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NOTES ON KERNELS OF RATIONAL HIGHER
DERIVATIONS IN INTEGRALLY CLOSED DOMAINS

HIDEO KOJIMA

Abstract. Let k be a field of characteristic p ≥ 0 and A = k[x0, x1, x2, . . .]

the polynomial ring in countably many variables over k. We construct a rational

higher k-derivation on A whose kernel is not the kernel of any higher k-derivation

on A. This example extends [5, Example 4].

1. Introduction

For an integral domain R with unit, we denote by R[n] the polynomial ring in n

variables over R and by Q(R) the field of fractions of R.

Derivations on integral domains and their kernels have been studied by many

mathematicians. In particular, we have many significant results on the kernels

of derivations in polynomial rings of characteristic zero. See, e.g., [11], [1], [2]

for excellent accounts. Recently, higher derivations on polynomial rings and their

kernels have been studied by several mathematicians. See, e.g., [9], [6], [7] and

their references. Some results on the kernels of derivations in polynomial rings of

characteristic zero have been generalized to those on the kernels of higher derivations

in polynomial rings of any characteristic.

Let R be an integral domain with unit and let A be an R-domain. Assume that

(R \ {0})−1A is integrally closed. In this note, we study the kernels of some rational

higher R-derivations in A. In Section 2, we recall some basic notions on higher

derivations and some elementary results on the kernels of higher derivations. Then

we generalize some results of [8, §2]. In Section 3, we construct a rational higher

k-derivation D on the polynomial ring A in countably many variables over a field

k such that its kernel AD is not the kernel of any higher k-derivation on A. This

example extends [5, Example 4].

2010 Mathematics Subject Classification. Primary 13N10; Secondary 13F20.

Key words and phrases. Higher derivation, rational higher derivation, regular field extension.

This work was supported by JSPS KAKENHI Grant Number JP17K05198.

— 69 —



2. Kernels of some rational higher derivations

First of all, we recall some notions on higher derivations. For more details, we refer

to [6] and [9].

Let R be an integral domain with unit and A an R-domain. Let F be an R-domain

that contains A as an R-subalgebra. A set D = {Dℓ}ℓ≥0 of R-homomorphisms from

A to F is called a higher R-derivation on A into F if the following conditions are

satisfied:

(1) D0 is the identity map of A.

(2) For any a, b ∈ A and for any integer ℓ ≥ 0,

Dℓ(ab) =
∑
i+j=ℓ

Di(a)Dj(b).

A higher R-derivation on A into F is called a higher R-derivation on A (resp. a

rational higher R-derivation on A) if F = A (resp. F = Q(A)).

For a higher R-derivation D = {Dℓ}ℓ≥0 on A into F , we define the kernel AD of

D by {a ∈ A | Dℓ(a) = 0 for any ℓ ≥ 1} = ∩ℓ≥1KerDℓ. D is said to be trivial if

AD = A.

Let D = {Dℓ}ℓ≥0 be a rational higher R-derivation on A and let φD : A →
Q(A)[[t]], where Q(A)[[t]] is the formal power series ring in one variable over Q(A),

be the mapping defined by φD(a) =
∑

ℓ≥0 Dℓ(a)t
ℓ for a ∈ A. Since D is a rational

higher R-derivation on A, φD is an R-algebra homomorphism. We call the mapping

φD the homomorphism associated to D.

For a rational higher R-derivation D = {Dℓ}ℓ≥0 on A, we have a unique higher

Q(R)-derivation D = {Dℓ}ℓ≥0 on Q(A) such that Dℓ|A = Dℓ for any ℓ ≥ 0. We call

D the extension of D to Q(A). For more details on the construction of D, we refer

to [6, Section 1]. It is clear that Q(AD) ⊂ Q(A)D.

We note that all the results of [9] remain true if we assume that D (with the

notation of [9]) is a rational higher R-derivation.

Lemma 2.1. Let R be an integral domain, A an R-domain and D a rational higher

R-derivation on A. Then the following assertions hold true:

(1) AD is integrally closed in A.

(2) Q(A)/Q(A)D is a regular filed extension.

(3) Q(A)D ∩ A = AD.

Proof. (1) See [9, Lemma 2.2].

(2) See [3, Theorem (2.3)].

(3) See [9, Lemma 2.3]. □
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Lemma 2.2. With the same notations and assumptions as in Lemma 2.1, assume

further that (R \ {0})−1A is integrally closed. Then Q(A)D = Q(AD) if and only if

Q(A)D/Q(AD) is an algebraic field extension.

Proof. The following argument is the same as in [4]. The “only if” part is clear.

We prove the “if” part. Let f be any polynomial in Q(A)D. Then f satisfies an

equation

a0f
n + a1f

n−1 + · · ·+ an−1f + an = 0

with a0, a1, . . . an ∈ AD and a0 ̸= 0. Then a0f is integral over AD. Since a0f ∈ Q(A)

and (R \ {0})−1A is integrally closed, a0f ∈ (R \ {0})−1A. Then ba0f ∈ A for some

b ∈ R \ {0} and ba0f is integral over AD. Hence, f = ba0f/ba0 ∈ Q(AD). □

The following lemma generalizes [6, Theorem 1.1].

Lemma 2.3. With the same notations and assumptions as in Lemma 2.1, assume

further that tr.degRA := tr.degQ(R)Q(A) < +∞ and (R\{0})−1A is integrally closed.

Let D be a rational higher R-derivation on A and let D be the extension of D to

Q(A). If tr.degRA
D ≥ −1 + tr.degRA, then Q(AD) = Q(A)D.

Proof. The following argument is almost the same as that in [4] and the proof

of [6, Theorem 1.1]. Set t = tr.degRA, which is a non-negative integer by the

assumption on A, and t′ = tr.degQ(R)Q(A)D. Since t − 1 ≤ tr.degRA
D ≤ t′ ≤ t,

we have t′ = t − 1, t. If t′ = t, then we infer from Lemma 2.1 (2) that D is

trivial since the field extension Q(A)/Q(A)D is algebraic. So D is trivial and hence

Q(AD) = Q(A) = Q(A)D. If t′ = t − 1, then the field extension Q(A)D/Q(AD) is

algebraic. Hence the assertion follows from Lemma 2.2. □

The following result generalizes [8, Theorem 2.2].

Proposition 2.1. Let R be an integral domain and let A be an R-domain. Assume

that Q(A) is a finitely generated field over Q(R) and (R\{0})−1A is integrally closed.

Let B be an R-subalgebra of A. We consider the following three conditions.

(1) B is integrally closed in A, Q(B) ∩ A = B and Q(A)/Q(B) is a separable

field extension.

(2) There exists a rational higher R-derivation D on A such that B = AD and

Q(A)D = Q(B), where D is the extension of D to Q(A).

(3) There exists a rational higher R-derivation D on A such that B = AD.

Then (1) ⇐⇒ (2). Moreover, if tr.degRB ≥ −1 + tr.degRA, then the above three

conditions (1) – (3) are equivalent to each other.

Proof. Set K = Q(R). We prove (1) ⇐⇒ (2), where the argument is almost the

same as that in the proof of [8, Theorem 2.1].
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(2) =⇒ (1) By Lemma 2.1 (1), B is integrally closed in A. By Lemma 2.1 (2) ,

Q(A)/Q(B) is a regular field extension. In particular, the field extensionQ(A)/Q(B)

is separable. We infer from Lemma 2.1 (3) that Q(B)∩A = Q(A)D ∩A = AD = B.

(1) =⇒ (2) Since (R \ {0})−1A is integrally closed, R ⊂ B and B is integrally

closed in A, we know that Q(B) is algebraically closed in Q(A). So Q(A)/Q(B) is a

regular field extension. Moreover, by the assumption on A, Q(A)/Q(B) is a finitely

generated field extension. It then follows from [12, Theorem 1] that there exists a

higherK-derivation D̃ = {D̃ℓ}ℓ≥0 onQ(A) such thatQ(A)D̃ = Q(B). SetDℓ = D̃ℓ|A
for each non-negative integer ℓ and set D = {D̃ℓ}ℓ≥0. Then D is a rational higher

R-derivation on A, B ⊂ AD and D = D̃. Since AD = Q(AD) ∩ A ⊂ Q(A)D̃ ∩ A =

Q(B) ∩ A = B, we have B = AD. Further, Q(AD) = Q(B) = Q(A)D̃ = Q(A)D.

Finally, we prove (2) ⇐⇒ (3) provided tr.degRB ≥ −1 + tr.degRA. By the

assumption on A, tr.degRA < +∞. The part ”(2) =⇒ (3)” is clear. Let D be the

one in (3). Since tr.degRA
D = tr.degRB ≥ −1 + tr.degRA, we infer from Lemma

2.3 that Q(AD) = Q(A)D, where D is the extension of D to Q(A). This proves the

part ”(3) =⇒ (2)”. □

Remark 2.1. Let R and A be the same as in Proposition 2.1. The author does not

know whether there exists a rational higher R-derivation D on A such that one of

the following conditions is satisfied:

(1) The field extension Q(A)/Q(AD) is not separable.

(2) AD is not the kernel of any higher R-derivation.

When the characteristic of R equals zero and A is a finitely generated R-domain,

we have the following result.

Proposition 2.2. Let R be an integral domain of characteristic zero and A a finitely

generated R-domain. Let B be an R-subalgebra of A. We consider the following three

conditions.

(1) B is integrally closed in A and Q(B) ∩ A = B.

(2) There exists an R-derivation d on A such that B = Ker d.

(3) There exists an R-derivation d on A such that B = Ker d and Ker d = Q(B),

where d is the extension of d to Q(A).

Then (1) ⇐⇒ (2). Moreover, if (R \ {0})−1A is normal, the above three conditions

(1)–(3) are equivalent to each other.

Proof. The part ”(3) =⇒ (2)” is clear. The part ”(1) ⇐⇒ (2)” can be proved

by using the same argument as in the proof of [8, Theorem 2.2]. (See also [10,

Theorem 5.4].) However, for the reader’s convenience, we reproduce the proof. We

set K = Q(R), BK = (R \ {0})−1B and AK = (R \ {0})−1A.
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(2) =⇒ (1) Suppose that f ∈ A \ B is integral over B = Ker d. Then f is

integral over BK and so there exist a positive integer m and c1, . . . , cm ∈ BK such

that

fm + c1f
m−1 + · · ·+ cm−1f + cm = 0.

We may assume that m is minimal. Let d be the extension of d to Q(A), which is

a K-derivation on Q(A). Since d|A = d, Ker d ∩ A = Ker d = B. We have

0 = d(0) = (mfm−1 + (m− 1)c1f
m−2 + · · ·+ cm−1)d(f).

Since mfm−1+(m−1)c1f
m−2+· · ·+cm−1 ̸= 0 because m is minimal and charK = 0,

d(f) = 0 and so f ∈ Ker d∩A = B. This is a contradiction. Therefore, B is integrally

closed in A. Since B ⊂ Ker d, Ker d is a subfield of Q(A) and Ker d ∩ A = B, we

have Q(B) ∩ A = B.

(1) =⇒ (2) We may write as A = R[a1, . . . , an]. Then AK = K[a1, . . . , an] is a

finitely generatedK-domain. Since B is integrally closed in A, so is BK in AK . Since

Q(BK) = Q(B) and Q(B)∩A = B, we have Q(BK)∩AK = BK . We infer from [10,

Theorem 5.4] that there exists a K-derivation δ on AK such that Ker δ = BK . Let

b be a nonzero element of R \ {0} such that bδ(a1), . . . , bδ(an) ∈ A and set d = bδ|A.
Then d is an R-derivation on A and Ker d = Ker δ ∩A = BK ∩A = B. This proves

(2).

Finally, assuming that AK is normal, we prove ”(1) =⇒ (3)”. Since AK is normal,

we know that Q(BK) is algebraically closed in Q(AK). In particular, Q(AK)/Q(BK)

is a regular field extension. By [12, Theorem 1] (or [10, Theorem 4.2]), there exists

a K-derivation δ on Q(A) such that Ker δ = Q(B). Let b be a nonzero element of

A = R[a1, . . . , an] such that bδ(a1), . . . , bδ(an) ∈ A and set d = bδ|A. Then d is an

R-derivation on A and Ker d = Ker δ ∩ A = Q(B) ∩ A = B. We easily see that

d = bδ. So Ker d = Ker bδ = Ker δ = Q(B). □

3. Example of a rational higher derivation on k[x0, x1, x2, . . .]

Let k be a field of characteristic p ≥ 0 and A = k[x0, x1, x2, . . .] the polynomial ring

in countably many variables over k. We construct a rational higher k-derivation ∆

on A whose kernel A∆ is not the kernel of any higher k-derivation on A.

We claim the following.

Claim 3.1. There exists a higher k-derivation D̃ = {D̃ℓ}ℓ≥0 on Q(A) such that the

following conditions are satisfied:

(1) D̃1(x0) = 1, D̃ℓ(x0) = 0 for any ℓ ≥ 1.

(2) If p ̸= 2, then x2
n − 2x0 ∈ Q(A)D̃ for any n ≥ 1.

(3) If p = 2, then x3
n + x0 ∈ Q(A)D̃ for any n ≥ 1.
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Proof. It suffices to construct a k-algebra homomorphism φ : A → Q(A)[[t]] such

that the following conditions are satisfied.

1) φ(f)|t=0 = f for any f ∈ A.

2) φ(x0) = x0 + t.

3) If p ̸= 2, then φ(x2
n − 2x0) = x2

n − 2x0 for any n ≥ 1.

4) If p = 2, then φ(x3
n + x0) = x3

n + x0 for any n ≥ 1.

In fact, such a homomorphism φ gives a k-algebra homomorphism Q(A) → Q(A)[[t]]

that defines a higher k-derivation D̃ on Q(A) satisfying the conditions (1)–(3). Since

φ is determined by the image of {x0, x1, x2, . . .}, it suffices to determine the image

of {x1, x2, . . .} via φ. For any integer n ≥ 1, set φ(xn) = xn +
∑∞

ℓ=1 aℓt
ℓ, where the

constant term of φ(xn) has to be xn by the condition 1).

Assume that p ̸= 2. Since φ is a ring homomorphism, φ(x2
n) = φ(xn)

2 and so the

coefficient of tℓ in φ(x2
n) is as follows:{

2(aℓxn + a1aℓ−1 + · · ·+ amam+1) if ℓ = 2m+ 1 (m ≥ 0),

2(aℓxn + a1aℓ−1 + · · ·+ am−1am+1) + a2m if ℓ = 2m (m ≥ 1),

where we set a0 = 0. Then we can determine aℓ ∈ k(xn) (ℓ = 1, 2, . . .) inductively

such that φ(x2
n − 2x0) = x2

n − 2x0. For example, a1 =
1
xn
, a2 = − 1

2x3
n
, a3 =

1
2x5

n
, etc.

Assume that p = 2. By using similar argument as in the previous paragraph,

for any integer n ≥ 1, we obtain aℓ ∈ k(xn) (ℓ = 1, 2, . . .) such that φ(xn) =

xn +
∑∞

ℓ=1 aℓt
ℓ and φ(x3

n + x0) = x3
n + x0. For example, a1 =

1
x2
n
, a2 =

1
x5
n
, a3 =

1
x8
n
,

a4 = a5 = a6 = a7 = 0, a8 =
1

x23
n
, etc. □

Claim 3.2. Let D̃ be a higher k-derivation on Q(A) satisfying the conditions (1)–

(3) of Claim 3.1 and set B = Q(A)D̃ ∩A. Then the ring B is not the kernel of any

higher k-derivation on A.

Proof. We consider the case p ̸= 2. The case p = 2 can be treated similarly. Suppose

to the contrary that there exists a higher k-derivation D = {Dℓ}ℓ≥0 on A such that

B = AD.

Since x2
i − 2x0 ∈ B for any i ≥ 1, we see that Dℓ(x

2
i − 2x0) = 0 for any i, ℓ ≥ 1.

For any i ≥ 1, D1(x
2
i − 2x0) = D1(x

2
i ) − 2D1(x0) = 2xiD1(xi) − 2D1(x0) = 0 and

so xi | D1(x0). Hence D1(xi) = 0 for any i ≥ 0. For an integer j ≥ 2, assume that

Dk(xi) = 0 for k = 1, 2, . . . , j − 1 and for any i ≥ 0. Then

0 = Dj(x
2
i − 2x0) = Dj(x

2
i )− 2Dj(x0) =

∑
ℓ+ℓ′=j

Dℓ(xi)Dℓ′(xi)− 2Dj(x0).

By the inductive assumption,
∑

ℓ+ℓ′=j Dℓ(xi)Dℓ′(xi) = 2xiDj(xi). Then xi | Dj(x0)

for any i ≥ 1. Hence Dj(xi) = 0 for any i ≥ 0. Therefore, by the induction on j, we
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know that x0, x1, x2, . . . ∈ AD = B. In particular, B = A. This is a contradiction

because x0 ̸∈ Q(A)D̃ ∩ A = B. □

Therefore, ∆ := {D̃ℓ|A}ℓ≥0 is a rational higher k-derivation on A satisfying the

conditions stated in the first paragraph of this section.
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