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ONE DIMENSIONAL PERTURBATION OF
INVARIANT SUBSPACES IN THE HARDY SPACE

OVER THE BIDISK I

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

Abstract. For an invariant subspace M1 of the Hardy space H2 over the bidisk

D2, write N1 = H2 ⊖M1. Let Ω(M1) = M1 ⊖ (zM1 + wM1) and Ω̃(N1) = {f ∈
N1 : zf, wf ∈ M1}. Then Ω(M1) ̸= {0}, and Ω(M1), Ω̃(N1) are key spaces to

study the structure of M1. It is known that there is a nonzero f0 ∈ M1 such

that M2 = M1 ⊖ C · f0 is an invariant subspace. It is described the structures of

Ω(M2), Ω̃(N2) using the words of Ω(M1), Ω̃(N1) and f0. To do so, it occur many

cases. We shall give examples for each cases.

1. Introduction

Let H2 = H2(D2) be the Hardy space over the bidisk D2 with two variables z and

w. Let Tz and Tw be the multiplication operators on H2 by z and w, respectively. A

nonzero closed subspaceM ofH2 is said to be invariant if TzM ⊂M and TwM ⊂M .

The structure of invariant subspaces of H2 is fairly complicated and in this moment

it seems to be out of reach (see [1, 6, 7]).

Let M be an invariant subspace. Then by the Wold decomposition theorem, we

have

M =
∞⊕
n=0

wn(M ⊖ wM),

so the space M ⊖wM contains a lot of informations of an invariant subspace M . In

[7], R. Yang defined the operator FM
z on M ⊖ wM by

FM
z f = PM⊖wMTzf, f ∈M ⊖ wM,

where PA is the orthogonal projection from H2 onto A ⊂ H2, and Yang called FM
z

the fringe operator on M ⊖ wM . It is considered that the informations of M are

encoded in the operator theoretic properties of FM
z .
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We write RM
z = Tz|M and RM

w = Tw|M . Then RM
z , R

M
z are the operators on M .

We set

(1.1) Ω(M) =M ⊖ (zM + wM) =M ⊖ zM + wM.

Then Ω(M) ̸= {0} (see for example [7, p. 532]). Let N = H2 ⊖M . We also set

(1.2) Ω̃(N) =
{
f ∈ N : zf, wf ∈M

}
.

It is known that Ω̃(N) may be empty. In [7], Yang showed that ker (FM
z )∗ = Ω(M)

and kerFM
z = wΩ̃(N), where (FM

z )∗ is the adjoint operator of FM
z . When FM

z on

M ⊖ wM is a Fredholm operator,

indFM
z = dimkerFM

z − dimker (FM
z )∗

is called the Fredholm index of FM
z , see [2] for the study of operator theory. So in

this case, we have

indFM
z = dim ker Ω(M)− dim ker Ω̃(N).

There are a lot of examples of M satisfying that FM
z on M ⊖ wM is Fredholm (see

[4, 7, 8, 9]).

The smallest number of elements inM which generateM as an invariant subspace

is called the rank of M . By (1.1), it is easy to see that the rank of M is greater

than or equals to dimker Ω(M). Motivated by these facts, we are interested in the

structures of Ω(M) and Ω̃(N).

Let M1 be a nonzero invariant subspace of H2. Then there is f0 ∈ M1 with

∥f0∥ = 1 such that M2 := M1 ⊖ C · f0 is an invariant subspace (for example take

f0 in Ω(M1)). Our problem is what kind of changes of the structure of M2 come

from the ones ofM1. This problem is basic in the study of the structure of invariant

subspaces. Let Nj = H2 ⊖Mj for j = 1, 2. We shall describe Ω(M2), Ω̃(N2) using

the words of f0, Ω(M1) and Ω̃(N1). To do so, we need other notations;

η0 := PM1⊖wM1f0, φ0 := PΩ̃(N1)
T ∗
z f0, ψ0 := PΩ̃(N1)

T ∗
wf0.

In Section 2, we shall give some facts which are used later. In Section 3, we shall

describe Ω(M2), Ω̃(N2) under the condition “f0 ∈ Ω(M1)”. We need to divide the

situation into several cases which depend on φ0 and ψ0. To describe Ω(M2), we shall

study under the additional assumption that (FM1
z )∗ has closed range.

Suppose that f0 /∈ Ω(M1). Since Ω(M1) = (H2 ⊖ zM1) ∩ (H2 ⊖ wM1), either

f0 /∈ M1 ⊖ zM1 or f0 /∈ M1 ⊖ wM1. In Section 4, we shall describe Ω(M2), Ω̃(N2)

under the condition “f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖wM1”. Here we need to divide

the situation into several cases which depend on f0, φ0 and ψ0.
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In Section 5, we shall describe Ω(M2), Ω̃(N2) under the condition “f0 /∈M1⊖zM1

and f0 /∈M1 ⊖wM1”. Here we need to divide the situation into several cases which

depend on η0, φ0 and ψ0.

To prove our assertions, we use only elementary techniques. But we shall give

examples which satisfy each condition given in Sections 3, 4 and 5. These examples

will be some help for further investigation of invariant subspaces, and show us that

the structure of invariant subspaces is not so simple.

In Section 6, we shall give some comments and problems on the related topics.

2. Preliminary

Let M be a nonzero invariant subspace of H2. We have (RM
z )∗ = PMT

∗
z |M and

(RM
w )∗ = PMT

∗
w|M . Since ker (RM

w )∗ =M ⊖ wM , by (1.1) we have

Ω(M) = ker (RM
z )∗ ∩ ker (RM

w )∗.

We also have

Ω(M) =
{
f ∈M ⊖ wM : ker (RM

z )∗f = 0
}
.

Let N = H2 ⊖M . Then we have T ∗
zN ⊂ N and T ∗

wN ⊂ N . So

(2.1) Ω(M) =
{
f ∈M ⊖ wM : T ∗

z f ∈ N
}
.

Since wΩ̃(N) ⊂M , we have wΩ̃(N) ⊂M ⊖ wM . By (1.2), we have

(2.2) Ω̃(N) = N ⊖ (T ∗
zN + T ∗

wN) = N ⊖ T ∗
zN + T ∗

wN.

Let FM
z onM⊖wM be the Fringe operator ofM . We have that (FM

z )∗ = (RM
z )∗ =

PMT
∗
z on M ⊖ wM . By [7, Proposition 4.4], we have the following.

Lemma 2.1. ker (FM
z )∗ = Ω(M) and ker FM

z = wΩ̃(N).

We shall use the following lemma in the proof of Theorem 3.1.

Lemma 2.2. Suppose that (FM
z )∗ has closed range. Then for every f ∈ (M⊖wM)⊖

wΩ̃(N), there is a unique function h in (M ⊖wM)⊖Ω(M) such that (RM
z )∗h = f .

Proof. We have (FM
z )∗ = (RM

z )∗ on M ⊖ wM . By the assumption, (FM
z )∗ is a one-

to-one map from (M ⊖ wM) ⊖ ker (FM
z )∗ onto (M ⊖ wM) ⊖ ker FM

z . Hence by

Lemma 2.1, we get the assertion. �

For many examples of M , (FM
z )∗ has closed range. We do not know an example

of M for which (FM
z )∗ does not have closed range.

Let M1 be a nonzero invariant subspace of H2 and f0 ∈ M1 with ∥f0∥ = 1 such

thatM2 :=M1⊕C ·f0 is an invariant subspace. We write Nj = H2⊖Nj for j = 1, 2.

Since f0 ∈ N2, we have

T ∗
z f0, T

∗
wf0 ∈ N2 = N1 ⊕ C · f0.
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3. The case f0 ∈ Ω(M1)

In this section, we assume that f0 ∈ Ω(M1) and we shall study the structure of

Ω(M2) and Ω̃(N2). Recall that

φ0 = PΩ̃(N1)
T ∗
z f0 and ψ0 = PΩ̃(N1)

T ∗
wf0.

Lemma 3.1. Suppose that f0 ∈ Ω(M1). Then we have the following.

(i) f0 ∈M1 ⊖ wM1 and (RM1
z )∗wf0 ∈M1 ⊖ wM1.

(ii) φ0 = 0 if and only if (RM1
z )∗wf0 ⊥ wΩ̃(N1).

(iii) ψ0 = 0 if and only if f0 ⊥ wΩ̃(N1).

Proof. (i) Since Ω(M1) ⊂ M1 ⊖ wM1, we have f0 ∈ M1 ⊖ wM1. Since f0 ∈ Ω(M1),

we have T ∗
z f0 ∈ N1. Hence PM1wT

∗
z f0 ∈M1⊖wM1. Since (R

M1
z )∗wf0 = PM1wT

∗
z f0,

we have (RM1
z )∗wf0 ∈M1 ⊖ wM1.

(ii) We have that φ0 = 0 if and only if wT ∗
z f0 ⊥ wΩ̃(N1). Since wΩ̃(N1) ⊂ M1,

wT ∗
z f0 ⊥ wΩ̃(N1) if and only if PM1wT

∗
z f0 ⊥ wΩ̃(N1). Hence we get (ii).

(iii) We have that ψ0 = 0 if and only if T ∗
wf0 ⊥ Ω̃(N1). Hence we get (iii). �

Lemma 3.2. If f0 ∈ Ω(M1), then

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0.

Proof. SinceM1 =M2⊕C·f0, we have (M1⊖wM1)⊖C·f0 ⊂M2. Since (M1⊖wM1) ⊥
wM2, (M1 ⊖ wM1)⊖C · f0 ⊂M2 ⊖ wM2. Since f0 ∈ Ω(M1), we have wf0 ∈M2, so

wf0 ⊥ wM2. Hence(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0 ⊂M2 ⊖ wM2.

To show the reverse inclusion, let f ∈ M2 ⊖ wM2. Write f = f1 + cwf0, where

f1 ∈ (M2 ⊖ wM2) ⊖ C · wf0 and c ∈ C. Then T ∗
wf1 ∈ N2. We have ⟨T ∗

wf1, f0⟩ =

⟨f1, wf0⟩ = 0. Since N2 = N1 ⊕ C · f0, we have T ∗
wf1 ∈ N1. Hence f1 ∈ M1 ⊖ wM1.

Trivially we have f1 ⊥ f0. Therefore f1 ∈ (M1 ⊖ wM1)⊖ C · f0. Thus

M2 ⊖ wM2 ⊂
(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0,

so we get the assertion. �

By the proof, the assertion of Lemma 3.2 holds if f0 /∈ M1 ⊖ zM1 and f0 ∈
M1 ⊖ wM1.

Lemma 3.3. Suppose that f0 ∈ Ω(M1). Then we have the following.

(i) Ω(M2) = (Ω(M1)⊖ C · f0)⊕{
h ∈

(
(M1 ⊖ wM1)⊖ Ω(M1)

)
⊕ C · wf0 : (RM1

z )∗h ∈ C · f0
}
.

(ii) Ω̃(N2) =
(
Ω̃(N1)⊖ (C · φ0 + C · ψ0)

)
⊕ C · f0.
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Proof. (i) By (2.1),

Ω(M2) =
{
h ∈M2 ⊖ wM2 : T

∗
z h ∈ N2

}
.

Since N2 = N1 ⊕ C · f0, we have

Ω(M2) =
{
h ∈M2 ⊖ wM2 : (R

M1
z )∗h ∈ C · f0

}
.

By Lemma 3.2,

M2 ⊖ wM2 = (Ω(M1)⊖ C · f0)⊕((
(M1 ⊖ wM1)⊖ Ω(M1)

)
⊕ C · wf0

)
.

Since f0 ∈ Ω(M1), we have (M1⊖wM1)⊖Ω(M1) ⊂M2 and Ω(M1)⊖C ·f0 ⊂ Ω(M2).

Hence we have

Ω(M2) = (Ω(M1)⊖ C · f0)⊕{
h ∈

(
(M1 ⊖ wM1)⊖ Ω(M1)

)
⊕ C · wf0 : (RM1

z )∗h ∈ C · f0
}
.

(ii) Since f0 ∈ Ω(M1), we have C · f0 ⊂ Ω̃(N2). By (2.2), we have

Ω̃(N2) =
{
h ∈ Ω̃(N1) : zh ⊥ f0, wh ⊥ f0

}
⊕ C · f0.

Hence we get (ii). �

The following follows directly from Lemma 3.3 (ii).

Corollary 3.1. Suppose that f0 ∈ Ω(M1). Then we have the following.

(i) If φ0 = ψ0 = 0, then Ω̃(N2) = Ω̃(N1)⊕ C · f0.
(ii) If φ0 ̸= 0 and ψ0 = 0, then Ω̃(N2) = (Ω̃(N1)⊖ C · φ0)⊕ C · f0.
(iii) Suppose that φ0 ̸= 0 and ψ0 ̸= 0. If C · φ0 = C · ψ0, then

Ω̃(N2) = (Ω̃(N1)⊖ C · φ0)⊕ C · f0.

(iv) Suppose that φ0 ̸= 0 and ψ0 ̸= 0. If C · φ0 ̸= C · ψ0, then

Ω̃(N2) =
(
Ω̃(N1)⊖ (C · φ0 + C · ψ0)

)
⊕ C · f0.

Theorem 3.1. Suppose that f0 ∈ Ω(M1). Moreover suppose that (FM1
z )∗ has closed

range. Then we have the following.

(i) If φ0 = ψ0 = 0, then there are nonzero functions h1 and h2 (may be zero) in

(M1 ⊖ wM1)⊖ Ω(M1) such that

Ω(M2) = (Ω(M1)⊖ C · f0)⊕
(
C · h1 + C · (h2 ⊕ wf0)

)
.

(ii) If φ0 ̸= 0 and ψ0 = 0, then there is a nonzero function h3 in (M1 ⊖wM1)⊖
Ω(M1) such that

Ω(M2) = (Ω(M1)⊖ C · f0)⊕ C · h3.
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(iii) Suppose that φ0 ̸= 0 and ψ0 ̸= 0. If C · φ0 = C · ψ0, then there is a function

g1 in (M1 ⊖ wM1)⊖ Ω(M1) such that

Ω(M2) = (Ω(M1)⊖ C · f0)⊕ C · (g1 ⊕ wf0).

(iv) Suppose that φ0 ̸= 0 and ψ0 ̸= 0. If C · φ0 ̸= C · ψ0, then

Ω(M2) = Ω(M1)⊖ C · f0.

Proof. (i) Since ψ0 = 0, by Lemma 3.1 (iii) we have f0 ⊥ wΩ̃(N1). Since f0 ∈
Ω(M1) ⊂M1 ⊖wM1, by Lemma 2.2 there is a unique nonzero function h1 in (M1 ⊖
wM1)⊖ Ω(M1) satisfying (RM1

z )∗h1 = f0. We note that

(3.1)
{
h ∈ (M1 ⊖ wM1)⊖ Ω(M1) : (R

M1
z )∗h ∈ C · f0

}
= C · h1.

Since f0 ∈ Ω(M1), by Lemma 3.1 (i) we have (RM1
z )∗wf0 ∈ M1 ⊖ wM1. Since

φ0 = 0, by Lemma 3.1 (ii) we have (RM1
z )∗wf0 ⊥ wΩ̃(N1). Then by Lemma 2.2

again, there is a unique function h2 in (M1 ⊖wM1)⊖Ω(M1) satisfying (RM1
z )∗h2 =

−(RM1
z )∗wf0. Hence (RM1

z )∗(h2 ⊕ wf0) = 0 ∈ C · f0.
Suppose that (RM1

z )∗(h⊕wf0) ∈ C · f0 for some h ∈ (M1 ⊖wM1)⊖Ω(M1). Then

(RM1
z )∗(h − h2) ∈ C · f0. Since h − h2 ∈ (M1 ⊖ wM1) ⊖ Ω(M1), by (3.1) we have

h− h2 ∈ C · h1, and

h⊕ wf0 ∈ h2 + C · h1 + wf0 ⊂ C · h1 + C · (h2 ⊕ wf0).

By Lemma 3.3 (i), we get (i).

(ii) Since f0 ∈ Ω(M1), by Lemma 3.1 (i) we have f0 ∈M1⊖wM1 and (RM1
z )∗wf0 ∈

M1 ⊖ wM1. Since ψ0 = 0, by Lemma 3.1 (iii) f0 ⊥ wΩ̃(N1). Then by Lemma 2.2,

there is a unique nonzero function h3 in (M1⊖wM1)⊖Ω(M1) such that (RM1
z )∗h3 =

f0. Since φ0 ̸= 0, by Lemma 3.1 (ii) we have (RM1
z )∗wf0 ̸⊥ wΩ̃(N1). Then by

Lemma 2.2 again, (RM1
z )∗h ̸= (RM1

z )∗wf0 for any h ∈ (M1 ⊖ wM1)⊖ Ω(M1).

Suppose that there is g ∈ (M1⊖wM1)⊖Ω(M1) satisfying that (RM1
z )∗(g⊕wf0) =

cf0 for some c ∈ C. Then

(RM1
z )∗wf0 = (RM1

z )∗(g ⊕ wf0)− (RM1
z )∗g = cf0 − (RM1

z )∗g

= (RM1
z )∗(ch3 − g).

Since ch3 − g ∈ (M1 ⊖ wM1) ⊖ Ω(M1), this contradicts the last paragraph. Hence

by Lemma 3.3 (i), we get (ii).

(iii) Suppose that φ0 ̸= 0 and ψ0 ̸= 0. By the assumption, φ0 = c1ψ0 for some

c1 ∈ C with c1 ̸= 0. Then PΩ̃(N1)
(c1T

∗
wf0 − T ∗

z f0) = 0, so

PwΩ̃(N1)
(c1wT

∗
wf0 − wT ∗

z f0) = 0.

We have

PwΩ̃(N1)
wT ∗

z f0 = PwΩ̃(N1)
PM1T

∗
zwf0 = PwΩ̃(N1)

(RM1
z )∗wf0
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and PwΩ̃(N1)
wT ∗

wf0 = PwΩ̃(N1)
f0. Then

PwΩ̃(N1)

(
c1f0 − (RM1

z )∗wf0
)
= 0.

Hence c1f0 − (RM1
z )∗wf0 ⊥ wΩ̃(N1). Since f0 ∈ Ω(M1), by Lemma 3.1 (i) we have

c1f0 − (RM1
z )∗wf0 ∈M1 ⊖ wM1.

By Lemma 2.2, there is a unique function g1 in (M1 ⊖ wM1)⊖ Ω(M1) such that

(RM1
z )∗g1 = c1f0 − (RM1

z )∗wf0.

Hence

(RM1
z )∗(g1 ⊕ wf0) = c1f0.

Since ψ0 ̸= 0, by Lemma 3.1 (iii) we have f0 ̸⊥ wΩ̃(N1). Since f0 ∈ M1 ⊖ wM1, by

Lemma 2.2 (RM1
z )∗h /∈ C · f0 for any nonzero function h ∈ (M1 ⊖ wM1) ⊖ Ω(M1).

Hence by Lemma 3.3 (i), we get (iii).

(iv) By the assumption,

C · PΩ̃(N1)
T ∗
z f0 ̸= C · PΩ̃(N1)

T ∗
wf0.

As the proof of (iii), we have

(3.2) C · PwΩ̃(N1)
(RM1

z )∗wf0 ̸= C · PwΩ̃(N1)
f0.

As the last paragraph of (iii), (RM1
z )∗h /∈ C · f0 for any nonzero function h ∈

(M1 ⊖ wM1)⊖ Ω(M1).

Assume that

(RM1
z )∗(g ⊕ wf0) ∈ C · f0

for some g ∈ (M1 ⊖ wM1) ⊖ Ω(M1). Since (RM1
z )∗g ∈ M1 ⊖ wM1, (R

M1
z )∗wf0 ∈

M1 ⊖ wM1, so we may write

(3.3) (RM1
z )∗wf0 = p⊕ c1f0 ∈

(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · f0.

Then (RM1
z )∗g = −p⊕ c2f0 for some c2 ∈ C. We have

(RM1
z )∗(M1 ⊖ wM1) ⊥ ker FM1

z .

By Lemma 2.1,

(RM1
z )∗(M1 ⊖ wM1) ⊥ wΩ̃(N1).

Hence −p⊕ c2f0 ⊥ wΩ̃(N1), so PwΩ̃(N1)
p = c2PwΩ̃(N1)

f0. By (3.3),

PwΩ̃(N1)
(RM1

z )∗wf0 = PwΩ̃(N1)
p+ c1PwΩ̃(N1)

f0

= (c1 + c2)PwΩ̃(N1)
f0.

Since φ0 ̸= 0 and ψ0 ̸= 0, by Lemma 3.1 (ii) and (iii) we have PwΩ̃(N1)
(RM1

z )∗wf0 ̸= 0

and PwΩ̃(N1)
f0 ̸= 0. Hence the above equations contradict (3.2). Therefore there are
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no g ∈ (M1 ⊖ wM1)⊖ Ω(M1) satisfying that (RM1
z )∗(g ⊕ wf0) ∈ C · f0. By Lemma

3.3 (i), we get (iv). �

When φ0 = 0 and ψ0 ̸= 0 in Corollary 3.1 and Theorem 3.1, we can describe

Ω̃(N2) and Ω(M2) exchanging variables z and w in Corollary 3.1 (ii) and Theorem

3.1 (ii), respectively. We do not know whether in Theorem 3.1 (iii) we can take g1
as g1 ̸= 0, and this is equivalent to (RM1

z )∗wf0 /∈ C · f0.
We shall show the examples which satisfy each conditions in Corollary 3.1 and

Theorem 3.1.

Example 3.1. (i-1) Let M1 = z2H2 +wH2, f0 = w and M2 =M1 ⊖C · f0. Then M1

and M2 are invariant subspaces. We have

M1 ⊖ wM1 = z2H2(z)⊕ C · zw ⊕ C · w,

where H2(z) is the z-variable Hardy space, Ω(M1) = C · z2 ⊕C ·w, f0 ∈ Ω(M1) and

Ω̃(N1) = C · z. Hence T ∗
z f0 = 0 ⊥ Ω̃(N1) and T

∗
wf0 = 1 ⊥ Ω̃(N1), so φ0 = ψ0 = 0. In

the proof of Theorem 3.1 (i), h2 belongs to (M1 ⊖ wM1)⊖ Ω(M1) and (RM1
z )∗h2 =

(RM1
z )∗wf0. In this case, we have (RM1

z )∗wf0 = 0, so h2 ∈ Ω(M1) and h2 = 0. Note

that

(RM1
z )∗(M1 ⊖ wM1) = z2H2(z)⊕ C · w.

(i-2) Let

M1 = z2bα(z)H
2 + bα(z)wH

2 + w2H2,

where bα = (z − α)/(1− αz) and α ∈ D with 0 < |α| < 1. Then

Ω(M1) = C · z2bα(z)⊕ C · bα(z)w.

Take f0 = bα(z)w ∈ Ω(M1). We have Ω̃(N1) = C · zbα(z). Then T ∗
z f0 ⊥ Ω̃(N1) and

T ∗
wf0 ⊥ Ω̃(N1), so φ0 = ψ0 = 0. We have

M1 ⊖ wM1 = z2bα(z)H
2(z)⊕ C · zbα(z)w ⊕ C · w2

1− αz

and

(M1 ⊖ wM1)⊖ Ω(M1) = z3bα(z)H
2(z)⊕ C · zbα(z)w ⊕ C · w2

1− αz
.

Take h2 = w2/(1− αz). Then h2 ∈ (M1 ⊖ wM1)⊖ Ω(M1) and h2 ̸= 0. We have

(RM1
z )∗wf0 = (RM1

z )∗bα(z)w
2 =

α

1− αz
w2 = (RM1

z )∗h2.

Note that

(RM1
z )∗(M1 ⊖ wM1) = z2bα(z)H

2(z)⊕ C · w2

1− αz
.

(ii) Let M1 = zH2 + wH2, f0 = z and M2 = M1 ⊖ C · f0. Then M1 and M2 are

invariant subspaces. We have M1 ⊖ wM1 = zH2(z)⊕ C · w, Ω(M1) = C · z ⊕ C · w,
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f0 ∈ Ω(M1) and Ω̃(N1) = C · 1. Hence T ∗
z f0 = 1 ̸⊥ Ω̃(N1) and T

∗
wf0 = 0 ⊥ Ω̃(N1),

so φ0 ̸= 0 and ψ0 = 0. Note that (RM1
z )∗(M1 ⊖ wM1) = zH2(z).

(iii) Let M1 = zH2 + wH2, f0 = z + w and M2 = M1 ⊖ C · f0. Then M1,M2 are

invariant subspaces. We have Ω(M1) = C · z⊕C ·w, f0 ∈ Ω(M1) and Ω̃(N1) = C · 1.
Hence T ∗

z f0 = T ∗
wf0 = 1 ̸⊥ Ω̃(N1), so φ0 ̸= 0, ψ0 ̸= 0 and C · φ0 = C · ψ0. We have

that c1 = 1 in the proof of Theorem 3.1 (iv). Hence

(RM1
z )∗wf0 − c1f0 = w − (z + w) = −z.

We also have

(M1 ⊖ wM1)⊖ Ω(M1) = z2H2(z).

Let g1 = −z2 ∈ (M1 ⊖ wM1)⊖ Ω(M1). Then g1 ̸= 0 and

(RM1
z )∗g1 = (RM1

z )∗wf0 − c1f0.

(iv) Let M1 = z2H2 + zwH2 + w2H2, f0 = zw and M2 = M1 ⊖ C · f0. Then

M1,M2 are invariant subspaces. We have

M1 ⊖ wM1 = z2H2(z)⊕ C · zw ⊕ C · w2,

Ω(M1) = C · z2 ⊕ C · zw ⊕ C · w2,

f0 ∈ Ω(M1) and Ω̃(N1) = C ·z+C ·w. Hence T ∗
z f0 = w ̸⊥ Ω̃(N1), T

∗
wf0 = z ̸⊥ Ω̃(N1)

and PΩ̃(N1)
T ∗
z f0 = w ̸= z = PΩ̃(N1)

T ∗
wf0. Therefore φ0 ̸= 0, ψ0 ̸= 0 and C·φ0 ̸= C·ψ0.

Note that (RM1
z )∗(M1 ⊖ wM1) = z2H2(z). �

4. The case that f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1

If f0 /∈ Ω(M1), then either f0 /∈ M1 ⊖ zM1 or f0 /∈ M1 ⊖ wM1. In this section, we

assume that f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1. Since M1 ⊖M2 = C · f0, there is

α0 ∈ C with α0 ̸= 0 satisfying that

(4.1) (RM1
z )∗f0 = α0f0.

We shall study the structure of Ω(M2) and Ω̃(N2). Let

σ0 = PM1⊖zM1f0.

Since Ω(M1) ⊂M1 ⊖ zM1, we have PΩ(M1)σ0 = PΩ(M1)f0.

Lemma 4.1. Suppose that f0 /∈ M1 ⊖ zM1 and f0 ∈ M1 ⊖ wM1. Then σ0 ̸= 0 and

f0 = σ0/(1− α0z).

Proof. Since (RM1
z )∗f0 = α0f0, we have f0 = α0zf0 + σ0. Then we get the assertion.

�
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Lemma 4.2. Suppose that f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1. Then

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0.

Proof. Since M1 ⊖M2 = C · f0 and wf0 ⊥ f0, we have wf0 ∈ M2. In the same way

as the proof of Lemma 3.2, we have the assertion. �

Lemma 4.3. Suppose that f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1. Then we have the

following.

(i) Ω(M2) =
{
f ∈ (M1 ⊖ wM1)⊖ C · f0 : (RM1

z )∗f ∈ C · f0
}
.

(ii) Ω̃(N2) = (N1 ⊕ C · f0)⊖
(
T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0

)
.

Proof. (i) By (2.1),

Ω(M2) =
{
f ∈M2 ⊖ wM2 : T

∗
z f ∈ N2

}
.

Since N2 = N1 ⊕ C · f0, we have

Ω(M2) =
{
f ∈M2 ⊖ wM2 : (R

M1
z )∗f ∈ C · f0

}
.

By Lemma 4.2,

Ω(M2) =
{
f ∈

(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0 : (RM1

z )∗f ∈ C · f0
}
.

Suppose that (RM1
z )∗(g ⊕wf0) ∈ C · f0 for some g ∈ (M1 ⊖wM1)⊖C · f0. We have

(RM1
z )∗g = 0 and f0 ∈M1 ⊖ wM1. Hence (RM1

z )∗wf0 ∈M1 ⊖ wM1.

By (4.1), we may write T ∗
z f0 = α0f0 ⊕ f1 for some f1 ∈ N1. Then

(RM1
z )∗wf0 = PM1wT

∗
z f0 = α0wf0 + PM1wf1.

Since f1 ∈ N1, PM1wf1 ∈ M1 ⊖ wM1. Hence α0wf0 ∈ M1 ⊖ wM1, so α0 = 0. This

contradicts α0 ̸= 0. Therefore (RM1
z )∗(g⊕wf0) /∈ C·f0 for any g ∈ (M1⊖wM1)⊖C·f0.

Hence we get (i).

(ii) We have N2 = N1 ⊕ C · f0. Hence

T ∗
zN2 + T ∗

wN2 = T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0 + C · T ∗

wf0.

By (4.1), we have f0 ⊥ ker FM1
z , so by Lemma 2.1 f0 ⊥ wΩ̃(N1). Hence T ∗

wf0 ⊥
Ω̃(N1). Since f0 ∈M1 ⊖ wM1, we have T ∗

wf0 ∈ N1. By (2.2), T ∗
wf0 ∈ T ∗

zN1 + T ∗
wN1.

Therefore

T ∗
zN2 + T ∗

wN2 = T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0.

By (2.2) again, we get (ii). �

Theorem 4.1. Suppose that f0 /∈ M1 ⊖ zM1 and f0 ∈ M1 ⊖ wM1. Then we have

the following.

(i) If f0 ⊥ Ω(M1), then Ω(M2) = Ω(M1).
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(ii) If f0 ̸⊥ Ω(M1), then there is a nonzero function h0 in (M1 ⊖ wM1)⊖ C · f0
such that

Ω(M2) =
(
Ω(M1)⊖ C · PΩ(M1)f0

)
⊕ C · h0.

Proof. (i) Suppose that there is h ∈ (M1⊖wM1)⊖C ·f0 satisfying (RM1
z )∗h = f0. By

(4.1), we have that (RM1
z )∗(h−f0/α0) = 0, so h−f0/α0 ∈ Ω(M1). Since f0 ⊥ Ω(M1),

we have

0 = ⟨h− f0/α0, f0⟩ = −∥f0∥2/α0.

This contradicts f0 ̸= 0. Hence by Lemma 4.3 (i), we have

Ω(M2) =
{
f ∈ (M1 ⊖ wM1)⊖ C · f0 : (RM1

z )∗f = 0
}

=
(
(M1 ⊖ wM1)⊖ C · f0

)
∩ Ω(M1) = Ω(M1).

(ii) By the assumption, we have PΩ(M1)f0 ̸= 0. Let

h0 =
1

α0

(
f0 −

∥f0∥2

∥PΩ(M1)f0∥2
PΩ(M1)f0

)
∈M1 ⊖ wM1.

Since f0 /∈ Ω(M1), we have that h0 ̸= 0 and

⟨h0, f0⟩ =
1

α0

(∥f0∥2 − ∥f0∥2) = 0.

Hence h0 ∈ (M1 ⊖ wM1)⊖ C · f0, h0 ∈M2 ⊖ wM2 and

(RM1
z )∗h0 =

1

α0

(RM1
z )∗f0 = f0.

Moreover we have h0 ∈ Ω(M2). Therefore by Lemma 4.3 (i), we have

Ω(M2) =
{
f ∈ (M1 ⊖ wM1)⊖ C · f0 : (RM1

z )∗f = 0
}
⊕ C · h0

=
((
(M1 ⊖ wM1)⊖ C · f0

)
∩ Ω(M1)

)
⊕ C · h0

=
(
Ω(M1)⊖ C · PΩ(M1)f0

)
⊕ C · h0.

�

Recall that φ0 = PΩ̃(N1)
T ∗
z f0.

Theorem 4.2. Suppose that f0 /∈ M1 ⊖ zM1 and f0 ∈ M1 ⊖ wM1. Then we have

the following.

(i) If φ0 = 0, then Ω̃(N2) = Ω̃(N1).

(ii) If φ0 ̸= 0, then

Ω̃(N2) = (Ω̃(N1)⊕ C · f0)⊖ C · (φ0 ⊕ α0f0).
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Proof. (i) Since φ0 = 0, we have T ∗
z f0 ⊥ Ω̃(N1). Then by (2.2), PN1T

∗
z f0 ∈

T ∗
zN1 + T ∗

wN1. Since T
∗
z f0 ∈ N2 = N1 ⊕ C · f0, we have

T ∗
z f0 ∈ T ∗

zN1 + T ∗
wN1 ⊕ C · f0,

so

T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0 = T ∗

zN1 + T ∗
wN1 ⊕ C · f0.

Then by Lemma 4.3 (ii),

Ω̃(N2) = (N1 ⊕ C · f0)⊖
(
T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0

)
= (N1 ⊕ C · f0)⊖

(
T ∗
zN1 + T ∗

wN1 ⊕ C · f0
)

= N1 ⊖ T ∗
zN1 + T ∗

wN1 = Ω̃(N1) by (2.2).

(ii) Suppose that φ0 ̸= 0. We have

T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0

= T ∗
zN1 + T ∗

wN1 ⊕ C · (PΩ̃(N1)
T ∗
z f0 ⊕ α0f0)

= T ∗
zN1 + T ∗

wN1 ⊕ C · (φ0 ⊕ α0f0).

Hence by Lemma 4.3 (ii),

Ω̃(N2) = (N1 ⊕ C · f0)⊖
(
T ∗
zN1 + T ∗

wN1 + C · T ∗
z f0

)
= (Ω̃(N1)⊕ C · f0)⊖ C · (φ0 ⊕ α0f0) by (2.2) again.

�

We shall show four examples which satisfy each conditions in the proof of Theo-

rems 4.1 and 4.2.

Example 4.1. (i) Let

M1 =
z − a

1− az
H2 + wH2, 0 < |a| < 1,

f0 = w
1−az

and M2 = M1 ⊖ C · f0. Then M1 and M2 are invariant subspaces. We

have

M1 ⊖ zM1 = C · z − a

1− az
⊕ wH2(w)

and

M1 ⊖ wM1 =
z − a

1− az
H2(z)⊕ C · w

1− az
.

Then f0 /∈ M1 ⊖ zM1 and f0 ∈ M1 ⊖ wM1. We have Ω(M1) = C · z−a
1−az

(see [5]).

Then f0 ⊥ Ω(M1). We have Ω̃(N1) = {0}, so φ0 = PΩ̃(N1)
T ∗
z f0 = 0.

(ii) Let

M1 = z
z − a

1− az
H2 + zwH2 + w2H2, 0 < |a| < 1,
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f0 = zw
1−az

and M2 = M1 ⊖ C · f0. Then M1 and M2 are invariant subspaces. We

have

M1 ⊖ zM1 = C · z z − a

1− az
⊕ C · zw ⊕ w2H2(w)

and

M1 ⊖ wM1 = z
z − a

1− az
H2(z)⊕ C · zw

1− az
⊕ C · w2.

Then f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1. We have

Ω(M1) = C · z z − a

1− az
⊕ C · w2.

Hence f0 ⊥ Ω(M1). We have Ω̃(N1) = C · w and T ∗
z f0 = w/(1 − az), so φ0 =

PΩ̃(N1)
T ∗
z f0 ̸= 0.

(iii) Let

M1 =
z − α

1− αz
H2 +

w − β

1− βw
H2, 0 < |α| < 1, 0 < |β| < 1,

f0 = 1
1−αz

w−β

1−βw
and M2 = M1 ⊖ C · f0. Then M1 and M2 are invariant subspaces.

We have

M1 ⊖ zM1 = C · z − α

1− αz

1

1− βw
⊕ w − β

1− βw
H2(w)

and

M1 ⊖ wM1 =
z − α

1− αz
H2(z)⊕ C · 1

1− αz

w − β

1− βw
.

Then f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1. We have

Ω(M1) = C ·
( −β
1− |β|2

w − β

1− βw
+

−α
1− βw

z − α

1− αz

)
(see [5]). Then f0 ̸⊥ Ω(M1). We also have Ω̃(N1) = {0}, so φ0 = 0.

(iv) Let

M1 = z
z − α

1− αz
H2 + w

w − β

1− βw
H2, 0 < |α| < 1, 0 < |β| < 1,

f0 = z
1−αz

z−α
1−αz

and M2 = M1 ⊖ C · f0. Then M1 and M2 are invariant subspaces.

We have

M1 ⊖ zM1 = C · z z − α

1− αz

1

1− βw
⊕ C · z z − α

1− αz

w − β

1− βw

⊕w w − β

1− βw
H2(w)
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and

M1 ⊖ wM1 = C · 1

1− αz
w
w − β

1− βw
⊕ C · z − α

1− αz
w
w − β

1− βw

⊕z z − α

1− αz
H2(z).

Hence f0 /∈M1 ⊖ zM1 and f0 ∈M1 ⊖ wM1. We have

Ω(M1) = C · z z − α

1− αz
+ C · w w − β

1− βw
.

This shows that f0 ̸⊥ Ω(M1). We have

Ω̃(N1) = C · z − α

1− αz

w − β

1− βw
.

Then ⟨
T ∗
z f0,

z − α

1− αz

w − β

1− βw

⟩
=

⟨ 1

1− αz

z − α

1− αz
,
z − α

1− αz

w − β

1− βw

⟩
= −β.

Hence T ∗
z f0 ̸⊥ Ω̃(N1) and φ0 ̸= 0. �

When f0 ∈ M1 ⊖ zM1 and f0 /∈ M1 ⊖ wM1, exchanging the variables z and w in

Lemma 4.3, Theorems 4.1, 4.2 and 4.1 we have the corresponding results.

5. The case that f0 /∈M1 ⊖ zM1 and f0 /∈M1 ⊖ wM1

In this section, we assume that f0 /∈ M1 ⊖ zM1 and f0 /∈ M1 ⊖ wM1 and we shall

study the structure of Ω(M2) and Ω̃(N2). Let

η0 = PM1⊖wM1f0 and σ0 = PM1⊖zM1f0.

Since Ω(M1) = (M1 ⊖ zM1) ∩ (M1 ⊖ wM1), we have

PΩ(M1)η0 = PΩ(M1)σ0 = PΩ(M1)f0.

By (4.1), (RM1
z )∗f0 = α0f0 for some α0 ∈ D with α0 ̸= 0. Similarly we have that

(RM1
w )∗f0 = β0f0 for some β0 ∈ D with β0 ̸= 0.

Lemma 5.1. Suppose that f0 /∈M1 ⊖ zM1 and f0 /∈M1 ⊖ wM1. Then we have the

following.

(i) η0 ̸= 0 and f0 = η0/(1− β0w).

(ii) Either η0 /∈ Ω(M1) or σ0 /∈ Ω(M1).

Proof. Since (RM1
w )∗f0 = β0f0, we have f0 = β0wf0 + η0. (i) follows from this fact.
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To show (ii), suppose that η0 ∈ Ω(M1) and σ0 ∈ Ω(M1). Since Ω(M1) =

(M1 ⊖ zM1) ∩ (M1 ⊖ wM1), we have

η0 = PΩ(M1)η0 = PΩ(M1)PM1⊖wM1f0

= PΩ(M1)PM1⊖zM1f0 = σ0.

By (i), f0 = η0/(1−β0w), and f0 = σ0/(1−α0z). Hence η0/(1−β0w) = σ0/(1−α0z),

so (α0z− β0w)η0 = 0. Since α0β0 ̸= 0, we have η0 = 0. This contradicts η0 ̸= 0. �

By Lemma 5.1 (ii), we may assume that η0 /∈ Ω(M1). Similarly as Lemma 5.1 (i),

we have σ0 ̸= 0 and f0 = σ0/(1 − α0z). When σ0 /∈ Ω(M1), exchanging variables z

and w we can get the similar result.

Lemma 5.2. Suppose that f0 /∈ M1 ⊖ zM1 and f0 /∈ M1 ⊖ wM1. If η0 /∈ Ω(M1),

then

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · η0

)
⊕ C ·

(
f0 −

1

1− |β0|2
η0

)
.

Proof. By Lemma 5.1 (i), we have η0 ̸= 0 and f0 =
⊕∞

n=0 β
n
0 η0w

n. Since ∥f0∥ = 1

by the starting assumption, we have ∥η0∥2/(1− |β0|2) = 1. Let

g0 = f0 −
1

1− |β0|2
η0 ∈M1.

Then g0 ̸= 0. We have

⟨g0, f0⟩ = 1− 1

1− |β0|2
⟨η0, f0⟩ = 1− 1

1− |β0|2
⟨η0, η0⟩ = 0

and (RM1
w )∗g0 = β0f0. Hence g0 ∈ M2 ⊖ wM2. Since (M1 ⊖ wM1)⊖ C · η0 ⊥ f0, we

have

(M1 ⊖ wM1)⊖ C · η0 ⊂M2 ⊖ wM2.

Therefore (
(M1 ⊖ wM1)⊖ C · η0

)
⊕ C · g0 ⊂M2 ⊖ wM2.

To show the reverse inclusion, let g ∈ M2 ⊖ wM2. Then (RM1
w )∗g = cf0 for some

c ∈ C. If c = 0, then g ∈M1 ⊖ wM1. Since g ⊥ f0, we have that

⟨g, η0⟩ = ⟨g, f0 − β0wf0⟩ = −β0⟨(RM1
w )∗g, f0⟩ = 0.

Hence g ∈ (M1 ⊖ wM1)⊖ C · η0.
Suppose that c ̸= 0. Since (RM1

w )∗g0 = β0f0, we have (R
M1
w )∗(g/c− g0/β0) = 0, so

g/c− g0/β0 ∈M1 ⊖ wM1. Since g ⊥ f0 and g0 ⊥ f0, we have that

⟨g/c− g0/β0, η0⟩ = ⟨g/c− g0/β0, f0 − β0wf0⟩
= −β0⟨(RM1

w )∗(g/c− g0/β0), f0⟩ = 0.
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Hence g/c− g0/β0 ∈ (M1 ⊖ wM1)⊖ C · η0, so

g ∈
(
(M1 ⊖ wM1)⊖ C · η0

)
⊕ C · g0.

Thus we get the assertion. �

Theorem 5.1. Suppose that f0 /∈M1⊖zM1 and f0 /∈M1⊖wM1. Moreover suppose

that η0 /∈ Ω(M1). Then we have the following.

(i) There is h0 in M2 ⊖ wM2 satisfying that

Ω(M2) =
(
Ω(M1)⊖ C · PΩ(M1)f0

)
⊕ C · h0.

.

(ii) If η0 ⊥ Ω(M1), then h0 = 0 and Ω(M2) = Ω(M1).

(iii) If η0 ̸⊥ Ω(M1), then h0 ̸= 0.

Proof. We put

g0 = f0 −
1

1− |β0|2
η0 ∈M2 ⊖ wM2.

Then by Lemma 5.2,

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊕ C · η0

)
⊕ g0

and g0 ̸= 0.

(i) By (2.1), we have

Ω(M2) =
{
f ∈M2 ⊖ wM2 : T

∗
z f ∈ N2

}
.

Since N2 = N1 ⊕ C · f0, we have that

Ω(M2) =
{
f ∈M2 ⊖ wM2 : (R

M1
z )∗f ∈ C · f0

}
.

Hence there is h0 in M2 ⊖ wM2 such that

(5.1) Ω(M2) =
{
f ∈M2 ⊖ wM2 : (R

M1
z )∗f = 0

}
⊕ C · h0.

We have that f0 ∈ (RM1
z )∗(M2⊖wM2) if and only if h0 ̸= 0, and in this case we may

assume that (RM1
z )∗h0 = f0. We have

(RM1
z )∗g0 = α0f0 −

1

1− |β0|2
(RM1

z )∗η0.

Note that (RM1
z )∗(M1 ⊖ wM1) ⊂ M1 ⊖ wM1. Since f0 /∈ M1 ⊖ wM1, (R

M1
z )∗g0 /∈

M1 ⊖ wM1, and by Lemma 5.2 we have{
f ∈M2 ⊖ wM2 : (R

M1
z )∗f = 0

}
=

{
f ∈ (M1 ⊖ wM1)⊖ C · η0 : (RM1

z )∗f = 0
}
.
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We also have {
f ∈ (M1 ⊖ wM1)⊖ C · η0 : (RM1

z )∗f = 0
}

= Ω(M1)⊖ C · PΩ(M1)η0

= Ω(M1)⊖ C · PΩ(M1)f0.

Hence by (5.1), we get (i).

(ii) By Lemma 5.1 (i), we have η0 ̸= 0. Suppose that η0 ⊥ Ω(M1), i.e., f0 ⊥ Ω(M1).

Then PΩ(M1)f0 = PΩ(M1)η0 = 0 and

Ω(M1)⊖ C · PΩ(M1)f0 = Ω(M1).

Since η0 ∈M1 ⊖ wM1 and η0 ⊥ Ω(M1), we have (RM1
z )∗η0 ̸= 0.

Suppose that (RM1
z )∗h = c(RM1

z )∗η0 for some nonzero h ∈ (M1 ⊖ wM1) ⊖ C · η0
and c ∈ C with c ̸= 0. Then (RM1

z )∗(h − cη0) = 0. Since h − cη0 ∈ M1 ⊖ wM1, we

have h− cη0 ∈ Ω(M1). Since η0 ⊥ Ω(M1),

0 = ⟨h− cη0, η0⟩ = −c∥η0∥2 ̸= 0.

This contradiction shows that there are no such h and c.

To show h0 = 0, suppose that h0 ̸= 0. As mentioned in the proof of (i), we may

consider that (RM1
z )∗h0 = f0. Since g0 ∈ M2 ⊖ wM2, by Lemma 5.2 we may write

h0 = F ⊕ dg0 for some F ∈ (M1 ⊖ wM1)⊖ C · η0 and d ∈ C. Since

(RM1
z )∗g0 = α0f0 −

1

1− |β0|2
(RM1

z )∗η0,

we have that

f0 = (RM1
z )∗h0 = (RM1

z )∗F + d(RM1
z )∗g0

= (RM1
z )∗F + α0df0 −

d

1− |β0|2
(RM1

z )∗η0.

Since η0, F ∈M1 ⊖ wM1, we have

(1− α0d)f0 = (RM1
z )∗F − d

1− |β0|2
(RM1

z )∗η0 ∈M1 ⊖ wM1.

Since f0 /∈M1 ⊖ wM1, we have α0d = 1 and d ̸= 0. Hence

(RM1
z )∗F =

d

1− |β0|2
(RM1

z )∗η0 ̸= 0.

This contradicts the fact given in the last paragraph. Hence h0 = 0. Therefore by

(i), we get (ii).
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(iii) Suppose that η0 ̸⊥ Ω(M1). Then PΩ(M1)f0 = PΩ(M1)η0 ̸= 0. We have⟨
η0 −

∥η0∥2

∥PΩ(M1)f0∥2
PΩ(M1)f0, η0

⟩
= ∥η0∥2 −

∥η0∥2

∥PΩ(M1)f0∥2
∥PΩ(M1)f0∥2 = 0.

Putting

h =
1

1− |β0|2
(
η0 −

∥η0∥2

∥PΩ(M1)f0∥2
PΩ(M1)f0

)
,

we have h ∈ (M1 ⊖ wM1) ⊖ C · η0. Since η0 /∈ Ω(M1), we have h ̸= 0. By Lemma

5.2, h+ g0 ∈M2 ⊖ wM2. We have

(RM1
z )∗(h+ g0) =

1

1− |β0|2
(RM1

z )∗η0 + (RM1
z )∗g0

=
1

1− |β0|2
(RM1

z )∗η0 + α0f0 −
1

1− |β0|2
(RM1

z )∗η0

= α0f0.

Hence h+ g0 ∈ Ω(M2). Since α0f0 ̸= 0, we also have h+ g0 /∈ Ω(M1). Therefore by

Theorem 5.1 (i), we get h0 ̸= 0. �

In the last part, we shall study the structure of Ω̃(N2). Recall that φ0 =

PΩ̃(N1)
T ∗
z f0 and ψ0 = PΩ̃(N1)

T ∗
wf0.

Theorem 5.2. Suppose that f0 /∈ M1 ⊖ zM1 and f0 /∈ M1 ⊖ wM1. Then we have

the following.

(i) If φ0 = ψ0 = 0, then Ω̃(N2) = Ω̃(N1).

(ii) If either φ0 ̸= 0 or ψ0 ̸= 0, then φ0 ̸= 0 and ψ0 ̸= 0.

(iii) If φ0 ̸= 0 and ψ0 ̸= 0, then

α0

∥φ0∥2
φ0 =

β0
∥ψ0∥2

ψ0

and

Ω̃(N2) =
(
Ω̃(N1)⊖ C · φ0

)
⊕ C ·

(
f0 −

α0

∥φ0∥2
φ0

)
.

Proof. Let ξ ∈ Ω̃(N1)⊖ (C · φ0 +C · ψ0). Since zξ ∈M1, by the definition of φ0 we

have

⟨zξ, f0⟩ = ⟨ξ, T ∗
z f0⟩ = ⟨ξ, PΩ̃(N1)

T ∗
z f0⟩ = ⟨ξ, φ0⟩ = 0.

Similarly we have ⟨wξ, f0⟩ = 0. Note that M2 = M1 ⊖ C · f0. Then zξ, wξ ∈ M2.

Hence ξ ∈ Ω̃(N2). Thus

Ω̃(N1)⊖ (C · φ0 + C · ψ0) ⊂ Ω̃(N2).
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Since N2 = N1 ⊕ C · f0, we have

(5.2) Ω̃(N2) =
(
Ω̃(N1)⊖ (C · φ0 + C · ψ0)

)
⊕ Λ,

where

(5.3) Λ =
{
h ∈ C · φ0 + C · ψ0 + C · f0 : zh ⊥ f0, wh ⊥ f0

}
.

Suppose that c1φ0+c2ψ0 ∈ Ω̃(N2) for some c1, c2 ∈ C. Then z(c1φ0+c2ψ0) ∈M2,

and z(c1φ0 + c2ψ0) ⊥ f0. Hence c1φ0 + c2ψ0 ⊥ T ∗
z f0, so c1φ0 + c2ψ0 ⊥ PΩ̃(N1)

T ∗
z f0 =

φ0. Similarly we have c1φ0 + c2ψ0 ⊥ ψ0. Hence c1φ0 + c2ψ0 = 0.

(i) Suppose that φ0 = ψ0 = 0. Since ∥f0∥ = 1 and (RM1
z )∗f0 = α0f0, we have

⟨zf0, f0⟩ = ⟨f0, (RM1
z )∗f0⟩ = ⟨f0, α0f0⟩ = α0 ̸= 0.

Hence by (5.3), we have Λ = {0}, so by (5.2) we get (i).

(ii) We assume that ψ0 ̸= 0. Recall that (RM1
w )∗f0 = β0f0. Since ψ0 = PΩ̃(N1)

T ∗
wf0,

we have ⟨
T ∗
wf0, f0 −

β0
∥ψ0∥2

ψ0

⟩
= β0 −

β0
∥ψ0∥2

⟨T ∗
wf0, ψ0⟩

= β0 −
β0

∥ψ0∥2
∥ψ0∥2 = 0.

Hence

(5.4) T ∗
wf0 ⊥ f0 −

β0
∥ψ0∥2

ψ0.

Since zψ0 ∈M1 ⊖ zM1 and wψ0 ∈M1 ⊖ wM1, we also have that

β0⟨f0, zψ0⟩ = ⟨(RM1
w )∗f0, zψ0⟩ = ⟨T ∗

wf0, zψ0⟩
= ⟨f0, zwψ0⟩ = ⟨T ∗

z f0, wψ0⟩ = α0⟨f0, wψ0⟩
= α0⟨PΩ̃(N1)

T ∗
wf0, ψ0⟩ = α0∥ψ0∥2.

Hence

(5.5) ⟨φ0, ψ0⟩ = ⟨T ∗
z f0, ψ0⟩ = ⟨f0, zψ0⟩ =

α0

β0
∥ψ0∥2 ̸= 0.

This shows that φ0 ̸= 0. Similarly if φ0 ̸= 0, then ψ0 ̸= 0.

(iii) Suppose that φ0 ̸= 0 and ψ0 ̸= 0. We have that⟨
T ∗
z f0, f0 −

β0
∥ψ0∥2

ψ0

⟩
= ⟨T ∗

z f0, f0⟩ −
β0

∥ψ0∥2
⟨T ∗

z f0, ψ0⟩

= ⟨(RM1
z )∗f0, f0⟩ −

β0
∥ψ0∥2

α0

β0
∥ψ0∥2 by (5.5)

= ⟨α0f0, f0⟩ − α0 = α0 − α0 = 0.
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Then

T ∗
z f0 ⊥ f0 −

β0
∥ψ0∥2

ψ0.

Therefore by (5.4) and (5.5),

f0 −
β0

∥ψ0∥2
ψ0 ∈ Λ.

Similarly, we have

f0 −
α0

∥φ0∥2
φ0 ∈ Λ.

Hence by (5.3),
α0

∥φ0∥2
φ0 −

β0
∥ψ0∥2

ψ0 ∈ Λ,

so by (5.2) we have
α0

∥φ0∥2
φ0 −

β0
∥ψ0∥2

ψ0 ∈ Ω̃(N2).

By the second paragraph of the proof,

α0

∥φ0∥2
φ0 =

β0
∥ψ0∥2

ψ0.

Then

Λ = C ·
(
f0 −

α0

∥φ0∥2
φ0

)
and by (5.2), we get

Ω̃(N2) =
(
Ω̃(N1)⊖ C · φ0

)
⊕ C ·

(
f0 −

α0

∥φ0∥2
φ0

)
.

�

We shall show examples which satisfy each conditions in Theorems 5.1 and 5.2.

Example 5.1. (i) Let

M1 = zH2 +
w − β

1− βw
H2, 0 < |β| < 1,

f0 =
z

1−αz
1

1−βw
for some 0 < |α| < 1 and M2 =M1 ⊖ C · f0. Then

M2 = z
z − α

1− αz
H2 +

w − β

1− βw
H2,

so M1 and M2 are invariant subspaces. We have

M1 ⊖ zM1 = C · z

1− βw
⊕ w − β

1− βw
H2(w)

and

M1 ⊖ wM1 = zH2(z)⊕ C · w − β

1− βw
.
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Then f0 /∈M1 ⊖ zM1, f0 /∈M1 ⊖ wM1 and

η0 = PM1⊖wM1f0 =
z

1− αz
.

We have

Ω(M1) = C · w − β

1− βw
and η0 ⊥ Ω(M1).

Since N1 = C · 1/(1− βw), we have Ω̃(N1) = {0}. Hence φ0 = ψ0 = 0.

(ii) Let α ∈ D with α ̸= 0 and

M1 = z2
z − α

1− αz
H2 + z2wH2 + zw2H2 + w2 w − α

1− αw
H2.

Then M1 is an invariant subspace and

M1 ⊖ zM1 = C · z2 z − α

1− αz
⊕ C · z2w ⊕ C · z w2

1− αw

⊕C · w2 w − α

1− αw
H2(w)

and

M1 ⊖ wM1 = z2
z − α

1− αz
H2(z)⊕ C · z2

1− αz
w ⊕ C · zw2

⊕C · w2 w − α

1− αw
.

Hence

Ω(M1) = C · z2 z − α

1− αz
⊕ C · w2 w − α

1− αw
.

Let

f0 =
z2

1− αz
w ⊕ z

w2

1− αw
.

Then f0 ∈M1, f0 /∈M1⊖ zM1 and f0 /∈M1⊖wM1. Let M2 =M1⊖C · f0. We have

M2 = z2
z − α

1− αz
H2 + z2w2H2 + w2 w − α

1− αw
H2,

so M2 is an invariant subspace. Moreover we have f0 ⊥ Ω(M1), so we get η0 ⊥
Ω(M1).

We have Ω̃(N1) = C · zw, and

⟨T ∗
z f0, zw⟩ = ⟨f0, z2w⟩ =

⟨ z2

1− αz
w, z2w

⟩
= 1.

Hence φ0 = PΩ̃(N1)
T ∗
z f0 = zw ̸= 0.

(iii) Let α, β ∈ D satisfy α ̸= 0, β ̸= 0 and α ̸= β. Let M1 = (z − w)H2 and

M2 = {f ∈M1 : f(α, β) = 0}. Then M1,M2 are invariant subspaces,

M2 = (z − w)
( z − α

1− αz
H2 +

w − β

1− βw
H2

)
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and

M1 ⊖M2 = C · PM1

1

1− αz

1

1− βw
.

Put

f0 = PM1

1

1− αz

1

1− βw
.

We have f0 ̸⊥ zM1 and f0 ̸⊥ wM1. Hence f0 /∈M1 ⊖ zM1 and f0 /∈M1 ⊖wM1. We

have Ω(M1) = C · (z − w) and

⟨z − w, η0⟩ = ⟨z − w,PM1⊖wM1f0⟩ = ⟨z − w, f0⟩

=
⟨
z − w,

1

1− αz

1

1− βw

⟩
= α− β ̸= 0.

Hence η0 /∈ Ω(M1) and η0 ̸⊥ Ω(M1).

Since Ω̃(N1) = {0}, we have that φ0 = ψ0 = 0.

(iv) Let α, β be nonzero numbers in D. Let M1 = zH2+wH2, f0 = PM1

1
1−αz

1
1−βw

and M2 = M1 ⊖ C · f0. Then M2 = {f ∈ M1 : f(α, β) = 0} and M1,M2 are

invariant subspaces . Since f0 ̸⊥ zM1 and f0 ̸⊥ wM1, we have f0 /∈ M1 ⊖ zM1 and

f0 /∈M1 ⊖ wM1. We have Ω(M1) = C · z + C · w, and

⟨z, η0⟩ = ⟨z, PM1⊖wM1f0⟩ = ⟨z, f0⟩

=
⟨
z,

1

1− αz

1

1− βw

⟩
= α ̸= 0.

Hence η0 /∈ Ω(M1) and η0 ̸⊥ Ω(M1).

Since Ω̃(N1) = C · 1, we have

⟨1, φ0⟩ =
⟨
1, PΩ̃(N1)

T ∗
z f0

⟩
= ⟨z, f0⟩ ̸= 0,

so φ0 ̸= 0. �

6. Related topics and problems

[1] Fredholm fringe operators.

Proposition 6.1. Let M1 be an invariant subspace of H2 and f0 ∈ M1 such that

M2 :=M1 ⊖C · f0 is an invariant subspace. Then FM1
z on M1 ⊖wM1 is a Fredholm

operator if and only if so is FM2
z on M2 ⊖ wM2. In this case, we have indFM1

z =

indFM2
z .

Proof. There is a unique function f1 (except constant multiplication) in M2 ⊖wM2

such that (RM1
z )∗f1 ∈ C · f0 and

(M2 ⊖ wM2)⊖ C · f1 ⊂M1 ⊖ wM1.
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Then we have

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · PM1⊖wM1f0

)
⊕ C · f1.

There is also a unique function f2 (except constant multiplication) in M1 ⊖ wM1

such that PM1⊖wM1f0 ⊥ zh for every h ∈ (M1⊖wM1)⊖C · f2, and there is a unique

function f3 (except constant multiplication) in (M1⊖wM1)⊖C·f2 such that f1 ⊥ zh

for every

h ∈ (M1 ⊖ wM1)⊖ (C · f2 + C · f3).
Let

L = (M1 ⊖ wM1)⊖
(
C · PM1+wM1f0 + C · f2 + C · f3

)
.

Since dim (M1 ⊖ wM1) = ∞, we have L ̸= {0}. For every g ∈ L, we have g ∈
M2 ⊖ wM2 and

FM2
z g = PM2⊖wM2zg = PM1⊖wM1zg = FM1

z g.

Then FM1
z |L = FM2

z |L. Let A1 be the operator on M1 ⊖ wM1 defined by

A1 =

{
FM1
z on L

0 on (M1 ⊖ wM1)⊖ L

and A2 be the operator on M2 ⊖ wM2 defined by

A2 =

{
FM2
z on L

0 on (M2 ⊖ wM2)⊖ L.

Since FM1
z on M1⊖wM1 and A1 differ by a finite rank operator, their Fredholmness

and index are identical (see [2]). Similarly Fredholmness and index of FM2
z on

M2 ⊖ wM2 and A2 are identical. As a result, we get the assertion. �

Corollary 6.1. Let L1, L2 be invariant subspaces of H2 such that L1 ⊂ L2 and

dim (L2 ⊖ L1) < ∞. Then FL1
z on L1 ⊖ wL1 is a Fredholm operator if and only if

so is FL2
z on L2 ⊖ wL2. In this case, we have indFL1

z = indFL2
z .

Question 1. Let M be an invariant subspace of H2 satisfying dimΩ(M) < ∞.

Is FM
z on M ⊖ wM a Fredholm operator?

When FM
z on M ⊖ wM is a Fredholm operator, the Fredholm index of FM

z is

defined by

indFM
z = dimkerFM

z − dimkerFM∗
z .

For a nonzero function f in H2, we denote by [f ] the smallest invariant subspace

of H2 containing f , that is, [f ] = f · C[z, w], where C[z, w] is the polynomial ring.

Similarly for a subset E of H2, we denote by [E] the smallest invariant subspace of

H2 containing E.

Question 2. Is F
[f ]
z on [f ]⊖ w[f ] a Fredholm operator for any nonzero f ∈ H2?
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In [7], Yang showed that FM
z onM⊖wM has closed range if and only if zM+wM

is closed.

Question 3. Is z[f ] + w[f ] closed for any f ∈ H2?

When f is an inner function, it is easy to see that F
[f ]
z on [f ]⊖ w[f ] is Fredholm

and indF
[f ]
z = −1.

[2] One dimensional perturbation.

Let M be an invariant subspace of H2 satisfying M $ H2 and N = H2 ⊖M .

As mentioned in the introduction, there is a nonzero function f0 in M such that

M ⊖C · f0 is an invariant subspace. First, we shall show that there are a lot of such

f0. Write Dz = ∂/∂z and Dw = ∂/∂w.

Example 6.1. Take (α, β) ∈ D2. For each f ∈ M , let Γ(f) be the family of pairs of

nonnegative integers (n,m) such that (Dn
zD

m
w f)(α, β) ̸= 0. Let ΓM =

∪
f∈M Γ(f).

Then ΓM ̸= ∅, and if (n,m) ∈ ΓM , then (n + 1,m) ∈ ΓM and (n,m + 1) ∈ ΓM .

Moreover if (n,m) /∈ ΓM , then (n − 1,m) /∈ ΓM and (n,m − 1) /∈ ΓM . Take

(n1,m1) ∈ ΓM satisfying that

n1 +m1 = min{n+m : (n,m) ∈ ΓM}.

Set

M(α,β) =
{
f ∈M : (Dn

zD
m
w f)(α, β) = 0

}
.

Then M(α,β) is an invariant subspace and M(α,β) $ M . It is easy to see that M =

M(α,β) ⊕ C · f(α,β) for some f(α,β) ∈M with f(α,β) ̸= 0. �

As a counterpart, one may ask whether there is a nonzero function g in N such

that M ⊕C · g is an invariant subspace. If Ω̃(N) ̸= {0} and g ∈ Ω̃(N), then trivially

M ⊕ C · g is an invariant subspace. For f ∈ H2, we denote by Z(f) the zero set of

f in D2. For a closed subset E ⊂ D2, let

ME = {f ∈ H2 : f = 0 on E}

Proposition 6.2. Let E be a connected closed subset of D2 containing more than

one point. If ME ̸= {0}, then ME ⊕ C · g is not an invariant subspace for any

nonzero function g in H2 ⊖ME.

Proof. Suppose that ME ⊕ C · g is an invariant subspace for some nonzero g ∈
H2 ⊖ME. Since g /∈ ME, we have E \ Z(g) ̸= ∅. By the assumption on E, there

are α, β ∈ E such that α ̸= β, g(α) ̸= 0 and g(β) ̸= 0. Take a polynomial p such

that p(α) ̸= p(β). We have pg ∈ ME ⊕ C · g, so pg − cg ∈ ME for some c ∈ C.
Hence p(α)g(α)− cg(α) = 0 and p(β)g(β)− cg(β) = 0, so p(α) = c = p(β). This is

a contradiction. �
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Let E = {(α, α) : α ∈ D}. It is known that ME = [z − w]. So [z − w] ⊕ C · g is

not an invariant subspace for any nonzero function g in H2 ⊖ [z − w].

Proposition 6.3. Let φ(z), ψ(w) be nonconstant one variable inner functions and

M = φ(z)H2+ψ(w)H2. Then there is a nonzero function g in N such that M⊕C ·g
is an invariant subspace if and only if both φ(z), ψ(w) have Blaschke factors.

Proof. Suppose that φ(α) = ψ(β) = 0 for some (α, β) ∈ D2. Let bα(z) =

(z − α)/(1 − αz) and bβ(w) = (w − β)/(1 − βw). Then φ1(z) := φ(z)/bα(z) and

ψ1(w) := ψ(w)/bβ(w) are one variable inner functions. We have

g := φ1(z)
1

1− αz
ψ1(w)

1

1− βw
∈ N,

zg = φ(z)ψ1(w)
1

1− βw
+ αg ∈M ⊕ C · g

and

wg = φ1(z)
1

1− αz
ψ(w) + βg ∈M ⊕ C · g.

Then M ⊕ C · g is an invariant subspace.

Suppose that φ(z) is a singular inner function. Moreover assume that M ⊕ C · g
is an invariant subspace for some nonzero g ∈ N . If zg ∈ M , then zg ∈ φ(z)H2.

Since φ(0) ̸= 0, we have g ∈ φ(z)H2 and this is a contradiction. Hence PC·gzg = cg

for some c ∈ D with c ̸= 0. This shows that PC·gφ(z)g = φ(c)g. Since φ(z)g ∈ M ,

we have PC·gφ(z)g = 0, so φ(c) = 0. This is a contradiction. Therefore there are no

nonzero g ∈ N such that M ⊕ C · g is an invariant subspace. �

Let M be an invariant subspace of H2 satisfying M $ H2. Suppose that there is

a nonzero function g in N such that M ⊕C · g is an invariant subspace. Then there

are α, β ∈ D such that (z−α)g ∈M and (w− β)g ∈M . Hence (p− p(α, β))g ∈M

for every polynomial p.

An invariant subspace L1 of L2 is said to be unitarily equivalent if there is a

unitary module map U from L1 onto L2, that is, TzU = UTz and TwU = UTw on

L1. In this case, it is known that there is a unimodular function θ on ∂D× ∂D such

that L2 = θL1 (see [1, 3]).

Proposition 6.4. Let M be an invariant subspace of H2 satisfying M $ H2. Sup-

pose that there is a nonzero function g in H2⊖M such that M⊕C ·g is an invariant

subspace. If L is an invariant subspace of H2 which is unitarily equivalent to M ,

then there is a nonzero function g1 in H2 ⊖ L such that L ⊕ C · g1 is an invariant

subspace.

Proof. Let θ be a unimodular function on ∂D × ∂D such that L = θM ⊂ H2 By

the fact above Proposition 6.4, there is α, β ∈ D such that (z − α)g ∈ M and
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(z − β)g ∈ M . Then (z − α)θg ∈ L ⊂ H2 and (z − β)θg ∈ H2. Hence θg ∈ H2.

Since g ⊥M , we have θg ⊥ θM = L, so θg ∈ H2⊖L. Since L⊕C ·θg = θ(M⊕C ·g),
L⊕ C · θg is an invariant subspace. �

Proposition 6.4 shows that the property of M “there is a nonzero function g in

H2 ⊖ M such that M ⊕ C · g is an invariant subspace ” is invariant for unitary

module maps.

Question 4. Let f ∈ H2 satisfy {0} ̸= [f ] $ H2. Is [f ]⊕ C · g not an invariant

subspace for any g ∈ H2 ⊖ [f ] with g ̸= 0?

Question 5. Let f ∈ H2 satisfy {0} ̸= [f ] $ H2. Is Ω̃(H2 ⊖ [f ]) = {0}?

Question 6. Characterize an invariant subspace M such that M ⊕ C · g is not

an invariant subspace for any nonzero function g in N .

Question 7. Let f, h be functions in H2 such that [f ] $ [h]. Is dim ([h]⊖ [f ]) =

∞?

[3] Ranks of invariant subspaces.

Let M1 be an invariant subspace of H2 and f0 ∈ M1 with ∥f0∥ = 1 such that

M2 := M1 ⊖ C · f0 is an invariant subspace. We denote by rankM1 the rank of

M1, that is, rankM1 (may be ∞) is the smallest number of elements in M1 which

generate M1 as an invariant subspace.

Proposition 6.5. rankM1 − 1 ≤ rankM2 ≤ rankM1 + 1.

Proof. It is easy to see that rankM1 ≤ rankM2 + 1. So, when rankM1 = ∞ we get

the assertion.

Suppose that m := rankM1 < ∞. Let f1, f2, · · · , fm ∈ M1 such that

[f1, f2, · · · , fm] =M1. We may assume that f1 ̸⊥ f0. If fj ̸⊥ f0 for some 2 ≤ j ≤ m,

replacing fj by

fj −
⟨fj, f0⟩
∥f0∥2

f0,

we may assume that fj ⊥ f0 for every 2 ≤ j ≤ m, that is, fj ∈ M2 for every

2 ≤ j ≤ m. Since M1⊖C · f0 is an invariant subspace, there are α, β ∈ D2 such that

(z − α)f0 ∈ M2 and (w − β)f0 ∈ M2. Hence (z − α)f1 ∈ M2 and (w − β)f1 ∈ M2.

We shall show that

(6.1)
[
(z − α)f1, (w − β)f1, f2, · · · , fm

]
=M2.

Let h ∈M2. Then there are sequences of polynomials

{p1,k}k≥1, {p2,k}k≥1, · · · , {pm,k}k≥1
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such that

lim
k→∞

m∑
ℓ=1

pℓ,kfℓ = h.

We have

0 = ⟨h, f0⟩ = lim
k→∞

m∑
ℓ=1

⟨pℓ,kfℓ, f0⟩ = lim
k→∞

⟨p1,kf1, f0⟩.

Let

p1,k(z, w) =
∑
i,j

ck,i,j(z − α)i(w − β)j

be the Taylor expansion of p1,k at (α, β). Then

0 = lim
k→∞

⟨p1,kf1, f0⟩ = lim
k→∞

ck,0,0⟨f1, f0⟩.

Since ⟨f1, f0⟩ ̸= 0, ck,0,0 → 0 as k → ∞. Hence

h = lim
k→∞

m∑
ℓ=1

pℓ,kfℓ = lim
k→∞

(
(p1,k − ck,0,0)f1 +

m∑
ℓ=2

pℓ,kfℓ

)
.

Since

(p1,k − ck,0,0)f1 ∈ [(z − α)f1, (w − β)f1],

we have

h ∈
[
(z − α)f1, (w − β)f1, f2, · · · , fm

]
.

Thus we get (6.1), so

rankM2 ≤ m+ 1 = rankM1 + 1.

�

Example 6.2. (i) Let M1 = H2 and f0 = 1. Then M2 :=M1 ⊖C · 1 = zH2 +wH2 is

an invariant subspace. It is easy to check that rankM1 = 1 and rankM2 = 2.

(ii) Let M3 = z2H2 + wH2. Then M2 ⊖ C · z =M3 is an invariant subspace. We

have rankM2 = 2 = rankM3.

(iii) Let M1 = z2H2 + zwH2 + w2H2 and f0 = zw. We have rankM1 = 3. Since

M2 :=M1 ⊖ C · f0 = z2H2 + w2H2, we have rankM2 = 2. �

Suppose that rankM1 = 1, that is, M1 = [f ] for some nonzero f ∈ H2. Then

rankM2 ≥ 1.

Question 8. Do there exist M1 and f0 ∈M1 such that rankM1 = rankM2 = 1?

Question 9. Do there exist M1 and f0 ∈ M1 such that rankM1 = 2 and

rankM2 = 1?
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Question 10. Let f ∈ H2 be a nonzero function and f0 ∈ [f ] be a nonzero

function such that M2 := [f ] ⊖ C · f0 is an invariant subspace. Does rankM2 = 2

hold?

These questions have some connection with Questions 4 and 7.

Let Nj = H2 ⊖ Mj for j = 1, 2. Since T ∗
zNj ⊂ Nj and T ∗

wNj ⊂ Nj, we may

consider rankNj for the operators T
∗
z , T

∗
w. In the similar way as Proposition 6.5, we

can prove the following.

Proposition 6.6. Suppose that M1 ̸= H2. Then we have

rankN1 − 1 ≤ rankN2 ≤ rankN1 + 1.

Example 6.3. (i) Let M1 = zH2 + wH2 and f0 = z. We have N1 = C · 1 and

N2 = C · 1 + C · z. Hence rankN1 = 1 = rankN2.

(ii) LetM1 = z2H2+zwH2+w2H2 and f0 = zw. We have N1 = C ·z+C ·w+C ·1
and N2 = C · z + C · w + C · 1 + C · zw. Hence rankN1 = 2 and rankN2 = 1.

(iii) Let M1 = z2H2 + zwH2 + w2H2 + C · (z + w) and f0 = z + w. We have

N1 = C · (z − w) + C · 1 and N2 = C · z + C · w + C · 1. Hence rankN1 = 1 and

rankN2 = 2. �

In the forthcoming paper, we shall study relationship of ranks of the cross com-

mutators on M1,M2 and on N1, N2, respectively.
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