THE EQUIVALENCE OF GYROCOMMUTATIVE GYROGROUPS AND K-LOOPS

TOSHIKAZU ABE

Abstract

It is known that gyrocommutative gyrogroups and K-loops are equivalent. This is a self-contained paper that presents the equivalence.

1. Introduction

Both gyrocommutative gyrogroups and K-loops are non-commutative nor non-associative generalization of commutative groups. In [4], Sabinin, Sabinina and Sbitneva show that every gyrocommutative gyrogroup is just a left Bol loop with Bruck identity. It is well known that a left Bol loop is a K-loop if and only if it has the Bruck property. The paper [4] requires some knowledge of left Bol loops.

There is a possibility that these algebraic systems are defined by a way different depending on literatures. In this paper, the definition of gyrogroup is in accordance with [9] and of K-loop is in accordance with [3]. In section 2, we describe the definitions and some properties of gyrogroups and K-loops for the proof. The descriptions of gyrogroups are in accordance with [9] and of K-loops are in accordance with [3]. In section 3, we prove that K-loops and gyrocommutative gyrogroups are equivalent. The main part of the proof is in accordance with [4].

This paper is self-contained and a patchwork of [3], [9], [4]. The equivalence of these algebraic systems is a fundamental and important fact for who will study gyrogroup or K-loop theory. This paper would be instructive for them.

A referee of the paper kindly recommended the following historical comments.
"For the theory of K-loops readers may consult with Kiechle's book [3]. Not unexpectedly, according to Kiechle [3, pp. 169-170], the term "K-loop" with K named after Karzel was coined by Ungar in 1989 [8] to describe the algebraic structure that later became known as a gyrocommutative gyrogroup. For different purposes, the term " K-loop" was already in use earlier by Soǐkis, in 1970 [6] and later, but independently, by Basarab, in 1992 [1]. Unlike the term "K-loop" that Ungar

[^0]coined, the "K" in each of the terms "K-loop" coined by Soǐkis and by Basarab does not refer to " Karzel" . The early history of K-loops with " K " named after Karzel is unfolded in [5, p. 142]."

2. Definitions and some notations

A magma (S, \circ) is a set with binary operation $\circ: S \times S \rightarrow S ;(a, b) \mapsto a \circ b$. An automorphism φ of a magma (S, \circ) is a bijective self-map of $S, \varphi: S \rightarrow S$, which preserves its magma operation, $\varphi(a \circ b)=\varphi(a) \circ \varphi(b)$ for any $a, b \in S$. A magma (S, \circ) is called a groupoid if it contains an identity element e, that is $a \circ e=e \circ a=a$ for any $a \in S$. Such an element is necessarily unique. Let a be an element of a groupoid (S, \circ). An element $b \in S$ is called a left (right) inverse of a if $b \circ a=e$ $(a \circ b=e)$. If b is the uniquely determined left and right inverse of a, then b is called the inverse of a. Note that if b is the inverse of a, then a is the inverse of b.

Let $(S, \circ$) be a magma, then for each $a \in S$, the map

$$
\lambda_{a}: S \rightarrow S ; x \mapsto a \circ x
$$

is called the left translation, and the map

$$
\varrho_{a}: S \rightarrow S ; y \mapsto y \circ a
$$

is called the right translation.
Definition 2.1 (K-loop). A groupoid $(L,+)$ is a K-loop if it satisfies the following axioms.
(K1) For any $a, b \in L$, the equation $a+x=b$ has the unique solution $x \in L$.
(K2) For any $a, b \in L$, the equation $y+a=b$ has the unique solution $y \in L$.
(K3) $a+(b+(a+c))=(a+(b+a))+c$ for any $a, b, c \in L$.
(K4) Any element a of L has the inverse $-a$ and

$$
-(a+b)=(-a)+(-b)
$$

for any $a, b \in L$.
Proposition 2.1. Let $(L,+)$ be a groupoid.

- The condition (K1) is equivalent to the following condition (K1)'.
(K1)' Any left translation λ_{a} is bijective.
- The condition (K2) is equivalent to the following condition (K2)'.
(K2)' Any right translation ϱ_{a} is bijective.
- The condition (K3) is equivalent to the both conditions (K3)' and (K3)".
(K3)' $\lambda_{a} \lambda_{b} \lambda_{a}=\lambda_{a+(b+a)}$ for any $a, b \in L$.
(K3)" $\lambda_{a} \varrho_{a+c}=\varrho_{c} \lambda_{a} \varrho_{a}$ for any $a, b \in L$.

Proposition 2.2. Let $(L,+)$ be a K-loop. Then $\lambda_{a}^{-1}=\lambda_{-a}$ for any $a \in L$. That is $-a+(a+x)=x$ for any $a, x \in L$.

Proof. Since Proposition 2.1, $(L,+)$ satisfies the condition (K3)'. Therefore we have $\lambda_{a} \lambda_{-a} \lambda_{a}=\lambda_{a+(-a+a)}=\lambda_{a}$. Thus $\lambda_{a} \lambda_{-a}$ is the identity map on L and hence $\lambda_{a}^{-1}=\lambda_{-a}$.

Definition 2.2 (autotopism). Let $(L,+)$ be a groupoid and α, β, γ be bijections of L. A triple (α, β, γ) is called an autotopism if

$$
\alpha(x)+\beta(y)=\gamma(x+y)
$$

for any $x, y \in L$. Top L denotes the set of all autotopisms of L.
Proposition 2.3. Let $(L,+)$ be a groupoid with the identity e.

- If

$$
\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) \circ\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=\left(\alpha_{1} \alpha_{2}, \beta_{1} \beta_{2}, \gamma_{1} \gamma_{2}\right)
$$

for any $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right),\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \in \operatorname{Top} L$, then $(\operatorname{Top} L, \circ)$ is a group with the identity $\left(i d_{L}, i d_{L}, i d_{L}\right)$ and the inverse

$$
(\alpha, \beta, \gamma)^{-1}=\left(\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right)
$$

of $(\alpha, \beta, \gamma) \in \operatorname{Top} L$.

- If $(\alpha, \beta, \gamma) \in \operatorname{Top} L$ and $\alpha=\gamma$, then

$$
(\alpha, \beta, \gamma)=\left(\lambda_{\alpha(e)} \beta, \beta, \lambda_{\alpha(e)} \beta\right) .
$$

Proof. It is clear that $(\operatorname{Top} L, \circ)$ is a group. Let $(\alpha, \beta, \gamma) \in \operatorname{Top} L$ and $\alpha=\gamma$. By the definition of an autotopism, we have

$$
\alpha(e)+\beta(y)=\gamma(e+y)=\gamma(y)
$$

for any $y \in L$. Hence

$$
\alpha(y)=\gamma(y)=\lambda_{\alpha(e)} \beta(y)
$$

for any $y \in L$.
Definition 2.3 ((gyrocommutative) gyrogroup). A magma (G, \oplus) is a gyrogroup if it satisfies the following axioms.
(G1) There is a left identity $0 \in G$, that is $0 \oplus a=a$ for any $a \in G$.
(G2) There is a left identity $0^{*} \in G$ such that every $a \in G$ has an element $\ominus a \in G$ satisfying $\ominus a \oplus a=0^{*}$.
(G3) For any $a, b, c \in G$, there is a unique element $\operatorname{gyr}[a, b] c \in G$ such that

$$
a \oplus(b \oplus c)=(a \oplus b) \oplus \operatorname{gyr}[a, b] c .
$$

(G4) For any $a, b \in G$, the map $\operatorname{gyr}[a, b], c \mapsto \operatorname{gyr}[a, b] c$, is an automorphism of (G, \oplus).
(G5) $\operatorname{gyr}[a \oplus b, b]=\operatorname{gyr}[a, b]$ for any $a, b \in G$.
A gyrogroup (G, \oplus) is gyrocommutative if the following (G6) is also satisfied.
(G6) $a \oplus b=\operatorname{gyr}[a, b](b \oplus a)$ for any $a, b \in G$.
Proposition 2.4. Let (G, \oplus) be a gyrogroup. For any elements $a, b, c \in G$, we have:
(g1) $a \oplus b=a \oplus c \Leftrightarrow b=c$.
(g2) $\operatorname{gyr}[0, a]=i d_{G}$ for any left identity 0 .
(g3) $\operatorname{gyr}[\ominus a, a]=i d_{G}$.
(g4) 0^{*} is the identity of (G, \oplus).
(g5) A left identity is necessarily unique.
(g6) $\ominus a$ is a right inverse of a.
(g7) $\ominus a$ is the (unique left and right) inverse of a.
(g8) $\ominus(\ominus a)=a$.
(g9) $\ominus a \oplus(a \oplus b)=b \quad$ (the left cancellation law).
(g10) $\lambda_{a}^{-1}=\lambda_{\ominus a}$.
$(\mathrm{g} 11) \operatorname{gyr}[a, b] c=\ominus(a \oplus b) \oplus\{a \oplus(b \oplus c)\}$, that is,

$$
\operatorname{gyr}[a, b]=\lambda_{(a \oplus b)}^{-1} \lambda_{a} \lambda_{b} .
$$

$(\mathrm{g} 12) \operatorname{gyr}[a, b](\ominus c)=\ominus \operatorname{gyr}[a, b] c$.
Proof. (g1): Since gyr $[\ominus a, a]$ is a bijection, we have

$$
\begin{aligned}
& a \oplus b=a \oplus c \\
\Leftrightarrow & \ominus a \oplus(a \oplus b)=\ominus a \oplus(a \oplus c) \\
\Leftrightarrow & (\ominus a \oplus a) \oplus \operatorname{gyr}[\ominus a, a] b=(\ominus a \oplus a) \oplus \operatorname{gyr}[\ominus a, a] c \\
\Leftrightarrow & \operatorname{gyr}[\ominus a, a] b=\operatorname{gyr}[\ominus a, a] c \\
\Leftrightarrow & b=c .
\end{aligned}
$$

(g2): For any $x \in G$, we have

$$
a \oplus x=(0 \oplus a) \oplus x=0 \oplus(a \oplus \operatorname{gyr}[0, a] x)=a \oplus \operatorname{gyr}[0, a] x
$$

By (g1), we have $x=\operatorname{gyr}[0, a] x$ and hence $\operatorname{gyr}[0, a]=i d_{G}$.
(g3): Since the condition (G5), we have

$$
\operatorname{gyr}[\ominus a, a]=\operatorname{gyr}[\ominus a \oplus a, a]=\operatorname{gyr}[0, a]=i d_{G} .
$$

(g4): For any $x \in G$, by (g3), we have

$$
\begin{aligned}
\ominus x \oplus\left(x \oplus 0^{*}\right) & =(\ominus x \oplus x) \oplus \operatorname{gyr}[\ominus x, x] 0^{*} \\
& =0^{*} \oplus \operatorname{gyr}[\ominus x, x] 0^{*} \\
& =0^{*} \oplus 0^{*} \\
& =0^{*} \\
& =\ominus x \oplus x .
\end{aligned}
$$

Hence, by (g1), $x \oplus 0^{*}=x$ for any $x \in G$. Thus,

$$
x \oplus 0^{*}=0^{*} \oplus x=0^{*} .
$$

(g5): For any left identity 0 , we have $0=0+0^{*}=0^{*}$.
(g6): By (g3) and 0 is the identity, we have

$$
\begin{aligned}
\ominus a \oplus(a \oplus(\ominus a)) & =(\ominus a \oplus a) \oplus \operatorname{gyr}[\ominus a, a](\ominus a) \\
& =0 \oplus(\ominus a) \\
& =\ominus a \\
& =\ominus a \oplus 0 .
\end{aligned}
$$

$\mathrm{By}(\mathrm{g} 1),(a \oplus(\ominus a))=0$.
(g7): Suppose x and y are left inverses of a. Since (g6), x and y are also right inverses of $a, a \oplus x=0=a \oplus y$. By (g1), we have $x=y$.
(g8): It is clear since $\ominus x$ is the inverse of x for any $x \in G$.
(g9): By (g3), we have

$$
\ominus a \oplus(a \oplus b)=(\ominus a \oplus a) \oplus \operatorname{gyr}[\ominus a, a] b=b .
$$

(g10): By (g8) and (g9), $\lambda_{\ominus a} \lambda_{a}=\lambda_{a} \lambda_{\ominus a}=i d_{G}$.
(g11): By (G3) and (g9), we have

$$
\operatorname{gyr}[a, b] c=\ominus(a \oplus b) \oplus\{a \oplus(b \oplus c)\} .
$$

Hence, by (g10),

$$
\operatorname{gyr}[a, b]=\lambda_{\ominus(a \oplus b)} \lambda_{a} \lambda_{b}=\lambda_{a \oplus b}^{-1} \lambda_{a} \lambda_{b} .
$$

(g 12): Since $\operatorname{gyr}[a, b]$ is an automorphism of (G, \oplus),

$$
\operatorname{gyr}[a, b](\ominus c) \oplus \operatorname{gyr}[a, b](c)=\operatorname{gyr}[a, b] 0=0
$$

Hence, $\operatorname{gyr}[a, b](\ominus c)=\ominus \operatorname{gyr}[a, b] c$.
Lemma 2.1. Let (G, \oplus) be a gyrogroup. Then

$$
\operatorname{gyr}[a, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b]=i d_{G} .
$$

for any $a, b \in G$.

Proof. For any $x \in G$, we have

$$
\begin{aligned}
& a \oplus \operatorname{gyr}[a \oplus b, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b] x \\
= & (a \oplus(b \ominus b)) \oplus \operatorname{gyr}[a \oplus b, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b] x \\
= & ((a \oplus b) \ominus \operatorname{gyr}[a, b] b) \oplus \operatorname{gyr}[a \oplus b, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b] x \\
= & (a \oplus b) \oplus(\ominus \operatorname{gyr}[a, b] b \oplus \operatorname{gyr}[a, b] x) \\
= & (a \oplus b) \oplus \operatorname{gyr}[a, b](\ominus b \oplus x) \\
= & a \oplus(b \oplus(\ominus b \oplus x)) \\
= & a \oplus x
\end{aligned}
$$

It implies that

$$
\operatorname{gyr}[a \oplus b, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b]=i d_{G}
$$

by (g1). Hence

$$
\begin{aligned}
i d_{G} & =\operatorname{gyr}[a \oplus b, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b] \\
& =\operatorname{gyr}[(a \oplus b) \ominus \operatorname{gyr}[a, b] b, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b] \\
& =\operatorname{gyr}[a \oplus(b \ominus b), \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b] \\
& =\operatorname{gyr}[a, \ominus \operatorname{gyr}[a, b] b] \operatorname{gyr}[a, b]
\end{aligned}
$$

by (G5), (G3) and (g12).
Proposition 2.5. Let (G, \oplus) be a gyrogroup. Then for any $a, b \in G$, we have:
(LL) The equation $a \oplus x=b$ has a unique solution $x=\ominus a \oplus b$.
(RL) The equation $y \oplus a=b$ has a unique solution $y=b \ominus \operatorname{gyr}[b, a] a$.
Proof. (LL): Let $x=\ominus a \oplus b$. By (g9), we have

$$
a \oplus x=a \oplus(\ominus a \oplus b)=b
$$

Hence x is a solution of the equation $a \oplus x=b$. If $x^{\prime} \in G$ satisfies the equation $a \oplus x^{\prime}=b$, then

$$
a \oplus x=a \oplus x^{\prime}
$$

and hence $x=x^{\prime}$ by (g1).
(RL): Let y be a solution of $y \oplus a=b$. Then

$$
\begin{aligned}
y & =y \oplus(a \ominus a) \\
& =(y \oplus a) \ominus \operatorname{gyr}[y, a] a \\
& =(y \oplus a) \ominus \operatorname{gyr}[y \oplus a, a] a \\
& =b \ominus \operatorname{gyr}[b, a] a .
\end{aligned}
$$

Conversely, if $y=b \ominus \operatorname{gyr}[b, a] a$, then

$$
\begin{aligned}
b & =b \oplus(\ominus \operatorname{gyr}[b, a] a \oplus \operatorname{gyr}[b, a] a) \\
& =(b \ominus \operatorname{gyr}[b, a] a) \oplus \operatorname{gyr}[b, \ominus \operatorname{gyr}[b, a]] \operatorname{gyr}[b, a] a \\
& =(b \ominus \operatorname{gyr}[b, a] a) \oplus a \\
& =y \oplus a
\end{aligned}
$$

by Lemma 2.1.
Lemma 2.2. Let (G, \oplus) be a gyrogroup. Then

$$
\operatorname{gyr}[a, b](\ominus b \ominus a)=\ominus(a \oplus b)
$$

for any $a, b \in G$.
Proof. By (g11) and (g9), we have

$$
\begin{aligned}
\operatorname{gyr}[a, b](\ominus b \ominus a) & =\ominus(a \oplus b) \oplus(a \oplus(b \oplus(\ominus b \ominus a))) \\
& =\ominus(a \oplus b) .
\end{aligned}
$$

Proposition 2.6. Let (G, \oplus) be a gyrogroup. Then (G, \oplus) is gyrocommutative if and only if it possesses the automorphic inverse property,
(G5)' $\ominus(a \oplus b)=\ominus a \ominus b$ for any $a, b \in G$.
Proof. If (G, \oplus) is gyrocommutative, then

$$
\begin{aligned}
\operatorname{gyr}[a, b](\ominus(\ominus b \ominus a)) & =\ominus \operatorname{gyr}[a, b](\ominus b \ominus a) \\
& =a \oplus b \\
& =\operatorname{gyr}[a, b](b \oplus a)
\end{aligned}
$$

for any $a, b \in G$, by (g12) and Lemma 2.2. It implies that $\ominus(b \oplus a)=\ominus b \ominus a$.
Conversely, if (G, \oplus) possesses the automorphic inverse property, then

$$
\begin{aligned}
a \oplus b & =\ominus \operatorname{gyr}[a, b](\ominus b \ominus a) \\
& =\operatorname{gyr}[a, b](\ominus(\ominus b \ominus a)) \\
& =\operatorname{gyr}[a, b](b \oplus a)
\end{aligned}
$$

for any $a, b \in G$, by Lemma 2.2 and (g12).

3. Equivalence of gyrocommutative gyrogroups and K-loops

Theorem 3.1. A magma is a gyrocommutative gyrogroup if and only if it is a K loop.

Proof. First, we show that a gyrocommutative gyrogroup is a K-loop. Let (G, \oplus) be a gyrocommutative gyrogroup.
(K1): By (LL) of Proposition 2.5.
(K2): By (RL) of Proposition 2.5.
(K3): Let $a, b \in G$. Put $w=a \oplus b$ and $q=\ominus a$ then the map $(a, b) \mapsto(w, q)$ is a bijective self-map of $G \times G$ and

$$
\begin{aligned}
\operatorname{gyr}[a \oplus b, b]=\operatorname{gyr}[a, b] & \Longleftrightarrow \lambda_{(a \oplus b) \oplus b}^{-1} \lambda_{a \oplus b} \lambda_{b}=\lambda_{a \oplus b}^{-1} \lambda_{a} \lambda_{b} \\
& \Longleftrightarrow \lambda_{(a \oplus b) \oplus b}^{-1}=\lambda_{a \oplus b}^{-1} \lambda_{a} \lambda_{a \oplus b}^{-1} \\
& \Longleftrightarrow \lambda_{(a \oplus b) \oplus b}=\lambda_{a \oplus b} \lambda_{\ominus a} \lambda_{a \oplus b} \\
& \Longleftrightarrow \lambda_{w \oplus(q \oplus w)}=\lambda_{w} \lambda_{q} \lambda_{w} .
\end{aligned}
$$

By the condition (G5), (G, \oplus) satisfies the condition (K3)'. Hence (G, \oplus) satisfies the condition (K3) by Proposition 2.1.
(K4): By Proposition 2.4, any $a \in G$ has the inverse $\ominus a$. By Proposition 2.6, we have

$$
\ominus(a \oplus b)=(\ominus a) \oplus(\ominus b)
$$

for any $a, b \in G$.
Next, we show that a K-loop is a gyrocommutative gyrogroup. Let $(L,+)$ be a K-loop.
(G1): Since $(L,+)$ is a groupoid, $(L,+)$ has the identity e.
(G2): By the condition (K4), any $a \in L$ has the inverse $-a$.
(G3): Let $a, b, c \in L$. By the condition (K1), the equation $(a+b)+x=a+(b+c)$ has a unique solution x. Let $\delta[a, b]=\lambda_{a+b}^{-1} \lambda_{a} \lambda_{b}$. Then we have $\lambda_{a+b} \delta[a, b]=\lambda_{a} \lambda_{b}$. Hence $(a+b)+\delta[a, b](c)=a+(b+c)$. Thus $x=\delta[a, b](c)$ is the unique solution of $(a+b)+x=a+(b+c)$.
(G4): Let $a, x, y \in L$. Put $v=-x$ and $w=x+y$ then

$$
\begin{aligned}
\lambda_{a} \varrho_{a}(x)+\lambda_{a}^{-1}(y) & =\lambda_{a} \varrho_{a}(-v)+\lambda_{a}^{-1}(v+w) \\
& =\{a+(-v+a)\}+\lambda_{a}^{-1}(v+w) \\
& =a+\left\{-v+\left(a+\lambda_{a}^{-1}(v+w)\right)\right\} \\
& =\lambda_{a}(w) \\
& =\lambda_{a}(x+y)
\end{aligned}
$$

by the condition (K3). It implies that $\tau_{a}=\left(\lambda_{a} \varrho_{a}, \lambda_{a}^{-1}, \lambda_{a}\right) \in \operatorname{Top} L$ for any $a \in L$. Therefore $\tau_{a+b} \circ \tau_{a}^{-1} \circ \tau_{b}^{-1} \in \operatorname{Top} L$ for any $a, b \in L$ by Proposition 2.3. Put $\alpha=$
$\lambda_{a+b} \lambda_{a}^{-1} \lambda_{b}^{-1}$. The first component of $\tau_{a+b} \circ \tau_{a}^{-1} \circ \tau_{b}^{-1}$ is

$$
\begin{aligned}
& \lambda_{a+b} \varrho_{a+b}\left(\lambda_{a} \varrho_{a}\right)^{-1}\left(\lambda_{b} \varrho_{b}\right)^{-1} \\
= & \lambda_{a+b} \varrho_{a+b} \varrho_{a}^{-1} \lambda_{a}^{-1} \varrho_{b}^{-1} \lambda_{b}^{-1} \\
= & \lambda_{a+b} \varrho_{a+b}\left(\varrho_{b} \lambda_{a} \varrho_{a}\right)^{-1} \lambda_{b}^{-1} \\
= & \lambda_{a+b} \varrho_{a+b}\left(\lambda_{a} \varrho_{a+b}\right)^{-1} \lambda_{b}^{-1} \\
= & \lambda_{a+b} \varrho_{a+b} \varrho_{a+b}^{-1} \lambda_{a}^{-1} \lambda_{b}^{-1} \\
= & \lambda_{a+b} \lambda_{a}^{-1} \lambda_{b}^{-1} \\
= & \alpha
\end{aligned}
$$

by (K3)". The second component is $\lambda_{a+b}^{-1} \lambda_{a} \lambda_{b}=\delta[a, b]$. The third component is $\lambda_{a+b} \lambda_{a}^{-1} \lambda_{b}^{-1}=\alpha$. Thus, we have $(\alpha, \delta[a, b], \alpha) \in \operatorname{Top} L$. We have

$$
\alpha(e)=(a+b)+(-a+(-b+e))=(a+b)+(-a-b)=e
$$

by the condition (K4). Hence $(\delta[a, b], \delta[a, b], \delta[a, b]) \in \operatorname{Top} L$ by Proposition 2.3. It implies that $\delta[a, b]$ is an automorphism of $(L,+)$.
(G5): Let $a, b \in L$. Put $x=-b$ and $y=b+a$ then the map $(a, b) \mapsto(x, y)$ is a bijective self-map of $G \times G$ and

$$
\begin{aligned}
\lambda_{a+(b+a)}=\lambda_{a} \lambda_{b} \lambda_{a} & \Longleftrightarrow \lambda_{(x+y)+y}=\lambda_{(x+y)} \lambda_{-x} \lambda_{(x+y)} \\
& \Longleftrightarrow \lambda_{(x+y)+y}^{-1}=\lambda_{(x+y)}^{-1} \lambda_{x} \lambda_{(x+y)}^{-1} \\
& \Longleftrightarrow \lambda_{(x+y)+y}^{-1} \lambda_{(x+y)} \lambda_{y}=\lambda_{(x+y)}^{-1} \lambda_{x} \lambda_{y} \\
& \Longleftrightarrow \delta[x+y, y]=\delta[x, y] .
\end{aligned}
$$

Since $(L,+$) satisfies the condition (K3)', we have $\delta[x+y, y]=\delta[x, y]$ for any $x, y \in L$.
(G6): Since $(L,+)$ satisfies the conditions (G1) to (G5), $(L,+)$ is a gyrogroup. Since $(L,+$) satisfies the condition (K4), Proposition 2.6 asserts that $(L,+)$ satisfies the condition (G6).

Acknowledgements. The author would like to express his hearty thanks to one of the referees for his/her suggestion on the historical comments about gyrogroups and K-loops.

References

[1] A. S. Basarab, K-loops, Izv. Akad. Nauk Respub. Moldova Mat. 1 (1992), 28-33, 90-91.
[2] R. Beneduci and L. Molnár, On the standard K-loop structures of positive invertible elements in a C^{*}-algebra, J. Math. Anal. Appl. 420 (2014), 551-562.
[3] H. Kiechle, Theory of K-loops, Lecture Notes in Mathematics, vol. 1778, Springer, Berlin, Heidelberg, 2002.
[4] L. V. Sabinin, L. L. Sabinina and L. V. Sbitneva, On the notion of gyrogroup, Aequations Math. 56 (1998), 11-17.
[5] R. U. Sexl and H. K. Urbantke, Relativity, groups, particles, Springer Physics. Springer-Verlag, Vienna, 2001. Special relativity and relativistic symmetry in field and particle physics, Revised and translated from the third German (1992) edition by Urbantke.
[6] L. R. Soukis, The special loops, In Questions of the Theory of Quasigroups and Loops, Redakc.-Izdat. Otdel Akad. Nauk Moldav. SSR, Kishinev, 1970.
[7] A. A. Ungar, Thomas rotation and the parametrization of the Lorentz transformation group, Found. Phys. Lett. 1 (1988), 57-89.
[8] A. A. Ungar, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Result. Math. 16 (1989), 168-179.
[9] A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific, 2008.

College of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
E-mail address: toshikazu.abe.bin@vc.ibaraki.ac.jp

Received April 15, 2016
Revised September 7, 2016

[^0]: 2010 Mathematics Subject Classification. Primary 20N05.
 Key words and phrases. Gyrogroup, K-loop.

