ONE DIMENSIONAL PERTURBATION OF INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK I

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

Abstract

For an invariant subspace M_{1} of the Hardy space H^{2} over the bidisk \mathbb{D}^{2}, write $N_{1}=H^{2} \ominus M_{1}$. Let $\Omega\left(M_{1}\right)=M_{1} \ominus\left(z M_{1}+w M_{1}\right)$ and $\widetilde{\Omega}\left(N_{1}\right)=\{f \in$ $\left.N_{1}: z f, w f \in M_{1}\right\}$. Then $\Omega\left(M_{1}\right) \neq\{0\}$, and $\Omega\left(M_{1}\right), \widetilde{\Omega}\left(N_{1}\right)$ are key spaces to study the structure of M_{1}. It is known that there is a nonzero $f_{0} \in M_{1}$ such that $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. It is described the structures of $\Omega\left(M_{2}\right), \widetilde{\Omega}\left(N_{2}\right)$ using the words of $\Omega\left(M_{1}\right), \widetilde{\Omega}\left(N_{1}\right)$ and f_{0}. To do so, it occur many cases. We shall give examples for each cases.

1. Introduction

Let $H^{2}=H^{2}\left(\mathbb{D}^{2}\right)$ be the Hardy space over the bidisk \mathbb{D}^{2} with two variables z and w. Let T_{z} and T_{w} be the multiplication operators on H^{2} by z and w, respectively. A nonzero closed subspace M of H^{2} is said to be invariant if $T_{z} M \subset M$ and $T_{w} M \subset M$. The structure of invariant subspaces of H^{2} is fairly complicated and in this moment it seems to be out of reach (see $[1,6,7]$).

Let M be an invariant subspace. Then by the Wold decomposition theorem, we have

$$
M=\bigoplus_{n=0}^{\infty} w^{n}(M \ominus w M)
$$

so the space $M \ominus w M$ contains a lot of informations of an invariant subspace M. In [7], R. Yang defined the operator F_{z}^{M} on $M \ominus w M$ by

$$
F_{z}^{M} f=P_{M \ominus w M} T_{z} f, \quad f \in M \ominus w M
$$

where P_{A} is the orthogonal projection from H^{2} onto $A \subset H^{2}$, and Yang called F_{z}^{M} the fringe operator on $M \ominus w M$. It is considered that the informations of M are encoded in the operator theoretic properties of F_{z}^{M}.

[^0]We write $R_{z}^{M}=\left.T_{z}\right|_{M}$ and $R_{w}^{M}=\left.T_{w}\right|_{M}$. Then R_{z}^{M}, R_{z}^{M} are the operators on M. We set

$$
\begin{equation*}
\Omega(M)=M \ominus(z M+w M)=M \ominus \overline{z M+w M} . \tag{1.1}
\end{equation*}
$$

Then $\Omega(M) \neq\{0\}$ (see for example [7, p. 532]). Let $N=H^{2} \ominus M$. We also set

$$
\begin{equation*}
\widetilde{\Omega}(N)=\{f \in N: z f, w f \in M\} . \tag{1.2}
\end{equation*}
$$

It is known that $\widetilde{\Omega}(N)$ may be empty. In [7], Yang showed that $\operatorname{ker}\left(F_{z}^{M}\right)^{*}=\Omega(M)$ and $\operatorname{ker} F_{z}^{M}=w \widetilde{\Omega}(N)$, where $\left(F_{z}^{M}\right)^{*}$ is the adjoint operator of F_{z}^{M}. When F_{z}^{M} on $M \ominus w M$ is a Fredholm operator,

$$
\operatorname{ind} F_{z}^{M}=\operatorname{dim} \operatorname{ker} F_{z}^{M}-\operatorname{dim} \operatorname{ker}\left(F_{z}^{M}\right)^{*}
$$

is called the Fredholm index of F_{z}^{M}, see [2] for the study of operator theory. So in this case, we have

$$
\operatorname{ind} F_{z}^{M}=\operatorname{dim} \operatorname{ker} \Omega(M)-\operatorname{dim} \operatorname{ker} \widetilde{\Omega}(N) .
$$

There are a lot of examples of M satisfying that F_{z}^{M} on $M \ominus w M$ is Fredholm (see $[4,7,8,9])$.

The smallest number of elements in M which generate M as an invariant subspace is called the rank of M. By (1.1), it is easy to see that the rank of M is greater than or equals to dim ker $\Omega(M)$. Motivated by these facts, we are interested in the structures of $\Omega(M)$ and $\widetilde{\Omega}(N)$.

Let M_{1} be a nonzero invariant subspace of H^{2}. Then there is $f_{0} \in M_{1}$ with $\left\|f_{0}\right\|=1$ such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace (for example take f_{0} in $\left.\Omega\left(M_{1}\right)\right)$. Our problem is what kind of changes of the structure of M_{2} come from the ones of M_{1}. This problem is basic in the study of the structure of invariant subspaces. Let $N_{j}=H^{2} \ominus M_{j}$ for $j=1,2$. We shall describe $\Omega\left(M_{2}\right), \widetilde{\Omega}\left(N_{2}\right)$ using the words of $f_{0}, \Omega\left(M_{1}\right)$ and $\widetilde{\Omega}\left(N_{1}\right)$. To do so, we need other notations;

$$
\eta_{0}:=P_{M_{1} \ominus w M_{1}} f_{0}, \quad \varphi_{0}:=P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}, \quad \psi_{0}:=P_{\widetilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}
$$

In Section 2, we shall give some facts which are used later. In Section 3, we shall describe $\Omega\left(M_{2}\right), \widetilde{\Omega}\left(N_{2}\right)$ under the condition " $f_{0} \in \Omega\left(M_{1}\right)$ ". We need to divide the situation into several cases which depend on φ_{0} and ψ_{0}. To describe $\Omega\left(M_{2}\right)$, we shall study under the additional assumption that $\left(F_{z}^{M_{1}}\right)^{*}$ has closed range.

Suppose that $f_{0} \notin \Omega\left(M_{1}\right)$. Since $\Omega\left(M_{1}\right)=\left(H^{2} \ominus z M_{1}\right) \cap\left(H^{2} \ominus w M_{1}\right)$, either $f_{0} \notin M_{1} \ominus z M_{1}$ or $f_{0} \notin M_{1} \ominus w M_{1}$. In Section 4, we shall describe $\Omega\left(M_{2}\right), \widetilde{\Omega}\left(N_{2}\right)$ under the condition " $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$ ". Here we need to divide the situation into several cases which depend on f_{0}, φ_{0} and ψ_{0}.

In Section 5, we shall describe $\Omega\left(M_{2}\right), \widetilde{\Omega}\left(N_{2}\right)$ under the condition " $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1} "$. Here we need to divide the situation into several cases which depend on η_{0}, φ_{0} and ψ_{0}.

To prove our assertions, we use only elementary techniques. But we shall give examples which satisfy each condition given in Sections 3, 4 and 5. These examples will be some help for further investigation of invariant subspaces, and show us that the structure of invariant subspaces is not so simple.

In Section 6, we shall give some comments and problems on the related topics.

2. Preliminary

Let M be a nonzero invariant subspace of H^{2}. We have $\left(R_{z}^{M}\right)^{*}=\left.P_{M} T_{z}^{*}\right|_{M}$ and $\left(R_{w}^{M}\right)^{*}=\left.P_{M} T_{w}^{*}\right|_{M}$. Since $\operatorname{ker}\left(R_{w}^{M}\right)^{*}=M \ominus w M$, by (1.1) we have

$$
\Omega(M)=\operatorname{ker}\left(R_{z}^{M}\right)^{*} \cap \operatorname{ker}\left(R_{w}^{M}\right)^{*} .
$$

We also have

$$
\Omega(M)=\left\{f \in M \ominus w M: \operatorname{ker}\left(R_{z}^{M}\right)^{*} f=0\right\} .
$$

Let $N=H^{2} \ominus M$. Then we have $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$. So

$$
\begin{equation*}
\Omega(M)=\left\{f \in M \ominus w M: T_{z}^{*} f \in N\right\} . \tag{2.1}
\end{equation*}
$$

Since $w \widetilde{\Omega}(N) \subset M$, we have $w \widetilde{\Omega}(N) \subset M \ominus w M$. By (1.2), we have

$$
\begin{equation*}
\widetilde{\Omega}(N)=N \ominus\left(T_{z}^{*} N+T_{w}^{*} N\right)=N \ominus \overline{T_{z}^{*} N+T_{w}^{*} N} \tag{2.2}
\end{equation*}
$$

Let F_{z}^{M} on $M \ominus w M$ be the Fringe operator of M. We have that $\left(F_{z}^{M}\right)^{*}=\left(R_{z}^{M}\right)^{*}=$ $P_{M} T_{z}^{*}$ on $M \ominus w M$. By [7, Proposition 4.4], we have the following.
Lemma 2.1. $\operatorname{ker}\left(F_{z}^{M}\right)^{*}=\Omega(M)$ and $\operatorname{ker} F_{z}^{M}=w \widetilde{\Omega}(N)$.
We shall use the following lemma in the proof of Theorem 3.1.
Lemma 2.2. Suppose that $\left(F_{z}^{M}\right)^{*}$ has closed range. Then for every $f \in(M \ominus w M) \ominus$ $w \widetilde{\Omega}(N)$, there is a unique function h in $(M \ominus w M) \ominus \Omega(M)$ such that $\left(R_{z}^{M}\right)^{*} h=f$. Proof. We have $\left(F_{z}^{M}\right)^{*}=\left(R_{z}^{M}\right)^{*}$ on $M \ominus w M$. By the assumption, $\left(F_{z}^{M}\right)^{*}$ is a one-to-one map from $(M \ominus w M) \ominus \operatorname{ker}\left(F_{z}^{M}\right)^{*}$ onto $(M \ominus w M) \ominus \operatorname{ker} F_{z}^{M}$. Hence by Lemma 2.1, we get the assertion.

For many examples of $M,\left(F_{z}^{M}\right)^{*}$ has closed range. We do not know an example of M for which $\left(F_{z}^{M}\right)^{*}$ does not have closed range.

Let M_{1} be a nonzero invariant subspace of H^{2} and $f_{0} \in M_{1}$ with $\left\|f_{0}\right\|=1$ such that $M_{2}:=M_{1} \oplus \mathbb{C} \cdot f_{0}$ is an invariant subspace. We write $N_{j}=H^{2} \ominus N_{j}$ for $j=1,2$. Since $f_{0} \in N_{2}$, we have

$$
T_{z}^{*} f_{0}, T_{w}^{*} f_{0} \in N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}
$$

3. The case $f_{0} \in \Omega\left(M_{1}\right)$

In this section, we assume that $f_{0} \in \Omega\left(M_{1}\right)$ and we shall study the structure of $\Omega\left(M_{2}\right)$ and $\widetilde{\Omega}\left(N_{2}\right)$. Recall that

$$
\varphi_{0}=P_{\tilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0} \quad \text { and } \quad \psi_{0}=P_{\tilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}
$$

Lemma 3.1. Suppose that $f_{0} \in \Omega\left(M_{1}\right)$. Then we have the following.
(i) $f_{0} \in M_{1} \ominus w M_{1}$ and $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in M_{1} \ominus w M_{1}$.
(ii) $\varphi_{0}=0$ if and only if $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$.
(iii) $\psi_{0}=0$ if and only if $f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$.

Proof. (i) Since $\Omega\left(M_{1}\right) \subset M_{1} \ominus w M_{1}$, we have $f_{0} \in M_{1} \ominus w M_{1}$. Since $f_{0} \in \Omega\left(M_{1}\right)$, we have $T_{z}^{*} f_{0} \in N_{1}$. Hence $P_{M_{1}} w T_{z}^{*} f_{0} \in M_{1} \ominus w M_{1}$. Since $\left(R_{z}^{M_{1}}\right)^{*} w f_{0}=P_{M_{1}} w T_{z}^{*} f_{0}$, we have $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in M_{1} \ominus w M_{1}$.
(ii) We have that $\varphi_{0}=0$ if and only if $w T_{z}^{*} f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Since $w \widetilde{\Omega}\left(N_{1}\right) \subset M_{1}$, $w T_{z}^{*} f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$ if and only if $P_{M_{1}} w T_{z}^{*} f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Hence we get (ii).
(iii) We have that $\psi_{0}=0$ if and only if $T_{w}^{*} f_{0} \perp \widetilde{\Omega}\left(N_{1}\right)$. Hence we get (iii).

Lemma 3.2. If $f_{0} \in \Omega\left(M_{1}\right)$, then

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0}
$$

Proof. Since $M_{1}=M_{2} \oplus \mathbb{C} \cdot f_{0}$, we have $\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0} \subset M_{2}$. Since $\left(M_{1} \ominus w M_{1}\right) \perp$ $w M_{2},\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0} \subset M_{2} \ominus w M_{2}$. Since $f_{0} \in \Omega\left(M_{1}\right)$, we have $w f_{0} \in M_{2}$, so $w f_{0} \perp w M_{2}$. Hence

$$
\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0} \subset M_{2} \ominus w M_{2} .
$$

To show the reverse inclusion, let $f \in M_{2} \ominus w M_{2}$. Write $f=f_{1}+c w f_{0}$, where $f_{1} \in\left(M_{2} \ominus w M_{2}\right) \ominus \mathbb{C} \cdot w f_{0}$ and $c \in \mathbb{C}$. Then $T_{w}^{*} f_{1} \in N_{2}$. We have $\left\langle T_{w}^{*} f_{1}, f_{0}\right\rangle=$ $\left\langle f_{1}, w f_{0}\right\rangle=0$. Since $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$, we have $T_{w}^{*} f_{1} \in N_{1}$. Hence $f_{1} \in M_{1} \ominus w M_{1}$. Trivially we have $f_{1} \perp f_{0}$. Therefore $f_{1} \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}$. Thus

$$
M_{2} \ominus w M_{2} \subset\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0}
$$

so we get the assertion.
By the proof, the assertion of Lemma 3.2 holds if $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in$ $M_{1} \ominus w M_{1}$.

Lemma 3.3. Suppose that $f_{0} \in \Omega\left(M_{1}\right)$. Then we have the following.
(i) $\Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus$

$$
\left\{h \in\left(\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)\right) \oplus \mathbb{C} \cdot w f_{0}:\left(R_{z}^{M_{1}}\right)^{*} h \in \mathbb{C} \cdot f_{0}\right\}
$$

(ii) $\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus\left(\mathbb{C} \cdot \varphi_{0}+\mathbb{C} \cdot \psi_{0}\right)\right) \oplus \mathbb{C} \cdot f_{0}$.

Proof. (i) By (2.1),

$$
\Omega\left(M_{2}\right)=\left\{h \in M_{2} \ominus w M_{2}: T_{z}^{*} h \in N_{2}\right\} .
$$

Since $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$, we have

$$
\Omega\left(M_{2}\right)=\left\{h \in M_{2} \ominus w M_{2}:\left(R_{z}^{M_{1}}\right)^{*} h \in \mathbb{C} \cdot f_{0}\right\} .
$$

By Lemma 3.2,

$$
\begin{aligned}
& M_{2} \ominus w M_{2}=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \\
& \quad\left(\left(\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)\right) \oplus \mathbb{C} \cdot w f_{0}\right) .
\end{aligned}
$$

Since $f_{0} \in \Omega\left(M_{1}\right)$, we have $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right) \subset M_{2}$ and $\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0} \subset \Omega\left(M_{2}\right)$. Hence we have

$$
\begin{aligned}
& \Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \\
& \quad\left\{h \in\left(\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)\right) \oplus \mathbb{C} \cdot w f_{0}:\left(R_{z}^{M_{1}}\right)^{*} h \in \mathbb{C} \cdot f_{0}\right\} .
\end{aligned}
$$

(ii) Since $f_{0} \in \Omega\left(M_{1}\right)$, we have $\mathbb{C} \cdot f_{0} \subset \widetilde{\Omega}\left(N_{2}\right)$. By (2.2), we have

$$
\widetilde{\Omega}\left(N_{2}\right)=\left\{h \in \widetilde{\Omega}\left(N_{1}\right): z h \perp f_{0}, w h \perp f_{0}\right\} \oplus \mathbb{C} \cdot f_{0}
$$

Hence we get (ii).
The following follows directly from Lemma 3.3 (ii).
Corollary 3.1. Suppose that $f_{0} \in \Omega\left(M_{1}\right)$. Then we have the following.
(i) If $\varphi_{0}=\psi_{0}=0$, then $\widetilde{\Omega}\left(N_{2}\right)=\widetilde{\Omega}\left(N_{1}\right) \oplus \mathbb{C} \cdot f_{0}$.
(ii) If $\varphi_{0} \neq 0$ and $\psi_{0}=0$, then $\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus \mathbb{C} \cdot \varphi_{0}\right) \oplus \mathbb{C} \cdot f_{0}$.
(iii) Suppose that $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$. If $\mathbb{C} \cdot \varphi_{0}=\mathbb{C} \cdot \psi_{0}$, then

$$
\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus \mathbb{C} \cdot \varphi_{0}\right) \oplus \mathbb{C} \cdot f_{0}
$$

(iv) Suppose that $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$. If $\mathbb{C} \cdot \varphi_{0} \neq \mathbb{C} \cdot \psi_{0}$, then

$$
\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus\left(\mathbb{C} \cdot \varphi_{0}+\mathbb{C} \cdot \psi_{0}\right)\right) \oplus \mathbb{C} \cdot f_{0}
$$

Theorem 3.1. Suppose that $f_{0} \in \Omega\left(M_{1}\right)$. Moreover suppose that $\left(F_{z}^{M_{1}}\right)^{*}$ has closed range. Then we have the following.
(i) If $\varphi_{0}=\psi_{0}=0$, then there are nonzero functions h_{1} and h_{2} (may be zero) in $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ such that

$$
\Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus\left(\mathbb{C} \cdot h_{1}+\mathbb{C} \cdot\left(h_{2} \oplus w f_{0}\right)\right)
$$

(ii) If $\varphi_{0} \neq 0$ and $\psi_{0}=0$, then there is a nonzero function h_{3} in $\left(M_{1} \ominus w M_{1}\right) \ominus$ $\Omega\left(M_{1}\right)$ such that

$$
\Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot h_{3}
$$

(iii) Suppose that $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$. If $\mathbb{C} \cdot \varphi_{0}=\mathbb{C} \cdot \psi_{0}$, then there is a function g_{1} in $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ such that

$$
\Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot\left(g_{1} \oplus w f_{0}\right)
$$

(iv) Suppose that $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$. If $\mathbb{C} \cdot \varphi_{0} \neq \mathbb{C} \cdot \psi_{0}$, then

$$
\Omega\left(M_{2}\right)=\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot f_{0} .
$$

Proof. (i) Since $\psi_{0}=0$, by Lemma 3.1 (iii) we have $f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Since $f_{0} \in$ $\Omega\left(M_{1}\right) \subset M_{1} \ominus w M_{1}$, by Lemma 2.2 there is a unique nonzero function h_{1} in $\left(M_{1} \ominus\right.$ $\left.w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ satisfying $\left(R_{z}^{M_{1}}\right)^{*} h_{1}=f_{0}$. We note that

$$
\begin{equation*}
\left\{h \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right):\left(R_{z}^{M_{1}}\right)^{*} h \in \mathbb{C} \cdot f_{0}\right\}=\mathbb{C} \cdot h_{1} \tag{3.1}
\end{equation*}
$$

Since $f_{0} \in \Omega\left(M_{1}\right)$, by Lemma 3.1 (i) we have $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in M_{1} \ominus w M_{1}$. Since $\varphi_{0}=0$, by Lemma 3.1 (ii) we have $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Then by Lemma 2.2 again, there is a unique function h_{2} in $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ satisfying $\left(R_{z}^{M_{1}}\right)^{*} h_{2}=$ $-\left(R_{z}^{M_{1}}\right)^{*} w f_{0}$. Hence $\left(R_{z}^{M_{1}}\right)^{*}\left(h_{2} \oplus w f_{0}\right)=0 \in \mathbb{C} \cdot f_{0}$.

Suppose that $\left(R_{z}^{M_{1}}\right)^{*}\left(h \oplus w f_{0}\right) \in \mathbb{C} \cdot f_{0}$ for some $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$. Then $\left(R_{z}^{M_{1}}\right)^{*}\left(h-h_{2}\right) \in \mathbb{C} \cdot f_{0}$. Since $h-h_{2} \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$, by (3.1) we have $h-h_{2} \in \mathbb{C} \cdot h_{1}$, and

$$
h \oplus w f_{0} \in h_{2}+\mathbb{C} \cdot h_{1}+w f_{0} \subset \mathbb{C} \cdot h_{1}+\mathbb{C} \cdot\left(h_{2} \oplus w f_{0}\right)
$$

By Lemma 3.3 (i), we get (i).
(ii) Since $f_{0} \in \Omega\left(M_{1}\right)$, by Lemma 3.1 (i) we have $f_{0} \in M_{1} \ominus w M_{1}$ and $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in$ $M_{1} \ominus w M_{1}$. Since $\psi_{0}=0$, by Lemma 3.1 (iii) $f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Then by Lemma 2.2, there is a unique nonzero function h_{3} in $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ such that $\left(R_{z}^{M_{1}}\right)^{*} h_{3}=$ f_{0}. Since $\varphi_{0} \neq 0$, by Lemma 3.1 (ii) we have $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \not \perp w \widetilde{\Omega}\left(N_{1}\right)$. Then by Lemma 2.2 again, $\left(R_{z}^{M_{1}}\right)^{*} h \neq\left(R_{z}^{M_{1}}\right)^{*} w f_{0}$ for any $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$.

Suppose that there is $g \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ satisfying that $\left(R_{z}^{M_{1}}\right)^{*}\left(g \oplus w f_{0}\right)=$ $c f_{0}$ for some $c \in \mathbb{C}$. Then

$$
\begin{aligned}
\left(R_{z}^{M_{1}}\right)^{*} w f_{0} & =\left(R_{z}^{M_{1}}\right)^{*}\left(g \oplus w f_{0}\right)-\left(R_{z}^{M_{1}}\right)^{*} g=c f_{0}-\left(R_{z}^{M_{1}}\right)^{*} g \\
& =\left(R_{z}^{M_{1}}\right)^{*}\left(c h_{3}-g\right) .
\end{aligned}
$$

Since $c h_{3}-g \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$, this contradicts the last paragraph. Hence by Lemma 3.3 (i), we get (ii).
(iii) Suppose that $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$. By the assumption, $\varphi_{0}=c_{1} \psi_{0}$ for some $c_{1} \in \mathbb{C}$ with $c_{1} \neq 0$. Then $P_{\widetilde{\Omega}\left(N_{1}\right)}\left(c_{1} T_{w}^{*} f_{0}-T_{z}^{*} f_{0}\right)=0$, so

$$
P_{w \widetilde{\Omega}\left(N_{1}\right)}\left(c_{1} w T_{w}^{*} f_{0}-w T_{z}^{*} f_{0}\right)=0
$$

We have

$$
P_{w \tilde{\Omega}\left(N_{1}\right)} w T_{z}^{*} f_{0}=P_{w \tilde{\Omega}\left(N_{1}\right)} P_{M_{1}} T_{z}^{*} w f_{0}=P_{w \tilde{\Omega}\left(N_{1}\right)}\left(R_{z}^{M_{1}}\right)^{*} w f_{0}
$$

and $P_{w \tilde{\Omega}\left(N_{1}\right)} w T_{w}^{*} f_{0}=P_{w \tilde{\Omega}\left(N_{1}\right)} f_{0}$. Then

$$
P_{w \widetilde{\Omega}\left(N_{1}\right)}\left(c_{1} f_{0}-\left(R_{z}^{M_{1}}\right)^{*} w f_{0}\right)=0 .
$$

Hence $c_{1} f_{0}-\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Since $f_{0} \in \Omega\left(M_{1}\right)$, by Lemma 3.1 (i) we have

$$
c_{1} f_{0}-\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in M_{1} \ominus w M_{1} .
$$

By Lemma 2.2, there is a unique function g_{1} in $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ such that

$$
\left(R_{z}^{M_{1}}\right)^{*} g_{1}=c_{1} f_{0}-\left(R_{z}^{M_{1}}\right)^{*} w f_{0} .
$$

Hence

$$
\left(R_{z}^{M_{1}}\right)^{*}\left(g_{1} \oplus w f_{0}\right)=c_{1} f_{0} .
$$

Since $\psi_{0} \neq 0$, by Lemma 3.1 (iii) we have $f_{0} \not \perp w \widetilde{\Omega}\left(N_{1}\right)$. Since $f_{0} \in M_{1} \ominus w M_{1}$, by Lemma $2.2\left(R_{z}^{M_{1}}\right)^{*} h \notin \mathbb{C} \cdot f_{0}$ for any nonzero function $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$. Hence by Lemma 3.3 (i), we get (iii).
(iv) By the assumption,

$$
\mathbb{C} \cdot P_{\tilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0} \neq \mathbb{C} \cdot P_{\tilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}
$$

As the proof of (iii), we have

$$
\begin{equation*}
\mathbb{C} \cdot P_{w \widetilde{\Omega}\left(N_{1}\right)}\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \neq \mathbb{C} \cdot P_{w \widetilde{\Omega}\left(N_{1}\right)} f_{0} \tag{3.2}
\end{equation*}
$$

As the last paragraph of (iii), $\left(R_{z}^{M_{1}}\right)^{*} h \notin \mathbb{C} \cdot f_{0}$ for any nonzero function $h \in$ $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$.

Assume that

$$
\left(R_{z}^{M_{1}}\right)^{*}\left(g \oplus w f_{0}\right) \in \mathbb{C} \cdot f_{0}
$$

for some $g \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$. Since $\left(R_{z}^{M_{1}}\right)^{*} g \in M_{1} \ominus w M_{1},\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in$ $M_{1} \ominus w M_{1}$, so we may write

$$
\begin{equation*}
\left(R_{z}^{M_{1}}\right)^{*} w f_{0}=p \oplus c_{1} f_{0} \in\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot f_{0} . \tag{3.3}
\end{equation*}
$$

Then $\left(R_{z}^{M_{1}}\right)^{*} g=-p \oplus c_{2} f_{0}$ for some $c_{2} \in \mathbb{C}$. We have

$$
\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right) \perp \operatorname{ker} F_{z}^{M_{1}} .
$$

By Lemma 2.1,

$$
\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right) \perp w \widetilde{\Omega}\left(N_{1}\right) .
$$

Hence $-p \oplus c_{2} f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$, so $P_{w \widetilde{\Omega}\left(N_{1}\right)} p=c_{2} P_{w \widetilde{\Omega}\left(N_{1}\right)} f_{0}$. By (3.3),

$$
\begin{aligned}
P_{w \widetilde{\Omega}\left(N_{1}\right)}\left(R_{z}^{M_{1}}\right)^{*} w f_{0} & =P_{w \widetilde{\Omega}\left(N_{1}\right)} p+c_{1} P_{w \widetilde{\Omega}\left(N_{1}\right)} f_{0} \\
& =\left(c_{1}+c_{2}\right) P_{w \widetilde{\Omega}\left(N_{1}\right)} f_{0} .
\end{aligned}
$$

Since $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$, by Lemma 3.1 (ii) and (iii) we have $P_{w \widetilde{\Omega}\left(N_{1}\right)}\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \neq 0$ and $P_{w \widetilde{\Omega}\left(N_{1}\right)} f_{0} \neq 0$. Hence the above equations contradict (3.2). Therefore there are
no $g \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ satisfying that $\left(R_{z}^{M_{1}}\right)^{*}\left(g \oplus w f_{0}\right) \in \mathbb{C} \cdot f_{0}$. By Lemma 3.3 (i), we get (iv).

When $\varphi_{0}=0$ and $\psi_{0} \neq 0$ in Corollary 3.1 and Theorem 3.1, we can describe $\widetilde{\Omega}\left(N_{2}\right)$ and $\Omega\left(M_{2}\right)$ exchanging variables z and w in Corollary 3.1 (ii) and Theorem 3.1 (ii), respectively. We do not know whether in Theorem 3.1 (iii) we can take g_{1} as $g_{1} \neq 0$, and this is equivalent to $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \notin \mathbb{C} \cdot f_{0}$.

We shall show the examples which satisfy each conditions in Corollary 3.1 and Theorem 3.1.

Example 3.1. (i-1) Let $M_{1}=z^{2} H^{2}+w H^{2}, f_{0}=w$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1} and M_{2} are invariant subspaces. We have

$$
M_{1} \ominus w M_{1}=z^{2} H^{2}(z) \oplus \mathbb{C} \cdot z w \oplus \mathbb{C} \cdot w,
$$

where $H^{2}(z)$ is the z-variable Hardy space, $\Omega\left(M_{1}\right)=\mathbb{C} \cdot z^{2} \oplus \mathbb{C} \cdot w, f_{0} \in \Omega\left(M_{1}\right)$ and $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot z$. Hence $T_{z}^{*} f_{0}=0 \perp \widetilde{\Omega}\left(N_{1}\right)$ and $T_{w}^{*} f_{0}=1 \perp \widetilde{\Omega}\left(N_{1}\right)$, so $\varphi_{0}=\psi_{0}=0$. In the proof of Theorem 3.1 (i), h_{2} belongs to $\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ and $\left(R_{z}^{M_{1}}\right)^{*} h_{2}=$ $\left(R_{z}^{M_{1}}\right)^{*} w f_{0}$. In this case, we have $\left(R_{z}^{M_{1}}\right)^{*} w f_{0}=0$, so $h_{2} \in \Omega\left(M_{1}\right)$ and $h_{2}=0$. Note that

$$
\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right)=z^{2} H^{2}(z) \oplus \mathbb{C} \cdot w .
$$

(i-2) Let

$$
M_{1}=z^{2} b_{\alpha}(z) H^{2}+b_{\alpha}(z) w H^{2}+w^{2} H^{2},
$$

where $b_{\alpha}=(z-\alpha) /(1-\bar{\alpha} z)$ and $\alpha \in \mathbb{D}$ with $0<|\alpha|<1$. Then

$$
\Omega\left(M_{1}\right)=\mathbb{C} \cdot z^{2} b_{\alpha}(z) \oplus \mathbb{C} \cdot b_{\alpha}(z) w .
$$

Take $f_{0}=b_{\alpha}(z) w \in \Omega\left(M_{1}\right)$. We have $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot z b_{\alpha}(z)$. Then $T_{z}^{*} f_{0} \perp \widetilde{\Omega}\left(N_{1}\right)$ and $T_{w}^{*} f_{0} \perp \widetilde{\Omega}\left(N_{1}\right)$, so $\varphi_{0}=\psi_{0}=0$. We have

$$
M_{1} \ominus w M_{1}=z^{2} b_{\alpha}(z) H^{2}(z) \oplus \mathbb{C} \cdot z b_{\alpha}(z) w \oplus \mathbb{C} \cdot \frac{w^{2}}{1-\bar{\alpha} z}
$$

and

$$
\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)=z^{3} b_{\alpha}(z) H^{2}(z) \oplus \mathbb{C} \cdot z b_{\alpha}(z) w \oplus \mathbb{C} \cdot \frac{w^{2}}{1-\bar{\alpha} z}
$$

Take $h_{2}=w^{2} /(1-\bar{\alpha} z)$. Then $h_{2} \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$ and $h_{2} \neq 0$. We have

$$
\left(R_{z}^{M_{1}}\right)^{*} w f_{0}=\left(R_{z}^{M_{1}}\right)^{*} b_{\alpha}(z) w^{2}=\frac{\alpha}{1-\bar{\alpha} z} w^{2}=\left(R_{z}^{M_{1}}\right)^{*} h_{2} .
$$

Note that

$$
\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right)=z^{2} b_{\alpha}(z) H^{2}(z) \oplus \mathbb{C} \cdot \frac{w^{2}}{1-\bar{\alpha} z}
$$

(ii) Let $M_{1}=z H^{2}+w H^{2}, f_{0}=z$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1} and M_{2} are invariant subspaces. We have $M_{1} \ominus w M_{1}=z H^{2}(z) \oplus \mathbb{C} \cdot w, \Omega\left(M_{1}\right)=\mathbb{C} \cdot z \oplus \mathbb{C} \cdot w$,
$f_{0} \in \Omega\left(M_{1}\right)$ and $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot 1$. Hence $T_{z}^{*} f_{0}=1 \not \perp \widetilde{\Omega}\left(N_{1}\right)$ and $T_{w}^{*} f_{0}=0 \perp \widetilde{\Omega}\left(N_{1}\right)$, so $\varphi_{0} \neq 0$ and $\psi_{0}=0$. Note that $\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right)=z H^{2}(z)$.
(iii) Let $M_{1}=z H^{2}+w H^{2}, f_{0}=z+w$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1}, M_{2} are invariant subspaces. We have $\Omega\left(M_{1}\right)=\mathbb{C} \cdot z \oplus \mathbb{C} \cdot w, f_{0} \in \Omega\left(M_{1}\right)$ and $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot 1$. Hence $T_{z}^{*} f_{0}=T_{w}^{*} f_{0}=1 \not 又 \widetilde{\Omega}\left(N_{1}\right)$, so $\varphi_{0} \neq 0, \psi_{0} \neq 0$ and $\mathbb{C} \cdot \varphi_{0}=\mathbb{C} \cdot \psi_{0}$. We have that $c_{1}=1$ in the proof of Theorem 3.1 (iv). Hence

$$
\left(R_{z}^{M_{1}}\right)^{*} w f_{0}-c_{1} f_{0}=w-(z+w)=-z .
$$

We also have

$$
\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)=z^{2} H^{2}(z) .
$$

Let $g_{1}=-z^{2} \in\left(M_{1} \ominus w M_{1}\right) \ominus \Omega\left(M_{1}\right)$. Then $g_{1} \neq 0$ and

$$
\left(R_{z}^{M_{1}}\right)^{*} g_{1}=\left(R_{z}^{M_{1}}\right)^{*} w f_{0}-c_{1} f_{0} .
$$

(iv) Let $M_{1}=z^{2} H^{2}+z w H^{2}+w^{2} H^{2}, f_{0}=z w$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1}, M_{2} are invariant subspaces. We have

$$
\begin{gathered}
M_{1} \ominus w M_{1}=z^{2} H^{2}(z) \oplus \mathbb{C} \cdot z w \oplus \mathbb{C} \cdot w^{2}, \\
\Omega\left(M_{1}\right)=\mathbb{C} \cdot z^{2} \oplus \mathbb{C} \cdot z w \oplus \mathbb{C} \cdot w^{2},
\end{gathered}
$$

$f_{0} \in \Omega\left(M_{1}\right)$ and $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot z+\mathbb{C} \cdot w$. Hence $T_{z}^{*} f_{0}=w \not \perp \widetilde{\Omega}\left(N_{1}\right), T_{w}^{*} f_{0}=z \not \perp \widetilde{\Omega}\left(N_{1}\right)$ and $P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}=w \neq z=P_{\widetilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}$. Therefore $\varphi_{0} \neq 0, \psi_{0} \neq 0$ and $\mathbb{C} \cdot \varphi_{0} \neq \mathbb{C} \cdot \psi_{0}$. Note that $\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right)=z^{2} H^{2}(z)$.

4. The case that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$

If $f_{0} \notin \Omega\left(M_{1}\right)$, then either $f_{0} \notin M_{1} \ominus z M_{1}$ or $f_{0} \notin M_{1} \ominus w M_{1}$. In this section, we assume that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. Since $M_{1} \ominus M_{2}=\mathbb{C} \cdot f_{0}$, there is $\alpha_{0} \in \mathbb{C}$ with $\alpha_{0} \neq 0$ satisfying that

$$
\begin{equation*}
\left(R_{z}^{M_{1}}\right)^{*} f_{0}=\alpha_{0} f_{0} \tag{4.1}
\end{equation*}
$$

We shall study the structure of $\Omega\left(M_{2}\right)$ and $\widetilde{\Omega}\left(N_{2}\right)$. Let

$$
\sigma_{0}=P_{M_{1} \ominus z M_{1}} f_{0} .
$$

Since $\Omega\left(M_{1}\right) \subset M_{1} \ominus z M_{1}$, we have $P_{\Omega\left(M_{1}\right)} \sigma_{0}=P_{\Omega\left(M_{1}\right)} f_{0}$.
Lemma 4.1. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. Then $\sigma_{0} \neq 0$ and $f_{0}=\sigma_{0} /\left(1-\alpha_{0} z\right)$.

Proof. Since $\left(R_{z}^{M_{1}}\right)^{*} f_{0}=\alpha_{0} f_{0}$, we have $f_{0}=\alpha_{0} z f_{0}+\sigma_{0}$. Then we get the assertion.

Lemma 4.2. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. Then

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0}
$$

Proof. Since $M_{1} \ominus M_{2}=\mathbb{C} \cdot f_{0}$ and $w f_{0} \perp f_{0}$, we have $w f_{0} \in M_{2}$. In the same way as the proof of Lemma 3.2, we have the assertion.

Lemma 4.3. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. Then we have the following.
(i) $\Omega\left(M_{2}\right)=\left\{f \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}:\left(R_{z}^{M_{1}}\right)^{*} f \in \mathbb{C} \cdot f_{0}\right\}$.
(ii) $\widetilde{\Omega}\left(N_{2}\right)=\left(N_{1} \oplus \mathbb{C} \cdot f_{0}\right) \ominus\left(\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0}\right)$.

Proof. (i) By (2.1),

$$
\Omega\left(M_{2}\right)=\left\{f \in M_{2} \ominus w M_{2}: T_{z}^{*} f \in N_{2}\right\} .
$$

Since $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$, we have

$$
\Omega\left(M_{2}\right)=\left\{f \in M_{2} \ominus w M_{2}:\left(R_{z}^{M_{1}}\right)^{*} f \in \mathbb{C} \cdot f_{0}\right\} .
$$

By Lemma 4.2,

$$
\Omega\left(M_{2}\right)=\left\{f \in\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \oplus \mathbb{C} \cdot w f_{0}:\left(R_{z}^{M_{1}}\right)^{*} f \in \mathbb{C} \cdot f_{0}\right\}
$$

Suppose that $\left(R_{z}^{M_{1}}\right)^{*}\left(g \oplus w f_{0}\right) \in \mathbb{C} \cdot f_{0}$ for some $g \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}$. We have $\left(R_{z}^{M_{1}}\right)^{*} g=0$ and $f_{0} \in M_{1} \ominus w M_{1}$. Hence $\left(R_{z}^{M_{1}}\right)^{*} w f_{0} \in M_{1} \ominus w M_{1}$.
By (4.1), we may write $T_{z}^{*} f_{0}=\alpha_{0} f_{0} \oplus f_{1}$ for some $f_{1} \in N_{1}$. Then

$$
\left(R_{z}^{M_{1}}\right)^{*} w f_{0}=P_{M_{1}} w T_{z}^{*} f_{0}=\alpha_{0} w f_{0}+P_{M_{1}} w f_{1} .
$$

Since $f_{1} \in N_{1}, P_{M_{1}} w f_{1} \in M_{1} \ominus w M_{1}$. Hence $\alpha_{0} w f_{0} \in M_{1} \ominus w M_{1}$, so $\alpha_{0}=0$. This contradicts $\alpha_{0} \neq 0$. Therefore $\left(R_{z}^{M_{1}}\right)^{*}\left(g \oplus w f_{0}\right) \notin \mathbb{C} \cdot f_{0}$ for any $g \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}$. Hence we get (i).
(ii) We have $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$. Hence

$$
\overline{T_{z}^{*} N_{2}+T_{w}^{*} N_{2}}=\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0}+\mathbb{C} \cdot T_{w}^{*} f_{0}
$$

By (4.1), we have $f_{0} \perp$ ker $F_{z}^{M_{1}}$, so by Lemma $2.1 f_{0} \perp w \widetilde{\Omega}\left(N_{1}\right)$. Hence $T_{w}^{*} f_{0} \perp$ $\widetilde{\Omega}\left(N_{1}\right)$. Since $f_{0} \in M_{1} \ominus w M_{1}$, we have $T_{w}^{*} f_{0} \in N_{1}$. By $(2.2), T_{w}^{*} f_{0} \in \overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}$. Therefore

$$
\overline{T_{z}^{*} N_{2}+T_{w}^{*} N_{2}}=\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0}
$$

By (2.2) again, we get (ii).
Theorem 4.1. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. Then we have the following.
(i) If $f_{0} \perp \Omega\left(M_{1}\right)$, then $\Omega\left(M_{2}\right)=\Omega\left(M_{1}\right)$.
(ii) If $f_{0} \not \perp \Omega\left(M_{1}\right)$, then there is a nonzero function h_{0} in $\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}$ such that

$$
\Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot P_{\Omega\left(M_{1}\right)} f_{0}\right) \oplus \mathbb{C} \cdot h_{0}
$$

Proof. (i) Suppose that there is $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}$ satisfying $\left(R_{z}^{M_{1}}\right)^{*} h=f_{0}$. By (4.1), we have that $\left(R_{z}^{M_{1}}\right)^{*}\left(h-f_{0} / \alpha_{0}\right)=0$, so $h-f_{0} / \alpha_{0} \in \Omega\left(M_{1}\right)$. Since $f_{0} \perp \Omega\left(M_{1}\right)$, we have

$$
0=\left\langle h-f_{0} / \alpha_{0}, f_{0}\right\rangle=-\left\|f_{0}\right\|^{2} / \alpha_{0}
$$

This contradicts $f_{0} \neq 0$. Hence by Lemma 4.3 (i), we have

$$
\begin{aligned}
\Omega\left(M_{2}\right) & =\left\{f \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}:\left(R_{z}^{M_{1}}\right)^{*} f=0\right\} \\
& =\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \cap \Omega\left(M_{1}\right)=\Omega\left(M_{1}\right) .
\end{aligned}
$$

(ii) By the assumption, we have $P_{\Omega\left(M_{1}\right)} f_{0} \neq 0$. Let

$$
h_{0}=\frac{1}{\alpha_{0}}\left(f_{0}-\frac{\left\|f_{0}\right\|^{2}}{\left\|P_{\Omega\left(M_{1}\right)} f_{0}\right\|^{2}} P_{\Omega\left(M_{1}\right)} f_{0}\right) \in M_{1} \ominus w M_{1} .
$$

Since $f_{0} \notin \Omega\left(M_{1}\right)$, we have that $h_{0} \neq 0$ and

$$
\left\langle h_{0}, f_{0}\right\rangle=\frac{1}{\alpha_{0}}\left(\left\|f_{0}\right\|^{2}-\left\|f_{0}\right\|^{2}\right)=0 .
$$

Hence $h_{0} \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}, h_{0} \in M_{2} \ominus w M_{2}$ and

$$
\left(R_{z}^{M_{1}}\right)^{*} h_{0}=\frac{1}{\alpha_{0}}\left(R_{z}^{M_{1}}\right)^{*} f_{0}=f_{0}
$$

Moreover we have $h_{0} \in \Omega\left(M_{2}\right)$. Therefore by Lemma 4.3 (i), we have

$$
\begin{aligned}
\Omega\left(M_{2}\right) & =\left\{f \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}:\left(R_{z}^{M_{1}}\right)^{*} f=0\right\} \oplus \mathbb{C} \cdot h_{0} \\
& =\left(\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{0}\right) \cap \Omega\left(M_{1}\right)\right) \oplus \mathbb{C} \cdot h_{0} \\
& =\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot P_{\Omega\left(M_{1}\right)} f_{0}\right) \oplus \mathbb{C} \cdot h_{0} .
\end{aligned}
$$

Recall that $\varphi_{0}=P_{\tilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}$.
Theorem 4.2. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. Then we have the following.
(i) If $\varphi_{0}=0$, then $\widetilde{\Omega}\left(N_{2}\right)=\widetilde{\Omega}\left(N_{1}\right)$.
(ii) If $\varphi_{0} \neq 0$, then

$$
\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \oplus \mathbb{C} \cdot f_{0}\right) \ominus \mathbb{C} \cdot\left(\varphi_{0} \oplus \alpha_{0} f_{0}\right)
$$

Proof. (i) Since $\varphi_{0}=0$, we have $T_{z}^{*} f_{0} \perp \widetilde{\Omega}\left(N_{1}\right)$. Then by (2.2), $P_{N_{1}} T_{z}^{*} f_{0} \in$ $\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}$. Since $T_{z}^{*} f_{0} \in N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$, we have

$$
T_{z}^{*} f_{0} \in \overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}} \oplus \mathbb{C} \cdot f_{0},
$$

so

$$
\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0}=\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}} \oplus \mathbb{C} \cdot f_{0}
$$

Then by Lemma 4.3 (ii),

$$
\begin{aligned}
\widetilde{\Omega}\left(N_{2}\right) & =\left(N_{1} \oplus \mathbb{C} \cdot f_{0}\right) \ominus\left(\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0}\right) \\
& =\left(N_{1} \oplus \mathbb{C} \cdot f_{0}\right) \ominus\left(\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}} \oplus \mathbb{C} \cdot f_{0}\right) \\
& =N_{1} \ominus \overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}=\widetilde{\Omega}\left(N_{1}\right) \quad \text { by }(2.2) .
\end{aligned}
$$

(ii) Suppose that $\varphi_{0} \neq 0$. We have

$$
\begin{aligned}
& \overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0} \\
& =\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}} \oplus \mathbb{C} \cdot\left(P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0} \oplus \alpha_{0} f_{0}\right) \\
& =\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}} \oplus \mathbb{C} \cdot\left(\varphi_{0} \oplus \alpha_{0} f_{0}\right) .
\end{aligned}
$$

Hence by Lemma 4.3 (ii),

$$
\begin{aligned}
\widetilde{\Omega}\left(N_{2}\right) & =\left(N_{1} \oplus \mathbb{C} \cdot f_{0}\right) \ominus\left(\overline{T_{z}^{*} N_{1}+T_{w}^{*} N_{1}}+\mathbb{C} \cdot T_{z}^{*} f_{0}\right) \\
& =\left(\widetilde{\Omega}\left(N_{1}\right) \oplus \mathbb{C} \cdot f_{0}\right) \ominus \mathbb{C} \cdot\left(\varphi_{0} \oplus \alpha_{0} f_{0}\right) \quad \text { by }(2.2) \text { again. }
\end{aligned}
$$

We shall show four examples which satisfy each conditions in the proof of Theorems 4.1 and 4.2.

Example 4.1. (i) Let

$$
M_{1}=\frac{z-a}{1-\bar{a} z} H^{2}+w H^{2}, \quad 0<|a|<1,
$$

$f_{0}=\frac{w}{1-\bar{a} \bar{z}}$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1} and M_{2} are invariant subspaces. We have

$$
M_{1} \ominus z M_{1}=\mathbb{C} \cdot \frac{z-a}{1-\bar{a} z} \oplus w H^{2}(w)
$$

and

$$
M_{1} \ominus w M_{1}=\frac{z-a}{1-\bar{a} z} H^{2}(z) \oplus \mathbb{C} \cdot \frac{w}{1-\bar{a} z}
$$

Then $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. We have $\Omega\left(M_{1}\right)=\mathbb{C} \cdot \frac{z-a}{1-\bar{a} z}$ (see [5]). Then $f_{0} \perp \Omega\left(M_{1}\right)$. We have $\widetilde{\Omega}\left(N_{1}\right)=\{0\}$, so $\varphi_{0}=P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}=0$.
(ii) Let

$$
M_{1}=z \frac{z-a}{1-\bar{a} z} H^{2}+z w H^{2}+w^{2} H^{2}, \quad 0<|a|<1
$$

$f_{0}=\frac{z w}{1-\bar{a} z}$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1} and M_{2} are invariant subspaces. We have

$$
M_{1} \ominus z M_{1}=\mathbb{C} \cdot z \frac{z-a}{1-\bar{a} z} \oplus \mathbb{C} \cdot z w \oplus w^{2} H^{2}(w)
$$

and

$$
M_{1} \ominus w M_{1}=z \frac{z-a}{1-\bar{a} z} H^{2}(z) \oplus \mathbb{C} \cdot \frac{z w}{1-\bar{a} z} \oplus \mathbb{C} \cdot w^{2}
$$

Then $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. We have

$$
\Omega\left(M_{1}\right)=\mathbb{C} \cdot z \frac{z-a}{1-\bar{a} z} \oplus \mathbb{C} \cdot w^{2} .
$$

Hence $f_{0} \perp \Omega\left(M_{1}\right)$. We have $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot w$ and $T_{z}^{*} f_{0}=w /(1-\bar{a} z)$, so $\varphi_{0}=$ $P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0} \neq 0$.
(iii) Let

$$
M_{1}=\frac{z-\alpha}{1-\bar{\alpha} z} H^{2}+\frac{w-\beta}{1-\bar{\beta} w} H^{2}, \quad 0<|\alpha|<1, \quad 0<|\beta|<1,
$$

$f_{0}=\frac{1}{1-\bar{\alpha} z} \frac{w-\beta}{1-\bar{\beta} w}$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1} and M_{2} are invariant subspaces. We have

$$
M_{1} \ominus z M_{1}=\mathbb{C} \cdot \frac{z-\alpha}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w} \oplus \frac{w-\beta}{1-\bar{\beta} w} H^{2}(w)
$$

and

$$
M_{1} \ominus w M_{1}=\frac{z-\alpha}{1-\bar{\alpha} z} H^{2}(z) \oplus \mathbb{C} \cdot \frac{1}{1-\bar{\alpha} z} \frac{w-\beta}{1-\bar{\beta} w} .
$$

Then $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. We have

$$
\Omega\left(M_{1}\right)=\mathbb{C} \cdot\left(\frac{-\bar{\beta}}{1-|\beta|^{2}} \frac{w-\beta}{1-\bar{\beta} w}+\frac{-\bar{\alpha}}{1-\bar{\beta} w} \frac{z-\alpha}{1-\bar{\alpha} z}\right)
$$

(see [5]). Then $f_{0} \not \perp \Omega\left(M_{1}\right)$. We also have $\widetilde{\Omega}\left(N_{1}\right)=\{0\}$, so $\varphi_{0}=0$.
(iv) Let

$$
M_{1}=z \frac{z-\alpha}{1-\bar{\alpha} z} H^{2}+w \frac{w-\beta}{1-\bar{\beta} w} H^{2}, \quad 0<|\alpha|<1, \quad 0<|\beta|<1,
$$

$f_{0}=\frac{z}{1-\bar{\alpha} z} \frac{z-\alpha}{1-\bar{\alpha} z}$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then M_{1} and M_{2} are invariant subspaces. We have

$$
\begin{array}{r}
M_{1} \ominus z M_{1}=\mathbb{C} \cdot z \frac{z-\alpha}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w} \oplus \mathbb{C} \cdot z \frac{z-\alpha}{1-\bar{\alpha} z} \frac{w-\beta}{1-\bar{\beta} w} \\
\oplus w \frac{w-\beta}{1-\bar{\beta} w} H^{2}(w)
\end{array}
$$

and

$$
\begin{array}{r}
M_{1} \ominus w M_{1}=\mathbb{C} \cdot \frac{1}{1-\bar{\alpha} z} w \frac{w-\beta}{1-\bar{\beta} w} \oplus \mathbb{C} \cdot \frac{z-\alpha}{1-\bar{\alpha} z} w \frac{w-\beta}{1-\bar{\beta} w} \\
\oplus z \frac{z-\alpha}{1-\bar{\alpha} z} H^{2}(z) .
\end{array}
$$

Hence $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \in M_{1} \ominus w M_{1}$. We have

$$
\Omega\left(M_{1}\right)=\mathbb{C} \cdot z \frac{z-\alpha}{1-\bar{\alpha} z}+\mathbb{C} \cdot w \frac{w-\beta}{1-\bar{\beta} w} .
$$

This shows that $f_{0} \not \perp \Omega\left(M_{1}\right)$. We have

$$
\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot \frac{z-\alpha}{1-\bar{\alpha} z} \frac{w-\beta}{1-\bar{\beta} w} .
$$

Then

$$
\left\langle T_{z}^{*} f_{0}, \frac{z-\alpha}{1-\bar{\alpha} z} \frac{w-\beta}{1-\bar{\beta} w}\right\rangle=\left\langle\frac{1}{1-\bar{\alpha} z} \frac{z-\alpha}{1-\bar{\alpha} z}, \frac{z-\alpha}{1-\bar{\alpha} z} \frac{w-\beta}{1-\bar{\beta} w}\right\rangle=-\bar{\beta} .
$$

Hence $T_{z}^{*} f_{0} \not \perp \widetilde{\Omega}\left(N_{1}\right)$ and $\varphi_{0} \neq 0$.
When $f_{0} \in M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$, exchanging the variables z and w in Lemma 4.3, Theorems 4.1, 4.2 and 4.1 we have the corresponding results.

5. The case that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$

In this section, we assume that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$ and we shall study the structure of $\Omega\left(M_{2}\right)$ and $\widetilde{\Omega}\left(N_{2}\right)$. Let

$$
\eta_{0}=P_{M_{1} \ominus w M_{1}} f_{0} \quad \text { and } \quad \sigma_{0}=P_{M_{1} \ominus z M_{1}} f_{0} .
$$

Since $\Omega\left(M_{1}\right)=\left(M_{1} \ominus z M_{1}\right) \cap\left(M_{1} \ominus w M_{1}\right)$, we have

$$
P_{\Omega\left(M_{1}\right)} \eta_{0}=P_{\Omega\left(M_{1}\right)} \sigma_{0}=P_{\Omega\left(M_{1}\right)} f_{0} .
$$

By (4.1), $\left(R_{z}^{M_{1}}\right)^{*} f_{0}=\alpha_{0} f_{0}$ for some $\alpha_{0} \in \mathbb{D}$ with $\alpha_{0} \neq 0$. Similarly we have that $\left(R_{w}^{M_{1}}\right)^{*} f_{0}=\beta_{0} f_{0}$ for some $\beta_{0} \in \mathbb{D}$ with $\beta_{0} \neq 0$.

Lemma 5.1. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. Then we have the following.
(i) $\eta_{0} \neq 0$ and $f_{0}=\eta_{0} /\left(1-\beta_{0} w\right)$.
(ii) Either $\eta_{0} \notin \Omega\left(M_{1}\right)$ or $\sigma_{0} \notin \Omega\left(M_{1}\right)$.

Proof. Since $\left(R_{w}^{M_{1}}\right)^{*} f_{0}=\beta_{0} f_{0}$, we have $f_{0}=\beta_{0} w f_{0}+\eta_{0}$. (i) follows from this fact.

To show (ii), suppose that $\eta_{0} \in \Omega\left(M_{1}\right)$ and $\sigma_{0} \in \Omega\left(M_{1}\right)$. Since $\Omega\left(M_{1}\right)=$ $\left(M_{1} \ominus z M_{1}\right) \cap\left(M_{1} \ominus w M_{1}\right)$, we have

$$
\begin{aligned}
\eta_{0} & =P_{\Omega\left(M_{1}\right)} \eta_{0}=P_{\Omega\left(M_{1}\right)} P_{M_{1} \ominus w M_{1}} f_{0} \\
& =P_{\Omega\left(M_{1}\right)} P_{M_{1} \ominus z M_{1}} f_{0}=\sigma_{0} .
\end{aligned}
$$

$\operatorname{By}(\mathrm{i}), f_{0}=\eta_{0} /\left(1-\beta_{0} w\right)$, and $f_{0}=\sigma_{0} /\left(1-\alpha_{0} z\right)$. Hence $\eta_{0} /\left(1-\beta_{0} w\right)=\sigma_{0} /\left(1-\alpha_{0} z\right)$, so $\left(\alpha_{0} z-\beta_{0} w\right) \eta_{0}=0$. Since $\alpha_{0} \beta_{0} \neq 0$, we have $\eta_{0}=0$. This contradicts $\eta_{0} \neq 0$.

By Lemma 5.1 (ii), we may assume that $\eta_{0} \notin \Omega\left(M_{1}\right)$. Similarly as Lemma 5.1 (i), we have $\sigma_{0} \neq 0$ and $f_{0}=\sigma_{0} /\left(1-\alpha_{0} z\right)$. When $\sigma_{0} \notin \Omega\left(M_{1}\right)$, exchanging variables z and w we can get the similar result.

Lemma 5.2. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. If $\eta_{0} \notin \Omega\left(M_{1}\right)$, then

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \oplus \mathbb{C} \cdot\left(f_{0}-\frac{1}{1-\left|\beta_{0}\right|^{2}} \eta_{0}\right)
$$

Proof. By Lemma 5.1 (i), we have $\eta_{0} \neq 0$ and $f_{0}=\bigoplus_{n=0}^{\infty} \beta_{0}^{n} \eta_{0} w^{n}$. Since $\left\|f_{0}\right\|=1$ by the starting assumption, we have $\left\|\eta_{0}\right\|^{2} /\left(1-\left|\beta_{0}\right|^{2}\right)=1$. Let

$$
g_{0}=f_{0}-\frac{1}{1-\left|\beta_{0}\right|^{2}} \eta_{0} \in M_{1} .
$$

Then $g_{0} \neq 0$. We have

$$
\left\langle g_{0}, f_{0}\right\rangle=1-\frac{1}{1-\left|\beta_{0}\right|^{2}}\left\langle\eta_{0}, f_{0}\right\rangle=1-\frac{1}{1-\left|\beta_{0}\right|^{2}}\left\langle\eta_{0}, \eta_{0}\right\rangle=0
$$

and $\left(R_{w}^{M_{1}}\right)^{*} g_{0}=\beta_{0} f_{0}$. Hence $g_{0} \in M_{2} \ominus w M_{2}$. Since $\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0} \perp f_{0}$, we have

$$
\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0} \subset M_{2} \ominus w M_{2}
$$

Therefore

$$
\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \oplus \mathbb{C} \cdot g_{0} \subset M_{2} \ominus w M_{2}
$$

To show the reverse inclusion, let $g \in M_{2} \ominus w M_{2}$. Then $\left(R_{w}^{M_{1}}\right)^{*} g=c f_{0}$ for some $c \in \mathbb{C}$. If $c=0$, then $g \in M_{1} \ominus w M_{1}$. Since $g \perp f_{0}$, we have that

$$
\left\langle g, \eta_{0}\right\rangle=\left\langle g, f_{0}-\beta_{0} w f_{0}\right\rangle=-\overline{\beta_{0}}\left\langle\left(R_{w}^{M_{1}}\right)^{*} g, f_{0}\right\rangle=0 .
$$

Hence $g \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}$.
Suppose that $c \neq 0$. Since $\left(R_{w}^{M_{1}}\right)^{*} g_{0}=\beta_{0} f_{0}$, we have $\left(R_{w}^{M_{1}}\right)^{*}\left(g / c-g_{0} / \beta_{0}\right)=0$, so $g / c-g_{0} / \beta_{0} \in M_{1} \ominus w M_{1}$. Since $g \perp f_{0}$ and $g_{0} \perp f_{0}$, we have that

$$
\begin{aligned}
\left\langle g / c-g_{0} / \beta_{0}, \eta_{0}\right\rangle & =\left\langle g / c-g_{0} / \beta_{0}, f_{0}-\beta_{0} w f_{0}\right\rangle \\
& =-\overline{\beta_{0}}\left\langle\left(R_{w}^{M_{1}}\right)^{*}\left(g / c-g_{0} / \beta_{0}\right), f_{0}\right\rangle=0 .
\end{aligned}
$$

Hence $g / c-g_{0} / \beta_{0} \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}$, so

$$
g \in\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}\right) \oplus \mathbb{C} \cdot g_{0}
$$

Thus we get the assertion.
Theorem 5.1. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. Moreover suppose that $\eta_{0} \notin \Omega\left(M_{1}\right)$. Then we have the following.
(i) There is h_{0} in $M_{2} \ominus w M_{2}$ satisfying that

$$
\Omega\left(M_{2}\right)=\left(\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot P_{\Omega\left(M_{1}\right)} f_{0}\right) \oplus \mathbb{C} \cdot h_{0} .
$$

(ii) If $\eta_{0} \perp \Omega\left(M_{1}\right)$, then $h_{0}=0$ and $\Omega\left(M_{2}\right)=\Omega\left(M_{1}\right)$.
(iii) If $\eta_{0} \not \perp \Omega\left(M_{1}\right)$, then $h_{0} \neq 0$.

Proof. We put

$$
g_{0}=f_{0}-\frac{1}{1-\left|\beta_{0}\right|^{2}} \eta_{0} \in M_{2} \ominus w M_{2}
$$

Then by Lemma 5.2,

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \oplus \mathbb{C} \cdot \eta_{0}\right) \oplus g_{0}
$$

and $g_{0} \neq 0$.
(i) By (2.1), we have

$$
\Omega\left(M_{2}\right)=\left\{f \in M_{2} \ominus w M_{2}: T_{z}^{*} f \in N_{2}\right\} .
$$

Since $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$, we have that

$$
\Omega\left(M_{2}\right)=\left\{f \in M_{2} \ominus w M_{2}:\left(R_{z}^{M_{1}}\right)^{*} f \in \mathbb{C} \cdot f_{0}\right\} .
$$

Hence there is h_{0} in $M_{2} \ominus w M_{2}$ such that

$$
\begin{equation*}
\Omega\left(M_{2}\right)=\left\{f \in M_{2} \ominus w M_{2}:\left(R_{z}^{M_{1}}\right)^{*} f=0\right\} \oplus \mathbb{C} \cdot h_{0} . \tag{5.1}
\end{equation*}
$$

We have that $f_{0} \in\left(R_{z}^{M_{1}}\right)^{*}\left(M_{2} \ominus w M_{2}\right)$ if and only if $h_{0} \neq 0$, and in this case we may assume that $\left(R_{z}^{M_{1}}\right)^{*} h_{0}=f_{0}$. We have

$$
\left(R_{z}^{M_{1}}\right)^{*} g_{0}=\alpha_{0} f_{0}-\frac{1}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0}
$$

Note that $\left(R_{z}^{M_{1}}\right)^{*}\left(M_{1} \ominus w M_{1}\right) \subset M_{1} \ominus w M_{1}$. Since $f_{0} \notin M_{1} \ominus w M_{1},\left(R_{z}^{M_{1}}\right)^{*} g_{0} \notin$ $M_{1} \ominus w M_{1}$, and by Lemma 5.2 we have

$$
\begin{aligned}
& \left\{f \in M_{2} \ominus w M_{2}:\left(R_{z}^{M_{1}}\right)^{*} f=0\right\} \\
& =\left\{f \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}:\left(R_{z}^{M_{1}}\right)^{*} f=0\right\}
\end{aligned}
$$

We also have

$$
\begin{gathered}
\left\{f \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}:\left(R_{z}^{M_{1}}\right)^{*} f=0\right\} \\
=\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot P_{\Omega\left(M_{1}\right)} \eta_{0} \\
=\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot P_{\Omega\left(M_{1}\right)} f_{0} .
\end{gathered}
$$

Hence by (5.1), we get (i).
(ii) By Lemma 5.1 (i), we have $\eta_{0} \neq 0$. Suppose that $\eta_{0} \perp \Omega\left(M_{1}\right)$, i.e., $f_{0} \perp \Omega\left(M_{1}\right)$. Then $P_{\Omega\left(M_{1}\right)} f_{0}=P_{\Omega\left(M_{1}\right)} \eta_{0}=0$ and

$$
\Omega\left(M_{1}\right) \ominus \mathbb{C} \cdot P_{\Omega\left(M_{1}\right)} f_{0}=\Omega\left(M_{1}\right) .
$$

Since $\eta_{0} \in M_{1} \ominus w M_{1}$ and $\eta_{0} \perp \Omega\left(M_{1}\right)$, we have $\left(R_{z}^{M_{1}}\right)^{*} \eta_{0} \neq 0$.
Suppose that $\left(R_{z}^{M_{1}}\right)^{*} h=c\left(R_{z}^{M_{1}}\right)^{*} \eta_{0}$ for some nonzero $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}$ and $c \in \mathbb{C}$ with $c \neq 0$. Then $\left(R_{z}^{M_{1}}\right)^{*}\left(h-c \eta_{0}\right)=0$. Since $h-c \eta_{0} \in M_{1} \ominus w M_{1}$, we have $h-c \eta_{0} \in \Omega\left(M_{1}\right)$. Since $\eta_{0} \perp \Omega\left(M_{1}\right)$,

$$
0=\left\langle h-c \eta_{0}, \eta_{0}\right\rangle=-c\left\|\eta_{0}\right\|^{2} \neq 0
$$

This contradiction shows that there are no such h and c.
To show $h_{0}=0$, suppose that $h_{0} \neq 0$. As mentioned in the proof of (i), we may consider that $\left(R_{z}^{M_{1}}\right)^{*} h_{0}=f_{0}$. Since $g_{0} \in M_{2} \ominus w M_{2}$, by Lemma 5.2 we may write $h_{0}=F \oplus d g_{0}$ for some $F \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}$ and $d \in \mathbb{C}$. Since

$$
\left(R_{z}^{M_{1}}\right)^{*} g_{0}=\alpha_{0} f_{0}-\frac{1}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0}
$$

we have that

$$
\begin{aligned}
f_{0} & =\left(R_{z}^{M_{1}}\right)^{*} h_{0}=\left(R_{z}^{M_{1}}\right)^{*} F+d\left(R_{z}^{M_{1}}\right)^{*} g_{0} \\
& =\left(R_{z}^{M_{1}}\right)^{*} F+\alpha_{0} d f_{0}-\frac{d}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0} .
\end{aligned}
$$

Since $\eta_{0}, F \in M_{1} \ominus w M_{1}$, we have

$$
\left(1-\alpha_{0} d\right) f_{0}=\left(R_{z}^{M_{1}}\right)^{*} F-\frac{d}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0} \in M_{1} \ominus w M_{1} .
$$

Since $f_{0} \notin M_{1} \ominus w M_{1}$, we have $\alpha_{0} d=1$ and $d \neq 0$. Hence

$$
\left(R_{z}^{M_{1}}\right)^{*} F=\frac{d}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0} \neq 0 .
$$

This contradicts the fact given in the last paragraph. Hence $h_{0}=0$. Therefore by (i), we get (ii).
(iii) Suppose that $\eta_{0} \not \perp \Omega\left(M_{1}\right)$. Then $P_{\Omega\left(M_{1}\right)} f_{0}=P_{\Omega\left(M_{1}\right)} \eta_{0} \neq 0$. We have

$$
\begin{aligned}
\left\langle\eta_{0}\right. & \left.-\frac{\left\|\eta_{0}\right\|^{2}}{\left\|P_{\Omega\left(M_{1}\right)} f_{0}\right\|^{2}} P_{\Omega\left(M_{1}\right)} f_{0}, \eta_{0}\right\rangle \\
& =\left\|\eta_{0}\right\|^{2}-\frac{\left\|\eta_{0}\right\|^{2}}{\left\|P_{\Omega\left(M_{1}\right)} f_{0}\right\|^{2}}\left\|P_{\Omega\left(M_{1}\right)} f_{0}\right\|^{2}=0 .
\end{aligned}
$$

Putting

$$
h=\frac{1}{1-\left|\beta_{0}\right|^{2}}\left(\eta_{0}-\frac{\left\|\eta_{0}\right\|^{2}}{\left\|P_{\Omega\left(M_{1}\right)} f_{0}\right\|^{2}} P_{\Omega\left(M_{1}\right)} f_{0}\right)
$$

we have $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot \eta_{0}$. Since $\eta_{0} \notin \Omega\left(M_{1}\right)$, we have $h \neq 0$. By Lemma $5.2, h+g_{0} \in M_{2} \ominus w M_{2}$. We have

$$
\begin{aligned}
\left(R_{z}^{M_{1}}\right)^{*}\left(h+g_{0}\right) & =\frac{1}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0}+\left(R_{z}^{M_{1}}\right)^{*} g_{0} \\
& =\frac{1}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0}+\alpha_{0} f_{0}-\frac{1}{1-\left|\beta_{0}\right|^{2}}\left(R_{z}^{M_{1}}\right)^{*} \eta_{0} \\
& =\alpha_{0} f_{0}
\end{aligned}
$$

Hence $h+g_{0} \in \Omega\left(M_{2}\right)$. Since $\alpha_{0} f_{0} \neq 0$, we also have $h+g_{0} \notin \Omega\left(M_{1}\right)$. Therefore by Theorem 5.1 (i), we get $h_{0} \neq 0$.

In the last part, we shall study the structure of $\widetilde{\Omega}\left(N_{2}\right)$. Recall that $\varphi_{0}=$ $P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}$ and $\psi_{0}=P_{\widetilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}$.

Theorem 5.2. Suppose that $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. Then we have the following.
(i) If $\varphi_{0}=\psi_{0}=0$, then $\widetilde{\Omega}\left(N_{2}\right)=\widetilde{\Omega}\left(N_{1}\right)$.
(ii) If either $\varphi_{0} \neq 0$ or $\psi_{0} \neq 0$, then $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$.
(iii) If $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$, then

$$
\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}=\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0}
$$

and

$$
\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus \mathbb{C} \cdot \varphi_{0}\right) \oplus \mathbb{C} \cdot\left(f_{0}-\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}\right)
$$

Proof. Let $\xi \in \widetilde{\Omega}\left(N_{1}\right) \ominus\left(\mathbb{C} \cdot \varphi_{0}+\mathbb{C} \cdot \psi_{0}\right)$. Since $z \xi \in M_{1}$, by the definition of φ_{0} we have

$$
\left\langle z \xi, f_{0}\right\rangle=\left\langle\xi, T_{z}^{*} f_{0}\right\rangle=\left\langle\xi, P_{\tilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}\right\rangle=\left\langle\xi, \varphi_{0}\right\rangle=0 .
$$

Similarly we have $\left\langle w \xi, f_{0}\right\rangle=0$. Note that $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then $z \xi, w \xi \in M_{2}$. Hence $\xi \in \widetilde{\Omega}\left(N_{2}\right)$. Thus

$$
\widetilde{\Omega}\left(N_{1}\right) \ominus\left(\mathbb{C} \cdot \varphi_{0}+\mathbb{C} \cdot \psi_{0}\right) \subset \widetilde{\Omega}\left(N_{2}\right)
$$

Since $N_{2}=N_{1} \oplus \mathbb{C} \cdot f_{0}$, we have

$$
\begin{equation*}
\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus\left(\mathbb{C} \cdot \varphi_{0}+\mathbb{C} \cdot \psi_{0}\right)\right) \oplus \Lambda, \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\left\{h \in \mathbb{C} \cdot \varphi_{0}+\mathbb{C} \cdot \psi_{0}+\mathbb{C} \cdot f_{0}: z h \perp f_{0}, w h \perp f_{0}\right\} \tag{5.3}
\end{equation*}
$$

Suppose that $c_{1} \varphi_{0}+c_{2} \psi_{0} \in \widetilde{\Omega}\left(N_{2}\right)$ for some $c_{1}, c_{2} \in \mathbb{C}$. Then $z\left(c_{1} \varphi_{0}+c_{2} \psi_{0}\right) \in M_{2}$, and $z\left(c_{1} \varphi_{0}+c_{2} \psi_{0}\right) \perp f_{0}$. Hence $c_{1} \varphi_{0}+c_{2} \psi_{0} \perp T_{z}^{*} f_{0}$, so $c_{1} \varphi_{0}+c_{2} \psi_{0} \perp P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}=$ φ_{0}. Similarly we have $c_{1} \varphi_{0}+c_{2} \psi_{0} \perp \psi_{0}$. Hence $c_{1} \varphi_{0}+c_{2} \psi_{0}=0$.
(i) Suppose that $\varphi_{0}=\psi_{0}=0$. Since $\left\|f_{0}\right\|=1$ and $\left(R_{z}^{M_{1}}\right)^{*} f_{0}=\alpha_{0} f_{0}$, we have

$$
\left\langle z f_{0}, f_{0}\right\rangle=\left\langle f_{0},\left(R_{z}^{M_{1}}\right)^{*} f_{0}\right\rangle=\left\langle f_{0}, \alpha_{0} f_{0}\right\rangle=\overline{\alpha_{0}} \neq 0
$$

Hence by (5.3), we have $\Lambda=\{0\}$, so by (5.2) we get (i).
(ii) We assume that $\psi_{0} \neq 0$. Recall that $\left(R_{w}^{M_{1}}\right)^{*} f_{0}=\beta_{0} f_{0}$. Since $\psi_{0}=P_{\widetilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}$, we have

$$
\begin{aligned}
\left\langle T_{w}^{*} f_{0}, f_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0}\right\rangle & =\beta_{0}-\frac{\beta_{0}}{\left\|\psi_{0}\right\|^{2}}\left\langle T_{w}^{*} f_{0}, \psi_{0}\right\rangle \\
& =\beta_{0}-\frac{\beta_{0}}{\left\|\psi_{0}\right\|^{2}}\left\|\psi_{0}\right\|^{2}=0
\end{aligned}
$$

Hence

$$
\begin{equation*}
T_{w}^{*} f_{0} \perp f_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0} \tag{5.4}
\end{equation*}
$$

Since $z \psi_{0} \in M_{1} \ominus z M_{1}$ and $w \psi_{0} \in M_{1} \ominus w M_{1}$, we also have that

$$
\begin{aligned}
\beta_{0}\left\langle f_{0}, z \psi_{0}\right\rangle & =\left\langle\left(R_{w}^{M_{1}}\right)^{*} f_{0}, z \psi_{0}\right\rangle=\left\langle T_{w}^{*} f_{0}, z \psi_{0}\right\rangle \\
& =\left\langle f_{0}, z w \psi_{0}\right\rangle=\left\langle T_{z}^{*} f_{0}, w \psi_{0}\right\rangle=\alpha_{0}\left\langle f_{0}, w \psi_{0}\right\rangle \\
& =\alpha_{0}\left\langle P_{\widetilde{\Omega}\left(N_{1}\right)} T_{w}^{*} f_{0}, \psi_{0}\right\rangle=\alpha_{0}\left\|\psi_{0}\right\|^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\langle\varphi_{0}, \psi_{0}\right\rangle=\left\langle T_{z}^{*} f_{0}, \psi_{0}\right\rangle=\left\langle f_{0}, z \psi_{0}\right\rangle=\frac{\alpha_{0}}{\beta_{0}}\left\|\psi_{0}\right\|^{2} \neq 0 \tag{5.5}
\end{equation*}
$$

This shows that $\varphi_{0} \neq 0$. Similarly if $\varphi_{0} \neq 0$, then $\psi_{0} \neq 0$.
(iii) Suppose that $\varphi_{0} \neq 0$ and $\psi_{0} \neq 0$. We have that

$$
\begin{aligned}
& \left\langle T_{z}^{*} f_{0}, f_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0}\right\rangle \\
& =\left\langle T_{z}^{*} f_{0}, f_{0}\right\rangle-\frac{\beta_{0}}{\left\|\psi_{0}\right\|^{2}}\left\langle T_{z}^{*} f_{0}, \psi_{0}\right\rangle \\
& =\left\langle\left(R_{z}^{M_{1}}\right)^{*} f_{0}, f_{0}\right\rangle-\frac{\beta_{0}}{\left\|\psi_{0}\right\|^{2}} \frac{\alpha_{0}}{\beta_{0}}\left\|\psi_{0}\right\|^{2} \quad \text { by }(5.5) \\
& =\left\langle\alpha_{0} f_{0}, f_{0}\right\rangle-\alpha_{0}=\alpha_{0}-\alpha_{0}=0 .
\end{aligned}
$$

Then

$$
T_{z}^{*} f_{0} \perp f_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0}
$$

Therefore by (5.4) and (5.5),

$$
f_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0} \in \Lambda
$$

Similarly, we have

$$
f_{0}-\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0} \in \Lambda .
$$

Hence by (5.3),

$$
\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0} \in \Lambda
$$

so by (5.2) we have

$$
\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}-\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0} \in \widetilde{\Omega}\left(N_{2}\right)
$$

By the second paragraph of the proof,

$$
\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}=\frac{\overline{\beta_{0}}}{\left\|\psi_{0}\right\|^{2}} \psi_{0} .
$$

Then

$$
\Lambda=\mathbb{C} \cdot\left(f_{0}-\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}\right)
$$

and by (5.2), we get

$$
\widetilde{\Omega}\left(N_{2}\right)=\left(\widetilde{\Omega}\left(N_{1}\right) \ominus \mathbb{C} \cdot \varphi_{0}\right) \oplus \mathbb{C} \cdot\left(f_{0}-\frac{\overline{\alpha_{0}}}{\left\|\varphi_{0}\right\|^{2}} \varphi_{0}\right) .
$$

We shall show examples which satisfy each conditions in Theorems 5.1 and 5.2.
Example 5.1. (i) Let

$$
M_{1}=z H^{2}+\frac{w-\beta}{1-\bar{\beta} w} H^{2}, \quad 0<|\beta|<1,
$$

$f_{0}=\frac{z}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w}$ for some $0<|\alpha|<1$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then

$$
M_{2}=z \frac{z-\alpha}{1-\bar{\alpha} z} H^{2}+\frac{w-\beta}{1-\bar{\beta} w} H^{2},
$$

so M_{1} and M_{2} are invariant subspaces. We have

$$
M_{1} \ominus z M_{1}=\mathbb{C} \cdot \frac{z}{1-\bar{\beta} w} \oplus \frac{w-\beta}{1-\bar{\beta} w} H^{2}(w)
$$

and

$$
M_{1} \ominus w M_{1}=z H^{2}(z) \oplus \mathbb{C} \cdot \frac{w-\beta}{1-\bar{\beta} w}
$$

Then $f_{0} \notin M_{1} \ominus z M_{1}, f_{0} \notin M_{1} \ominus w M_{1}$ and

$$
\eta_{0}=P_{M_{1} \ominus w M_{1}} f_{0}=\frac{z}{1-\bar{\alpha} z} .
$$

We have

$$
\Omega\left(M_{1}\right)=\mathbb{C} \cdot \frac{w-\beta}{1-\bar{\beta} w} \quad \text { and } \quad \eta_{0} \perp \Omega\left(M_{1}\right) .
$$

Since $N_{1}=\mathbb{C} \cdot 1 /(1-\bar{\beta} w)$, we have $\widetilde{\Omega}\left(N_{1}\right)=\{0\}$. Hence $\varphi_{0}=\psi_{0}=0$.
(ii) Let $\alpha \in \mathbb{D}$ with $\alpha \neq 0$ and

$$
M_{1}=z^{2} \frac{z-\alpha}{1-\bar{\alpha} z} H^{2}+z^{2} w H^{2}+z w^{2} H^{2}+w^{2} \frac{w-\alpha}{1-\bar{\alpha} w} H^{2} .
$$

Then M_{1} is an invariant subspace and

$$
\begin{array}{r}
M_{1} \ominus z M_{1}=\mathbb{C} \cdot z^{2} \frac{z-\alpha}{1-\bar{\alpha} z} \oplus \mathbb{C} \cdot z^{2} w \oplus \mathbb{C} \cdot z \frac{w^{2}}{1-\bar{\alpha} w} \\
\oplus \mathbb{C} \cdot w^{2} \frac{w-\alpha}{1-\bar{\alpha} w} H^{2}(w)
\end{array}
$$

and

$$
\begin{aligned}
M_{1} \ominus w M_{1}=z^{2} \frac{z-\alpha}{1-\bar{\alpha} z} H^{2}(z) & \oplus \mathbb{C} \cdot \frac{z^{2}}{1-\bar{\alpha} z} w \oplus \mathbb{C} \cdot z w^{2} \\
& \oplus \mathbb{C} \cdot w^{2} \frac{w-\alpha}{1-\bar{\alpha} w} .
\end{aligned}
$$

Hence

$$
\Omega\left(M_{1}\right)=\mathbb{C} \cdot z^{2} \frac{z-\alpha}{1-\bar{\alpha} z} \oplus \mathbb{C} \cdot w^{2} \frac{w-\alpha}{1-\bar{\alpha} w} .
$$

Let

$$
f_{0}=\frac{z^{2}}{1-\bar{\alpha} z} w \oplus z \frac{w^{2}}{1-\bar{\alpha} w} .
$$

Then $f_{0} \in M_{1}, f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. Let $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. We have

$$
M_{2}=z^{2} \frac{z-\alpha}{1-\bar{\alpha} z} H^{2}+z^{2} w^{2} H^{2}+w^{2} \frac{w-\alpha}{1-\bar{\alpha} w} H^{2}
$$

so M_{2} is an invariant subspace. Moreover we have $f_{0} \perp \Omega\left(M_{1}\right)$, so we get $\eta_{0} \perp$ $\Omega\left(M_{1}\right)$.

We have $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot z w$, and

$$
\left\langle T_{z}^{*} f_{0}, z w\right\rangle=\left\langle f_{0}, z^{2} w\right\rangle=\left\langle\frac{z^{2}}{1-\bar{\alpha} z} w, z^{2} w\right\rangle=1 .
$$

Hence $\varphi_{0}=P_{\tilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}=z w \neq 0$.
(iii) Let $\alpha, \beta \in \mathbb{D}$ satisfy $\alpha \neq 0, \beta \neq 0$ and $\alpha \neq \beta$. Let $M_{1}=\overline{(z-w) H^{2}}$ and $M_{2}=\left\{f \in M_{1}: f(\alpha, \beta)=0\right\}$. Then M_{1}, M_{2} are invariant subspaces,

$$
M_{2}=(z-w)\left(\frac{z-\alpha}{1-\bar{\alpha} z} H^{2}+\frac{w-\beta}{1-\bar{\beta} w} H^{2}\right)
$$

and

$$
M_{1} \ominus M_{2}=\mathbb{C} \cdot P_{M_{1}} \frac{1}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w} .
$$

Put

$$
f_{0}=P_{M_{1}} \frac{1}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w} .
$$

We have $f_{0} \not \perp z M_{1}$ and $f_{0} \not \perp w M_{1}$. Hence $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. We have $\Omega\left(M_{1}\right)=\mathbb{C} \cdot(z-w)$ and

$$
\begin{aligned}
\left\langle z-w, \eta_{0}\right\rangle & =\left\langle z-w, P_{M_{1} \ominus w M_{1}} f_{0}\right\rangle=\left\langle z-w, f_{0}\right\rangle \\
& =\left\langle z-w, \frac{1}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w}\right\rangle=\alpha-\beta \neq 0 .
\end{aligned}
$$

Hence $\eta_{0} \notin \Omega\left(M_{1}\right)$ and $\eta_{0} \not \perp \Omega\left(M_{1}\right)$.
Since $\widetilde{\Omega}\left(N_{1}\right)=\{0\}$, we have that $\varphi_{0}=\psi_{0}=0$.
(iv) Let α, β be nonzero numbers in \mathbb{D}. Let $M_{1}=z H^{2}+w H^{2}, f_{0}=P_{M_{1}} \frac{1}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w}$ and $M_{2}=M_{1} \ominus \mathbb{C} \cdot f_{0}$. Then $M_{2}=\left\{f \in M_{1}: f(\alpha, \beta)=0\right\}$ and M_{1}, M_{2} are invariant subspaces. Since $f_{0} \not \perp z M_{1}$ and $f_{0} \not \perp w M_{1}$, we have $f_{0} \notin M_{1} \ominus z M_{1}$ and $f_{0} \notin M_{1} \ominus w M_{1}$. We have $\Omega\left(M_{1}\right)=\mathbb{C} \cdot z+\mathbb{C} \cdot w$, and

$$
\begin{aligned}
\left\langle z, \eta_{0}\right\rangle & =\left\langle z, P_{M_{1} \ominus w M_{1}} f_{0}\right\rangle=\left\langle z, f_{0}\right\rangle \\
& =\left\langle z, \frac{1}{1-\bar{\alpha} z} \frac{1}{1-\bar{\beta} w}\right\rangle=\alpha \neq 0 .
\end{aligned}
$$

Hence $\eta_{0} \notin \Omega\left(M_{1}\right)$ and $\eta_{0} \not \perp \Omega\left(M_{1}\right)$.
Since $\widetilde{\Omega}\left(N_{1}\right)=\mathbb{C} \cdot 1$, we have

$$
\left\langle 1, \varphi_{0}\right\rangle=\left\langle 1, P_{\widetilde{\Omega}\left(N_{1}\right)} T_{z}^{*} f_{0}\right\rangle=\left\langle z, f_{0}\right\rangle \neq 0,
$$

so $\varphi_{0} \neq 0$.

6. Related topics and problems

[1] Fredholm fringe operators.
Proposition 6.1. Let M_{1} be an invariant subspace of H^{2} and $f_{0} \in M_{1}$ such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. Then $F_{z}^{M_{1}}$ on $M_{1} \ominus w M_{1}$ is a Fredholm operator if and only if so is $F_{z}^{M_{2}}$ on $M_{2} \ominus w M_{2}$. In this case, we have ind $F_{z}^{M_{1}}=$ ind $F_{z}^{M_{2}}$.

Proof. There is a unique function f_{1} (except constant multiplication) in $M_{2} \ominus w M_{2}$ such that $\left(R_{z}^{M_{1}}\right)^{*} f_{1} \in \mathbb{C} \cdot f_{0}$ and

$$
\left(M_{2} \ominus w M_{2}\right) \ominus \mathbb{C} \cdot f_{1} \subset M_{1} \ominus w M_{1} .
$$

Then we have

$$
M_{2} \ominus w M_{2}=\left(\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot P_{M_{1} \ominus w M_{1}} f_{0}\right) \oplus \mathbb{C} \cdot f_{1}
$$

There is also a unique function f_{2} (except constant multiplication) in $M_{1} \ominus w M_{1}$ such that $P_{M_{1} \ominus w M_{1}} f_{0} \perp z h$ for every $h \in\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{2}$, and there is a unique function f_{3} (except constant multiplication) in $\left(M_{1} \ominus w M_{1}\right) \ominus \mathbb{C} \cdot f_{2}$ such that $f_{1} \perp z h$ for every

$$
h \in\left(M_{1} \ominus w M_{1}\right) \ominus\left(\mathbb{C} \cdot f_{2}+\mathbb{C} \cdot f_{3}\right)
$$

Let

$$
L=\left(M_{1} \ominus w M_{1}\right) \ominus\left(\mathbb{C} \cdot P_{M_{1}+w M_{1}} f_{0}+\mathbb{C} \cdot f_{2}+\mathbb{C} \cdot f_{3}\right)
$$

Since $\operatorname{dim}\left(M_{1} \ominus w M_{1}\right)=\infty$, we have $L \neq\{0\}$. For every $g \in L$, we have $g \in$ $M_{2} \ominus w M_{2}$ and

$$
F_{z}^{M_{2}} g=P_{M_{2} \ominus w M_{2}} z g=P_{M_{1} \ominus w M_{1}} z g=F_{z}^{M_{1}} g .
$$

Then $\left.F_{z}^{M_{1}}\right|_{L}=\left.F_{z}^{M_{2}}\right|_{L}$. Let A_{1} be the operator on $M_{1} \ominus w M_{1}$ defined by

$$
A_{1}=\left\{\begin{aligned}
F_{z}^{M_{1}} & \text { on } L \\
0 & \text { on }\left(M_{1} \ominus w M_{1}\right) \ominus L
\end{aligned}\right.
$$

and A_{2} be the operator on $M_{2} \ominus w M_{2}$ defined by

$$
A_{2}=\left\{\begin{aligned}
F_{z}^{M_{2}} & \text { on } L \\
0 & \text { on }\left(M_{2} \ominus w M_{2}\right) \ominus L .
\end{aligned}\right.
$$

Since $F_{z}^{M_{1}}$ on $M_{1} \ominus w M_{1}$ and A_{1} differ by a finite rank operator, their Fredholmness and index are identical (see [2]). Similarly Fredholmness and index of $F_{z}^{M_{2}}$ on $M_{2} \ominus w M_{2}$ and A_{2} are identical. As a result, we get the assertion.

Corollary 6.1. Let L_{1}, L_{2} be invariant subspaces of H^{2} such that $L_{1} \subset L_{2}$ and $\operatorname{dim}\left(L_{2} \ominus L_{1}\right)<\infty$. Then $F_{z}^{L_{1}}$ on $L_{1} \ominus w L_{1}$ is a Fredholm operator if and only if so is $F_{z}^{L_{2}}$ on $L_{2} \ominus w L_{2}$. In this case, we have ind $F_{z}^{L_{1}}=\operatorname{ind} F_{z}^{L_{2}}$.

Question 1. Let M be an invariant subspace of H^{2} satisfying $\operatorname{dim} \Omega(M)<\infty$. Is F_{z}^{M} on $M \ominus w M$ a Fredholm operator?

When F_{z}^{M} on $M \ominus w M$ is a Fredholm operator, the Fredholm index of F_{z}^{M} is defined by

$$
\text { ind } F_{z}^{M}=\operatorname{dim} \operatorname{ker} F_{z}^{M}-\operatorname{dim} \operatorname{ker} F_{z}^{M *} .
$$

For a nonzero function f in H^{2}, we denote by $[f]$ the smallest invariant subspace of H^{2} containing f, that is, $[f]=\overline{f \cdot \mathbb{C}[z, w]}$, where $\mathbb{C}[z, w]$ is the polynomial ring. Similarly for a subset E of H^{2}, we denote by $[E]$ the smallest invariant subspace of H^{2} containing E.

Question 2. Is $F_{z}^{[f]}$ on $[f] \ominus w[f]$ a Fredholm operator for any nonzero $f \in H^{2}$?

In [7], Yang showed that F_{z}^{M} on $M \ominus w M$ has closed range if and only if $z M+w M$ is closed.

Question 3. Is $z[f]+w[f]$ closed for any $f \in H^{2}$?
When f is an inner function, it is easy to see that $F_{z}^{[f]}$ on $[f] \ominus w[f]$ is Fredholm and ind $F_{z}^{[f]}=-1$.
[2] One dimensional perturbation.
Let M be an invariant subspace of H^{2} satisfying $M \varsubsetneqq H^{2}$ and $N=H^{2} \ominus M$. As mentioned in the introduction, there is a nonzero function f_{0} in M such that $M \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. First, we shall show that there are a lot of such f_{0}. Write $D_{z}=\partial / \partial z$ and $D_{w}=\partial / \partial w$.

Example 6.1. Take $(\alpha, \beta) \in \mathbb{D}^{2}$. For each $f \in M$, let $\Gamma(f)$ be the family of pairs of nonnegative integers (n, m) such that $\left(D_{z}^{n} D_{w}^{m} f\right)(\alpha, \beta) \neq 0$. Let $\Gamma_{M}=\bigcup_{f \in M} \Gamma(f)$. Then $\Gamma_{M} \neq \emptyset$, and if $(n, m) \in \Gamma_{M}$, then $(n+1, m) \in \Gamma_{M}$ and $(n, m+1) \in \Gamma_{M}$. Moreover if $(n, m) \notin \Gamma_{M}$, then $(n-1, m) \notin \Gamma_{M}$ and $(n, m-1) \notin \Gamma_{M}$. Take $\left(n_{1}, m_{1}\right) \in \Gamma_{M}$ satisfying that

$$
n_{1}+m_{1}=\min \left\{n+m:(n, m) \in \Gamma_{M}\right\} .
$$

Set

$$
M_{(\alpha, \beta)}=\left\{f \in M:\left(D_{z}^{n} D_{w}^{m} f\right)(\alpha, \beta)=0\right\} .
$$

Then $M_{(\alpha, \beta)}$ is an invariant subspace and $M_{(\alpha, \beta)} \varsubsetneqq M$. It is easy to see that $M=$ $M_{(\alpha, \beta)} \oplus \mathbb{C} \cdot f_{(\alpha, \beta)}$ for some $f_{(\alpha, \beta)} \in M$ with $f_{(\alpha, \beta)} \neq 0$.

As a counterpart, one may ask whether there is a nonzero function g in N such that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace. If $\widetilde{\Omega}(N) \neq\{0\}$ and $g \in \widetilde{\Omega}(N)$, then trivially $M \oplus \mathbb{C} \cdot g$ is an invariant subspace. For $f \in H^{2}$, we denote by $Z(f)$ the zero set of f in \mathbb{D}^{2}. For a closed subset $E \subset \mathbb{D}^{2}$, let

$$
M_{E}=\left\{f \in H^{2}: f=0 \text { on } E\right\}
$$

Proposition 6.2. Let E be a connected closed subset of \mathbb{D}^{2} containing more than one point. If $M_{E} \neq\{0\}$, then $M_{E} \oplus \mathbb{C} \cdot g$ is not an invariant subspace for any nonzero function g in $H^{2} \ominus M_{E}$.

Proof. Suppose that $M_{E} \oplus \mathbb{C} \cdot g$ is an invariant subspace for some nonzero $g \in$ $H^{2} \ominus M_{E}$. Since $g \notin M_{E}$, we have $E \backslash Z(g) \neq \emptyset$. By the assumption on E, there are $\alpha, \beta \in E$ such that $\alpha \neq \beta, g(\alpha) \neq 0$ and $g(\beta) \neq 0$. Take a polynomial p such that $p(\alpha) \neq p(\beta)$. We have $p g \in M_{E} \oplus \mathbb{C} \cdot g$, so $p g-c g \in M_{E}$ for some $c \in \mathbb{C}$. Hence $p(\alpha) g(\alpha)-c g(\alpha)=0$ and $p(\beta) g(\beta)-c g(\beta)=0$, so $p(\alpha)=c=p(\beta)$. This is a contradiction.

Let $E=\{(\alpha, \alpha): \alpha \in \mathbb{D}\}$. It is known that $M_{E}=[z-w]$. So $[z-w] \oplus \mathbb{C} \cdot g$ is not an invariant subspace for any nonzero function g in $H^{2} \ominus[z-w]$.

Proposition 6.3. Let $\varphi(z), \psi(w)$ be nonconstant one variable inner functions and $M=\varphi(z) H^{2}+\psi(w) H^{2}$. Then there is a nonzero function g in N such that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace if and only if both $\varphi(z), \psi(w)$ have Blaschke factors.

Proof. Suppose that $\varphi(\alpha)=\psi(\beta)=0$ for some $(\alpha, \beta) \in \mathbb{D}^{2}$. Let $b_{\alpha}(z)=$ $(z-\alpha) /(1-\bar{\alpha} z)$ and $b_{\beta}(w)=(w-\beta) /(1-\bar{\beta} w)$. Then $\varphi_{1}(z):=\varphi(z) / b_{\alpha}(z)$ and $\psi_{1}(w):=\psi(w) / b_{\beta}(w)$ are one variable inner functions. We have

$$
\begin{gathered}
g:=\varphi_{1}(z) \frac{1}{1-\bar{\alpha} z} \psi_{1}(w) \frac{1}{1-\bar{\beta} w} \in N, \\
z g=\varphi(z) \psi_{1}(w) \frac{1}{1-\bar{\beta} w}+\alpha g \in M \oplus \mathbb{C} \cdot g
\end{gathered}
$$

and

$$
w g=\varphi_{1}(z) \frac{1}{1-\bar{\alpha} z} \psi(w)+\beta g \in M \oplus \mathbb{C} \cdot g .
$$

Then $M \oplus \mathbb{C} \cdot g$ is an invariant subspace.
Suppose that $\varphi(z)$ is a singular inner function. Moreover assume that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace for some nonzero $g \in N$. If $z g \in M$, then $z g \in \varphi(z) H^{2}$. Since $\varphi(0) \neq 0$, we have $g \in \varphi(z) H^{2}$ and this is a contradiction. Hence $P_{\mathbb{C} \cdot g} z g=c g$ for some $c \in \mathbb{D}$ with $c \neq 0$. This shows that $P_{\mathbb{C} \cdot g} \varphi(z) g=\varphi(c) g$. Since $\varphi(z) g \in M$, we have $P_{\mathbb{C} \cdot g} \varphi(z) g=0$, so $\varphi(c)=0$. This is a contradiction. Therefore there are no nonzero $g \in N$ such that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace.

Let M be an invariant subspace of H^{2} satisfying $M \varsubsetneqq H^{2}$. Suppose that there is a nonzero function g in N such that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace. Then there are $\alpha, \beta \in \mathbb{D}$ such that $(z-\alpha) g \in M$ and $(w-\beta) g \in M$. Hence $(p-p(\alpha, \beta)) g \in M$ for every polynomial p.

An invariant subspace L_{1} of L_{2} is said to be unitarily equivalent if there is a unitary module map U from L_{1} onto L_{2}, that is, $T_{z} U=U T_{z}$ and $T_{w} U=U T_{w}$ on L_{1}. In this case, it is known that there is a unimodular function θ on $\partial \mathbb{D} \times \partial \mathbb{D}$ such that $L_{2}=\theta L_{1}$ (see $[1,3]$).

Proposition 6.4. Let M be an invariant subspace of H^{2} satisfying $M \varsubsetneqq H^{2}$. Suppose that there is a nonzero function g in $H^{2} \ominus M$ such that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace. If L is an invariant subspace of H^{2} which is unitarily equivalent to M, then there is a nonzero function g_{1} in $H^{2} \ominus L$ such that $L \oplus \mathbb{C} \cdot g_{1}$ is an invariant subspace.

Proof. Let θ be a unimodular function on $\partial \mathbb{D} \times \partial \mathbb{D}$ such that $L=\theta M \subset H^{2}$ By the fact above Proposition 6.4, there is $\alpha, \beta \in \mathbb{D}$ such that $(z-\alpha) g \in M$ and
$(z-\beta) g \in M$. Then $(z-\alpha) \theta g \in L \subset H^{2}$ and $(z-\beta) \theta g \in H^{2}$. Hence $\theta g \in H^{2}$. Since $g \perp M$, we have $\theta g \perp \theta M=L$, so $\theta g \in H^{2} \ominus L$. Since $L \oplus \mathbb{C} \cdot \theta g=\theta(M \oplus \mathbb{C} \cdot g)$, $L \oplus \mathbb{C} \cdot \theta g$ is an invariant subspace.

Proposition 6.4 shows that the property of M "there is a nonzero function g in $H^{2} \ominus M$ such that $M \oplus \mathbb{C} \cdot g$ is an invariant subspace " is invariant for unitary module maps.

Question 4. Let $f \in H^{2}$ satisfy $\{0\} \neq[f] \varsubsetneqq H^{2}$. Is $[f] \oplus \mathbb{C} \cdot g$ not an invariant subspace for any $g \in H^{2} \ominus[f]$ with $g \neq 0$?

Question 5. Let $f \in H^{2}$ satisfy $\{0\} \neq[f] \varsubsetneqq H^{2}$. Is $\widetilde{\Omega}\left(H^{2} \ominus[f]\right)=\{0\}$?
Question 6. Characterize an invariant subspace M such that $M \oplus \mathbb{C} \cdot g$ is not an invariant subspace for any nonzero function g in N.

Question 7. Let f, h be functions in H^{2} such that $[f] \varsubsetneqq[h]$. Is $\operatorname{dim}([h] \ominus[f])=$ ∞ ?
[3] Ranks of invariant subspaces.
Let M_{1} be an invariant subspace of H^{2} and $f_{0} \in M_{1}$ with $\left\|f_{0}\right\|=1$ such that $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. We denote by rank M_{1} the rank of M_{1}, that is, rank M_{1} (may be ∞) is the smallest number of elements in M_{1} which generate M_{1} as an invariant subspace.

Proposition 6.5. $\operatorname{rank} M_{1}-1 \leq \operatorname{rank} M_{2} \leq \operatorname{rank} M_{1}+1$.
Proof. It is easy to see that $\operatorname{rank} M_{1} \leq \operatorname{rank} M_{2}+1$. So, when $\operatorname{rank} M_{1}=\infty$ we get the assertion.

Suppose that $m:=\operatorname{rank} M_{1}<\infty$. Let $f_{1}, f_{2}, \cdots, f_{m} \in M_{1}$ such that $\left[f_{1}, f_{2}, \cdots, f_{m}\right]=M_{1}$. We may assume that $f_{1} \not \perp f_{0}$. If $f_{j} \not \perp f_{0}$ for some $2 \leq j \leq m$, replacing f_{j} by

$$
f_{j}-\frac{\left\langle f_{j}, f_{0}\right\rangle}{\left\|f_{0}\right\|^{2}} f_{0}
$$

we may assume that $f_{j} \perp f_{0}$ for every $2 \leq j \leq m$, that is, $f_{j} \in M_{2}$ for every $2 \leq j \leq m$. Since $M_{1} \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace, there are $\alpha, \beta \in \mathbb{D}^{2}$ such that $(z-\alpha) f_{0} \in M_{2}$ and $(w-\beta) f_{0} \in M_{2}$. Hence $(z-\alpha) f_{1} \in M_{2}$ and $(w-\beta) f_{1} \in M_{2}$. We shall show that

$$
\begin{equation*}
\left[(z-\alpha) f_{1},(w-\beta) f_{1}, f_{2}, \cdots, f_{m}\right]=M_{2} \tag{6.1}
\end{equation*}
$$

Let $h \in M_{2}$. Then there are sequences of polynomials

$$
\left\{p_{1, k}\right\}_{k \geq 1},\left\{p_{2, k}\right\}_{k \geq 1}, \cdots,\left\{p_{m, k}\right\}_{k \geq 1}
$$

such that

$$
\lim _{k \rightarrow \infty} \sum_{\ell=1}^{m} p_{\ell, k} f_{\ell}=h .
$$

We have

$$
0=\left\langle h, f_{0}\right\rangle=\lim _{k \rightarrow \infty} \sum_{\ell=1}^{m}\left\langle p_{\ell, k} f_{\ell}, f_{0}\right\rangle=\lim _{k \rightarrow \infty}\left\langle p_{1, k} f_{1}, f_{0}\right\rangle .
$$

Let

$$
p_{1, k}(z, w)=\sum_{i, j} c_{k, i, j}(z-\alpha)^{i}(w-\beta)^{j}
$$

be the Taylor expansion of $p_{1, k}$ at (α, β). Then

$$
0=\lim _{k \rightarrow \infty}\left\langle p_{1, k} f_{1}, f_{0}\right\rangle=\lim _{k \rightarrow \infty} c_{k, 0,0}\left\langle f_{1}, f_{0}\right\rangle .
$$

Since $\left\langle f_{1}, f_{0}\right\rangle \neq 0, c_{k, 0,0} \rightarrow 0$ as $k \rightarrow \infty$. Hence

$$
h=\lim _{k \rightarrow \infty} \sum_{\ell=1}^{m} p_{\ell, k} f_{\ell}=\lim _{k \rightarrow \infty}\left(\left(p_{1, k}-c_{k, 0,0}\right) f_{1}+\sum_{\ell=2}^{m} p_{\ell, k} f_{\ell}\right) .
$$

Since

$$
\left(p_{1, k}-c_{k, 0,0}\right) f_{1} \in\left[(z-\alpha) f_{1},(w-\beta) f_{1}\right],
$$

we have

$$
h \in\left[(z-\alpha) f_{1},(w-\beta) f_{1}, f_{2}, \cdots, f_{m}\right] .
$$

Thus we get (6.1), so

$$
\operatorname{rank} M_{2} \leq m+1=\operatorname{rank} M_{1}+1
$$

Example 6.2. (i) Let $M_{1}=H^{2}$ and $f_{0}=1$. Then $M_{2}:=M_{1} \ominus \mathbb{C} \cdot 1=z H^{2}+w H^{2}$ is an invariant subspace. It is easy to check that $\operatorname{rank} M_{1}=1$ and $\operatorname{rank} M_{2}=2$.
(ii) Let $M_{3}=z^{2} H^{2}+w H^{2}$. Then $M_{2} \ominus \mathbb{C} \cdot z=M_{3}$ is an invariant subspace. We have $\operatorname{rank} M_{2}=2=\operatorname{rank} M_{3}$.
(iii) Let $M_{1}=z^{2} H^{2}+z w H^{2}+w^{2} H^{2}$ and $f_{0}=z w$. We have rank $M_{1}=3$. Since $M_{2}:=M_{1} \ominus \mathbb{C} \cdot f_{0}=z^{2} H^{2}+w^{2} H^{2}$, we have rank $M_{2}=2$.

Suppose that rank $M_{1}=1$, that is, $M_{1}=[f]$ for some nonzero $f \in H^{2}$. Then $\operatorname{rank} M_{2} \geq 1$.

Question 8. Do there exist M_{1} and $f_{0} \in M_{1}$ such that $\operatorname{rank} M_{1}=\operatorname{rank} M_{2}=1$?
Question 9. Do there exist M_{1} and $f_{0} \in M_{1}$ such that rank $M_{1}=2$ and $\operatorname{rank} M_{2}=1$?

Question 10. Let $f \in H^{2}$ be a nonzero function and $f_{0} \in[f]$ be a nonzero function such that $M_{2}:=[f] \ominus \mathbb{C} \cdot f_{0}$ is an invariant subspace. Does rank $M_{2}=2$ hold?

These questions have some connection with Questions 4 and 7.
Let $N_{j}=H^{2} \ominus M_{j}$ for $j=1,2$. Since $T_{z}^{*} N_{j} \subset N_{j}$ and $T_{w}^{*} N_{j} \subset N_{j}$, we may consider rank N_{j} for the operators T_{z}^{*}, T_{w}^{*}. In the similar way as Proposition 6.5, we can prove the following.

Proposition 6.6. Suppose that $M_{1} \neq H^{2}$. Then we have

$$
\operatorname{rank} N_{1}-1 \leq \operatorname{rank} N_{2} \leq \operatorname{rank} N_{1}+1
$$

Example 6.3. (i) Let $M_{1}=z H^{2}+w H^{2}$ and $f_{0}=z$. We have $N_{1}=\mathbb{C} \cdot 1$ and $N_{2}=\mathbb{C} \cdot 1+\mathbb{C} \cdot z$. Hence $\operatorname{rank} N_{1}=1=\operatorname{rank} N_{2}$.
(ii) Let $M_{1}=z^{2} H^{2}+z w H^{2}+w^{2} H^{2}$ and $f_{0}=z w$. We have $N_{1}=\mathbb{C} \cdot z+\mathbb{C} \cdot w+\mathbb{C} \cdot 1$ and $N_{2}=\mathbb{C} \cdot z+\mathbb{C} \cdot w+\mathbb{C} \cdot 1+\mathbb{C} \cdot z w$. Hence $\operatorname{rank} N_{1}=2$ and $\operatorname{rank} N_{2}=1$.
(iii) Let $M_{1}=z^{2} H^{2}+z w H^{2}+w^{2} H^{2}+\mathbb{C} \cdot(z+w)$ and $f_{0}=z+w$. We have $N_{1}=\mathbb{C} \cdot(z-w)+\mathbb{C} \cdot 1$ and $N_{2}=\mathbb{C} \cdot z+\mathbb{C} \cdot w+\mathbb{C} \cdot 1$. Hence $\operatorname{rank} N_{1}=1$ and $\operatorname{rank} N_{2}=2$.

In the forthcoming paper, we shall study relationship of ranks of the cross commutators on M_{1}, M_{2} and on N_{1}, N_{2}, respectively.

References

[1] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[2] J. Conway, A Course in Operator Theory, Grad. Stud. Math., Vol. 21, Amer. Math. Soc., RI, 2000.
[3] R. Douglas and K. Yan, On the rigidity of Hardy submodules, Integral Equations Operator Theory 13 (1990), 350-363.
[4] K. Guo and R. Yang, The core function of submodules over the bidisk, Indiana Univ. Math. J. 53 (2004), 205-222.
[5] K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk III, Hokkaido Math. J. 38 (2009), 663-681.
[6] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
[7] R. Yang, Operator theory in the Hardy space over the bidisk (III), J. Funct. Anal. 186 (2001), 521-545.
[8] R. Yang, Beurling's phenomenon in two variables, Integral Equations Operator Theory 48 (2004), 411-423.
[9] R. Yang, On two variable Jordan block II, Integral Equations Operator Theory 56 (2006), 431-449.
(Kei Ji Izuchi) Department of Mathematics, Niigata University, Niigata 950-2181, Japan
(Kou Hei Izuchi) Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan
(Yuko Izuchi) Asahidori 2-2-23, Yamaguchi 753-0051, Japan
E-mail address: izuchi@m.sc.niigata-u.ac.jp (K. J. Izuchi), izuchi@yamaguchi-u.ac.jp (K. H. Izuchi), yfd10198@nifty.com (Y. Izuchi)

Received September 24, 2015
Revised May 14, 2016

[^0]: 2010 Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.
 Key words and phrases. Hardy space over the bidisk, invariant subspace, fringe operator, one dimensional perturbation.

 The first author is supported by JSPS KAKENHI Grant Number 15K04895.

