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ONE DIMENSIONAL PERTURBATION OF
INVARIANT SUBSPACES IN THE HARDY SPACE
OVER THE BIDISK 1

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

ABSTRACT. For an invariant subspace M; of the Hardy space H? over the bidisk
D?, write Ny = H? © M. Let Q(M;) = My © (2M; +wM;) and Q(Ny) = {f €

Ny : zf,wf € My}, Then Q(Mp) # {0}, and Q(My),Q(Ny) are key spaces to
study the structure of M;j. It is known that there is a nonzero fy € M; such
that My = M; © C- fj is an invariant subspace. It is described the structures of

O(Ms), Q(N2) using the words of (M), 2(Ny) and fy. To do so, it occur many
cases. We shall give examples for each cases.

1. Introduction

Let H? = H?(D?) be the Hardy space over the bidisk D? with two variables z and
w. Let T, and T, be the multiplication operators on H? by z and w, respectively. A
nonzero closed subspace M of H? is said to be invariant if 7,M C M and T,,M C M.
The structure of invariant subspaces of H? is fairly complicated and in this moment
it seems to be out of reach (see [1, 6, 7]).
Let M be an invariant subspace. Then by the Wold decomposition theorem, we
have .
M =P uw"(M e wM),
n=0
so the space M © wM contains a lot of informations of an invariant subspace M. In
[7], R. Yang defined the operator F on M © wM by

FMf = PyewnT.f, f€MowM,

where P, is the orthogonal projection from H? onto A C H?, and Yang called F'M
the fringe operator on M & wM. It is considered that the informations of M are
encoded in the operator theoretic properties of FM.
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We write RM = T,|y and RM = T, |y Then RM RM are the operators on M.
We set

(1.1) QM)=Mo (zM+wM)=Mo zM + whM.
Then Q(M) # {0} (see for example [7, p. 532]). Let N = H*> & M. We also set
(1.2) QIN)={feN:zfwfe M}

It is known that Q(N) may be empty. In [7], Yang showed that ker (FM)* = Q(M)
and ker FM = wQ(N), where (FM)* is the adjoint operator of FM. When FM on
M & wM is a Fredholm operator,

ind FM = dimker FM — dim ker (FM)*

is called the Fredholm index of FM | see [2] for the study of operator theory. So in
this case, we have

ind FM = dim ker Q(M) — dim ker Q(N).

There are a lot of examples of M satisfying that FM on M © wM is Fredholm (see
[4,7,8,9]).

The smallest number of elements in M which generate M as an invariant subspace
is called the rank of M. By (1.1), it is easy to see that the rank of M is greater
than or equals to dimker Q(M). Motivated by these facts, we are interested in the
structures of (M) and Q(N).

Let M, be a nonzero invariant subspace of H2. Then there is f, € M; with
|| foll = 1 such that My := M; © C - fy is an invariant subspace (for example take
fo in Q(M;)). Our problem is what kind of changes of the structure of My come
from the ones of M;. This problem is basic in the study of the structure of invariant
subspaces. Let N; = H? & M, for j = 1,2. We shall describe Q(Ms,), Q(N,) using
the words of fo, Q(M;) and Q(NV;). To do so, we need other notations;

o = Paown fo, 0 = Py I% fo, o = Ponyy T fo-

In Section 2, we shall give some facts which are used later. In Section 3, we shall
describe Q(Ms), Q(N3) under the condition “fy € Q(M;)”. We need to divide the
situation into several cases which depend on ¢q and . To describe Q(M;), we shall
study under the additional assumption that (F*1)* has closed range.

Suppose that fo ¢ Q(M;). Since Q(M;) = (H* & zM;) N (H? © wM,), either
fo & My & zM, or fo ¢ My & whMy. In Section 4, we shall describe Q(M,), Q(No)
under the condition “fy ¢ M; © zM; and fo € M; © wM;”. Here we need to divide

the situation into several cases which depend on fy, ¢ and .



In Section 5, we shall describe Q(M,), Q(Ny) under the condition “fy ¢ M; © z M,
and fo ¢ My ©wM,”. Here we need to divide the situation into several cases which
depend on 19, o and ).

To prove our assertions, we use only elementary techniques. But we shall give
examples which satisfy each condition given in Sections 3, 4 and 5. These examples
will be some help for further investigation of invariant subspaces, and show us that
the structure of invariant subspaces is not so simple.

In Section 6, we shall give some comments and problems on the related topics.

2. Preliminary

Let M be a nonzero invariant subspace of H?. We have (RM)* = Py,T*|) and
(RMY* = Py/T#|as. Since ker (RM)* = M & wM, by (1.1) we have
Q(M) = ker (RM)* N ker (RM)*.
We also have
Q(M) = {f € Mo wM : ker (R))*f =0}.
Let N = H>© M. Then we have T*N C N and TN C N. So

(2.1) QM)={feMowM :T:feN}.
Since wQ(N) € M, we have wQ(N) € M & wM. By (1.2), we have
(2.2) QIN)=N& (I'N+T:N)=NoT*N+T:N.

Let FM on M©&wM be the Fringe operator of M. We have that (FM)* = (RM)* =
PyT? on M & wM. By [7, Proposition 4.4, we have the following.
Lemma 2.1. ker (FM)* = Q(M) and ker FM = wQ(N).

We shall use the following lemma in the proof of Theorem 3.1.

Lemma 2.2. Suppose that (FM)* has closed range. Then for every f € (MoOwM)&
wSA(N), there is a unique function h in (M ©wM) © Q(M) such that (RM)*h = f.
Proof. We have (FM)* = (RM)* on M © wM. By the assumption, (F)* is a one-
to-one map from (M © wM) © ker (FM)* onto (M © wM) © ker FM. Hence by
Lemma 2.1, we get the assertion. 0

For many examples of M, (FM)* has closed range. We do not know an example
of M for which (FM)* does not have closed range.

Let M; be a nonzero invariant subspace of H? and fy € M, with || fo]| = 1 such
that My := M; ®C- fj is an invariant subspace. We write N; = H*© N for j = 1, 2.
Since fy € Ny, we have

17 fo, Tfo € No= N1 C- fo.



3. The case f; € Q(M)

In this section, we assume that fo € Q(M;) and we shall study the structure of
Q(Ms) and Q(N3). Recall that

Yo = Pﬁ(Nl)Tz*fO and 1y = Pﬁ(Nl)T:;fO-

Lemma 3.1. Suppose that fo € Q(My). Then we have the following.
(i) fo € My ©wM, and (RM)*wf, € My © wM,.
(i) @o = 0 if and only if (RM)*wfy L wQ(Ny).
(iii) 1o = 0 if and only if fo L wQ(Ny).
Proof. (i) Since Q(M;) C My & wM;, we have fy € My © wM;. Since fo € Q(My),
we have T fo € Ni. Hence Py, wT? fo € My ©wM,. Since (RM)*w fo = Py, wT? fo,
we have (RM)*wfy € My © wM,.
(ii) We have that oo = 0 if and only if wT?*fo L wQ(Ny). Since wQ(Ny) C My,
wT? fo L wQ(Ny) if and only if Py, wT? fo L wQ(Ny). Hence we get (ii).
(iii) We have that ¢, = 0 if and only if 7% fo L Q(N;). Hence we get (iii). O

Lemma 3.2. If fy € Q(M,), then
My & wMs = ((My ©wMy) &C- fo) & C-wfo.

Proof. Since My = My®C.- fy, we have (My6wM,)oC- fy C Ms. Since (MyowM;) L
wMsy, (M ©wMy) ©C- fy C My © whMy. Since fy € Q(M;), we have wfy € My, so
wfo L wM,y. Hence

((Ml @le) oC- f()) @wa() C My & whMs.

To show the reverse inclusion, let f € My © wM,. Write f = fi + cwfo, where
fi e (MyswMy)eC-wfyand ¢ € C. Then T fi € No. We have (T f1, fo) =
{(fi,wfo) = 0. Since Ny = N; & C - fo, we have T;: f; € Ny. Hence f; € My & wh;.
Trivially we have f; L fo. Therefore f; € (M; © wM;) & C - fo. Thus

My ©wMy C ((My©wMy)©C- fo) ®C-wfo,
so we get the assertion. O

By the proof, the assertion of Lemma 3.2 holds if fy ¢ M; & zM; and f, €
M1 S) U)Ml.

Lemma 3.3. Suppose that fo € Q(M;). Then we have the following.
(i) Q(M2) = (Q(M) e C- fo)d
{he (M owM)oQUM))&C-wfy: (RM)heC- f}.
(i) Q(N) = (UN) & (C- 9o+ C- ) &C- fo.



Proof. (i) By (2.1),
Q(Ms) = {h € My ©wM, : T;h € N}
Since Ny = N; @ C - fj, we have
Q(Ms) = {h € My&wM,: (R")*h e C- f}.
By Lemma 3.2,
My, & whMy = (QM)eC- fo) @
(((My & wMy) ©Q(My)) & C-wfy).
Since fo € Q(M;), we have (M;©wM;) ©Q(M;) C My and Q(M;)oC- fo C Q(Ms).
Hence we have
QM) = (M) e C- fo) &
{he ((MiowM)o QM) @C wfy: (R)heC- fo}.
(i) Since fo € Q(M;), we have C - fo € Q(N,). By (2.2), we have
Q(Na) = {h € QNy) : zh L fo,wh L fo} &C- fo.
Hence we get (ii). O
The following follows directly from Lemma 3.3 (ii).

Corollary 3.1. Suppose that fo € Q(M;). Then we have the following.
(i) If po = o = 0, then Q(N2) = Q(Ny) @ C - fo.
(ii) If o # 0 and ¢o = 0, then Q(Nz) = (Q(N1) ©C - ¢o) ® C - fo.
(iii) Suppose that wo # 0 and 1y # 0. If C- @y = C -1y, then

Q(N2) = (UN1) ©C- o) ®C- fo.
(iv) Suppose that @o # 0 and 1y # 0. If C- g # C - 1), then

Q(Ns) = (AN) © (C- o+ C ) ®C - fo.

Theorem 3.1. Suppose that fo € Q(M;). Moreover suppose that (F)* has closed
range. Then we have the following.

(i) If ¢o = 1o = 0, then there are nonzero functions hy and he (may be zero) in
(M, © wMy) © Q(M;) such that

Q(My) = (QUM,) ©C- fy) @ ((C ~h1+C- (hy ® wfo)).

(i) If po # 0 and ¥y = 0, then there is a nonzero function hg in (M, © wMy) ©
Q(M) such that

QM) = (M) e C- fo) ®C- hs.



(iii) Suppose that vo # 0 and g # 0. If C - pg = C - 1y, then there is a function
g1 i (My © wMy) © Q(M,) such that

QM) = (M) e C- fo) C- (g1 @ wfo)-
(iv) Suppose that @g # 0 and 1y # 0. If C- g # C - 1)y, then
QO(M,) = QM) & C - f.

Proof. (i) Since 1y = 0, by Lemma 3.1 (iii) we have fo L wQ(N;). Since fy €
Q(M;) € My ©wMy, by Lemma 2.2 there is a unique nonzero function h; in (M; &
wMy) © Q(M,) satisfying (RM1)*h; = f,. We note that

(3.1) {he (M ewM)oQM): (R)heC: fo} =C-hy.

Since fy € Q(M;), by Lemma 3.1 (i) we have (RM)*wfy € M; © wM;. Since
@o = 0, by Lemma 3.1 (ii) we have (RM)*wfy L wQ(N;). Then by Lemma 2.2
again, there is a unique function hy in (M; © wM;) © Q(M,) satisfying (RM)*hy =
—(RM)y*w f. Hence (RM)*(hy ® wfy) =0€ C- fo.

Suppose that (RM)*(hdwfy) € C- fy for some h € (M; ©wM;) © Q(M;). Then
(RM)*(h — hy) € C - fo. Since h — hy € (M, © wM;) © Q(M,), by (3.1) we have
h—hy € C-hy, and

h@wf0€h2+Ch1+wf0CCh1+©(hg@wfo)

By Lemma 3.3 (i), we get (i).

(ii) Since fy € Q(M;), by Lemma 3.1 (i) we have fy € My ©wM; and (RM)*wf, €
M, & wMj. Since 1y = 0, by Lemma 3.1 (iii) fo L wQ(Ny). Then by Lemma 2.2,
there is a unique nonzero function hs in (M; ©wM;)©Q(M;) such that (RM)*hs =
fo. Since ¢y # 0, by Lemma 3.1 (i) we have (RM)*wfy Y wQ(N;). Then by
Lemma 2.2 again, (RM)*h # (RM)*w fy for any h € (M; © wM,) © Q(M;).

Suppose that there is g € (M; ©wM;) & Q(M,) satisfying that (RM)*(gdwfy) =
cfo for some ¢ € C. Then

(R wfy = (R (g@wfo) — (R:")'g=cfo— (R")'g
= (RI")*(chs - g).
Since chy — g € (My; © wMy) © Q(M;), this contradicts the last paragraph. Hence
by Lemma 3.3 (i), we get (ii).
(iii) Suppose that ¢y # 0 and ¥y # 0. By the assumption, g = ¢y for some
¢y € C with ¢; # 0. Then PQ(NI)(clijo —Trfo) =0, s0

P Q(Nl)(01WT1:f0 —wT7 fo) = 0.

We have
Pwﬁ(Nl)sz*fO - Pwﬁ(Nl)PM1T;wf0 = Pwﬁ(Nl)(Ryl>*wf0



and Pwﬁ wT wfo= wQ 1) fo- Then

P (e1fo — (R wfo) = 0.
Hence ¢, fo — (RM)*wfy L wQ(Ny). Since fo € Q(M;), by Lemma 3.1 (i) we have
leo — (Riwl)*wf() < M1 ) U}Ml.
By Lemma 2.2, there is a unique function ¢; in (M; © wM;) & Q(M;) such that
(Riwl)*gl =cifo— (Riwl)*wfo-
Hence
(RY)* (g1 @ wfo) = cifo.
Since 1y # 0, by Lemma 3.1 (iii) we have fy £ wﬁ(]\/’l). Since fo € My, & wM;, by
Lemma 2.2 (RM1)*h ¢ C - f, for any nonzero function h € (M; © wM;) © Q(M,).

Hence by Lemma 3.3 (i), we get (iii).
(iv) By the assumption,

C- Poony T2 fo # C- Py T Jo-
As the proof of (iii), we have

(3:2) C - Py (B wfo # C- P fo

As the last paragraph of (iii), (RM)*h ¢ C - f; for any nonzero function h €

Assume that

(RMY* (g wfy) € C- fy
for some g € (M; © wM;) © Q(M;). Since (RM)*g € M, © wM,, (RM)*wf, €
M; & whMy, so we may write
(3.3) (R wfy=pderfo € ((M1 owhM)oC- fo) ®C- fo.
Then (RM)*g = —p @ ¢y fy for some ¢, € C. We have
(RMY* (M, © wMy) L ker FM.
By Lemma 2.1,
Hence —p @ o fy L wﬁ(Nl), 80 P& n)P = 2Py fo- By (3.3),
Pwﬁ(N1)<R,]le>*wf0 = Pwﬁ(zvl)p +ab, Q(Nl)f
= (c1+ CZ)Pwﬁ(Nl)fO'

Since o # 0 and ¢y # 0, by Lemma 3.1 (ii) and (iii) we have Pwﬁ(Nl)(Ryl)*wfo #0

and P 5 y,)fo #7 0. Hence the above equations contradict (3.2). Therefore there are



no g € (M, ©wMy) © Q(M,) satisfying that (RM)*(g ® wfy) € C- fo. By Lemma
3.3 (i), we get (iv). O

When ¢y = 0 and 1y # 0 in Corollary 3.1 and Theorem 3.1, we can describe
Q(Ns) and Q(Ms,) exchanging variables z and w in Corollary 3.1 (ii) and Theorem
3.1 (ii), respectively. We do not know whether in Theorem 3.1 (iii) we can take g;
as g1 # 0, and this is equivalent to (RM)*wfy & C - fo.

We shall show the examples which satisfy each conditions in Corollary 3.1 and
Theorem 3.1.

Example 3.1. (i-1) Let My = 22H? + wH?, fy = w and My = M; ©C - fy. Then M,
and My are invariant subspaces. We have

M, ©wM, = 2*H*(2) ©C- 2w & C - w,

where H?(z) is the z-variable Hardy space, Q(M;) = C-22® C-w, fo € Q(M;) and
Q(N;) =C-z. Hence T} fo =0 L Q(Ny) and T0) fo = 1 L Q(N1), so o =109 = 0. In
the proof of Theorem 3.1 (i), hy belongs to (M; & wM;) & Q(M;) and (RM)*hy =
(RM)*w fy. In this case, we have (RM)*wfy = 0, so hy € Q(M;) and hy = 0. Note
that

(RMY* (M, © wM,) = 22 H?*(2) ® C - w.

(i-2) Let

My = 2%bo(2) H? + by (2)wH? 4+ w? H?,

where b, = (z —a)/(1 —@z) and a € D with 0 < |a| < 1. Then
QM) = C - 2%bo(2) ® C - by (2)w.
)

Take fo = bo(2)w € Q(M;). We have Q(N;) = C - zb,(z). Then T fo L Q(N,) and
T fo L Q(Ny), so pg = 1y = 0. We have

w2

M, ©wM,; = 2%b,(2) H?*(2) ® C - 2by(2)w ® C -

1 —az

and

w?

(M, © wM;) © QM) = 230 (2) H*(2) ® C - 2by(2)w @ C - T

Take hy = w?/(1 —@z). Then hy € (M; © wM;) © Q(M,;) and hy # 0. We have
a

(R fy = (B2 ba(2)w® = " w? = (R

Note that

w2

(RMY* (M, © wM,) = 2%b(2)H*(2) © C - T

(i) Let My = zH? + wH?, fo = z and My = M; © C - fo. Then M; and M, are
invariant subspaces. We have M, & wM; = zH?*(2) ® C - w, Q(M;) =C-2® C - w,



fo € QM) and Q(Ny) = C-1. Hence TFfo =1 £ Q(N;) and T fo = 0 L Q(N,),
s0 g # 0 and 1y = 0. Note that (RM)*(M; © wM,) = zH?(2).

(iii) Let My = zH? + wH?, fo = z +w and My = M, © C - fo. Then M;, M, are
invariant subspaces. We have Q(M;) = C-2®C-w, fy € QM) and Q(N,) =C- 1.
Hence TV fo =T fo=1 L Q(Nl) s0 g # 0,99 # 0 and C - ¢y = C - 1hg. We have
that ¢; = 1 in the proof of Theorem 3.1 (iv). Hence

(RMYwfy —cifo=w— (2 +w) = —2.
We also have
(M ©wMy) © QM) = 22H*(2).
Let gy = —2% € (M, © wM;) © Q(M;). Then g; # 0 and
(RM)*g1 = (R w fo — e1 fo.

(iv) Let My = 22H? + zwH? + w?*H?, fo = 2w and My, = M; © C - fy. Then
M, My are invariant subspaces. We have

M, owM, = 2*H*(2) ®C - 2w & C - w?,

QM) =C-220C- 2w C-uw?
fo € Q(M;) and Q(Nl) =C- z—i—@ w. Hence T*fU:w,JLﬁ(Nl) T*fozz,)éﬁ(]\fl)

and Po 17 fo = w # z = Py, T fo- Therefore g # 0,19 # 0 and C- ¢ # C- ).
Note that (RM)*(M; & le) = 22H?*(2). O

4. The case that fy ¢ M, © zM; and fy, € M, © wM,

If fo ¢ Q(M), then either fo & My © zM; or fo ¢ My © whM;. In this section, we
assume that fo € My © zM; and fo € My © wM;. Since My © My = C - fy, there is
ap € C with o # 0 satisfying that

(4.1) (RI) fo = aofo.

We shall study the structure of Q(M,) and Q(Ny). Let
o0 = Punezm fo-

Since Q(M;) C M, © zM,, we have Po,yoo = Poan) fo-

Lemma 4.1. Suppose that fo ¢ My © zM, and fo € My © wM,. Then oy # 0 and
fo = 0'0/(1 — Oé()Z).

Proof. Since (RM)* fo = g fo, we have fy = agzfo + 9. Then we get the assertion.
O



Lemma 4.2. Suppose that fo ¢ My © zM;y and fo € My © wMy. Then
MQ S wMQ = ((M1 © ’U}Ml) © C- fo) D C- U)fo.

Proof. Since M, © My = C - fy and wfy L fo, we have wfy € M,. In the same way
as the proof of Lemma 3.2, we have the assertion. U

Lemma 4.3. Suppose that fo ¢ My © zM; and fo € My © wM,;. Then we have the
following.

(i) QM) = {f € (M ©wMy) ©C- fo: (RM)"f €C- f}.
(i) Q(N2) = (N1 ® C- fo) © (TrNy + TiN1 + C - T fo).

Proof. (i) By (2.1),
QM) ={f € My ©wM, : TS f € Ny }.
Since Ny = N; & C - f, we have
O(My) = {f € MyowM, : (RI")" f € C- fo}.
By Lemma 4.2,
QM) ={fe((MrowM)eC- fo)dC-wfy: (R)*feC- fo}.

Suppose that (R¥)*(g D wfy) € C- fo for some g € (M; ©wM;) & C - fo. We have
(RM1)*g =0 and fy € M} © wM,. Hence (RM)*wfy € My © wM,.
By (4.1), we may write T2 fo = g fo @ f1 for some f; € Ny. Then

(Riwl)*wfo = Py, wT fo = apwfo + Paywfy.

Since f1 € Ny, Pyywf, € My © wM;. Hence agw fo € My © whly, so oy = 0. This
contradicts ag # 0. Therefore (RM)*(gdwfy) ¢ C- fy for any g € (My0wM,)OC- fo.
Hence we get (i).

(ii) We have Ny = N; @ C - f,. Hence

TNy + 15Ny = TNy + TN, + C - T fo + C - T fo.

By (4.1), we have fy L ker FM' so by Lemma 2.1 fo L wQ(Ny). Hence T fy L
Q(Nl) Since f() e M, 6 U)Ml, we have T;Zf() € Nj. By (22), T:}f() € T;Nl -+ T;)Nl
Therefore

TNy +TiNy =T:Ny +TiN, 4+ C- T f.
By (2.2) again, we get (ii). O

Theorem 4.1. Suppose that fo ¢ My © zM; and fo € My © wM;. Then we have
the following.

() If fo L Q(M,), then Q(M,) = Q(M)).



(i) If fo £ Q(My), then there is a nonzero function hy in (M; © wMy) © C - fy
such that

Q(Ms) = (M) © C - Pouy) fo) @ C - hy.

Proof. (i) Suppose that there is h € (M; ©wM,)©SC- fy satisfying (RM)*h = f,. By
(4.1), we have that (RM)*(h— fo/ag) = 0, 80 h— fo /g € Q(M;). Since fo L Q(M;),

we have
0= (h— fo/aw, fo) = —HfOHZ/Oéo-
This contradicts fy # 0. Hence by Lemma 4.3 (i), we have
QM) = {feMowM)oC- fo: (RM)f =0}
= ((MyowM;)©C- fo) NQM;) = Q(M).

(ii) By the assumption, we have Po,)fo # 0. Let
1 1 foll?
o= (5 g ) e,
"= Jo [P JolP? o) fo 1 1
Since fy ¢ Q(M;), we have that hy # 0 and

(ho, fo) = —(ILfoll> = I foll*) = 0.

1
Qg
Hence hy € (M & wMy) & C - fy, hg € My & wMy and

1
(RY)*ho = —(RY)" fo = fo.
Qo
Moreover we have hy € (Ms). Therefore by Lemma 4.3 (i), we have

O(M) = {fe(MowM)oC-fo: (RM) f=0}aC-h
= ((MyowM)©C - f,) NQM,)) & C - ho
= (Q(My) ©C- Popnyfo) @ C - ho.

Recall that ¢y = Pﬁ(Nl)T,:fO'

Theorem 4.2. Suppose that fo ¢ My © zMy and fo € My © wM;. Then we have
the following.

(i) If o = 0, then Q(Ny) = Q(N,).

(i) If po # 0, then

Q(N2) = (QN) @ C- fo) ©C - (o @ agfo).



Proof. (i) Since @y = 0, we have T*fy L Q(N;). Then by (2.2), Px,Trfo €
T*Ny +T#Ny. Since T} fy € Ny = N1 @ C - fy, we have
T;fo < T;Nl +TJJN1 @ C - fo,
S0
ToN, 1 TN, +C - T fo = T°N, + TN, @ C - fo.
Then by Lemma 4.3 (ii),

QNy) = (M@C- fo)o (TrNi+TyN + C- T fo)
= (MiaC-fo)e (TN +TiN & C- fp)
— N TN ITIM =O(N) by (22)
(ii) Suppose that ¢ # 0. We have
T:N +TyNi +C -T2 fy
=T:N + To N @ C - (P, T2 fo @ ao fo)
=TIN + TN @ C- (o @ aofo)-

Hence by Lemma 4.3 (ii),

QN;) = (M@C-fo) o (TN + TNy +C - T: fo)
= (QAN)@C- fo) ©C - (o @ aofo) by (2.2) again.
O
We shall show four examples which satisfy each conditions in the proof of Theo-
rems 4.1 and 4.2.

Ezample 4.1. (i) Let

M= Z2"YH? v wH?, 0<a| <1,
1—az
fo= —— and My = M; © C - fo. Then M; and M, are invariant subspaces. We
have
z—a 9
M1@ZM1:C' — @/IUH<U])
1—az
and
M, & wM; = : _a H*(z)@C- w_ )
1—az 1—az

Then fo ¢ My © M, and fo € My © wM;. We have Q(M;) = C- = (see [5]).
Then fy L Q(M;). We have Q(Ny) = {0}, so ¢ = PovyT= fo = 0.
(ii) Let

zZ—a

M, =z H? + 2wH? +w?H?, 0<|a] <1,

1—az



fo==2% and My = My ©C- f;. Then M; and M, are invariant subspaces. We

l1-az

have

Ml@lez(C'zlz__a ®C- 2w w H*(w)
—az
and
M, S wMy = 2——° H*(z)® C - L eC-wt
1—az 1—az

Then fo ¢ My © zM; and fo € My © wM;. We have

QM)=C 22— L oC-u?

1—az

Hence fy L Q(M;). We have Q(Ny) = C-w and T7fy = w/(1 — az), so gy =
PQ(NI)T;JCO # 0.

(iii) Let
Y w—p3
Mlz—_H —_H, 0<|Of|<1,0<|6|<1,
1—az 1— pw
fo= 171@ 1”“"7%/; and My = M; © C- fy. Then M; and M, are invariant subspaces.
We have
_ 1 _
Mo —c 222 L g Wm0
l—az1-pBw 1-pw
and
Z—« 1 w—
M M, = H? C- —.
1owMy = H(2) & 1-a@z1- Buw

Then f() ¢ M, © zM; and fg € M; ©wM,. We have

-3 w-p —a z—a)

Q00) =C- ({5 T 5 " T w1

(see [5]). Then fy £ Q(M;). We also have Q(Nl) = {0}, so ¢y = 0.
(iv) Let

M= 0 <al <1, 0< 8 <1,
1—az 1— pBw
Jo= 151, and My = M ©C- fo. Then M; and M, are invariant subspaces.
We have
_ 1 — -
M, & zM, = C-zz _a = @C'ZZ _Oz’w_ﬁ
1—az1- Buw l—azl - pBw
Bw— _—ﬁ H?(w)
1—pw



and

1 w— C z—a w—0

MyswM;, = C- ! : !

e wih 1—az 1— Buw 1—az 1- Buw
Z—

H?(2).

@Zl—az (2)

Hence fy ¢ My © zM; and fy € My © wM;. We have

Q(Ml):(C-zlz_a 4Ot =h

—az 1—Bw
This shows that fy £ Q(M;). We have

~ z—a w—p

Q(Ny) =C- —.
(V1) 1—az1 - Buw
Then
L, Z—a w—p 1 z—a z—a w—20 —
(T iSa ) (oimn sa vty 5
—azl— fw l—azl—-az 1-az1- Bw
HenceTZ*fo,lifNZ(Nl) and g # 0. O

When fy € My & zM; and fy ¢ M, © wM;, exchanging the variables z and w in
Lemma 4.3, Theorems 4.1, 4.2 and 4.1 we have the corresponding results.

5. The case that f; ¢ M, © zM; and fy ¢ M; © wh;

In this section, we assume that fy ¢ M; © zM; and fy ¢ M; © wM; and we shall
study the structure of Q(Ms) and Q(Ny). Let

7]0 = PMl@lefO a‘nd 0pg = PMl@ZleO'
Since Q(M1> = (M1 ) ZMl) N (Ml © U}Ml)7 we have
Poryno = Poyoo = Pou fo-

By (4.1), (RM)*fy = apfo for some ay € D with ag # 0. Similarly we have that
(RMv)* fo = By fo for some [y € D with 3y # 0.

Lemma 5.1. Suppose that fo ¢ My © zM, and fo ¢ My © wM,. Then we have the
following.

(i) m0 # 0 and fo =no/(1 — fow).
(ii) Either ng & Q(My) or o9 & Q(M).

Proof. Since (RM1)* fo = By fo, we have fy = Bowfo + no. (i) follows from this fact.



To show (ii), suppose that ny € Q(M;) and oy € Q(M;). Since Q(M;) =
(Ml ©) ZMl) N (Ml o /LUMl), we have

o = PQ(M1)770 = PQ(Ml)PMlelefO

= PQ(Ml)PMlelefO = 0p-

By (i), fo = 1io/(1— Byw), and fo = a0/ (1—a2). Hence 1o/ (1~ fw) = 0o/(1—ag),
so (apz — Bow)ne = 0. Since apfy # 0, we have g = 0. This contradicts g # 0. O

By Lemma 5.1 (ii), we may assume that 1y ¢ Q(M;). Similarly as Lemma 5.1 (i),
we have o¢ # 0 and fy = 0¢/(1 — apz). When oq ¢ Q(M;), exchanging variables z
and w we can get the similar result.

Lemma 5.2. Suppose that fo ¢ My © zM; and fo ¢ My © wMy. If ng ¢ Q(M,),
then
1
My ©wMy = ((Mlele)@C-no) ®C- (fo - —2770)-
1 — 5ol

Proof. By Lemma 5.1 (i), we have 7y # 0 and fo = @, Sinow™. Since || fo| =1
by the starting assumption, we have ||n]|?/(1 — |50]?) = 1. Let

1
Go = fo— ————10 € M.
0 0 1—’/80’2770 1

Then gy # 0. We have

1 1
(90, fo) =1— 1_—|50|2<7707f0> =1- 1_—|50|2<7707770> =0

and (RM1)*gy = By fo. Hence gg € My © wM,. Since (M; © wM;) © C -1y L fo, we
have

(Ml @’U)Ml) @C’I]() C M2 @’U}MQ

Therefore
((M1@wM1)@(C-770) ®C- gy C My wMs.

To show the reverse inclusion, let g € My & wMy. Then (RM)*g = cfy for some
ceC. If c=0, then g € My ©wM;. Since g L fy, we have that

{g,m0) = (9, fo — Bowfo) = —Bo((RL™)*g, fo) = 0.

Hence g € (M1 & wM;) & C - np.
Suppose that ¢ # 0. Since (RM)*gy = By fo, we have (R¥)*(g/c — go/Bo) = 0, so
g/c— go/Bo € My ©wM;. Since g L fy and go L fy, we have that
(9/c—g0/Bo,mo) = (9/c—g0/Bo, fo — Bow fo)
= —%((Rf,\fl)*(g/c — 90/Bo), fo) = 0.



Hence g/c — go/Bo € (M1 © wM;) ©C - g, so
- ((M16wM1)@<C770) @Cgo
Thus we get the assertion. 0

Theorem 5.1. Suppose that fo ¢ My zM; and fo & My ©wM,. Moreover suppose
that no ¢ QU(My). Then we have the following.

(i) There is hg in My © wMsy satisfying that

Q(Ms) = (M) © C - Popuy) fo) @ C - hy.

(ii) If no L Q(My), then hg =0 and Q(My) = Q(M;).

Proof. We put

9o = Jfo— 0 € My & wMs.

1
T A"
Then by Lemma 5.2,

MQ@U}MQ = ((Ml @U)Ml) @(CHO) EBgO

and go # 0.
(i) By (2.1), we have

QM) ={f € My©owM, : T, f € Ny }.
Since Ny = N1 @ C - f, we have that
QM) = {f € MyowMy: (RI")'feC- fo}.
Hence there is hg in My © wM5 such that
(5.1) QM) = {f € MyowM,: (RM) f=0}&C- hy.

We have that fo € (RM)*(My©wM,) if and only if hg # 0, and in this case we may
assume that (RM1)*hy = fo. We have

1
1 —[Bof?
Note that (Ri\/h)*<M1 ) U)Ml) C M1 © U)Ml. Since f[) ¢ M1 ) U)Ml, (Ri\/h)*go ¢
My, & wM;, and by Lemma 5.2 we have

(R,]zwl)*go = apfo — (Riwl)*ﬁo

(€ Mo udty: (R f 0}
:{fe(Mlgle)Q(C-Tlo (RI)* _0}



We also have

{f € (M1 © le) © C- Mo : (Ri\/h)*f = 0}
= Q(M,y) © C - Pouuyymo
= Q(M,) © C- Poouy) fo-
Hence by (5.1), we get (i).

(ii) By Lemma 5.1 (i), we have ng # 0. Suppose that ny L Q(M), i.e., fo L Q(M).
Then PQ(Ml)fO = PQ(Ml)T]() =0 and

QM) © C- Poyy fo = QMy).

Since 1y € My © wM; and 1y L Q(M;), we have (RM1)*n, #£ 0.

Suppose that (RM)*h = c¢(RM1)*ny for some nonzero h € (M; © wM;) & C - g
and ¢ € C with ¢ # 0. Then (RM)*(h — cng) = 0. Since h — cng € My © wM;, we
have h — eng € Q(M;). Since ng L Q(M),

0= (h — cno,mo) = —c||mol|* # 0.

This contradiction shows that there are no such h and c.

To show hg = 0, suppose that hy # 0. As mentioned in the proof of (i), we may
consider that (RM)*hy = fo. Since gy € My © wM,, by Lemma 5.2 we may write
ho = F & dgy for some F' € (M; ©wM,;) & C-ny and d € C. Since

(RMY* g0 = agfo — (RM Y o,

1
1 — [Bol?
we have that

fo = (RI")*ho = (RI)*F + d(RI™)* go

d
R F + agdfy — ———=— (R2)*no.
( 2 ) + agdfo 1_’60’2( z )770
Since 1o, F' € My, © wM;, we have

4
1 —|6of?

Since fo ¢ My © wM;, we have apd = 1 and d # 0. Hence

d
RMyp — ——
B E = T5p

This contradicts the fact given in the last paragraph. Hence hy = 0. Therefore by
(1), we get (ii).

(1 — aod) fo = (RM)*F (RY Yy € My © wh.

(Riwl)*ﬁo # 0.



(ili) Suppose that ny £ Q(My). Then Poryyfo = Pon)yno # 0. We have
[§

||770
Al )
<770 ||PQ(M1)fO||2 Q(Ml)fO Mo

1702 5
= Inoll> — = | P fol|* = 0.
[Pogmy fol2 7
Putting
1 [[770]|?
h = <770— Pour f0>,
T=1Bo2\™ [ Paqasy fol2™

we have h € (M; & wM;) & C - ny. Since 1y ¢ Q(M;), we have h # 0. By Lemma
5.2, h+ gy € My © wM,. We have

* 1 * *
(RY)*(h + g0) 1_—W(Ryl) o+ (RY)* g0
1 * 1 *
= 1_—|50|2(Ri\41) 770+Oéofo—1_—|50|2(Riwl) Mo
= aofo.
Hence h + gy € Q(Ms). Since agfy # 0, we also have h + gy ¢ Q(M;). Therefore by
Theorem 5.1 (i), we get hg # 0. O

In the last part, we shall study the structure of Q(Ng). Recall that ¢g =
Pﬁ(Nl)Tz*fo and @bo = Pﬁ(Nl)lefO

Theorem 5.2. Suppose that fo ¢ My © zMy and fo ¢ My © wM,. Then we have
the following.
(i) If po = o = 0, then Q(Ny) = Q(Ny).
(i) If either po # 0 or g # 0, then ¢o # 0 and 1y # 0.
(iii) If po # 0 and ¥y # 0, then
@ Bo
Po = (&
lleall>™ Tl

and
QN,) = (Q(Nl) 6 C- o) ®C- (fo - H‘ZX#%)

Proof. Let £ € Q(Nl) O (C- ¢+ C-1)p). Since z€ € My, by the definition of ¢, we
have

(28, fo) = (&, T fo) = (fapﬁ(Nl)T;f0> = (£, o) = 0.
Similarly we have (w¢, fo) = 0. Note that My = M; © C - fy. Then z&, wé € Ms.
Hence £ € Q(Ns). Thus

Q(N1) & (C - o+ C 1) C QNy).



Since No = N; & C - fj, we have

(5.2) Q(N2) = (QN1) © (C- o+ C - 1)) & A
where
(5.3) A={heC-po+C-thy+C- fo:zh L fo,wh L fo}.

Suppose that cipg+ cathg € (NZ(NQ) for some ¢y, co € C. Then z(c1p9+ cotbp) € My,
and z(c10 4 catho) L fo. Hence cipg + cathg L T fo, so crpo + cathy L Pﬁ(Nl)Tz*fo =
. Similarly we have c1pg + cotbg L 1. Hence cipg + cothg = 0.

(i) Suppose that ¢y = 1y = 0. Since || fol] = 1 and (R¥)* fo = g fo, we have

(2 fo, fo) = (fo, (RY)* fo) = (fo, o fo) = a5 # 0.
Hence by (5.3), we have A = {0}, so by (5.2) we get (i).

(ii) We assume that 1y # 0. Recall that (RM1)* fy = By fo. Since 1y = oy T fos
we have
SO S
2
= = 0.
Hence
* 50
5.4 T 1

Since 21y € My © zM; and wyy € M; © le, we also have that
Bolfor z00) = ((Ru*)" fo, 2¢00) = (T fo, 2t0)
= (fo, zwibo) = (I7 fo, wibo) = ap(fo, wibo)
= ao{Pyny) T fo, Vo) = ap ||l

Hence

(5.5) (@0, o) = (T7 fo, o) = (fo, 2t00) = %II%HQ £0.

This shows that ¢o # 0. Similarly if ¢y # 0, then ¥y # 0.
(iii) Suppose that ¢y # 0 and ¥y # 0. We have that

(12600~ )

Bo
[lboll? ||2

= <040f0,f0> —ag=ag— oy = 0.

= (T fo, fo) — —5 (L% fo, %)



Then _
* . 50
TZfOJ—fO |’¢0||2¢0

Therefore by (5.4) and (5.5),

Bo
Jo— 730 € A
102
Similarly, we have
Qg
Jo— —zpo € A
[0l
Hence by (5.3), o
&) Bo
T3P0 — T o € A,
l<00l|> [140l|?
so by (5.2) we have o
) Bo =
©o — o € Q(Ny).
ol 7~ T © 2%
By the second paragraph of the proof,
a o
Po = Yo.
ol Tl
Then s
A=C- (fo— se0)
[0l

and by (5.2), we get

QN,) = (Q(Nl) ©C- o) ®C- (fo - Hg#%)-
O

We shall show examples which satisfy each conditions in Theorems 5.1 and 5.2.

Example 5.1. (i) Let

MlzzH2+1w;_6H2, 0<|8] <1,
w

fo=1%-—L for some 0 < || < 1 and My = M; ©C - f;. Then

1-az 1—-Bw

My—:2 "%z WP e
1—az 1 — pw

so My and M, are invariant subspaces. We have

z w—
MiozM;=C- ——= & —=—H">
. 1—pPw 1-—pw (w)

M1@’I.UM1:ZH2(Z>EB(C w__ﬁ .
1—pw

and




Then fo ¢ Ml ) ZMl, fo ¢ Ml ) 'lUMl and

z
No = Pucwsn fo = 1 _a.
—Qaz
We have
w—f3
Q(M1> =C-. — and Mo 1 Q(Ml)
1—pw

Since Ny = C - 1/(1 — Bw), we have Q(N;) = {0}. Hence ¢y = 1y = 0.
(ii) Let a € D with a # 0 and

2 27 H2+sz2+zw2H2+ww—__a
1—az 1—aw

M, =z H?.
Then M, is an invariant subspace and

2
9 & —

_aGBC-zzwéB(C-z —
—Qaz 1 —aw

w—
C-w>*——H?
&) w1 — (w)

MyozM, = C-z

and
2 # — 22 2
M, owM, = 22—H*(2)aC. w®dC-zw
1—az 1—az
1—aw’
Hence
QM) =C- 2" gC w2t
1—az 1 —aw
Let ) )
z w
fo= 7O T Gw
Then fo € Ml, fo §é M1@ZM1 and fo §é Ml @le Let M2 = M1@(Cf0 We have
My=22"" 0 g2y 222 42 2% g2
1—az 1 —aw

so M, is an invariant subspace. Moreover we have f, L Q(M;), so we get ny L
Q(My). B
We have Q(N;) = C - zw, and

2

<T;f072w> = <f0722w> = <1 _ZaZUJ,szLU> =1.

Hence pg = Py T2 fo = 2w # 0.

(iii) Let o, 8 € D satisfy o # 0,8 # 0 and o« # 5. Let M} = (z — w)H? and
My ={f¢€ M : f(a,5) =0}. Then My, M, are invariant subspaces,

z—aH2+ w—_ﬁH2>

MQ:(Z_w)<1—az 1— Buw



and

1 1
My My =€ P20

Buw
Put
1 1
fO a Mll —azl—Bw'
We have fy L zM; and fo L wM,;. Hence fy ¢ My, © zM; and fy ¢ My © wM,. We
have Q(M;) =C- (z —w) and

(z—w,m) = (2z—w, Pacw fo) = (z —w, fo)

- <z— 1 1 >:a—ﬁ7é0.

w, — —
1—-az1- pw

Hence 1y ¢ Q(M;) and no L Q(M,).

Since Q(Nl) = {0}, we have that ¢y = 1y = 0.

(iv) Let o, 8 be nonzero numbers in D. Let My = zH?* +wH?, fo = Py, 1= 171%
and My = M; & C - fo. Then My = {f € My : f(a,3) = 0} and My, M, are
invariant subspaces . Since fo Y zM; and fy L wM;, we have fy ¢ M; © zM; and
fo & My © wM,;. We have Q(M;) =C-2z+C - w, and

<Z7770> = <Z7PM1@1UM1f0> = <va0>
1 1
s S

Hence Mo ¢ Q(Ml) and Mo ,K Q(M1>
Since (N;) = C- 1, we have

<17900> = <17Pﬁ(N1)Tz*f0> = <Z7f0> 7& 07
s0 g # 0. O

6. Related topics and problems

[1] Fredholm fringe operators.

Proposition 6.1. Let M, be an invariant subspace of H? and fy € M, such that
My := My C- fy 1s an invariant subspace. Then Fle on M, ©wM, is a Fredholm
operator if and only if so is FM2 on My © wM,. In this case, we have ind FM =
ind FMz,

Proof. There is a unique function f; (except constant multiplication) in My © wMy
such that (RM)*f; € C- fy and

(MQ@U]MQ) @Cfl C M1 @U}Ml



Then we have
My ©wMy = ((My © wM;) © C+ Puyewny fo) ®C - fi.

There is also a unique function f (except constant multiplication) in M; © wM;
such that Py ewnr, fo L zh for every h € (M ©wM;) ©C- fy, and there is a unique
function f3 (except constant multiplication) in (M;©wM;)©C- f3 such that f; L zh
for every
he (M owM)e(C- f+C- f3).
Let
L= (M ewM)o (C- Puypwr fo+ C- fo+C- f3).
Since dim (M; © wM;) = oo, we have L # {0}. For every g € L, we have g €
My © wMs and
FMg = Puyownn2g = Pacwin zg = F1g.
Then FMi|, = FM2|,. Let A; be the operator on M; © wM; defined by

4 FMi o on L
b 0 on (MyowM)oL

and A be the operator on My & wMy defined by

A — FM on L
2 0 on (MyowhM,)o L.

Since FM! on M; ©wM,; and A; differ by a finite rank operator, their Fredholmness
and index are identical (see [2]). Similarly Fredholmness and index of FM2 on
My © wMs and As are identical. As a result, we get the assertion. ]

Corollary 6.1. Let Ly, Ly be invariant subspaces of H? such that L C Lo and
dim(Ly © L) < co. Then FL' on Ly © wLy is a Fredholm operator if and only if
s0 is F¥2 on Ly & wlLy. In this case, we have ind F** = ind F2.

Question 1. Let M be an invariant subspace of H? satisfying dim Q(M) < oo.
Is FM on M © wM a Fredholm operator?

When FM on M © wM is a Fredholm operator, the Fredholm index of FM is
defined by
ind FM = dimker FM — dim ker F*.
For a nonzero function f in H?, we denote by [f] the smallest invariant subspace
of H? containing f, that is, [f] = f - C[z, w], where C[z,w] is the polynomial ring.
Similarly for a subset E of H?, we denote by [E] the smallest invariant subspace of
H? containing E.

Question 2. Is /! on [f] © w[f] a Fredholm operator for any nonzero f € H??



In [7], Yang showed that FM on M &wM has closed range if and only if 2 M +wM
is closed.

Question 3. Is z[f] + w[f] closed for any f € H??

When f is an inner function, it is easy to see that FI'' on [f] © w[f] is Fredholm
and ind PV = —1.

[2] One dimensional perturbation.

Let M be an invariant subspace of H? satisfying M & H? and N = H*> & M.
As mentioned in the introduction, there is a nonzero function fy in M such that

M & C- fy is an invariant subspace. First, we shall show that there are a lot of such
fo. Write D, = 0/0z and D,, = 0/0w.

Ezample 6.1. Take (a, 8) € D?. For each f € M, let T'(f) be the family of pairs of
nonnegative integers (n,m) such that (DZDy f)(«, 8) # 0. Let T'ny = Usep, I'(S)-
Then I'yy # 0, and if (n,m) € Ty, then (n + 1,m) € Ty and (n,m + 1) € Ty,
Moreover if (n,m) ¢ Ty, then (n — 1,m) ¢ T’y and (n,m — 1) ¢ I'y;. Take
(n1,m1) € 'y, satisfying that

ny +mp =min{n+m: (n,m) € I'y}.
Set
Mia,p) = {f € M : (DD f)(a, ) = 0}.
Then M,,p) is an invariant subspace and M, 3 & M. It is easy to see that M =
M(a”g) o C- f(a,ﬁ) for some f(oéwg) € M with f(a”g) £ 0. U

As a counterpart, one may ask whether there is a nonzero function g in N such
that M @ C- g is an invariant subspace. If Q(N) # {0} and g € Q(N), then trivially
M @ C - g is an invariant subspace. For f € H?, we denote by Z(f) the zero set of
f in D% For a closed subset E C D?, let

Mgp={feH*: f=0o0n E}

Proposition 6.2. Let E be a connected closed subset of D? containing more than
one point. If Mg # {0}, then Mg @ C - g is not an invariant subspace for any
nonzero function g in H> © Mg.

Proof. Suppose that Mg @ C - g is an invariant subspace for some nonzero g €
H? & Mg. Since g ¢ Mg, we have E \ Z(g) # 0. By the assumption on E, there
are a, f € E such that a # (3, g(a) # 0 and g(f) # 0. Take a polynomial p such
that p(a) # p(B). We have pg € Mp & C - g, so pg — cg € Mg for some ¢ € C.
Hence p(a)g(a) — cg(a) = 0 and p(8)g() — cg(8) = 0, s0 p(a) = ¢ = p(B). This is
a contradiction. O



Let £ = {(a,a) : o € D}. It is known that Mp = [z —w]. So [z —w] & C-g is
not an invariant subspace for any nonzero function g in H? & [z — w).

Proposition 6.3. Let ¢(z), 9 (w) be nonconstant one variable inner functions and
M = o(2)H?+(w)H?. Then there is a nonzero function g in N such that M&C-g
is an invariant subspace if and only if both p(z),¥(w) have Blaschke factors.

Proof. Suppose that ¢(a) = ¥(8) = 0 for some (a,3) € D% Let by(z) =
(z —a)/(1 —@z) and bg(w) = (w — B)/(1 — Bw). Then ¢,(2) := p(2)/bs(z) and
Yy (w) := 1(w)/bsg(w) are one variable inner functions. We have

1 1
— N
1—az¢1<w)1—ﬁw e

g:=¢1(2)

29 = ()W) ———+ag e MOC g

and

wg = ¢1(2) == (w) +fg e M C-g.
Then M & C - g is an invariant subspace.

Suppose that ¢(z) is a singular inner function. Moreover assume that M & C - g
is an invariant subspace for some nonzero g € N. If zg € M, then zg € ¢(z)H?.
Since p(0) # 0, we have g € p(z)H? and this is a contradiction. Hence Pc.4z9 = cg
for some ¢ € D with ¢ # 0. This shows that Pc,¢(2)g = ¢(c)g. Since p(z)g € M,
we have Pr.,¢(2)g =0, so ¢(c) = 0. This is a contradiction. Therefore there are no
nonzero g € N such that M @ C - g is an invariant subspace. U

Let M be an invariant subspace of H? satisfying M ; H?. Suppose that there is
a nonzero function ¢ in N such that M @ C - g is an invariant subspace. Then there
are a, f € D such that (z —a)g € M and (w— )g € M. Hence (p —p(a,8))g € M
for every polynomial p.

An invariant subspace L; of Lo is said to be unitarily equivalent if there is a
unitary module map U from L; onto Ls, that is, T,U = UT, and T,,U = UT,, on
Ly. In this case, it is known that there is a unimodular function 6 on 9D x 9D such
that Ly = 6L, (see [1, 3]).

Proposition 6.4. Let M be an invariant subspace of H? satisfying M ; H?. Sup-
pose that there is a nonzero function g in H>S M such that M & C- g is an invariant
subspace. If L is an invariant subspace of H? which is unitarily equivalent to M,
then there is a nonzero function g, in H*> © L such that L & C - g, is an invariant
subspace.

Proof. Let 6 be a unimodular function on 9D x dD such that L = 6M C H? By
the fact above Proposition 6.4, there is a, 8 € D such that (z — a)g € M and



(2= B)g € M. Then (2 —a)fg € L C H* and (z — §)f0g € H?. Hence 0g € H>.
Since g L M, we have g 1. M = L,so g € H*S L. Since L&C-0g = 0(M®C-g),
L & C-6g is an invariant subspace. U

Proposition 6.4 shows that the property of M “there is a nonzero function g in
H? © M such that M @ C - g is an invariant subspace ” is invariant for unitary
module maps.

Question 4. Let f € H? satisfy {0} # [f] & H*. Is [f] ® C - g not an invariant
subspace for any g € H? © [f] with g # 07

Question 5. Let f € H* satisfy {0} # [f] & H?. Is QH? & [f)) = {0}?

Question 6. Characterize an invariant subspace M such that M & C - g is not
an invariant subspace for any nonzero function g in N.

Question 7. Let f,h be functions in H? such that [f] & [A]. Is dim ([h] © [f]) =

oo?

[3] Ranks of invariant subspaces.

Let M; be an invariant subspace of H? and f, € M; with ||fo|| = 1 such that
M,y = My © C - fy is an invariant subspace. We denote by rank M; the rank of
M, that is, rank M; (may be 0o) is the smallest number of elements in M; which
generate M; as an invariant subspace.

Proposition 6.5. rank M; — 1 < rank M, < rank M; + 1.

Proof. 1t is easy to see that rank M; < rank M, + 1. So, when rank M; = oo we get
the assertion.

Suppose that m := rankM; < oo. Let fi,fo, -+, fm € M; such that
[f1, f2, -+, fm] = My. We may assume that f; L fo. If f; L fo for some 2 < j <m,
replacing f; by
<f]7 f0>
fi— >

[ foll

we may assume that f; L fo for every 2 < j < m, that is, f; € M, for every

Jo,

2 < j < m. Since M; &C- f, is an invariant subspace, there are a, 3 € D? such that
(z —a)fo € My and (w — ) fy € Ms. Hence (z — a) fi € My and (w — ) f1 € M.
We shall show that

(6.1) [((z—a)fi,(w=B)f1, fas+ , fn] = Mo.

Let h € M5. Then there are sequences of polynomials

{pl,k}kzla {pZ,k}kzla T, {pm,k}k21



such that
]}1_{{)10 ;pﬁ,kff = h.
We have
0=WJw=gg;;mw@ﬁﬁgggmM;ﬁ»

Let
pri(z,w) = eri(z —a)(w — By
ij

be the Taylor expansion of p; ;. at («, #). Then
0= lim (p1xf1, fo) = lim cxo0(f1, fo)-
k—o00 k—o00

Since (f1, fo) # 0, cko0 — 0 as k — oco. Hence

=t S = o (s )
kljoloezlpe,kfz kgn; (p1.k Ck70’0)f1—|—éz2p&kfe

Since
(P1k — Cro00) f1 € [(z — @) f1, (w — B) fil,
we have

he[(z=a)fi,(w=B)fi, far--+ s fn]-
Thus we get (6.1), so

rank My < m + 1 = rank M; + 1.
O

Example 6.2. (i) Let My = H? and fo = 1. Then My := M, 6C-1 = zH*+wH? is
an invariant subspace. It is easy to check that rank M; = 1 and rank My = 2.

(ii) Let M3 = 2?H? + wH?. Then M, © C - 2 = My is an invariant subspace. We
have rank My = 2 = rank Mj.

(iii) Let My = 2?H? + zwH? + w?H? and fy = zw. We have rank M; = 3. Since
My =M, &C- fy = 2?H? + w?H?, we have rank M, = 2. O

Suppose that rank M; = 1, that is, M; = [f] for some nonzero f € H?. Then
rank My > 1.
Question 8. Do there exist M; and f, € M; such that rank M; = rank My = 17

Question 9. Do there exist M; and f, € M; such that rank M; = 2 and
rank My =17



Question 10. Let f € H? be a nonzero function and f, € [f] be a nonzero
function such that My := [f] © C - f; is an invariant subspace. Does rank My = 2
hold?

These questions have some connection with Questions 4 and 7.

Let N; = H?*© M, for j = 1,2. Since TYN; C N; and T/ N; C N, we may
consider rank V; for the operators 77, T,;. In the similar way as Proposition 6.5, we

zZ)Tw*

can prove the following.

Proposition 6.6. Suppose that M, # H?. Then we have
rank N; — 1 < rank N, < rank N; + 1.

Ezample 6.3. (i) Let My = zH?* + wH? and fy = 2. We have N; = C -1 and
Ny =C-1+C- 2z Hence rank N; = 1 = rank N,.

(ii) Let My = 2*H?*+ 2wH?+w?H? and fy = zw. We have N; = C-24+C-w+C-1
and Ny =C-24+C-w+C-1+C: zw. Hence rank N; = 2 and rank Ny = 1.

(iii) Let My = 2?H? + zwH? + w?*H?> + C - (z + w) and fy = z + w. We have
Ni=C-(z—w)4+C-1land Ny =C-2+4C-w+ C-1. Hence rank N; = 1 and
rank Ny = 2. O

In the forthcoming paper, we shall study relationship of ranks of the cross com-
mutators on M;, My and on Ny, Ns, respectively.
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