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THE EQUIVALENCE OF GYROCOMMUTATIVE
GYROGROUPS AND K-LOOPS

TOSHIKAZU ABE

Abstract. It is known that gyrocommutative gyrogroups and K-loops are equiv-

alent. This is a self-contained paper that presents the equivalence.

1. Introduction

Both gyrocommutative gyrogroups and K-loops are non-commutative nor non-associative

generalization of commutative groups. In [4], Sabinin, Sabinina and Sbitneva show

that every gyrocommutative gyrogroup is just a left Bol loop with Bruck identity. It

is well known that a left Bol loop is a K-loop if and only if it has the Bruck property.

The paper [4] requires some knowledge of left Bol loops.

There is a possibility that these algebraic systems are defined by a way different

depending on literatures. In this paper, the definition of gyrogroup is in accordance

with [9] and of K-loop is in accordance with [3]. In section 2, we describe the defini-

tions and some properties of gyrogroups and K-loops for the proof. The descriptions

of gyrogroups are in accordance with [9] and of K-loops are in accordance with [3].

In section 3, we prove that K-loops and gyrocommutative gyrogroups are equivalent.

The main part of the proof is in accordance with [4].

This paper is self-contained and a patchwork of [3], [9], [4]. The equivalence of

these algebraic systems is a fundamental and important fact for who will study

gyrogroup or K-loop theory. This paper would be instructive for them.

A referee of the paper kindly recommended the following historical comments.

“ For the theory of K-loops readers may consult with Kiechle’s book [3]. Not

unexpectedly, according to Kiechle [3, pp. 169-170], the term“K-loop”with K named

after Karzel was coined by Ungar in 1989 [8] to describe the algebraic structure that

later became known as a gyrocommutative gyrogroup. For different purposes, the

term“ K-loop” was already in use earlier by Sŏıkis, in 1970 [6] and later, but

independently, by Basarab, in 1992 [1]. Unlike the term“ K-loop” that Ungar
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coined, the“K”in each of the terms“K-loop”coined by Sŏıkis and by Basarab

does not refer to“Karzel”. The early history of K-loops with“K”named after

Karzel is unfolded in [5, p. 142].”

2. Definitions and some notations

A magma (S, ◦) is a set with binary operation ◦ : S × S → S; (a, b) 7→ a ◦ b. An

automorphism φ of a magma (S, ◦) is a bijective self-map of S, φ : S → S, which

preserves its magma operation, φ(a ◦ b) = φ(a) ◦ φ(b) for any a, b ∈ S. A magma

(S, ◦) is called a groupoid if it contains an identity element e, that is a◦e = e◦a = a

for any a ∈ S. Such an element is necessarily unique. Let a be an element of a

groupoid (S, ◦). An element b ∈ S is called a left (right) inverse of a if b ◦ a = e

(a◦ b = e). If b is the uniquely determined left and right inverse of a, then b is called

the inverse of a. Note that if b is the inverse of a, then a is the inverse of b.

Let (S, ◦) be a magma, then for each a ∈ S, the map

λa : S → S; x 7→ a ◦ x

is called the left translation, and the map

ϱa : S → S; y 7→ y ◦ a

is called the right translation.

Definition 2.1 (K-loop). A groupoid (L,+) is a K-loop if it satisfies the following

axioms.

(K1) For any a, b ∈ L, the equation a+ x = b has the unique solution x ∈ L.

(K2) For any a, b ∈ L, the equation y + a = b has the unique solution y ∈ L.

(K3) a+ (b+ (a+ c)) = (a+ (b+ a)) + c for any a, b, c ∈ L.

(K4) Any element a of L has the inverse −a and

−(a+ b) = (−a) + (−b)

for any a, b ∈ L.

Proposition 2.1. Let (L,+) be a groupoid.

• The condition (K1) is equivalent to the following condition (K1)’.

(K1)’ Any left translation λa is bijective.

• The condition (K2) is equivalent to the following condition (K2)’.

(K2)’ Any right translation ϱa is bijective.

• The condition (K3) is equivalent to the both conditions (K3)’ and (K3)”.

(K3)’ λaλbλa = λa+(b+a) for any a, b ∈ L.

(K3)” λaϱa+c = ϱcλaϱa for any a, b ∈ L.
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Proposition 2.2. Let (L,+) be a K-loop. Then λ−1
a = λ−a for any a ∈ L. That is

−a+ (a+ x) = x for any a, x ∈ L.

Proof. Since Proposition 2.1, (L,+) satisfies the condition (K3)’. Therefore we

have λaλ−aλa = λa+(−a+a) = λa. Thus λaλ−a is the identity map on L and hence

λ−1
a = λ−a. □

Definition 2.2 (autotopism). Let (L,+) be a groupoid and α, β, γ be bijections of

L. A triple (α, β, γ) is called an autotopism if

α(x) + β(y) = γ(x+ y)

for any x, y ∈ L. TopL denotes the set of all autotopisms of L.

Proposition 2.3. Let (L,+) be a groupoid with the identity e.

• If

(α1, β1, γ1) ◦ (α2, β2, γ2) = (α1α2, β1β2, γ1γ2)

for any (α1, β1, γ1), (α2, β2, γ2) ∈ TopL, then (TopL, ◦) is a group with the

identity (idL, idL, idL) and the inverse

(α, β, γ)−1 = (α−1, β−1, γ−1)

of (α, β, γ) ∈ TopL.

• If (α, β, γ) ∈ TopL and α = γ, then

(α, β, γ) = (λα(e)β, β, λα(e)β).

Proof. It is clear that (TopL, ◦) is a group. Let (α, β, γ) ∈ TopL and α = γ. By

the definition of an autotopism, we have

α(e) + β(y) = γ(e+ y) = γ(y)

for any y ∈ L. Hence

α(y) = γ(y) = λα(e)β(y)

for any y ∈ L. □

Definition 2.3 ((gyrocommutative) gyrogroup). A magma (G,⊕) is a gyrogroup

if it satisfies the following axioms.

(G1) There is a left identity 0 ∈ G, that is 0⊕ a = a for any a ∈ G.

(G2) There is a left identity 0∗ ∈ G such that every a ∈ G has an element ⊖a ∈ G

satisfying ⊖a⊕ a = 0∗.

(G3) For any a, b, c ∈ G, there is a unique element gyr[a, b]c ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

(G4) For any a, b ∈ G, the map gyr[a, b], c 7→ gyr[a, b]c, is an automorphism of

(G,⊕).
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(G5) gyr[a⊕ b, b] = gyr[a, b] for any a, b ∈ G.

A gyrogroup (G,⊕) is gyrocommutative if the following (G6) is also satisfied.

(G6) a⊕ b = gyr[a, b](b⊕ a) for any a, b ∈ G.

Proposition 2.4. Let (G,⊕) be a gyrogroup. For any elements a, b, c ∈ G, we have:

(g1) a⊕ b = a⊕ c ⇔ b = c.

(g2) gyr[0, a] = idG for any left identity 0.

(g3) gyr[⊖a, a] = idG.

(g4) 0∗ is the identity of (G,⊕).

(g5) A left identity is necessarily unique.

(g6) ⊖a is a right inverse of a.

(g7) ⊖a is the (unique left and right) inverse of a.

(g8) ⊖(⊖a) = a.

(g9) ⊖a⊕ (a⊕ b) = b (the left cancellation law).

(g10) λ−1
a = λ⊖a.

(g11) gyr[a, b]c = ⊖(a⊕ b)⊕ {a⊕ (b⊕ c)}, that is,

gyr[a, b] = λ−1
(a⊕b)λaλb.

(g12) gyr[a, b](⊖c) = ⊖ gyr[a, b]c.

Proof. (g1): Since gyr[⊖a, a] is a bijection, we have

a⊕ b = a⊕ c

⇔ ⊖a⊕ (a⊕ b) = ⊖a⊕ (a⊕ c)

⇔ (⊖a⊕ a)⊕ gyr[⊖a, a]b = (⊖a⊕ a)⊕ gyr[⊖a, a]c

⇔ gyr[⊖a, a]b = gyr[⊖a, a]c

⇔ b = c.

(g2): For any x ∈ G, we have

a⊕ x = (0⊕ a)⊕ x = 0⊕ (a⊕ gyr[0, a]x) = a⊕ gyr[0, a]x.

By (g1), we have x = gyr[0, a]x and hence gyr[0, a] = idG.

(g3): Since the condition (G5), we have

gyr[⊖a, a] = gyr[⊖a⊕ a, a] = gyr[0, a] = idG.
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(g4): For any x ∈ G, by (g3), we have

⊖x⊕ (x⊕ 0∗) = (⊖x⊕ x)⊕ gyr[⊖x, x]0∗

= 0∗ ⊕ gyr[⊖x, x]0∗

= 0∗ ⊕ 0∗

= 0∗

= ⊖x⊕ x.

Hence, by (g1), x⊕ 0∗ = x for any x ∈ G. Thus,

x⊕ 0∗ = 0∗ ⊕ x = 0∗.

(g5): For any left identity 0, we have 0 = 0 + 0∗ = 0∗.

(g6): By (g3) and 0 is the identity, we have

⊖a⊕ (a⊕ (⊖a)) = (⊖a⊕ a)⊕ gyr[⊖a, a](⊖a)

= 0⊕ (⊖a)

= ⊖a

= ⊖a⊕ 0.

By (g1), (a⊕ (⊖a)) = 0.

(g7): Suppose x and y are left inverses of a. Since (g6), x and y are also right

inverses of a, a⊕ x = 0 = a⊕ y. By (g1), we have x = y.

(g8): It is clear since ⊖x is the inverse of x for any x ∈ G.

(g9): By (g3), we have

⊖a⊕ (a⊕ b) = (⊖a⊕ a)⊕ gyr[⊖a, a]b = b.

(g10): By (g8) and (g9), λ⊖aλa = λaλ⊖a = idG.

(g11): By (G3) and (g9), we have

gyr[a, b]c = ⊖(a⊕ b)⊕ {a⊕ (b⊕ c)}.

Hence, by (g10),

gyr[a, b] = λ⊖(a⊕b)λaλb = λ−1
a⊕bλaλb.

(g12): Since gyr[a, b] is an automorphism of (G,⊕),

gyr[a, b](⊖c)⊕ gyr[a, b](c) = gyr[a, b]0 = 0

Hence, gyr[a, b](⊖c) = ⊖ gyr[a, b]c. □

Lemma 2.1. Let (G,⊕) be a gyrogroup. Then

gyr[a,⊖ gyr[a, b]b] gyr[a, b] = idG.

for any a, b ∈ G.

— 73 —



Proof. For any x ∈ G, we have

a⊕ gyr[a⊕ b,⊖ gyr[a, b]b] gyr[a, b]x

= (a⊕ (b⊖ b))⊕ gyr[a⊕ b,⊖ gyr[a, b]b] gyr[a, b]x

= ((a⊕ b)⊖ gyr[a, b]b)⊕ gyr[a⊕ b,⊖ gyr[a, b]b] gyr[a, b]x

= (a⊕ b)⊕ (⊖ gyr[a, b]b⊕ gyr[a, b]x)

= (a⊕ b)⊕ gyr[a, b](⊖b⊕ x)

= a⊕ (b⊕ (⊖b⊕ x))

= a⊕ x.

It implies that

gyr[a⊕ b,⊖ gyr[a, b]b] gyr[a, b] = idG

by (g1). Hence

idG = gyr[a⊕ b,⊖ gyr[a, b]b] gyr[a, b]

= gyr[(a⊕ b)⊖ gyr[a, b]b,⊖ gyr[a, b]b] gyr[a, b]

= gyr[a⊕ (b⊖ b),⊖ gyr[a, b]b] gyr[a, b]

= gyr[a,⊖ gyr[a, b]b] gyr[a, b]

by (G5), (G3) and (g12). □

Proposition 2.5. Let (G,⊕) be a gyrogroup. Then for any a, b ∈ G, we have:

(LL) The equation a⊕ x = b has a unique solution x = ⊖a⊕ b.

(RL) The equation y ⊕ a = b has a unique solution y = b⊖ gyr[b, a]a.

Proof. (LL): Let x = ⊖a⊕ b. By (g9), we have

a⊕ x = a⊕ (⊖a⊕ b) = b.

Hence x is a solution of the equation a ⊕ x = b. If x′ ∈ G satisfies the equation

a⊕ x′ = b, then

a⊕ x = a⊕ x′

and hence x = x′ by (g1).

(RL): Let y be a solution of y ⊕ a = b. Then

y = y ⊕ (a⊖ a)

= (y ⊕ a)⊖ gyr[y, a]a

= (y ⊕ a)⊖ gyr[y ⊕ a, a]a

= b⊖ gyr[b, a]a.
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Conversely, if y = b⊖ gyr[b, a]a, then

b = b⊕ (⊖ gyr[b, a]a⊕ gyr[b, a]a)

= (b⊖ gyr[b, a]a)⊕ gyr[b,⊖ gyr[b, a]] gyr[b, a]a

= (b⊖ gyr[b, a]a)⊕ a

= y ⊕ a

by Lemma 2.1. □

Lemma 2.2. Let (G,⊕) be a gyrogroup. Then

gyr[a, b](⊖b⊖ a) = ⊖(a⊕ b)

for any a, b ∈ G.

Proof. By (g11) and (g9), we have

gyr[a, b](⊖b⊖ a) =⊖ (a⊕ b)⊕ (a⊕ (b⊕ (⊖b⊖ a)))

=⊖ (a⊕ b).

□

Proposition 2.6. Let (G,⊕) be a gyrogroup. Then (G,⊕) is gyrocommutative if

and only if it possesses the automorphic inverse property,

(G5)’ ⊖(a⊕ b) = ⊖a⊖ b for any a, b ∈ G.

Proof. If (G,⊕) is gyrocommutative, then

gyr[a, b](⊖(⊖b⊖ a)) = ⊖ gyr[a, b](⊖b⊖ a)

= a⊕ b

= gyr[a, b](b⊕ a)

for any a, b ∈ G, by (g12) and Lemma 2.2. It implies that ⊖(b⊕ a) = ⊖b⊖ a.

Conversely, if (G,⊕) possesses the automorphic inverse property, then

a⊕ b = ⊖ gyr[a, b](⊖b⊖ a)

= gyr[a, b](⊖(⊖b⊖ a))

= gyr[a, b](b⊕ a)

for any a, b ∈ G, by Lemma 2.2 and (g12). □
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3. Equivalence of gyrocommutative gyrogroups and K-loops

Theorem 3.1. A magma is a gyrocommutative gyrogroup if and only if it is a K-

loop.

Proof. First, we show that a gyrocommutative gyrogroup is a K-loop. Let (G,⊕)

be a gyrocommutative gyrogroup.

(K1): By (LL) of Proposition 2.5.

(K2): By (RL) of Proposition 2.5.

(K3): Let a, b ∈ G. Put w = a⊕ b and q = ⊖a then the map (a, b) 7→ (w, q) is a

bijective self-map of G×G and

gyr[a⊕ b, b] = gyr[a, b] ⇐⇒ λ−1
(a⊕b)⊕bλa⊕bλb = λ−1

a⊕bλaλb

⇐⇒ λ−1
(a⊕b)⊕b = λ−1

a⊕bλaλ
−1
a⊕b

⇐⇒ λ(a⊕b)⊕b = λa⊕bλ⊖aλa⊕b

⇐⇒ λw⊕(q⊕w) = λwλqλw.

By the condition (G5), (G,⊕) satisfies the condition (K3)’. Hence (G,⊕) satisfies

the condition (K3) by Proposition 2.1.

(K4): By Proposition 2.4, any a ∈ G has the inverse ⊖a. By Proposition 2.6, we

have

⊖(a⊕ b) = (⊖a)⊕ (⊖b)

for any a, b ∈ G.

Next, we show that a K-loop is a gyrocommutative gyrogroup. Let (L,+) be a

K-loop.

(G1): Since (L,+) is a groupoid, (L,+) has the identity e.

(G2): By the condition (K4), any a ∈ L has the inverse −a.

(G3): Let a, b, c ∈ L. By the condition (K1), the equation (a+ b)+x = a+(b+ c)

has a unique solution x. Let δ[a, b] = λ−1
a+bλaλb. Then we have λa+bδ[a, b] = λaλb.

Hence (a+ b) + δ[a, b](c) = a+ (b+ c). Thus x = δ[a, b](c) is the unique solution of

(a+ b) + x = a+ (b+ c).

(G4): Let a, x, y ∈ L. Put v = −x and w = x+ y then

λaϱa(x) + λ−1
a (y) = λaϱa(−v) + λ−1

a (v + w)

= {a+ (−v + a)}+ λ−1
a (v + w)

= a+ {−v + (a+ λ−1
a (v + w))}

= λa(w)

= λa(x+ y)

by the condition (K3). It implies that τa = (λaϱa, λ
−1
a , λa) ∈ TopL for any a ∈ L.

Therefore τa+b ◦ τ−1
a ◦ τ−1

b ∈ TopL for any a, b ∈ L by Proposition 2.3. Put α =
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λa+bλ
−1
a λ−1

b . The first component of τa+b ◦ τ−1
a ◦ τ−1

b is

λa+bϱa+b(λaϱa)
−1(λbϱb)

−1

= λa+bϱa+bϱ
−1
a λ−1

a ϱ−1
b λ−1

b

= λa+bϱa+b(ϱbλaϱa)
−1λ−1

b

= λa+bϱa+b(λaϱa+b)
−1λ−1

b

= λa+bϱa+bϱ
−1
a+bλ

−1
a λ−1

b

= λa+bλ
−1
a λ−1

b

= α

by (K3)”. The second component is λ−1
a+bλaλb = δ[a, b]. The third component is

λa+bλ
−1
a λ−1

b = α. Thus, we have (α, δ[a, b], α) ∈ TopL. We have

α(e) = (a+ b) + (−a+ (−b+ e)) = (a+ b) + (−a− b) = e

by the condition (K4). Hence (δ[a, b], δ[a, b], δ[a, b]) ∈ TopL by Proposition 2.3. It

implies that δ[a, b] is an automorphism of (L,+).

(G5): Let a, b ∈ L. Put x = −b and y = b + a then the map (a, b) 7→ (x, y) is a

bijective self-map of G×G and

λa+(b+a) = λaλbλa ⇐⇒ λ(x+y)+y = λ(x+y)λ−xλ(x+y)

⇐⇒ λ−1
(x+y)+y = λ−1

(x+y)λxλ
−1
(x+y)

⇐⇒ λ−1
(x+y)+yλ(x+y)λy = λ−1

(x+y)λxλy

⇐⇒ δ[x+ y, y] = δ[x, y].

Since (L,+) satisfies the condition (K3)’, we have δ[x+y, y] = δ[x, y] for any x, y ∈ L.

(G6): Since (L,+) satisfies the conditions (G1) to (G5), (L,+) is a gyrogroup.

Since (L,+) satisfies the condition (K4), Proposition 2.6 asserts that (L,+) satisfies

the condition (G6). □
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