1(α3D3 + α4D4) = α3 + α4 =

51

43
> 1,

a contradiction. Therefore, this subcase does not take place.

Therefore, X contains C2 as a Zariski open subset.

3.2.5. Case (21). Let D =
∑7

i=0Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 3.6, where

the weight of the vertex corresponding to a (−2)-curve is omitted. In this case,

ρ(V ) = 9.
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Figure 3.6
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Let αi (i = 0, 1, . . . , 7) be the coefficient of Di in D#. Then

α0 =
18

19
, α1 =

12

19
, α2 =

6

19
, α3 =

15

19
, α4 =

9

19
, α5 = α6 = α7 = 0.

We consider the following two cases separately.

Case 1: CD(2) = 0. Then CD(1) = CDi = 1 for some i ∈ {0, 1, 2, 3, 4}. By Lemma

2.3, i = 0 or 1. We consider the following subcases separately.

Subcase 1-1: i = 0. The divisor F1 := D1 +D4 +2(C +D0) defines a P1-fibration

Φ := Φ|F1| : V → P1, D3 becomes a 2-section of Φ, D2 becomes a section of Φ

and D − (D2 +D3) is contained in fibers of Φ. Let F2 be the fiber of Φ containing

D(2) = D5 + D6 + D7. By Lemmas 2.7 and 2.6 (2), SuppF2 consists either of a

(−1)-curve E2 and SuppD(2) or of two (−1)-curves E2,1 and E2,2 and SuppD(2). If

SuppF2 consists of a (−1)-curve E2 and SuppD(2), then E2 meets both of D2 and

D3. Then

E2D
# ≥ E2(α2D2 + α3D4) ≥

21

19
> 1,

which is a contradiction. Suppose SuppF2 consists of two (−1)-curves E2,1 and E2,2

and SuppD(2). Then F2 = E2,1 + D5 + D6 + D7 + E2,2. We may assume that

E2,2D2 = 1 since D2 is a section of Φ. Then E2,2D3 = 0 since α2 + α3 > 1. So

E2,1D3 = 2 since D3 is a 2-section of Φ and the coefficient of E2,1 in F2 equals one.

Then

E2,1D
# = 2α3 =

30

19
> 1,

a contradiction. Therefore, this subcase does not take place.

Subcase 1-2: i = 1. The divisor F1 := D0 +D2 +2(C +D1) defines a P1-fibration

Φ := Φ|F1| : V → P1, D3 and D4 become sections of Φ and D−(D3+D4) is contained

in fibers of Φ. Let F2 be the fiber of Φ containing D(2) = D5+D6+D7. By the same

argument as in Subcase 1-1, we know that SuppF2 consists only of SuppD(2) and

one or two (−1)-curves. The component E ′ of SuppF2 meeting D3 is a (−1)-curve.

Then

E ′D# ≥ α3E
′D3 ≥

15

19
>

12

19
= CD#.

This is a contradiction. Therefore, this subcase does not take place.

Therefore, Case 1 does not take place.
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Case 2: CD(2) = 1. If CD(1) = 0, then the intersection matrix of C+D(2) is either

negative definite or negative semi-definite. This contradicts Lemma 2.3. Hence

CD(1) = 1. Let i ∈ {0, 1, 2, 3, 4} be the integer such that CDi = 1.

We claim that CD6 = 0. Indeed, if CD6 = 1, then the divisor G := D5 + D7 +

2(C +D6) defines a P1-fibration Φ|G| : V → P1, Di becomes a 2-section of Φ|G| and

D − Di is contained in fibers of Φ|G|. We infer from Lemma 2.7 that i = 3. So

D0 +D1 +D2 +D4 is contained in a fiber, say G′, of Φ|G|. It is clear that #G′ ≥ 6.

Then

9 = ρ(V ) ≥ 2 + (#G− 1) + (#G′ − 1) ≥ 10,

a contradiction. Therefore, CD6 = 0. We may assume that CD5 = 1.

We consider the following subcases separately.

Subcase 2-1: i = 3. The divisor F := D1+D4+2(D0+D3+D7)+4D6+6D5+8C

defines a P1-fibration Φ := Φ|F | : V → P1 and D2 becomes a section of Φ. It is then

clear that V \ Supp(C +D) ∼= C2.

Subcase 2-2: i ∈ {1, 2, 4}. The divisor 2C + Di + D5 defines a P1-fibration

Φ|2C+Di+D5| : V → P1 and D3, that is a (−5)-curve, becomes a fiber component of

Φ|2C+Di+D5|. This contradicts Lemma 2.7. Therefore, this subcase does not take

place.

Subcase 2-3: i = 0. The divisor F1 := 2C + D0 + D5 defines a P1-fibration

Φ := Φ|F1| : V → P1, D1, D3, D4 and D6 become sections of Φ. Let F2 be the

fiber of Φ containing D2. By Lemma 2.7, SuppF2 consists only of (−1)-curves and

(−2)-curves. Since the component of SuppF2 meeting D3, that is a section of Φ,

must be a (−1)-curve, SuppF2 contains at least two (−1)-curves. By Lemma 2.6 (2),

F2 = E2,1+D2+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D2 = E2,2D2 = 1.

We may assume that E2,1D3 = 1. Then

E2,1D
# ≥ E2,1(α2D2 + α3D3) = α2 + α3 =

21

19
> 1.

This is a contradiction. Therefore, this subcase does not take place.

Therefore, X contains C2 as a Zariski open subset.

4. Proof of Theorem 1.1, part II

We continue the proof of Theorem 1.1. Let V , D, D# and MV(V,D) be the same

as in Section 3. In this section, we consider the remaining cases: the dual graph of

D is one of (12), (14), (15), (17), (18), (20), (22), (24), (25), (26), (27) and (28) in

Theorem 1.1. In these cases, we need more detailed arguments than those given in

Section 3. LetD = D(1)+D(2) be the decomposition ofD into connected components

such that D(2) is a linear chain and let D =
∑

i≥0 Di be the decomposition of D
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into irreducible components. We assume that D0 is the unique branch component

of D(1). Let αi (i = 0, 1, . . . ,#D − 1) be the coefficient of Di in D#. The values αi

are given in the following subsections.

We note that D(i) (i = 1, 2) contains at least one curve of self-intersection number

≤ −3. By Lemma 2.4, the pair (V,D) is of the second kind. By Lemma 2.5, every

curve C ∈ MV(V,D) is a (−1)-curve.

We prove some general properties for the pairs (V,D), which are used frequently

in the cases treated below.

Lemma 4.1. There exist no (−1)-curves meeting D0.

Proof. Suppose to the contrary that there exists a (−1)-curve E meeting D0. We

note that α0 > 1/2 (see Subsections 4.1∼4.12 below) and that ED# < 1. So

ED0 = 1.

Suppose that E(D −D0) ≥ 1. Let Dj be the component of D −D0 meeting E.

Then

ED# ≥ E(α0D0 + αjDj) ≥ α0 + αj > 1,

where the last inequality can be proved by calculating αi’s (see Subsections 4.1∼4.12

below). This is a contradiction. So E(D −D0) = 0.

The intersection matrix of E + D is negative definite because ED = ED0 = 1

and D2
0 ≤ −3 (see Subsections 4.1∼4.12 below). This contradicts Lemma 2.3. □

Let C ∈ MV(V,D) be a curve of MV(V,D). Then X \ π∗(C) is a normal affine

surface with only quotient singular points. So the connected component of C +D

supports a big divisor. Note that CD(i) ≤ 1 for i = 1, 2 because |C +D +KV | = ∅.

Lemma 4.2. CD(1) = 1.

Proof. Suppose to the contrary that CD(1) = 0. Since CD(2) = 1 and D(2) is a

linear chain, we infer from Lemma 2.3 that there exist a positive integer n and an

effective divisor ∆ such that Supp∆ ⊊ SuppD(2) and nC +∆ defines a P1-fibration

Φ := Φ|nC+∆| : V → P1. (See the proof of [14, Lemma 6.1].) It then follows from [13,

Corollary 2.2.11.1 (p. 82)] (or [12, Corollary I.2.4.3 (p. 16)]) that V \ Supp(C +D)

is affine ruled, namely, V \ Supp(C +D) contains a non-empty Zariski open subset

isomorphic to A1 × T , where T is a smooth curve. Hence S := X \ π∗(C) is affine

ruled. However, this contradicts [11, Theorem 1] because S then contains a non-

cyclic quotient singular point that is the image of D(1) by π. □

Let C be the same as above. We will prove that CD(2) = 1 by using case by case

analysis.

From now on, we consider the remaining cases separately.
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4.1. Case (15)

In this subsection, we treat the case where the weighted dual graph of D is (15)

in Theorem 1.1. Let D =
∑6+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.1, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 8 + t.

Figure 4.1.
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Let αi (i = 0, 1, . . . , 6 + t) be the coefficient of Di in D#. Then

α0 =
6(t+ 1)

6t+ 7
, α1 = α3 =

4(t+ 1)

6t+ 7
, α2 = α4 =

2(t+ 1)

6t+ 7
,

α5 =
3(t+ 1)

6t+ 7
, α6+i =

2(t+ 1− i)

3t+ 4
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.1.1. CD(2) = 1.

Proof. Suppose to the contrary that CD(2) = 0. Then CD(1) = CDi = 1 for some

i ∈ {1, 2, 3, 4, 5}. By Lemma 2.3, we know that i = 1 or 3 and t = 0. We may

assume that i = 1. Then the divisor F1 := D3 + D5 + 2(D0 + D2) + 4(C + D1)

defines a P1-fibration Φ := Φ|F1| : V → P1, D4 becomes a section of Φ and D −D4

is contained in fibers of Φ. Let F2 be the fiber of Φ containing D(2) = D6. Then

#F2 ≥ 5 because D2
6 = −4. Then we have

8 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) ≥ 10,

a contradiction. □

We take i ∈ {1, 2, 3, 4, 5} and j ∈ {6, 7, . . . , 6 + t} such that CDi = CDj = 1. By

the shape of the dual graph of D(1), we may assume that i ̸= 3, 4.

Claim 4.1.2. If j = 6, then i = 2 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 2. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D4), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D4 becomes a section of Φ. (We can wright down the divisor nC +∆

explicitly; we omit the description.) It is then clear that V \ Supp(C + D) ∼= C2.

(See the arguments in Section 3.)
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Suppose that i ̸= 2. Then i = 1 or 5. If i = 1, then

CD# = α1 + α6 >
4t+ 4

3t+ 4
≥ 1,

which is a contradiction. If i = 5, then t = 0 because CD# = α5+α6 < 1. However,

this is a contradiction because the intersection matrix of C + D is then negative

definite. □

Claim 4.1.3. The case j ≥ 7 does not take place.

Proof. Suppose to the contrary that j ≥ 7. Then t ≥ 1 and the both Di and

Dj are (−2)-curves. So the divisor F1 := Di + Dj + 2C defines a P1-fibration

Φ := Φ|F1| : V → P1. By Lemma 2.7, D0 and D6 are horizontal components of Φ.

Hence, j = 7 and i ∈ {1, 5}. We consider the following subcases separately.

Subcase 1: i = 5. Let F2 (resp. F3) be the fiber of Φ containing D1 + D2 (resp.

D3 + D4). Then F1, F2 and F3 exhaust the singular fibers of Φ. Indeed, if G is a

singular fiber of Φ other than F1, F2 and F3, then the component of G meeting D0

is a (−1)-curve. This contradicts Lemma 4.1. By Lemmas 2.7 and 2.6 (2), we know

that F2 = E2,1 +D1 +D2 + E2,2 and F3 = E3,1 +D3 +D4 + E3,2, where E2,1, E2,2,

E3,1 and E3,2 are (−1)-curves and E2,1D1 = E2,2D2 = E3,1D3 = E3,2D4 = 1. Since

8 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 10,

t = 2. So D8 becomes a section of Φ.

Since the divisor E2,1 + D supports a big divisor by Lemma 2.3, E2,1 meets at

least one of D6 and D8. Then we have

−E2,1(D
# +KV ) ≤ 1− (α1 + α8) = 1−

(
12

19
+

1

5

)
=

16

95

and

−C(D# +KV ) = 1− (α5 + α7) = 1−
(

9

19
+

2

5

)
=

17

95
.

This contradicts C ∈ MV(V,D). Therefore, this subcase does not take place.

Subcase 2: i = 1. Then D0, D2 and D6 become sections of Φ. Let F2 (resp. F3) be

the fiber of Φ containing D3 +D4 (resp. D5). By using the argument as in Subcase

1, we know that F1, F2 and F3 exhaust the singular fibers of Φ, #F2 = 4, #F3 = 3

and t = 1. The fiber F2 is expressed as F2 = E2,1 +D3 +D4 +E2,2, where E2,1 and

E2,2 are (−1)-curves and E2,1D3 = E2,2D4 = 1.

Since the divisor E2,1 + D supports a big divisor by Lemma 2.3, E2,1 meets at

least one of D2 and D6. If E2,1D6 = 1, then −E2,1(D
# + KV ) < −C(D# + KV ),

which contradicts C ∈ MV(V,D). If E2,1D6 = 0 and E2,1D2 = 1, then

−E2,1(D
# +KV ) = 1− (α2 + α3) =

1

13
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since t = 1. On the other hand,

−C(D# +KV ) = 1− (α1 + α7) =
9

91
> −E2,1(D

# +KV ),

which is a contradiction. Therefore, this subcase does not take place.

The proof of Claim 4.1.3 is thus completed. □

Therefore, X contains C2 as a Zariski open subset.

4.2. Case (18)

In this subsection, we treat the case where the weighted dual graph of D is (18)

in Theorem 1.1. Let D =
∑7+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.2, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 9 + t.

Figure 4.2.
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Let αi (i = 0, 1, . . . , 7 + t) be the coefficient of Di in D#. Then

α0 =
12(t+ 1)

12t+ 13
, α1 =

8(t+ 1)

12t+ 13
, α2 =

4(t+ 1)

12t+ 13
, α3 =

9(t+ 1)

12t+ 13
,

α4 = α6 =
6(t+ 1)

12t+ 13
, α5 =

3(t+ 1)

12t+ 13
, α7+i =

3(t+ 1− i)

4t+ 5
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.2.1. CD(2) = 1.

Proof. Suppose to the contrary that CD(2) = 0. Then CD(1) = CDi = 1 for some

i ∈ {1, 2, 3, 4, 5, 6}. By Lemma 2.3, we know that i ∈ {1, 3, 4}. We consider the

following subcases separately.

Subcase 1: i = 4. The divisor D3 + D5 + 2(C + D4) defines a P1-fibration

Φ|D3+D5+2(C+D4)| : V → P1. Then D7, that is a (−5)-curve, is a fiber component of

Φ|D3+D5+2(C+D4)|. This contradicts Lemma 2.7.

Subcase 2: i = 1. By Lemma 2.3, we know that t = 0. So the divisor F1 :=

D3 +D6 + 2(D0 +D2) + 4(C +D1) defines a P1-fibration Φ := Φ|F1| : V → P1. Let

F2 be the fiber of Φ containing D(2) = D7. Then #F2 ≥ 6 because D2
7 = −5. Then

we have

9 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 6 + #F2 ≥ 12,
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which is a contradiction.

Subcase 3: i = 3. By Lemma 2.3, we know that t ≤ 1. If t = 1 (resp. t = 0),

then the divisor F := D1 + D6 + 2(D0 + D5) + 4D4 + 6(C + D3) (resp. F =

D0 + D5 + 2D4 + 3(C + D1)) defines a P1-fibration Φ|F | : V → P1 and D(2) is

contained in a fiber of Φ|F |. By using the same argument as in Subcase 2, we derive

a contradiction.

The proof of Claim 4.2.1 is thus completed. □

We take i ∈ {1, 2, . . . , 6} and j ∈ {7, 8, . . . , 7 + t} such that CDi = CDj = 1.

Claim 4.2.2. If j = 7, then i = 5 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 5. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 5. Since

α4 + α7 = α6 + α7 >
2(t+ 1)

4t+ 5
+

3(t+ 1)

4t+ 5
≥ 1,

we have i = 2. Further, since CD# = α2 + α7 < 1, we have t = 0. Then the

intersection matrix of C +D is negative definite, which contradicts Lemma 2.3. □

Claim 4.2.3. The case j ≥ 8 does not take place.

Proof. Suppose to the contrary that j ≥ 8. Then t ≥ 1 and the both Di and

Dj are (−2)-curves. So the divisor F1 := Di + Dj + 2C defines a P1-fibration

Φ := Φ|F1| : V → P1. By Lemma 2.7, D0 and D7 are horizontal components of Φ.

Hence, j = 8 and i ∈ {1, 3, 6}. We consider the following subcases separately.

Subcase 1: i = 6. Let F2 (resp. F3) be the fiber of Φ containing D1 + D2 (resp.

D3 +D4 +D5). Then F1, F2 and F3 exhaust the singular fibers of Φ. Indeed, if G

is a singular fiber of Φ other than F1, F2 and F3, then the component of G meeting

D0 is a (−1)-curve. This contradicts Lemma 4.1. By Lemmas 2.7 and 2.6 (2), we

know that #F2 = 4 and #F3 = 4 or 5. So we have

9 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 10 or 11.

If #F3 = 4, then we infer from Lemma 2.6 (2) that F3 = D3+D5+2(E3+D4), where

E3 is a (−1)-curve and E3D4 = 1. Since D7 is a section of Φ and D7(D3+D4+D5) =

0, E3 meets D7. This is a contradiction. Hence #F3 = 5 and ρ(V ) = 11. In

particular, t = 2 and D9 becomes a section of Φ.
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Since #F3 = 5 and by Lemma 2.6 (2), we know that F3 = E3,1+D3+D4+D5+E3,2,

where E3,1 and E3,2 are (−1)-curves and E3,1D3 = E3,2D5 = 1. Then E3,1D
(1) =

E3,2D
(1) = 1. By Lemma 2.3, we know that E3,1 meets at least one of D7 and D9.

So we have

−E3,1(D
# +KV ) = 1− E3,1D

# ≤ 1− (α3 + α9) = 1−
(
27

37
+

3

13

)
=

19

481
.

On the other hand,

−C(D# +KV ) = 1− (α6 + α8) = 1−
(
12

37
+

6

13

)
=

103

481
> −E3,1(D

# +KV ).

This is a contradiction. Therefore, this subcase does not take place.

Subcase 2: i = 1. Then D0, D2 and D7 become sections of Φ. Let F2 (resp. F3)

be the fiber of Φ containing D3 +D4 +D5 (resp. D6). By using the argument as in

Subcase 1, we know that F1, F2 and F3 exhaust the singular fibers of Φ, #F2 = 4

or 5 and #F3 = 3. Moreover, we know that #F2 = 5 because D7 is a section of Φ

and the component of SuppF2 meeting D7 is a (−1)-curve. So

9 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 10

and hence t = 1. We have F2 = E2,1 +D3 +D4 +D5 +E2,2, where E2,1 and E2,2 are

(−1)-curves and E2,1D3 = E2,2D5 = 1. By Lemma 2.3, E2,1 meets at least one of

D2 and D7. However, this is a contradiction because α2 + α3 ≥ 1 and α3 + α7 > 1.

Therefore, this subcase does not take place.

Subcase 3: i = 3. Then D0, D4 and D7 become sections of Φ. Let F2 (resp.

F3) be the fiber of Φ containing D1 +D2 (resp. D6). By using the argument as in

Subcase 1, we know that F1, F2 and F3 exhaust the singular fibers of Φ, #F2 = 4

and #F3 = 3. So

9 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 9.

This contradicts t ≥ 1. Therefore, this subcase does not take place.

The proof of Claim 4.2.3 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.3. Case (28)

In this subsection, we treat the case where the weighted dual graph of D is (28)

in Theorem 1.1. Let D =
∑8+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.3, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 10 + t.
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Figure 4.3.
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Let αi (i = 0, 1, . . . , 8 + t) be the coefficient of Di in D#. Then

α0 =
30(t+ 1)

30t+ 31
, α1 =

20(t+ 1)

30t+ 31
, α2 =

10(t+ 1)

30t+ 31
, α3 =

24(t+ 1)

30t+ 31
,

α4 =
18(t+ 1)

30t+ 31
, α5 =

12(t+ 1)

30t+ 31
, α6 =

6(t+ 1)

30t+ 31
, α7 =

15(t+ 1)

30t+ 31
,

α8+i =
4(t+ 1− i)

5t+ 6
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.3.1. CD(2) = 1.

Proof. Suppose to the contrary that CD(2) = 0. Then CD(1) = CDi = 1 for some

i ∈ {1, 2, 3, 4, 5, 6}. By Lemma 2.3, we know that i ∈ {1, 3, 4, 5}. We consider the

following subcases separately.

Subcase 1: i = 4 or 5. The divisor Di−1 +Di+1 +2(C +Di) defines a P1-fibration

Φ|Di−1+Di+1+2(C+Di)| : V → P1. Then D8, that is a (−6)-curve, is a fiber component

of Φ|Di−1+Di+1+2(C+Di)|. This contradicts Lemma 2.7.

Subcase 2: i = 1. By Lemma 2.3, we know that t = 0. So the divisor F1 :=

D3 +D7 + 2(D0 +D2) + 4(C +D1) defines a P1-fibration Φ := Φ|F1| : V → P1. Let

F2 be the fiber of Φ containing D(2) = D8. Then #F2 ≥ 7 because D2
8 = −6. So we

have

10 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 6 + #F2 ≥ 13,

which is a contradiction.

Subcase 3: i = 3. By Lemma 2.3, we know that t ≤ 2. If t = 0 (resp. t = 1, t = 2),

then the divisor F1 := D1 + D5 + 2D4 + 3(C + D3) (resp. F1 = D0 + D6 + 2D5 +

3D4 + 4(C +D3), F1 = D1 +D7 + 2(D0 +D6) + 4D5 + 6D4 + 8(C +D3)) defines a

P1-fibration Φ := Φ|F1| : V → P1 and D(2) is contained in a fiber of Φ. By using the

same argument as in Subcase 2, we derive a contradiction.

The proof of Claim 4.3.1 is thus completed. □

We take i ∈ {1, 2, . . . , 7} and j ∈ {8, 9, . . . , 8 + t} such that CDi = CDj = 1.

Claim 4.3.2. If j = 8, then i = 6 and V \ Supp(C +D) ∼= C2.
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Proof. Assume that i = 6. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 6. Since

α5 + α8 >
2(t+ 1)

5t+ 6
+

4(t+ 1)

5t+ 6
≥ 1,

we have i = 2. Further, since CD# = α2 + α8 < 1, we have t = 0. Then the

intersection matrix of C +D is negative definite, which contradicts Lemma 2.3. □

Claim 4.3.3. The case j ≥ 9 does not take place.

Proof. Suppose to the contrary that j ≥ 9. Then t ≥ 1 and the both Di and

Dj are (−2)-curves. So the divisor F1 := Di + Dj + 2C defines a P1-fibration

Φ := Φ|F1| : V → P1. By Lemma 2.7, D0 and D8 are horizontal components of Φ.

Hence, j = 9 and i ∈ {1, 3, 7}. In particular, D0 and D8 are sections of Φ. We

consider the following subcases separately.

Subcase 1: i = 7. Let F2 (resp. F3) be the fiber of Φ containing D1 + D2 (resp.

D3 +D4 +D5 +D6). Then F1, F2 and F3 exhaust the singular fibers of Φ. Indeed,

if G is a singular fiber of Φ other than F1, F2 and F3, then the component of G

meeting D0 is a (−1)-curve. This contradicts Lemma 4.1. By Lemmas 2.7 and 2.6

(2), we know that #F2 = 4 and #F3 = 6. Since

10 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 12,

we have t = 2. In particular, D10 becomes a section of Φ.

Since #F3 = 6 and by Lemma 2.6 (2), we know that F3 = E3,1 +D3 +D4 +D5 +

D6 + E3,2, where E3,1 and E3,2 are (−1)-curves and E3,1D3 = E3,2D6 = 1. Then

E3,1D
(1) = E3,2D

(1) = 1. Since E3,1 ∈ MV(V,D) by Lemma 2.7, we know that E3,1

meets at least one of D8 and D10. So we have

E3,1D
# ≥ α3 + α10 =

72

91
+

1

4
> 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 2: i = 1. Then D2 becomes a section of Φ. Let F2 (resp. F3) be the

fiber of Φ containing D3 +D4 +D5 +D6 (resp. D7). By using the argument as in

Subcase 1, we know that F1, F2 and F3 exhaust the singular fibers of Φ, #F2 = 6

and #F3 = 3. Then

10 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 11
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and hence t = 1. We know that F2 = E2,1 +D3 +D4 +D5 +D6 + E2,2, where E2,1

and E2,2 are (−1)-curves and E2,1D3 = E2,2D6 = 1. Since α2+α3, α3+α8 > 1, E2,1

meets none of D2 and D8. Then E2,2 meets both of D2 and D8 and so

E2,2D
# ≥ α2 + α6 + α8 =

32

61
+

8

11
> 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 3: i = 3. Then D4 becomes a section of Φ. Let F2 (resp. F3) be the fiber

of Φ containing D1 + D2 (resp. D7). By using the argument as in Subcase 1, we

know that F1, F2 and F3 exhaust the singular fibers of Φ, #F2 = 4 and #F3 = 3.

Then

10 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 9,

which is a contradiction. Therefore, this subcase does not take place.

The proof of Claim 4.3.3 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.4. Case (27)

In this subsection, we treat the case where the weighted dual graph of D is (27)

in Theorem 1.1. Let D =
∑6+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.4, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 8 + t.

Figure 4.4.
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Let αi (i = 0, 1, . . . , 6 + t) be the coefficient of Di in D#. Then

α0 =
30t+ 36

30t+ 37
, α1 =

24t+ 29

30t+ 37
, α2 =

18t+ 22

30t+ 37
, α3 =

20t+ 24

30t+ 37
,

α4 =
10t+ 12

30t+ 37
, α5 =

15t+ 18

30t+ 37
, α6+i =

2(t+ 1− i)

3t+ 4
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.4.1. CD(2) = 1.
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Proof. Suppose to the contrary that CD(2) = 0. Then CD(1) = CDi = 1 for some

i ∈ {1, 2, 3, 4, 5}. By Lemma 2.3, we know that i = 3 and t = 0. So the divisor

F1 := D1+D5+2(D0+D4)+ 4(C +D3) defines a P1-fibration Φ := Φ|F1| : V → P1,

D2 becomes a section of Φ and D − D2 is contained in fibers of Φ. Let F2 be the

fiber of Φ containing D(2) = D6. Then #F2 ≥ 5 because D2
6 = −4. So we have

8 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 6 + #F2 ≥ 11,

which is a contradiction. □

We take i ∈ {1, 2, . . . , 5} and j ∈ {6, 7, . . . , 6 + t} such that CDi = CDj = 1.

Claim 4.4.2. If j = 6, then i = 4 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 4. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 6. Since α2 + α6 > 1, we have i = 5. Further, since CD# =

α5 + α6 < 1, we have t = 0. Then the intersection matrix of C + D is negative

definite, which contradicts Lemma 2.3. □

Claim 4.4.3. The case j ≥ 7 does not take place.

Proof. Suppose that j ≥ 7. Then Dj is a (−2)-curve and t ≥ 1. We consider the

following subcases separately.

Subcase 1: i ∈ {1, 3, 4, 5}. Then Di is a (−2)-curve and so the divisor Di+Dj+2C

defines a P1-fibration Φ := Φ|Di+Dj+2C| : V → P1. Since D0, D2 and D6 become

horizontal components of Φ by Lemma 2.7, we know that i = 1 and j = 7. Then

CD# = α1 + α7 >
24t+ 29

30t+ 40
+

2t

3t+ 4
> 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 2: i = 2 and t = 1. Then j = 7 and so the intersection matrix of C +D

is negative definite. This contradicts Lemma 2.3. Therefore, this subcase does not

take place.

Subcase 3: i = 2, t ≥ 3 and 8 ≤ j ≤ 5 + t. The divisor Dj−1 +Dj+1 + 2(C +Dj)

defines a P1-fibration Φ := Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0, that is a

(−t−3)-curve, is a fiber component of Φ. This contradicts Lemma 2.7 since t+3 ≥ 6.

Therefore, this subcase does not take place.

Subcase 4: i = 2, t ≥ 2 and j ∈ {7, 6 + t}. If j = 7 (resp. j = 6 + t), then

the divisor F1 := D2 + D8 + 2D7 + 3C (resp. F1 := D2 + D5+t + 2D6+t + 3C)
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defines a P1-fibration Φ := Φ|F1| : V → P1. Then D0, that is a (−t − 3)-curve, is a

fiber component of Φ. This contradicts Lemma 2.8 because D2
0 = −(t + 3) ≤ −5.

Therefore, this subcase does not take place.

The proof of Claim 4.4.3 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.5. Case (25)

In this subsection, we treat the case where the weighted dual graph of D is (25)

in Theorem 1.1. Let D =
∑6+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.5, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 8 + t.

Figure 4.5.
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Let αi (i = 0, 1, . . . , 6 + t) be the coefficient of Di in D#. Then

α0 =
30t+ 42

30t+ 43
, α1 =

20t+ 28

30t+ 43
, α2 =

10t+ 14

30t+ 43
, α3 =

15t+ 21

30t+ 43
,
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24t+ 34
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, α6+i =

t+ 1− i

2t+ 3
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.5.1. CD(2) = 1.

Proof. Suppose to the contrary that CD(2) = 0. Then CD(1) = 1. Since D2
0 =

−(t + 3) ≤ −3, we easily see that the intersection matrix of C + D(1) is negative

definite. This contradicts Lemma 2.3. □

We take i ∈ {1, 2, . . . , 5} and j ∈ {6, 7, . . . , 6 + t} such that CDi = CDj = 1.

Claim 4.5.2. If j = 6, then i = 3 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 3. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D5), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D5 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)
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Suppose that i ̸= 3. Since CD# = αi + α6 < 1, i ̸= 4. We consider the following

subcases separately.

Subcase 1: i = 1. Since CD# = α1 + α6 < 1, t = 0. So the divisor F1 :=

D2 + D6 + 2D1 + 3C defines a P1-fibration Φ := Φ|F1| : V → P1, D0 becomes a

2-section of Φ and D − D0 is contained in fibers of Φ. Let F2 be the fiber of Φ

containing D4 +D5. Since Supp(D4 +D5) ⊂ SuppF2, we see that #F2 ≥ 5. Then

we have

8 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) ≥ 8.

Hence, F1 and F2 exhaust the singular fibers of Φ and #F2 = 5. Since D3 is a fiber

component of Φ, it is a component of SuppF2. So there exists a (−1)-curve, say

E2,1, of SuppF2 such that E2,1D5 = E2,1(D3 +D4) = 1. In particular, E2,1D4 = 1.

Let E2,2 be another (−1)-curve of SuppF2, here we note that #F2 = 5 and SuppF2

consists of D3,D4, D5, E2,1 and E2,2. Then E2,2D = E2,2(D4 +D5) = 1 and so the

intersection matrix of E2,2 + D is negative definite. This contradicts Lemma 2.3.

Therefore, this subcase does not take place.

Subcase 2: i = 5. By Lemma 2.3, we know that t ≥ 1. So the divisor F1 :=

D4+D7+2D6+3D5+5C defines a P1-fibration Φ := Φ|F1| : V → P1 and D0 becomes

a section of Φ. Further, if t ≥ 2, then D8 is a section of Φ and D − (D0 + D8) is

contained in fibers of Φ. Let F2 (resp. F3) be the fiber of Φ containing D1 + D2

(resp. D3). Then F1, F2 and F3 exhaust the singular fibers of Φ. Indeed, if G is a

singular fiber of Φ other than F1, F2 and F3, then the component of G meeting D0

is a (−1)-curve. This contradicts Lemma 4.1. Since D − (D0 + D4 + D6) consists

only of (−1)-curves and (−2)-curves, we infer from Lemma 2.6 (2) that #F2 = 4

and #F3 = 3. Then

8 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 11

and so t = 3. Furthermore, F2 = E2,1 + D1 + D2 + D2,2, where E2,1 and E2,2 are

(−1)-curves and E2,1D1 = E2,2D2 = 1. Then either E2,1 or E2,2 does not meet D8,

a section of Φ. So E2,kD = E2,kD
(1) = 1 for k = 1 or 2. This contradicts Lemma

2.3 because the divisor E2,k +D has negative definite intersection matrix for k = 1

or 2. Therefore, this subcase does not take place.

Subcase 3: i = 2. The divisor F1 := D1 + D6 + 2D2 + 3C defines a P1-fibration

Φ := Φ|F1| : V → P1 and D0 becomes sections of Φ. Further, if t ≥ 1, then D7 is

a section of Φ and D − (D0 + D7) is contained in fibers of Φ. Let F2 (resp. F3)

be the fiber of Φ containing D3 (resp. D4 + D5). By using the same argument as

in Subcase 2, we know that F1, F2 and F3 exhaust the singular fibers of Φ. Since

SuppF2 consists only of (−1)-curves and (−2)-curves, we infer form Lemma 2.6 (2)

that #F2 = 3. Further, since SuppF3 contains D4 and D5, we know that #F3 ≥ 5.
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Then

8 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 6 + #F3 ≥ 11

and so t ≥ 3. We note that D8 + · · · + D6+t is contained in a fiber of Φ. Since

#(D8 + · · ·+D6+t) ≥ 2, D8 + · · ·+D6+t is contained in SuppF3. Since D3 is then a

unique (−2)-curve in SuppF2, we know that F2 = E2,1 +D3 + E2,2, where E2,1 and

E2,2 are (−1)-curves and E2,1D3 = E2,2D3 = 1. We may assume that E2,2D7 = 1

because D7 is a section of Φ. Then E2,1D = E2,1D3 = 1. This contradicts Lemma

2.3. Therefore, this subcase does not take place.

The proof of Claim 4.5.2 is thus completed. □

Claim 4.5.3. The case j ≥ 7 does not take place.

Proof. Suppose to the contrary that j ≥ 7. Then t ≥ 1 and Dj is a (−2)-curve. We

consider the following subcases separaely.

Subcase 1: i ∈ {1, 2, 3, 5}. Then Di is a (−2)-curve and so the divisor Di+Dj+2C

defines a P1-fibration Φ|Di+Dj+2C| : V → P1. Then D0 or D4 is a fiber component

of Φ|Di+Dj+2C|. This contradicts Lemma 2.7. Therefore, this subcase does not take

place.

Subcase 2: i = 4, t ≥ 3 and 8 ≤ j ≤ 5 + t. The divisor Dj−1 +Dj+1 + 2(C +Dj)

defines a P1-fibration Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0, that is a (−t − 3)-

curve, is a fiber component of Φ|Dj−1+Dj+1+2(C+Dj)|. This contradicts Lemma 2.7

since t+ 3 ≥ 3. Therefore, this subcase does not take place.

Subcase 3: i = 4, t = 1 and j = 7. The divisor F1 := D5 +D6 + 2D4 + 3D6 + 5C

defines a P1-fibration Φ := Φ|F1| : V → P1, D0 becomes a 2-section of Φ and D−D0

is contained in fibers of Φ. Let F2 (resp. F3) be the fiber of Φ containing D1 +D2

(resp. D3). Then SuppF2 and SuppF3 consist only of (−1)-curves and (−2)-curves.

We infer from Lemma 2.6 (2) that F2 ̸= F3, #F2 = 4 and #F3 = 3. Then

9 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 11,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 4: i = 4, t ≥ 2 and j = 7. The divisor F1 := D4 + D8 + 2D7 + 3C

defines a P1-fibration Φ := Φ|F1| : V → P1, D0 and D5 become sections of Φ and D6

becomes a 2-section of Φ. Further, if t ≥ 3, then D9 becomes a section of Φ and

D− (D0 +D5 +D6 +D9) is contained in fibers of Φ. Let F2 (resp. F3) be the fiber

of Φ containing D1 + D2 (resp. D3). By using the same argument as in Subcase

2 in the proof of Claim 4.5.2, we know that F1, F2 and F3 exhaust the singular

fibers of Φ. Furthermore, by the argument as in Subcase 3, we know that #F2 = 4
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and #F3 = 3. In particular, F2 = E2,1 + D1 + D2 + E2,2, where E2,1 and E2,2 are

(−1)-curves and E2,1D1 = E2,2D2 = 1. Since

8 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 10,

t = 2. Since D5 is a section of Φ and α1 + α5 > 1, E2,2D5 = 1 and E2,1D
(1) =

E2,1D1 = 1. By Lemma 2.3, we know that E2,1 meets D6. Since α2 + α5 + α6 =

864/791 > 1, E2,2D6 = 0. Since D6 is a 2-section of Φ and the coefficient of E2,1 in

F2 equals one, E2,1D6 = 2. So we have

E2,1D
# = α1 + 2α6 > 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 5: i = 4, t ≥ 2 and j = 6+ t. The divisor F1 := D4+D5+t+2D6+t+3C

defines a P1-fibration Φ := Φ|F1| : V → P1, D0, D5 and D4+t become sections of Φ

and D− (D0 +D5 +D4+t) is contained in fibers of Φ. Let F2 (resp. F3) be the fiber

of Φ containing D1 +D2 (resp. D3). By using the same argument as in Subcase 2

in the proof of Claim 4.5.2, we know that F1, F2 and F3 exhaust the singular fibers

of Φ. At least one of SuppF2 and SuppF3 contains no components of D(2).

(5-1) Assume that SuppF2 contains no components ofD(2). Then F2 consists only of

(−1)-curves and (−2)-curves. By Lemma 2.6 (2), we have F2 = E2,1+D1+D2+E2,2,

where E2,1 and E2,2 are (−1)-curves and E2,1D1 = E2,2D2 = 1. Since E2,kD
# < 1

for k = 1, 2, we know that E2,1D5 = 0 and E2,2D5 = 1 (cf. Subcase 4). Since

E2,1D
(1) = 1 and by Lemma 2.3, we know that E2,1D4+t = 1. Let E3,1 be the

component of SuppF3 meeting D5. Then E3,1 is a (−1)-curve and so SuppF3 has

another (−1)-curve, say E3,2. We infer from Lemma 2.6 (1) that E3,1 and E3,2

exhaust the (−1)-curves in SuppF3. Hence, if t ≥ 3 (resp. t = 2), then SuppF3

consists only of E3,1, E3,2, D3, D6, . . . , D4+t (resp. E3,1, E3,2 and D3). Suppose that

t = 2. Then F2 = E3,1 +D3 + E3,2 and E3,1D3 = E3,2D3 = 1. Let µ : V → Σ3 be a

relatively minimal model of Φ : V → P1 such that µ(D6) = M3, the minimal section

of Σ3. Then we know that µ(D0)
2 = D2

0+3 = −t < 0, here we note that E3,1D6 = 1.

This is a contradiction. Hence, t ≥ 3 and SuppF3 contains D6, . . . , D3+t.

Since E3,1 meets D5, the coefficient of E3,1 in F3 equals one. So E3,2 connects

D3 and D6 + · · · + D3+t, namely, E3,2D3 = E3,2(D6 + · · · + D3+t) = 1. Since the

intersection matrix of E3,2 +D3 +D6 + · · · +D3+t is negative definite, (E3,2D3 =)

E3,2D6 = 1. Since SuppF3 = E3,1 ∪ E3,2 ∪ D3 ∪ D6 ∪ · · · ∪ D3+t, we know that

E3,1D3+t = 1. Here, note that E3,1D5 = 1. Let ν : V → Σ2 be a relatively minimal

model of Φ : V → P1 such that ν(D5) = M2, the minimal section of Σ2. Then

ν∗(F1) = ν(D4), ν∗(F2) = ν(E2,2) and ν∗(F3) = ν(E3,1). So ν(D4+t)
2 = D2

4+t + 5,

ν(D4+t) is a section of the ruling Φ ◦ ν−1 on Σ2 and ν(D4+t)ν(D5) = 0. Then

ν(D4+t)
2 = D2

4+t + 5 = 2 and so D2
4+t = −3. This contradicts t ≥ 3.
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(5-2) Assume that SuppF2 contains some components of D(2). Then t ≥ 3 and

SuppF3 contains no components of D(2). Since SuppF3 consists only of (−1)-curves

and (−2)-curves, we infer from Lemma 2.6 (2) that F3 = E3,1 + D3 + E3,2, where

E3,1 and E3,2 are (−1)-curves and E3,1D3 = E3,2D3 = 1. By Lemma 2.6 (1) and

t ≥ 3, SuppF2 has just two (−1)-curves, say E2,1 and E2,2. We may assume that

E2,1 meets both of D1 + D2 and D6 + · · · + D3+t. Since E2,1D
# < 1 and the

intersection matrix of E2,1+D1+D2+D6+ · · ·+D3+t is negative definite, we know

that E2,1(D1 +D2) = E2,1D2 = 1 and E2,1(D6 + · · · +D3+t) = E2,1D6 = 1. Then,

(3E2,1 + 2D2 +D1 +D6)
2 = 0, which is a contradiction.

Thus, we know that this subcase does not take place.

The proof of Claim 4.5.3 is thus completed. □

Therefore, X contains C2 as a Zariski open subset.

4.6. Case (24)

In this subsection, we treat the case where the weighted dual graph of D is (24)

in Theorem 1.1. Let D =
∑7+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.6, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 9 + t.

Figure 4.6.
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Let αi (i = 0, 1, . . . , 7 + t) be the coefficient of Di in D#. Then

α0 =
30t+ 42

30t+ 43
, α1 =

20t+ 28

30t+ 43
, α2 =

10t+ 14

30t+ 43
, α3 =

24t+ 34

30t+ 43
,
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12t+ 17
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15t+ 21
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,

α7+i =
4(t+ 1− i)

5t+ 8
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.6.1. CD(2) = 1.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.5.1 □

We take i ∈ {1, 2, . . . , 5} and j ∈ {6, 7, . . . , 7 + t} such that CDi = CDj = 1.
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Claim 4.6.2. If j = 6, then i = 4 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 4. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 6. Since CD# = αi + α6 < 1, i = 2 or 5. We consider the

following subcases separately.

Subcase 1: i = 5. Since CD# = α5 + α6 < 1, we have t = 0. The divisor

F1 := D2 +D3 + 2D1 + 3(D0 +D6) + 6D5 + 9C defines a P1-fibration Φ := Φ|F1| :

V → P1, D4 becomes a section of Φ and D7 becomes a 3-section of Φ. Since

9 = ρ(V ) > 2+ (#F1 − 1), there exists a singular fiber F2 of Φ other than F1. Since

SuppF2 contains no components of D, F2 = E2,1 + E2,2, where E2,1 and E2,2 are

(−1)-curves and E2,1E2,2 = 1. Since F2D7 = (E2,1 + E2,2)D7 = 3, we may assume

that E2,1D7 ≥ 2. Then

E2,1D
# ≥ α7E2,1D7 =

1

2
E2,1D7 ≥ 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 2: i = 2. The divisor F1 := D1 + D6 + 2D2 + 3C defines a P1-fibration

Φ := Φ|F1| : V → P1, D0 and D7 become sections of Φ and D−(D0+D7) is contained

in fibers of Φ. Let F2 (resp. F3) be the fiber of Φ containing D3 + D4 (resp. D5).

Then F1, F2 and F3 exhaust the singular fibers of Φ. Indeed, if G is a singular fiber

of Φ other than F1, F2 and F3, then the component of G meeting D0 is a (−1)-curve.

This contradicts Lemma 4.1. Moreover, since SuppF3 consists only of (−1)-curves

and (−2)-curves, we infer from Lemma 2.6 (3) that #F3 = 3.

Suppose that SuppF3 contains no components of D(2). Then F3 = E3,1+D5+E3,2,

where E3,1 and E3,2 are (−1)-curves and E3,1D5 = E3,2D5 = 1. We may assume

that E3,2D7 = 1 since D7 is a section of Φ. Then E3,1D = E3,1D5 = 1 and so the

intersection matrix of E3,1 + D is negative definite. This contradicts Lemma 2.3.

Hence, SuppF3 contains at least one component of D(2). Since D(2) − (D6 +D7) is

contained in SuppF3, we know that F3 = D5 +D8 + 2E3, where E3 is a (−1)-curve

and E3D5 = E3D8 = 1. In particular, t = 1 and SuppF2 contains no components

of D(2). Since SuppF2 contains D3 and D4 and D3D4 = 1, we know that #F2 ≥ 5.

Then we have

10 = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 6 + #F2 ≥ 11,

which is a contradiction. Therefore, this subcase does not take place.

The proof of Claim 4.6.2 is thus completed. □
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Claim 4.6.3. If j = 7, then t = 0 and V \ Supp(C +D) ∼= C2.

Proof. If t = 0, then Claim 4.6.2 implies that i = 4 and V \ Supp(C +D) ∼= C2. So

we assume that t ≥ 1. Since CD# = αi + α7 < 1, we know that i = 2 or 5. As seen

from the argument as in Subcase 1 in the proof of Claim 4.6.2, we know that i = 2

because t ≥ 1. Further, t = 1 or 2 because α2 + α7 < 1.

The divisor F1 := D1+D7+2D2+3C defines a P1-fibration Φ := Φ|F1| : V → P1,

D0, D6 and D8 become sections of Φ and D− (D0 +D6 +D8) is contained in fibers

of Φ. Let F2 (resp. F3) be the fiber of Φ containing D3 + D4 (resp. D5). By the

argument as in Subcase 2 in the proof of Claim 4.6.2, we know that F1, F2 and F3

exhaust the singular fibers of Φ. Moreover, #F2 ≥ 5. Since SuppF3 consists only of

(−1)-curves and (−2)-curves, we infer from Lemma 2.6 (2) that #F3 = 3.

If SuppF3 contains no components of D(2), then F3 = E3,1 + D5 + E3,2, where

E3,1 and E3,2 are (−1)-curves and E3,1D5 = E3,2D5 = 1. We may assume that

E3,1D6 = 1 since D6 is a section of Φ. Then

E3,1D
# ≥ α5 + α6 > 1,

where the last inequality follows from t ≥ 1. This is a contradiction. Hence, SuppF3

contains at least one component of D(2). Since D(2) − (D6 + D7) is contained in

SuppF3, we know that t = 2 and F3 = D5 + D9 + 2E3, where E3 is a (−1)-curve

and E3D5 = E3D9 = 1, and that SuppF2 consists only of D3, D4 and three (−1)-

curves E2,1, E2,2 and E2,3. Here we note that SuppF2 contains just three (−1)-curve

because SuppF2 contains no components of D(2) and

11 = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = #F2 + 6.

Then at least one of E2,1, E2,2 and E2,3 does not meet D(2) = D6 +D7 +D8 +D9

because D6 and D8 are sections of Φ and D7 and D9 are fiber components of Φ. We

may assume that E2,1D
(2) = 0. Then E2,1D = E2,1(D3+D4) = 1, which contradicts

Lemma 2.3. This proves the claim. □

Claim 4.6.4. The case j ≥ 8 does not take place.

Proof. Suppose to the contrary that j ≥ 8. Then t ≥ 1 and Dj is a (−2)-curve. We

consider the following subcases separately.

Subcase 1: i ̸= 3. Then Di is a (−2)-curve and so the divisor Di+Dj +2C defines

a P1-fibration Φ|Di+Dj+2C| : V → P1. Then D6, that is a (−3)-curve, becomes a fiber

component of Φ|Di+Dj+2C|. This contradicts Lemma 2.7. Therefore, this subcase

does not take place.
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Subcase 2: i = 3, t ≥ 3 and 9 ≤ j ≤ 6 + t. The divisor Dj−1 +Dj+1 + 2(C +Dj)

defines a P1-fibration Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0, that is a (−t − 3)-

curve, becomes a fiber component of Φ|Dj−1+Dj+1+2(C+Dj)|. This contradicts Lemma

2.7. Therefore, this subcase does not take place.

Subcase 3: i = 3 and j = 7+t. Since α3+α8 > 1 by t ≥ 1, we know that t ≥ 2. So

the divisor F1 := D3+D6+t+2D7+t+3C defines a P1-fibration Φ := Φ|F1| : V → P1,

D0, D4 and D5+t become sections of Φ and D − (D0 +D4 +D5+t) is contained in

fibers of Φ. Let F2 (resp. F3) be the fiber of Φ containing D1 +D2 (resp. D5). By

the same argument as in Subcase 2 in the proof of Claim 4.6.2, we know that F1,

F2 and F3 exhaust the singular fibers of Φ. At least one of SuppF2 and SuppF3

contains no components of D(2).

Suppose that SuppF2 contains no components of D(2). Then SuppF3 consists

only of D5, D6, D7, . . . , D4+t and some (−1)-curves. So SuppF3 contains a (−1)-

curve E3 such that E3D5 = E3(D6 +D7) = 1, here we note that E3 does not meet

D(2) − (D6 +D7). We have

E3D
# ≥ α5E3D5 + α6E3(D6 +D7) > 1,

which is a contradiction.

Suppose next that SuppF3 contains no components of D(2). Then SuppF2 consists

only of D1, D2, D6, D7, . . . , D4+t and some (−1)-curves. So SuppF2 contains a (−1)-

curve E2 such that E2(D1 + D2) = E2(D6 + D7) = 1, here we note that E2 does

not meet D(2) − (D6 +D7). Since E2D
# < 1, we know that E2D2 = E2D6 = 1. So

F2 = D1+D6+2D2+3E2. This is a contradiction because D4 is a section of Φ and

D4(D1 +D2 +D6) = 0.

Therefore, this subcase does not take place.

Subcase 4: i = 3 and j = 8. This subcase does not take place because α3+α8 > 1

since t ≥ 1.

The proof of Claim 4.6.4 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.7. Case (14)

In this subsection, we treat the case where the weighted dual graph of D is (14)

in Theorem 1.1. Let D =
∑6+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.7, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 8 + t.
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Figure 4.7.
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Let αi (i = 0, 1, . . . , 6 + t) be the coefficient of Di in D#. Then
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Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.7.1. CD(2) = 1.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.5.1 □

We take i ∈ {1, 2, 3, 4} and j ∈ {5, 6, . . . , 6 + t} such that CDi = CDj = 1.

Claim 4.7.2. If j = 5, then i = 3 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 3. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 3. Then Di is a (−2)-curve and so the divisor Di + D5 + 2C

defines a P1-fibration Φ|Di+D5+2C| : V → P1. Then D3, that is a (−3)-curve, becomes

a fiber component of Φ|Di+D5+2C|. This contradicts Lemma 2.7. □

Claim 4.7.3. The case j = 6 does not take place.

Proof. Suppose to the contrary that j = 6. We consider the following subcases

separately.

Subcase 1: i = 3. Since CD# = α3 + α6 < 1, t = 0. Then the intersection matrix

of C +D is negative definite. This contradicts Lemma 2.3. Therefore, this subcase

does not take place.

Subcase 2: i = 1. Since CD# = α1 + α6 < 1, t = 0. The divisor F1 :=

D2 + D6 + 2D1 + 3C defines a P1-fibration Φ := Φ|F1| : V → P1, D5 becomes a

section of Φ, D0 becomes a 2-section of Φ and D − (D0 +D5) is contained in fibers

of Φ. Let F2 be the fiber of Φ containing D3. Then #F2 ≥ 4 since D2
3 = −3. Since

8 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) ≥ 8,
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#F2 = 4 and F1 and F2 exhaust the singular fibers of Φ. Then SuppF2 consists ofD3,

D4 and two (−1)-curves E2,1 and E2,2. We may assume that E2,1D3 = E2,1D4 = 1.

Then

E2,1D
# ≥ α3 + α4 > 1,

which is a contradiction. Therefore, this subcase does not take place.

Subcase 3: i = 4. Since CD# = α4+α6 < 1, t = 0 or 1. Suppose that t = 0. Then

the divisor F := D0+D5+2D6+3D4+5C defines a P1-fibration Ψ := Φ|F | : V → P1,

D1 and D3 become sections of Ψ and D − (D0 +D3) is contained in sections of Φ.

Let F ′ be the fiber of Ψ containing D2. Since SuppF ′ consists only of D2 and some

(−1)-curves, we infer from Lemma 2.6 (2) that F ′ = E +D2 + E ′, where E and E ′

are (−1)-curves and ED2 = E ′D2 = 1. Since D3 is a section of Ψ, we may assume

that E ′D3 = 1. Then ED = ED2 = 1 and so the intersection matrix of E + D is

negative definite. This contradicts Lemma 2.3.

Suppose that t = 1. Then ρ(V ) = 9 and the divisor F1 := D5+D7+2(D4+D6)+

4C defines a P1-fibration Φ := Φ|F1| : V → P1, D0 becomes a 2-section of Φ and

D − D0 is contained in fibers of Φ. Let F2 be the fiber of Φ containing D3. Since

D2
3 = −3, #F2 ≥ 4. Then

9 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 5 + #F2 ≥ 9

and so #F2 = 4 and F1 and F2 exhaust the singular fibers of Φ. In particular, SuppF2

consists only of D1, D2, D3 and a (−1)-curve E2. Since E2(D1 +D2) = E2D3 = 1

and E2D
# < 1, E2D2 = 1.

Let µ : V → W be the contraction of C, D4, D6, D7, E2, D2 and D1. Then W

is a Hirzebruch surface of degree n (n = 0 or 1) and µ(D0) is a 2-section of the

ruling Φ ◦ µ−1 on W . We know that µ(D0)
2 = −4 + 4 = 0 and µ(D0) is a smooth

rational curve. On the other hand, µ(D0) ∼ 2Mn + αℓ, where Mn is a minimal

section of W , ℓ is a fiber of the ruling Φ ◦ µ−1 on W and α ∈ Z. Then α = n since

0 = µ(D0)
2 = −4n+ 4α, and so

µ(D0)KW = (2Mn + nℓ)(−2Mn − (n+ 2)ℓ) = −4.

This is a contradiction. Therefore, this subcase does not take place.

Subcase 4: i = 2. The divisor F1 := D1 + D6 + 2D2 + 3C defines a P1-fibration

Φ := Φ|F1| : V → P1, D0 and D5 become sections of Φ. Further, if t ≥ 1 then D7

becomes a section of Φ and D − (D0 +D5 +D7) is contained in fibers of Φ. Let F2

(resp. F3) be the fiber of Φ containing D3 (resp. D4). Then F1, F2 and F3 exhaust

the singular fibers of Φ. Indeed, if G is a singular fiber of Φ other than F1, F2 and

F3, then the component of G meeting D0 is a (−1)-curve. This contradicts Lemma

4.1. Since SuppF2 contains a (−3)-curve, #F2 ≥ 4. Since SuppF3 consists only of
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(−1)-curves and (−2)-curves, we infer from Lemma 2.6 (2) that #F3 = 3. We have

8 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 6 + #F2.

Suppose that SuppF2 contains no components of D(2). Then SuppF2 consists

only of D3 and some (−1)-curves. So #F2 = 4 and F2 = D3 + E2,1 + E2,2 + E2,3,

where E2,1, E2,2 and E2,3 are (−1)-curves and E2,1D3 = E2,2D3 = E2,3D3 = 1. In

particular, t = 2. Since D0, D5 and D7 are sections of Φ, we may assume that

E2,1D5 = E2,1D7 = 0. Then E2,1D = E2,1D3 = 1 and so the intersection matrix

of E2,1 + D is negative definite. This contradicts Lemma 2.3. Therefore, SuppF2

contains some components of D(2). Then t ≥ 2 and SuppF3 contains no components

of of D(2). So F3 = E3,1 + D4 + E3,2, where E3,1 and E3,2 are (−1)-curves and

E3,1D4 = E3,2D4 = 1. SuppF2 consists only of D3, D8, . . . , D6+t and some (−1)-

curves. We infer from Lemma 2.6 (1) that

3 = 1 +
3∑

ℓ=1

(#{(−1)−curves in Fℓ} − 1)

= 2 + #{(−1)− curves in F2},

which implies that SuppF2 has a unique (−1)-curve, say E2. Then E2D3 = E2(D8+

· · · +D6+t) = 1. However, this is a contradiction because D5 is a section of Φ and

D5(E2 +D3 +D8 + · · ·+D6+t) = 0. Therefore, this subcase does not take place.

The proof of Claim 4.7.3 is thus completed. □

Claim 4.7.4. If j ≥ 7, then t = 1 and V \ Supp(C +D) ∼= C2.

Proof. Suppose that j ≥ 7. Then Dj is a (−2)-curve and t ≥ 1. We consider the

following subcases separately.

Subase 1: i ̸= 3. By using the same argument as in the second paragraph of the

proof of Claim 4.7.2, we know that this subcase does not take place.

Subcase 2: i = 3, t ≥ 3 and 8 ≤ j ≤ 5 + t. The divisor Dj−1 +Dj+1 + 2(C +Dj)

defines a P1-fibration Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0 is a fiber component

of Φ|Dj−1+Dj+1+2(C+Dj)|. This contradicts Lemma 2.7. Therefore, this subcase does

not take place.

Subcase 3: i = 3 and j = 6 + t. If t = 1, then j = 7 and Claim 4.7.2 implies

that V \Supp(C +D) ∼= C2. We assume that t ≥ 2 and derive a contradiction. The

divisor F1 := D3 + D5+t + 2D6+t + 3C defines a P1-fibration Φ := Φ|F1| : V → P1,

D0 and D4+t become sections and D − (D0 +D4+t) is contained in fibers of Φ. Let

F2 (resp. F3) be the fiber of Φ containing D1 + D2 (resp. D4). By using the same

argument as in the first paragraph of Subcase 4 in the proof of Claim 4.7.3, we know

that F1, F2 and F3 exhaust the singular fibers of Φ. At least one of SuppF2 and

SuppF3 contains no components of D(2).
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Suppose that SuppF2 contains no components of D(2). Then SuppF2 consists

only of D1, D2 and some (−1)-curves. We infer from Lemma 2.6 (2) that F2 =

E2,1+D1+D2+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D1 = E2,2D2 = 1.

Since D4+t is a section of Φ and D(2) − D4+t is contained in fibers of Φ, we know

that either E2,1 or E2,2 does not meet D(2). So E2,kD = E2,kD
(1) = 1 for k = 1 or

2 and hence the intersection matrix of E2,k +D is negative definite for k = 1 or 2.

This contradicts Lemma 2.3.

Suppose next that SuppF3 contains no components of D(2). By using the same

argument as in the previous paragraph, we know that F3 = E3,1 +D3 +E3,2, where

E3,1 and E3,2 are (−1)-curves and E3,1D3 = E3,2D3 = 1. Then the intersection

matrix of E3,k +D is negative definite for k = 1 or 2, which contradicts Lemma 2.3.

Therefore, this subcase does not take place.

Subcase 4: i = 3, t ≥ 2 and j = 7. The divisor F1 := D3 + D8 + 2D7 + 3C

defines a P1-fibration Φ := Φ|F1| : V → P1, D0 becomes a section of Φ and D6

becomes a 2-section of Φ. Moreover, if t ≥ 3, then D9 becomes a section of Φ and

D − (D0 + D6 + D9) is contained in fibers of Φ. Let F2 (resp. F3) be the fiber of

Φ containing D1 +D2 (resp. D4). As seen from the argument as in Subcase 3, we

know that F1, F2 and F3 exhaust the singular fibers of Φ. Since D− (D0+D3+D6)

consists only of (−2)-curves, SuppF2 and SuppF3 consist only of (−1)-curves and

(−2)-curves. We infer from Lemma 2.6 (2) that #F2 = 4 and #F3 = 3. Then

8 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) = 10,

and so t = 2. Furthermore, we know that F2 = E2,1 +D1 +D2 + E2,2, where E2,1

and E2,2 are (−1)-curves and E2,1D1 = E2,2D2 = 1, and that D5 ⊂ SuppF3. Since

D6 is a 2-section of Φ, D(2) − D6 is contained in fibers of Φ and the intersection

matrix of E2,k + D is not negative definite for k = 1, 2, we know that E2,kD6 = 1

for k = 1, 2. Then

E2,1D
# ≥ α1 + α6 > 1,

a contradiction. Therefore, this subcase does not take place.

The proof of Claim 4.7.4 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.8. Case (26)

In this subsection, we treat the case where the weighted dual graph of D is (26)

in Theorem 1.1. Let D =
∑7+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.8, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 9 + t.
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Figure 4.8.
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Let αi (i = 0, 1, . . . , 7 + t) be the coefficient of Di in D#. Then

α0 =
30t+ 36

30t+ 37
, α1 =

20t+ 24

30t+ 37
, α2 =

10t+ 12

30t+ 37
, α3 =

24t+ 29

30t+ 37
,

α4 =
18t+ 22

30t+ 37
, α5 =

15t+ 18

30t+ 37
, α6 =

2(t+ 1)

5t+ 7
,

α7+i =
4(t+ 1− i)

5t+ 7
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.8.1. CD(2) = 1.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.4.1 □

We take i ∈ {1, 2, . . . , 5} and j ∈ {6, 7, . . . , 7 + t} such that CDi = CDj = 1.

Claim 4.8.2. If j = 6, then i = 4 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 4. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 4. Since CD# = αi + α6 < 1, i ̸= 3 and so Di is a (−2)-curve.

The divisor Di + D6 + 2C defines a P1-fibration Φ|Di+D6+2C| : V → P1. Then D4,

that is a (−3)-curve, is a fiber component of Φ|Di+D6+2C|. This contradicts Lemma

2.7. This proves Claim 4.8.2. □

Claim 4.8.3. The case j = 7 does not take place.

Proof. Suppose to the contrary that j = 7. Since CD# = αi + α7 < 1, we know

that i = 2 and t = 0. Then the divisor F1 := D0 + D6 + 2D7 + 3D1 + 5D2 + 7C

defines a P1-fibration Φ := Φ|F1| : V → P1, D3 and D5 become sections of Φ and

D − (D3 +D5) is contained in fibers of Φ. Let F2 be the fiber of Φ containing D4.

Since SuppF2 consists only of D4 and some (−1)-curves, #F2 = 4. Then we have

9 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 10,

a contradiction. □
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Claim 4.8.4. If j ≥ 8, then t = 1 and V \ Supp(C +D) ∼= C2.

Proof. Suppose that j ≥ 8. Then Dj is a (−2)-curve and t ≥ 1. We consider the

following subcases separately.

Subase 1: i ∈ {1, 2, 5}. By using the same argument as in the second paragraph

of the proof of Claim 4.8.2, we know that this subcase does not take place.

Subcase 2: i = 3. The divisor D3 +Dj + 2C defines a P1-fibration Φ|D3+Dj+2C| :

V → P1. Since D7, that is a (−4)-curve, is not a fiber component of Φ|D3+Dj+2C| by

Lemma 2.7, we know that j = 8. Then CD# = α3 + α8 > 1 since t ≥ 1. This is a

contradiction. Therefore, this subcase does not tae place.

Subcase 3: i = 4, t ≥ 3 and 9 ≤ j ≤ 6 + t. The divisor Dj−1 +Dj+1 + 2(C +Dj)

defines a P1-fibration Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0 is a fiber component

of Φ|Dj−1+Dj+1+2(C+Dj)|. This contradicts Lemma 2.7. Therefore, this subcase does

not take place.

Subcase 4: i = 4 and j = 7+ t. If t = 1, then j = 8 and Claim 4.8.2 implies that

V \Supp(C+D) ∼= C2. Suppose that t ≥ 2. The divisor F := D4+D6+t+2D7+t+3C

defines a P1-fibration Φ := Φ|F | : V → P1, D3 and D5+t become sections of Φ and

D − (D3 + D5+t) is contained in fibers of Φ. Then D0 is a fiber component of Φ.

This contradicts Lemma 2.8 because D2
0 = −(t+ 3) ≤ −5.

Subcase 5: i = 4 and j = 8. As seen from the argument as in Subcase 4, we may

assume that t ≥ 2. Then the divisor F := D4+D9+2D8+3C defines a P1-fibration

Φ := Φ|F | : V → P1. Then D0, that is a (−t− 3)-curve, becomes a fiber component

of Φ. This contradicts Lemma 2.8.

The proof of Claim 4.8.4 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.9. Case (20)

In this subsection, we treat the case where the weighted dual graph of D is (20)

in Theorem 1.1. Let D =
∑6+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.9, where

D2
0 = −(t+3) and the weight of the vertex corresponding to a (−2)-curve is omitted.

In this case, ρ(V ) = 8 + t.

Figure 4.9.
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Let αi (i = 0, 1, . . . , 6 + t) be the coefficient of Di in D#. Then

α0 =
30t+ 46

30t+ 47
, α1 =

24t+ 37

30t+ 47
, α2 =

18t+ 28

30t+ 47
, α3 =

20t+ 31

30t+ 47
,

α4 =
15t+ 23

30t+ 47
, α5 =

t+ 1

3t+ 5
, α6+i =

2(t+ 1− i)

3t+ 5
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.9.1. CD(2) = 1.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.5.1 □

We take i ∈ {1, 2, 3, 4} and j ∈ {5, 6, . . . , 6 + t} such that CDi = CDj = 1.

Claim 4.9.2. If j = 5, then i = 3 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 3. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 3. We consider the following subcases separately.

Subcase 1: i = 1 or 4. The divisorDi+D5+2C defines a P1-fibration Φ|Di+D5+2C| :

V → P1. Then D3, that is a (−3)-curve, is a fiber component of Φ|Di+D5+2C|. This

contradicts Lemma 2.7. Therefore, this subcase does not take place.

Subcase 2: i = 2. The divisor F1 := D1 + D6 + 2D2 + 3D5 + 5C defines a P1-

fibration Φ := Φ|F1| : V → P1 and D0 becomes a section of Φ. Moreover, if t ≥ 1,

then D7 becomes a section of Φ and D − (D0 + D7) is contained in fibers of Φ.

Let F2 (resp. F3) be the fiber of Φ containing D3 (resp. D4). Then F1, F2 and F3

exhaust the singular fibers of Φ. Indeed, if G is a singular fiber of Φ other than F1,

F2 and F3, then the component of G meeting D0 is a (−1)-curve. This contradicts

Lemma 4.1. We know that SuppF3 consists only of (−1)-curves and (−2)-curves.

So we infer from Lemma 2.6 (2) that #F3 = 3.

Suppose that SuppF3 contains a component of D(2). Then SuppF2 contains no

components of D(2) and so F2 = E2,1 + E2,2 + E2,3 +D3, where E2,1, E2,2 and E2,3

are (−1)-curves and E2,1D3 = E2,2D3 = E2,3D3 = 1. Since D7 is a section of Φ and

D(2) −D7 is contained in fibers of Φ, at least two of E2,1, E2,2 and E2,3 do not meet

D(2). We may assume that E2,1D
(2) = 0. Then E2,1D = E2,1D3 = 1 and so the

intersection matrix of E2,1 +D is negative definite. This contradicts Lemma 2.3.

Hence, SuppF3 contains no components of D(2). Then F3 = E3,1 + D4 + E3,2,

where E3,1 and E3,2 are (−1)-curves and E3,1D4 = E3,2D4 = 1. Then, by using the
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same argument as in the previous paragraph, we derive a contradiction. Therefore,

this subcase does not take place.

The proof of Claim 4.9.2 is thus completed. □

Claim 4.9.3. The case j = 6 does not take place.

Proof. Suppose to the contrary that j = 6. Since CD# = αi + α6 < 1, i = 2 or 4.

If i = 2, then t = 0 since CD# = α2 + α6 < 1. The intersection matrix of C +D is

then negative definite, which contradicts Lemma 2.3.

Suppose that i = 4. Since CD# = α4 + α6 < 1, t ≤ 1. We consider the following

subcases separately.

Subcase 1: t = 0. The divisor F1 := D0 + D5 + 2D6 + 3D4 + 5C defines a P1-

fibration Φ := Φ|F1| : V → P1, D1 and D3 become sections of Φ and D − (D1 +D3)

is contained in fibers of Φ. Let F2 be the fiber of Φ containing D2. Then #F2 ≥ 4

because D2
2 = −3. We have

8 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 5 + #F2 ≥ 9,

a contradiction. Therefore, this subcase does not take place.

Subcase 2: t = 1. The divisor F1 := D5 + D7 + 2(D4 + D6) + 4C defines a P1-

fibration Φ := Φ|F1| : V → P1, D0 becomes a 2-sections and D −D0 is contained in

fibers of Φ. Let F2 be the fiber of Φ containing D3. Since D
2
3 = −3, #F2 ≥ 4. Since

9 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 2) = 5 + #F2 ≥ 9,

we know that #F2 = 4 and that F1 and F2 exhaust the singular fibers of Φ. In

particular, D1, D2 ⊂ SuppF2, which implies that SuppF2 consists only of D1, D2,

D3 and a (−1)-curve, say E2. Then E2D3 = E2(D1+D2) = 1. This is a contradiction

because E2D
# ≥ α2 + α3 > 1. Therefore, this subcase does not take place.

The proof of Claim 4.9.3 is thus completed. □

Claim 4.9.4. If j ≥ 7, then t = 1 and V \ Supp(C +D) ∼= C2.

Proof. Suppose that j ≥ 7. Then Dj is a (−2)-curve and t ≥ 1. We consider the

following subcases separately.

Subase 1: i = 1 or 4. Then Di is a (−2)-curve. By using the same argument as

in Subcase 1 in the proof of Claim 4.9.2, we know that this subcase does not take

place.

Subcase 2: t ≥ 3 and 8 ≤ j ≤ 5 + t. The divisor F1 := Dj−1 +Dj+1 + 2(C +Dj)

defines a P1-fibration Φ := Φ|F1| : V → P1. Then D0, that is a (−t − 3)-curve, is a

fiber component of Φ since CD0 = 0 by Lemma 4.1. This contradicts Lemma 2.7.

Therefore, this subcase does not take place.
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Subcase 3: i = 2. By the argument as in Subcase 2, we may assume that j = 7

or 6 + t. By Claim 4.9.2, we know that t ≥ 2. If j = 7 (resp. j = 6 + t), then the

divisor F := D2 + D8 + 2D7 + 3C (resp. F := D2 + D5+t + 2D6+t + 3C) defines

a P1-fibration Φ := Φ|F | : V → P1. Then D0, that is a (−t − 3)-curve, becomes a

fiber component of Φ. This contradicts Lemma 2.8 since t+ 3 ≥ 5. Therefore, this

subcase does not take place.

Subcase 4: i = 3 and j = 6 + t. If t = 1, then j = 7 and V \ Supp(C +D) ∼= C2

by Claim 4.9.2. So we may assume that t ≥ 2. Then the divisor F1 := D3 +D5+t +

2D6+t+3C defines a P1-fibration Φ := Φ|F1| : V → P1, D0 and D4+t become sections

of Φ and D− (D0 +D4+t) is contained in fibers of Φ. Let F2 (resp. F3) be the fiber

of Φ containing D1 +D2 (resp. D4). By using the same argument as in Subcase 2

in the proof of Claim 4.9.2, we know that F1, F2 and F3 exhaust the singular fibers

of Φ. Further, at least one of SuppF2 and SuppF3 contains no components of D(2).

Suppose that SuppF2 contains no components of D(2). Then SuppF2 consists only

of D1, D2 and some (−1)-curves and so F2 = E2,1 +D1 +D2 + E2,2 + E2,3, where

E2,1, E2,2 and E2,3 are (−1)-curves and E2,1D1 = E2,2D2 = E2,3D2 = 1. Since D4+t

is a section of Φ and D(2) − D4+t is contained in fibers of Φ, two of E2,1, E2,2 and

E2,3 do not meet D(2). So we may assume that E2,2 does not meet D(2). Then

E2,2D = E2,2D2 = 1 and so the intersection matrix of E2,2 +D is negative definite.

This contradicts Lemma 2.3.

Suppose that SuppF3 contains no components of D(2). Then SuppF3 consists

only of D4 and some (−1)-curves and so F3 = E3,1 +D4 +E3,2, where E3,1 and E3,2

are (−1)-curves and E3,1D4 = E3,2D4 = 1. By using the same argument as in the

preceding paragraph, we derive a contradiction.

Therefore, this subcase does not take place.

Subcase 5: i = 3 and j = 7. By the argument as in Subcase 3, we may assume

that t ≥ 2. Then the divisor F1 := D3 + D8 + 2D7 + 3C defines a P1-fibration

Φ := Φ|F1| : V → P1, D6 becomes a 2-section of Φ and D0 becomes a section of

Φ. Moreover, if t ≥ 3, then D9 becomes a section of Φ and D − (D0 + D9) is

contained in fibers of Φ. Let F2 (resp. F3) be the fiber of Φ containing D1 + D2

(resp. D4). By using the same argument as in Subcase 2 in the proof of Claim

4.9.2, we know that F1, F2 and F3 exhaust the singular fibers of Φ. Since SuppF3

consists only of (−1)-curves and (−2)-curves, we infer from Lemma 2.6 (2) that

#F3 = 3. If D5 ⊂ SuppF3, then F3 = D4 +D5 +2E3, where E3 is a (−1)-curve and

E3D4 = E3D5 = 1. Then 2 = F3D6 = 1 + 2E3D6, a contradiction.

SoD5 ⊂ SuppF2. By Lemma 2.8, SuppF2 consists only of the (−3)-curveD2, some

(−1)-curves and some (−2)-curves. It follows from [14, Lemma 1.6] that SuppF2
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has one of the configurations (i)∼(v) in [14, Picture (2) in Lemma 1.6]. However,

this is impossible.

Therefore, this subcase does not take place.

The proof of Claim 4.9.4 is thus completed. □

Theorefore, X contains C2 as a Zariski open subset.

4.10. Case (17)

In this subsection, we treat the case where the weighted dual graph of D is (17)

in Theorem 1.1. Let D =
∑7+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.10,

where D2
0 = −(t+ 3) and the weight of the vertex corresponding to a (−2)-curve is

omitted. In this case, ρ(V ) = 9 + t.

Figure 4.10.
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Let αi (i = 0, 1, . . . , 7 + t) be the coefficient of Di in D#. Then
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Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.10.1. CD(2) = 1.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.5.1. □

We take i ∈ {1, 2, 3, 4} and j ∈ {5, 6, . . . , 7 + t} such that CDi = CDj = 1.

Claim 4.10.2. If j = 5, then i = 3 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 3. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), nC+∆ defines a P1-fibration Φ|nC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

nC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)
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Suppose that i ̸= 3. Then Di is a (−2)-curve and so the divisor Di + D5 + 2C

defines a P1-fibration Φ|Di+D5+2C| : V → P1. Then D7, that is a (−3)-curve, is a

fiber component of Φ|Di+D5+2C|. This contradicts Lemma 2.7. □

Claim 4.10.3. The case j = 6 does not take place.

Proof. Suppose to the contrary that j = 6. Since CD# = αi + α6 < 1, i ≠ 3.

Then Di is a (−2)-curve and so the divisor Di + D6 + 2C defines a P1-fibration

Φ|Di+D6+2C| : V → P1. Then D3, that is a (−4)-curve, is a fiber component of

Φ|Di+D6+2C|. This contradicts Lemma 2.7. This proves Claim 4.10.3. □

Claim 4.10.4. The case j = 7 does not take place.

Proof. Suppose to the contrary that j = 7. Since CD# = αi + α7 < 1, i = 2 or 4.

We consider the following subcases separately.

Subcase 1: i = 4. Since CD# = α4 + α7 < 1, t = 0. The divisor F1 :=

D0 + D6 + 2D7 + 3D4 + 5C defines a P1-fibration Φ := Φ|F1| : V → P1, D1, D3

and D5 become sections of Φ and D − (D1 +D3 +D4) is contained in fibers of Φ.

Let F2 be the fiber of Φ containing D2. Since SuppF2 consists only of D2 and some

(−1)-curves, we infer from Lemma 2.6 (2) that F2 = E2,1+D2+E2,2, where E2,1 and

E2,2 are (−1)-curves and E2,1D2 = E2,2D2 = 1. Since D3 is a section of Φ, we may

assume that E2,1D3 = 1. Then E2,1D
# ≥ α2 + α3 > 1, a contradiction. Therefore,

this subcase does not take place.

Subcase 2: i = 2. The divisor F := D1 + D7 + 2D2 + 3C defines a P1-fibration

Φ|F | : V → P1. Then D3, that is a (−4)-curve, becomes a fiber component of Φ|F |.

This contradicts Lemma 2.8. Therefore, this subcase does not take place.

The proof of Claim 4.10.4 is thus completed. □

Claim 4.10.5. If j ≥ 8, then t = 2, j = 9 and V \ Supp(C +D) ∼= C2.

Proof. Suppose that j ≥ 8. Then Dj is a (−2)-curve and t ≥ 1. We consider the

following subcases separately.

Subase 1: i ̸= 3. By using the same argument as in the proof of Claim 4.10.3, we

know that this subcase does not take place.

Subcase 2: i = 3, t ≥ 3 and 9 ≤ j ≤ 6+ t. The divisor F := Dj−1+Dj+1+2(C+

Dj) defines a P1-fibration Φ := Φ|F | : V → P1. Then D0, that is a (−t− 3)-curve, is

a fiber component of Φ. This contradicts Lemma 2.7 because t+ 3 ≥ 6. Therefore,

this subcase does not take place.

Subcase 3: i = 3 and j = 7 + t. Since CD# = α3 + α7+t < 1, t ≥ 2. If

t = 2, then Claim 4.10.2 implies that V \ Supp(C +D) ∼= C2. Suppose that t ≥ 3.

Then the divisor F1 := D3 + D5+t + 2D6+t + 3D7+t + 4C defines a P1-fibration
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Φ := Φ|F1| : V → P1, D0 and D4+t become sections of Φ and D − (D0 + D4) is

contained in fibers of Φ. Let F2 (resp. F3) be the fiber of Φ containing D1 + D2

(resp. D4). Then F1, F2 and F3 exhaust the singular fibers of Φ. Indeed, if G is a

singular fiber of Φ other than F1, F2 and F3, then the component of G meeting D0

is a (−1)-curve. This contradicts Lemma 4.1. At least one of SuppF2 and SuppF3

contains no components of D(2).

Suppose that SuppF2 contains no components of D(2). Since SuppF2 then consists

only of D1, D2 and some (−1)-curves, we infer from Lemma 2.6 (2) that F2 =

E2,1+D1+D2+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D1 = E2,2D2 = 1.

Since D4+t is a section of Φ and D(2) −D4+t is contained in fibers of Φ, either E2,1

or E2,2 does not meet D(2). So either E2,1 +D(1) or E2,2 +D(1) has negative definite

intersection matrix. This contradicts Lemma 2.3.

Suppose that SuppF3 contains no components of SuppD(2). By using the same

argument as in the previous paragraph, we derive a contradiction. Indeed, F3 is

expressed as F3 = E3,1+D4+E3,2, where E3,1 and E3,2 are (−1)-curves and E3,1D4 =

E3,2D4 = 1. Then E3,1 + D or E3,2 + D has negative definite intersection matrix,

which contradicts Lemma 2.3.

Therefore, we see that t = 2 and V \ Supp(C +D) ∼= C2.

Subcase 4: i = 3 and j = 8. Since t ≥ 1, CD# = α3 + α8 > 1. This is a

contradiction. Therefore, this subcase does not take place.

The proof of Claim 4.10.5 is thus completed. □

Therefore, X contains C2 as a Zariski open subset.

4.11. Case (22)

In this subsection, we treat the case where the weighted dual graph of D is (22)

in Theorem 1.1. Let D =
∑8+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.11,

where D2
0 = −(t+ 3) and the weight of the vertex corresponding to a (−2)-curve is

omitted. In this case, ρ(V ) = 10 + t.

Figure 4.11.
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Let αi (i = 0, 1, . . . , 8 + t) be the coefficient of Di in D#. Then

α0 =
30t+ 48

30t+ 49
, α1 =

20t+ 32

30t+ 49
, α2 =

10t+ 16
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24t+ 39
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α4 =
15t+ 24

30t+ 49
, α5 =

t+ 1

5t+ 9
, α6 =

2(t+ 1)

5t+ 9
, α7 =

3(t+ 1)

5t+ 9
,

α8+i =
4(t+ 1− i)

5t+ 9
(i = 0, 1, . . . , t).

Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.11.1. CD(2) = 1.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.5.1. □

We take i ∈ {1, 2, 3, 4} and j ∈ {5, 6, . . . , 8 + t} such that CDi = CDj = 1.

Claim 4.11.2. If j = 5, then i = 3 and V \ Supp(C +D) ∼= C2.

Proof. The assertion can be proved by using the same argument as in the proof of

Claim 4.10.2. □

Claim 4.11.3. The case j = 6 does not take place.

Proof. The assertion can be proved by using the same argument as in Subcase 2 in

the proof of Claim 4.11.6 given below. □

Claim 4.11.4. The case j = 7 does not take place.

Proof. Suppose to the contrary that j = 7. Since CD# = αi + α7 < 1, i ̸= 3. The

divisor F := D5 +D8 + 2D6 + 3(C +D7) defines a P1-fibration Φ := Φ|F | : V → P1.

Since i ̸= 3, D3, that is a (−5)-curve, becomes a fiber component of Φ. This

contradicts Lemma 2.8. □

Claim 4.11.5. The case j = 8 does not take place.

Proof. Suppose to the contrary that i = 8. Since CD# = αi + α8 < 1, i = 2 or 4.

We consider the following subcases separately.

Subcase 1: i = 4. Since CD# = α4 + α8 < 1, t = 0. The divisor F1 :=

D0 +D7 + 2D8 + 3D4 + 5C defines a P1-fibration Φ := Φ|F1| : V → P1, D1, D3 and

D6 become sections of Φ and D − (D1 +D3 +D6) is contained in fibers of Φ. Let

F2 be the fiber of Φ containing D2. Since SuppF2 consists only of some (−1)-curves

and some (−2)-curves, we infer from Lemma 2.6 (2) that either F2 = D2+E2+D5,

where E2 is a (−1)-curve and E2D2 = E2D5 = 1, or F2 = E2,1 +D2 + E2,2, where

E2,1 and E2,2 are (−1)-curves and E2,1D2 = E2,2D2 = 1. If F2 = D2 + D5 + 2E2,

then 1 = D3F2 = 2D3E2, a contradiction. Suppose that F2 = E2,1 +D2 + E2,2. We

may assume that E2,1D3 = 1 since D3 is a section of Φ. Then

E2,1D
# ≥ α2 + α3 > 1,
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a contradiction. Therefore, this subcase does not take place.

Subcase 2: i = 2. The divisor F := D1 + D8 + 2D2 + 3C defines a P1-fibration

Φ := Φ|F | : V → P1. Then D3, that is a (−5)-curve, is a fiber component of Φ. This

contradicts Lemma 2.8. Therefore, this subcase does not take place.

The proof of Claim 4.11.5 is thus completed. □

Claim 4.11.6. If j ≥ 9, then t = 3, j = 11 and V \ Supp(C +D) ∼= C2.

Proof. The assertion can be proved by using the same argument as in Claim 4.10.5.

By the reader’s convenience, we reproduce the proof.

Suppose that j ≥ 9. ThenDj is a (−2)-curve and t ≥ 1. We consider the following

subcases separately.

Subase 1: i ̸= 3. Then Di is a (−2)-curve and so the divisor Di +Dj +2C defines

a P1-fibration Φ|Di+Dj+2C| : V → P1. Then D3, that is a (−5)-curve, is a fiber

component of Φ|Di+Dj+2C|. This contradicts Lemma 2.7. Therefore, this subcase

does not take place.

Subcase 2: i = 3, t ≥ 3 and 10 ≤ j ≤ 7+ t. The divisor Dj−1+Dj+1+2(C +Dj)

defines a P1-fibration Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0, that is a (−t − 3)-

curve, is a fiber component of Φ|Dj−1+Dj+1+2(C+Dj)|. This contradicts Lemma 2.7

because t+ 3 ≥ 6. Therefore, this subcase does not take place.

Subcase 3: i = 3 and j = 8+ t. Since CD# = α3+α8+t < 1, t ≥ 3. If t = 3, then

Claim 4.11.2 implies that V \ Supp(C +D) ∼= C2.

Suppose that t ≥ 4. Then the divisor F1 := D3+D5+t+2D6+t+3D7+t+4D8+t+5C

defines a P1-fibration Φ := Φ|F1| : V → P1, D0 and D4+t become sections of Φ and

D − (D0 + D4) is contained in fibers of Φ. Let F2 (resp. F3) be the fiber of Φ

containing D1+D2 (resp. D4). Then F1, F2 and F3 exhaust the singular fibers of Φ.

Indeed, if G is a singular fiber of Φ other than F1, F2 and F3, then the component of

G meeting D0 is a (−1)-curve. This contradicts Lemma 4.1. At least one of SuppF2

and SuppF3 contains no components of D(2).

Suppose that SuppF2 contains no components of D(2). Since SuppF2 then consists

only of D1, D2 and some (−1)-curves, we infer from Lemma 2.6 (2) that F2 =

E2,1+D1+D2+E2,2, where E2,1 and E2,2 are (−1)-curves and E2,1D1 = E2,2D2 = 1.

Since D4+t is a section of Φ and D(2) −D4+t is contained in fibers of Φ, either E2,1

or E2,2 does not meet D(2). So either E2,1 +D(1) or E2,2 +D(1) has negative definite

intersection matrix. This contradicts Lemma 2.3.

Suppose that SuppF3 contains no components of SuppD(2). By using the same

argument as in the previous paragraph, we derive a contradiction.

Subcase 4: i = 3 and j = 9. Since t ≥ 1, CD# = α3 + α9 > 1. This is a

contradiction. Therefore, this subcase does not take place.
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Therefore, we see that t = 3, j = 11 and V \ Supp(C +D) ∼= C2. □

Theorefore, X contains C2 as a Zariski open subset.

4.12. Case (12)

In this subsection, we treat the case where the weighted dual graph of D is (12)

in Theorem 1.1. Let D =
∑5+t

i=0 Di be the decomposition of D into irreducible

components such that the weighted dual graph of D is given as in Figure 4.12,

where D2
0 = −(t+ 3) and the weight of the vertex corresponding to a (−2)-curve is

omitted. In this case, ρ(V ) = 7 + t.

Figure 4.12.
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Let αi (i = 0, 1, . . . , 5 + t) be the coefficient of Di in D#. Then
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(2n− 1)t+ 3n− 3
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Let C ∈ MV(V,D). By Lemmas 4.1 and 4.2, CD0 = 0 and CD(1) = 1.

Claim 4.12.1. CD(2) = 1.

Proof. Suppose to the contrary that CD(2) = 0. Then CD(1) = CDi = 1 for some

i ∈ {1, 2, 3, 4}. By Lemma 2.3, we know that i = 1, n = 2 and t = 0. Then

(D3+D4+2(D0+D2)+4(C+D1))
2 = 0 and so the intersection matrix of C+D(1)

is negative semidefinite, which contradicts Lemma 2.3. This proves the claim. □

We take i ∈ {1, 2, 3, 4} and j ∈ {5, 6, . . . , 5 + t} such that CDi = CDj = 1. By

the dual graph of D(1), we may assume that i ≤ 3.

Claim 4.12.2. If j = 5, then i = 3 and V \ Supp(C +D) ∼= C2.

Proof. Assume that i = 3. Then there exists a positive integer n and an effective

divisor ∆ such that Supp∆ = Supp(D−D2), mC+∆ defines a P1-fibration Φ|mC+∆| :

V → P1 and D2 becomes a section of Φ|nC+∆|. (We can wright down the divisor

mC+∆ explicitly; we omit the description.) It is then clear that V \Supp(C+D) ∼=
C2. (See the arguments as in Section 3.)

Suppose that i ̸= 3. Then i = 1 or 2. We consider the following subcases

separately.
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Subcase 1: i = 1. Since CD# = α1 + α5 < 1, n = 2. Then the divisor F1 :=

D2 +D5 + 2D1 + 3C defines a P1-fibration Φ := Φ|F1| : V → P1 and D0 becomes a

2-section of Φ. Moreover, if t ≥ 1, then D6 becomes a section of Φ and D−(D0+D6)

is contained in fibers of Φ. Let F2 be the fiber of Φ containing D3. Since SuppF2

consists only of some (−1)-curves and some (−2)-curves, we infer from Lemma 2.6

(2) that #F2 = 3.

Suppose that D4 ⊂ SuppF2. Then F2 = D3+D4+2E2, where E2 is a (−1)-curve

and E2D3 = E2D4 = 1. If t ≥ 1, then 1 = D6F2 = 2D6E2, a contradiction. So

t = 0. Since

7 = ρ(V ) ≥ 2 + (#F1 − 1) + (#F2 − 1) = 7,

F1 and F2 exhaust the singular fibers of Φ. Let ν : V → W be the contraction

of E2, D4, C, D1 and D2. Then W is a Hirzebruch surface, ν(D0) is a smooth

rational curve with ν(D0)
2 = −3 + 1 + 2 = 0 and ν(D0) is a 2-section of the ruling

Φ ◦ ν−1 : W → P1. Let M (resp. ℓ) be a minimal section (resp. a fiber) of the ruling

Φ ◦ ν−1 : W → P1. Then ν(D0) ∼ 2M + αℓ for some integer α. Since ν(D0)
2 = 0,

α = −M2. Then ν(D0)(ν(D0) +KW ) = −4, which is a contradiction.

Suppose that D4 ̸⊂ SuppF2. Let F3 be the fiber of Φ containing D4. Then at least

one of SuppF2 and SuppF3 contains no components of D(2). So we may assume that

SuppF2 contains no components of D(2). Then F2 = E2,1 + D3 + E2,2, where E2,1

and E2,2 are (−1)-curves and E2,1D3 = E2,2D3 = 1. If t ≥ 1, then we may assume

that E2,2D6 = 1 since D6 is a section of Φ. Then E2,1D = E2,1D3 = 1 and so the

intersection matrix of E2,1 +D is negative definite. This contradicts Lemma 2.3.

Therefore, this subcase does not take place.

Subcase 2: i = 2. Since CD# = α2 + α5 < 1, n ≤ 3. If n = 3, then CD# =

α2 + α5 < 1 implies that t ≤ 1. So the intersection matrix of C + D is negative

definite, which contradicts Lemma 2.3.

Suppose that n = 2. Then the divisor F1 := D1 + D5 + 2D2 + 3C defines a P1-

fibration Φ := Φ|F1| : V → P1 and D0 becomes a section of Φ. Furthermore, if t ≥ 1,

then D6 becomes a section of Φ and D−(D0+D6) is contained in fibers of Φ. Let F2

(resp. F3) be the fiber of Φ containing D3 (resp. D4). Then F1, F2 and F3 exhaust

the singular fibers of Φ. Indeed, if G is a singular fiber of Φ other than F1, F2 and

F3, then the component of G meeting D0 is a (−1)-curve. This contradicts Lemma

4.1. Since D(2) − (D5 + D6) is contained in a fiber of Φ provided t ≥ 2, at least

one of SuppF2 and SuppF3 contains no components onf D(2). We may assume that

SuppF2 contains no components of D(2). Since SuppF2 consists only of D3 and some

(−1)-curves, we infer from Lemma 2.6 (2) that F2 = E2,1 + D3 + E2,2, where E2,1

and E2,2 are (−1)-curves and E2,1D3 = E2,2D3 = 1. By using the same argument
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as in the third paragraph of Subcase 1, we derive a contradiction. Therefore, this

subcase does not take place.

The proof of Claim 4.12.2 is thus completed. □

Claim 4.12.3. The case j ≥ 6 does not take place.

Proof. Suppose to the contrary that j ≥ 6. Then t ≥ 1 and Dj is a (−2)-curve. We

consider the following subcases separately.

Subcase 1: i = 2 and n = 2. The divisor D2 + Dj + 2C defines a P1-fibration

Φ|D2+Dj+2C| : V → P1. Then D0, that is a (−t − 3)-curve, is a fiber component of

Φ|D2+Dj+2C|. This contradicts Lemma 2.7. Therefore, this subcase does not take

place.

Subcase 2: t ≥ 3 and 7 ≤ j ≤ 4 + t. The divisor Dj−1 + Dj+1 + 2(C + Dj)

defines a P1-fibration Φ|Dj−1+Dj+1+2(C+Dj)| : V → P1. Then D0 is a fiber component

of Φ|Dj−1+Dj+1+2(C+Dj)| because CD0 = 0 by Lemma 4.1. This contradicts Lemma

2.7 because D2
0 = −(t+ 3) ≤ −3. Therefore, this subcase does not take place.

Subcase 3: t ≥ 2 and j = 5 + t. By Subcase 1, we may assume that i ̸= 2 or

n ≥ 3. If i = 1 or 3, then the divisor F := Di + D5+t + 2C defines a P1-fibration

Φ := Φ|F | : V → P1. Then D5, that is a (−3)-curve, is a fiber component of Φ. This

contradicts Lemma 2.7. Hence, i = 2 and n ≥ 3. Lemma 2.3 implies that n ≤ t+2.

(3-1) Suppose further that n = t + 2. Then the divisor F1 := D1 + D5 + 2D2 +

3D6+5D7+ · · ·+(2t+1)D5+t+(2t+3)C defines a P1-fibration Φ := Φ|F1| : V → P1,

D0 becomes a section of Φ and D − D0 is contained in fibers of Φ. Here we note

that #F1 = t+ 4. Let F2 (resp. F3) be the fiber of Φ containing D3 (resp. D4). By

the same argument as in the second paragraph of Subcase 2 in the proof of Claim

4.12.2, we know that F1, F2 and F3 exhaust the singular fibers of Φ. Since #F2,

#F3 ≥ 3, we have

7 + t = ρ(V ) = 2 + (#F1 − 1) + (#F2 − 1) + (#F3 − 1) ≥ 9 + t,

which is a contradiction.

(3-2) By the argument as in (3-1), we see that n ≤ t + 1. Then the divisor

G1 := D2 + D7+t−n + 2D8+t−n + · · · + (n − 1)D5+t + nC defines a P1-fibration

Ψ := Φ|G1| : V → P1, D1 and D6+t−n become sections of Ψ and D− (D1+D6+t−n) is

contained in fibers of Ψ. Let G2 be the fiber of Ψ containingD0+D3+D4. If SuppG2

contains no components of D(2), then the component E2,1 of SuppG2 meeting D6+t−n

is a (−1)-curve. Since D6+t−n is a section of Ψ, SuppG2 has a (−1)-curve E2,2 other

than E2,1. Then E2,2D = E2,2(D0 +D3 +D4) = 1 and so the intersection matrix of
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E2,2 +D is negative definite. This contradicts Lemma 2.3. Hence, SuppG2 contains

D5 + · · ·+D5+t−n.

Since SuppG2 then consists only of D0, D3, D4, D5, . . . , D5+t−n and some (−1)-

curves, SuppG2 has a (−1)-curve E2 such that E2(D0 + D3 + D4) = E2(D5 +

· · · + D5+t−n) = 1. Furthermore, since the intersection matrix of Dk + E2 + Dℓ is

negative definite, where Dk (k ∈ {0, 3, 4}) and Dℓ (ℓ ∈ {5, . . . , 5+ t−n}) are curves
meeting E2, and by Lemma 4.1, we may assume that E2D3 = E2D5 = 1. Then the

intersection matrix of E2 +D0 +D3 +D4 +D5 + · · ·+D5+t−n is negative definite.

So SuppG2 contains a (−1)-curve E ′
2 other than E2. Then we have E ′

2D = 1. If

E ′
2D

(1) = 1, then E ′
2D

(2) = 0 and so the intersection matrix of E ′
2 +D is negative

definite. This contradicts Lemma 2.3. If E ′
2D

(2) = 1, then the intersection matrix

of D3 + E2 + D5 + · · · + D5+t−n + E ′
2 is not negative definite, which contradicts

Supp(D3 + E2 +D5 + · · ·+D5+t−n + E ′
2) ⊊ SuppF2.

Therefore, this subcase does not take place.

Subcase 4: j = 6. If t ≥ 3, then the divisor F := D5 + D8 + 2D7 + 3(C + D6)

defines a P1-fibration Φ|F | : V → P1. Then D0, that is a (−t − 3)-curve, is a fiber

component of Φ|F |. This contradicts Lemma 2.8 since t+ 3 ≥ 6. Hence, t ≤ 2.

(4-1) We consider the case where i = 3. The divisor F1 := D3 +D6 + 2C defines

a P1-fibration Φ1 := Φ|F1| : V → P1 and D0 and D5 become sections of Φ. Further,

if t = 2, then D7 becomes a section of Φ1 and D − (D0 +D5 +D7) is contained in

fibers of Φ1. Let F2 (resp. F3) be the fiber of Φ1 containing D1 +D2 (resp. D4). By

the argument as in Subcase 2 in the proof of Claim 4.12.2, we know that F1, F2 and

F3 exhaust the singular fibers of Φ1. Since t ≤ 2, SuppF3 consists only of D4 and

some (−1)-curves. We infer from Lemmas 2.6 (2) that F3 = E3,1 +D4 +E3,2, where

E3,1 and E3,2 are (−1)-curves and E3,1D4 = E3,2D4 = 1. Since D5 is a section of Φ,

we may assume that E3,1D5 = 1. Then

−E3,1(D
# +KV ) ≤ 1− (α4 + α5) < 1− (α3 + α6) = −C(D# +KV ),

which contradicts C ∈ MV(V,D).

(4-2) We consider the case where i = 1. The divisor G1 := D1 +D6 + 2C defines

a P1-fibration Φ2 := Φ|G1| : V → P1 and D0, D2 and D5 become sections of Φ2.

Further, if t = 2, then D7 becomes section of Φ and D − (D0 + D2 + D5 + D7) is

contained in fibers of Φ2. Let G2 (resp. G3) be the fiber of Φ containing D3 (resp.

D4). By the argument as in Subcase 2 in the proof of Claim 4.12.2, we know that

G1, G2 and G3 exhaust the singular fibers of Φ2. Since SuppG2 and SuppG3 contain

no components of D(2), we infer from Lemma 2.6 (2) that G2 = E2,1 + D3 + E2,2

and G3 = E3,1 + D4 + E3,2, where E2,1, E2,2, E3,1 and E3,2 are (−1)-curves and
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E2,1D3 = E2,2D3 = E3,1D4 = E3,2D4 = 1. Then

7 + t = ρ(V ) = 2 + (#G1 − 1) + (#G2 − 1) + (#G3 − 1) = 8

and so t = 1. Since D2 is a section of Φ2, we may assume that E2,1D2 = E3,1D2 = 1.

Then E2,2D2 = E3,2D2 = 0.

Let ν : V → W be the contraction of C, D6, E2,1, E2,2, E3,1 and E3,2. Then

W = Σ4 and ν(D0) is the minimal section of Σ4. Then ν(D2) is the section of the

ruling on W and

ν(D2)
2 = −n+ 2 ≤ 0.

This is a contradiction.

(4-3) We consider the case where i = 2 and t = 1. By Lemma 2.3, we know that

n ≤ 3. If n = 2, then the divisor D2 +D6 + 2C defines a P1-fibration Φ|D2+D6+2C| :

V → P1. Then D0, that is a (−4)-curve, is a fiber component of Φ. This contradicts

Lemma 2.7.

If n = 3, then the divisor H1 := D1 +D5 +2D2 +3D6 +5C defines a P1-fibration

Φ3 := Φ|H1| : V → P1 and D0 becomes a section of Φ. Let H2 (resp. H3) be the

fiber of Φ3 containing D3 (resp. D4). By the argument as in Subcase 2 in the proof

of Claim 4.12.2, we know that H1, H2 and H3 exhaust the singular fibers of Φ3.

Furthermore, #H2, #H3 ≥ 3. Then we have

8 = ρ(V ) = 2 + (#H1 − 1) + (#H2 − 1) + (#H3 − 1) ≥ 10,

which is a contradiction.

(4-4) We consider the case where i = 2 and t = 2. The divisor C + D(2) can be

contracted to a smooth point. Let µ : V → V ′ be the contraction of C +D(2) to a

smooth point and set D′ = µ(D0+D1+D3+D4) = µ∗(D−D2). Then ρ(V ′) = 5 =

1+#D′. Since κ(V \ SuppD) = −∞ by [14, Remark 1.2 (2)], where κ(V \ SuppD)

denotes the logarithmic Kodaira dimension of V \SuppD (cf. Introduction), we have

κ(V \ Supp(D −D2)) = −∞. This implies that

κ(V ′ \ SuppD′) = κ(V \ Supp(C +D −D2)) = κ(V \ Supp(D −D2)) = −∞,

where the second equality follows from C(D−D2) = 1. We infer from [14, Remark

1.2 (2)] that (V ′, D′) is an LDP1-surface. On the other hand, the weighted dual

graph of D′ is given as in Figure 4.13. This weighted dual graph is not give in [7,

Appendix A]. Therefore, this case does not take place.

Figure 4.13.
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Therefore, we know that Subcase 4 does not take place.

The proof of Claim 4.12.3 is thus completed. □

Therefore, X contains C2 as a Zariski open subset.

The proof of Theorem 1.1 is thus completed.
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