## ONE DIMENSIONAL PERTURBATION OF INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK I

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

ABSTRACT. For an invariant subspace  $M_1$  of the Hardy space  $H^2$  over the bidisk  $\mathbb{D}^2$ , write  $N_1 = H^2 \ominus M_1$ . Let  $\Omega(M_1) = M_1 \ominus (zM_1 + wM_1)$  and  $\widetilde{\Omega}(N_1) = \{f \in N_1 : zf, wf \in M_1\}$ . Then  $\Omega(M_1) \neq \{0\}$ , and  $\Omega(M_1), \widetilde{\Omega}(N_1)$  are key spaces to study the structure of  $M_1$ . It is known that there is a nonzero  $f_0 \in M_1$  such that  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$  is an invariant subspace. It is described the structures of  $\Omega(M_2), \widetilde{\Omega}(N_2)$  using the words of  $\Omega(M_1), \widetilde{\Omega}(N_1)$  and  $f_0$ . To do so, it occur many cases. We shall give examples for each cases.

### 1. Introduction

Let  $H^2 = H^2(\mathbb{D}^2)$  be the Hardy space over the bidisk  $\mathbb{D}^2$  with two variables z and w. Let  $T_z$  and  $T_w$  be the multiplication operators on  $H^2$  by z and w, respectively. A nonzero closed subspace M of  $H^2$  is said to be invariant if  $T_z M \subset M$  and  $T_w M \subset M$ . The structure of invariant subspaces of  $H^2$  is fairly complicated and in this moment it seems to be out of reach (see [1, 6, 7]).

Let M be an invariant subspace. Then by the Wold decomposition theorem, we have

$$M = \bigoplus_{n=0}^{\infty} w^n (M \ominus wM),$$

so the space  $M \ominus wM$  contains a lot of informations of an invariant subspace M. In [7], R. Yang defined the operator  $F_z^M$  on  $M \ominus wM$  by

$$F_z^M f = P_{M \ominus wM} T_z f, \quad f \in M \ominus wM,$$

where  $P_A$  is the orthogonal projection from  $H^2$  onto  $A \subset H^2$ , and Yang called  $F_z^M$ the fringe operator on  $M \ominus wM$ . It is considered that the informations of M are encoded in the operator theoretic properties of  $F_z^M$ .

<sup>2010</sup> Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.

Key words and phrases. Hardy space over the bidisk, invariant subspace, fringe operator, one dimensional perturbation.

The first author is supported by JSPS KAKENHI Grant Number 15K04895.

We write  $R_z^M = T_z|_M$  and  $R_w^M = T_w|_M$ . Then  $R_z^M, R_z^M$  are the operators on M. We set

(1.1) 
$$\Omega(M) = M \ominus (zM + wM) = M \ominus \overline{zM + wM}.$$

Then  $\Omega(M) \neq \{0\}$  (see for example [7, p. 532]). Let  $N = H^2 \ominus M$ . We also set

(1.2) 
$$\widetilde{\Omega}(N) = \left\{ f \in N : zf, wf \in M \right\}.$$

It is known that  $\widetilde{\Omega}(N)$  may be empty. In [7], Yang showed that ker  $(F_z^M)^* = \Omega(M)$ and ker  $F_z^M = w \widetilde{\Omega}(N)$ , where  $(F_z^M)^*$  is the adjoint operator of  $F_z^M$ . When  $F_z^M$  on  $M \ominus wM$  is a Fredholm operator,

$$\operatorname{ind} F^M_z = \dim \ker F^M_z - \dim \ker (F^M_z)^*$$

is called the Fredholm index of  $F_z^M$ , see [2] for the study of operator theory. So in this case, we have

ind 
$$F_z^M = \dim \ker \Omega(M) - \dim \ker \widetilde{\Omega}(N)$$
.

There are a lot of examples of M satisfying that  $F_z^M$  on  $M \ominus wM$  is Fredholm (see [4, 7, 8, 9]).

The smallest number of elements in M which generate M as an invariant subspace is called the rank of M. By (1.1), it is easy to see that the rank of M is greater than or equals to dim ker  $\Omega(M)$ . Motivated by these facts, we are interested in the structures of  $\Omega(M)$  and  $\widetilde{\Omega}(N)$ .

Let  $M_1$  be a nonzero invariant subspace of  $H^2$ . Then there is  $f_0 \in M_1$  with  $||f_0|| = 1$  such that  $M_2 := M_1 \oplus \mathbb{C} \cdot f_0$  is an invariant subspace (for example take  $f_0$  in  $\Omega(M_1)$ ). Our problem is what kind of changes of the structure of  $M_2$  come from the ones of  $M_1$ . This problem is basic in the study of the structure of invariant subspaces. Let  $N_j = H^2 \oplus M_j$  for j = 1, 2. We shall describe  $\Omega(M_2), \widetilde{\Omega}(N_2)$  using the words of  $f_0, \Omega(M_1)$  and  $\widetilde{\Omega}(N_1)$ . To do so, we need other notations;

$$\eta_0 := P_{M_1 \ominus w M_1} f_0, \quad \varphi_0 := P_{\widetilde{\Omega}(N_1)} T_z^* f_0, \quad \psi_0 := P_{\widetilde{\Omega}(N_1)} T_w^* f_0.$$

In Section 2, we shall give some facts which are used later. In Section 3, we shall describe  $\Omega(M_2), \widetilde{\Omega}(N_2)$  under the condition " $f_0 \in \Omega(M_1)$ ". We need to divide the situation into several cases which depend on  $\varphi_0$  and  $\psi_0$ . To describe  $\Omega(M_2)$ , we shall study under the additional assumption that  $(F_z^{M_1})^*$  has closed range.

Suppose that  $f_0 \notin \Omega(M_1)$ . Since  $\Omega(M_1) = (H^2 \oplus zM_1) \cap (H^2 \oplus wM_1)$ , either  $f_0 \notin M_1 \oplus zM_1$  or  $f_0 \notin M_1 \oplus wM_1$ . In Section 4, we shall describe  $\Omega(M_2), \widetilde{\Omega}(N_2)$  under the condition " $f_0 \notin M_1 \oplus zM_1$  and  $f_0 \in M_1 \oplus wM_1$ ". Here we need to divide the situation into several cases which depend on  $f_0, \varphi_0$  and  $\psi_0$ .

In Section 5, we shall describe  $\Omega(M_2)$ ,  $\widetilde{\Omega}(N_2)$  under the condition " $f_0 \notin M_1 \ominus zM_1$ and  $f_0 \notin M_1 \ominus wM_1$ ". Here we need to divide the situation into several cases which depend on  $\eta_0$ ,  $\varphi_0$  and  $\psi_0$ .

To prove our assertions, we use only elementary techniques. But we shall give examples which satisfy each condition given in Sections 3, 4 and 5. These examples will be some help for further investigation of invariant subspaces, and show us that the structure of invariant subspaces is not so simple.

In Section 6, we shall give some comments and problems on the related topics.

### 2. Preliminary

Let M be a nonzero invariant subspace of  $H^2$ . We have  $(R_z^M)^* = P_M T_z^*|_M$  and  $(R_w^M)^* = P_M T_w^*|_M$ . Since ker  $(R_w^M)^* = M \ominus wM$ , by (1.1) we have

$$\Omega(M) = \ker (R_z^M)^* \cap \ker (R_w^M)^*.$$

We also have

$$\Omega(M) = \left\{ f \in M \ominus wM : \ker (R_z^M)^* f = 0 \right\}.$$
  
Let  $N = H^2 \ominus M$ . Then we have  $T_z^* N \subset N$  and  $T_w^* N \subset N$ . So  
(2.1) 
$$\Omega(M) = \left\{ f \in M \ominus wM : T_z^* f \in N \right\}.$$

Since  $w\widetilde{\Omega}(N) \subset M$ , we have  $w\widetilde{\Omega}(N) \subset M \ominus wM$ . By (1.2), we have

(2.2) 
$$\widetilde{\Omega}(N) = N \ominus (T_z^*N + T_w^*N) = N \ominus \overline{T_z^*N + T_w^*N}.$$

Let  $F_z^M$  on  $M \ominus wM$  be the Fringe operator of M. We have that  $(F_z^M)^* = (R_z^M)^* = P_M T_z^*$  on  $M \ominus wM$ . By [7, Proposition 4.4], we have the following.

**Lemma 2.1.** ker  $(F_z^M)^* = \Omega(M)$  and ker  $F_z^M = w \widetilde{\Omega}(N)$ .

We shall use the following lemma in the proof of Theorem 3.1.

**Lemma 2.2.** Suppose that  $(F_z^M)^*$  has closed range. Then for every  $f \in (M \oplus wM) \oplus w\widetilde{\Omega}(N)$ , there is a unique function h in  $(M \oplus wM) \oplus \Omega(M)$  such that  $(R_z^M)^* h = f$ . *Proof.* We have  $(F_z^M)^* = (R_z^M)^*$  on  $M \oplus wM$ . By the assumption,  $(F_z^M)^*$  is a oneto-one map from  $(M \oplus wM) \oplus \ker (F_z^M)^*$  onto  $(M \oplus wM) \oplus \ker F_z^M$ . Hence by Lemma 2.1, we get the assertion.

For many examples of M,  $(F_z^M)^*$  has closed range. We do not know an example of M for which  $(F_z^M)^*$  does not have closed range.

Let  $M_1$  be a nonzero invariant subspace of  $H^2$  and  $f_0 \in M_1$  with  $||f_0|| = 1$  such that  $M_2 := M_1 \oplus \mathbb{C} \cdot f_0$  is an invariant subspace. We write  $N_j = H^2 \oplus N_j$  for j = 1, 2. Since  $f_0 \in N_2$ , we have

$$T_z^* f_0, T_w^* f_0 \in N_2 = N_1 \oplus \mathbb{C} \cdot f_0.$$

## 3. The case $f_0 \in \Omega(M_1)$

In this section, we assume that  $f_0 \in \Omega(M_1)$  and we shall study the structure of  $\Omega(M_2)$  and  $\widetilde{\Omega}(N_2)$ . Recall that

$$\varphi_0 = P_{\widetilde{\Omega}(N_1)} T_z^* f_0$$
 and  $\psi_0 = P_{\widetilde{\Omega}(N_1)} T_w^* f_0.$ 

**Lemma 3.1.** Suppose that  $f_0 \in \Omega(M_1)$ . Then we have the following.

- (i)  $f_0 \in M_1 \ominus wM_1$  and  $(R_z^{M_1})^* w f_0 \in M_1 \ominus wM_1$ .
- (ii)  $\varphi_0 = 0$  if and only if  $(R_z^{M_1})^* w f_0 \perp w \widetilde{\Omega}(N_1)$ .
- (iii)  $\psi_0 = 0$  if and only if  $f_0 \perp w \widetilde{\Omega}(N_1)$ .

Proof. (i) Since  $\Omega(M_1) \subset M_1 \ominus wM_1$ , we have  $f_0 \in M_1 \ominus wM_1$ . Since  $f_0 \in \Omega(M_1)$ , we have  $T_z^* f_0 \in N_1$ . Hence  $P_{M_1} w T_z^* f_0 \in M_1 \ominus wM_1$ . Since  $(R_z^{M_1})^* w f_0 = P_{M_1} w T_z^* f_0$ , we have  $(R_z^{M_1})^* w f_0 \in M_1 \ominus wM_1$ .

(ii) We have that  $\varphi_0 = 0$  if and only if  $wT_z^*f_0 \perp w\widetilde{\Omega}(N_1)$ . Since  $w\widetilde{\Omega}(N_1) \subset M_1$ ,  $wT_z^*f_0 \perp w\widetilde{\Omega}(N_1)$  if and only if  $P_{M_1}wT_z^*f_0 \perp w\widetilde{\Omega}(N_1)$ . Hence we get (ii).

(iii) We have that  $\psi_0 = 0$  if and only if  $T_w^* f_0 \perp \Omega(N_1)$ . Hence we get (iii).

**Lemma 3.2.** If  $f_0 \in \Omega(M_1)$ , then

$$M_2 \ominus wM_2 = ((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot wf_0.$$

Proof. Since  $M_1 = M_2 \oplus \mathbb{C} \cdot f_0$ , we have  $(M_1 \oplus wM_1) \oplus \mathbb{C} \cdot f_0 \subset M_2$ . Since  $(M_1 \oplus wM_1) \perp wM_2$ ,  $(M_1 \oplus wM_1) \oplus \mathbb{C} \cdot f_0 \subset M_2 \oplus wM_2$ . Since  $f_0 \in \Omega(M_1)$ , we have  $wf_0 \in M_2$ , so  $wf_0 \perp wM_2$ . Hence

$$((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot wf_0 \subset M_2 \ominus wM_2$$

To show the reverse inclusion, let  $f \in M_2 \ominus wM_2$ . Write  $f = f_1 + cwf_0$ , where  $f_1 \in (M_2 \ominus wM_2) \ominus \mathbb{C} \cdot wf_0$  and  $c \in \mathbb{C}$ . Then  $T_w^*f_1 \in N_2$ . We have  $\langle T_w^*f_1, f_0 \rangle = \langle f_1, wf_0 \rangle = 0$ . Since  $N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ , we have  $T_w^*f_1 \in N_1$ . Hence  $f_1 \in M_1 \ominus wM_1$ . Trivially we have  $f_1 \perp f_0$ . Therefore  $f_1 \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0$ . Thus

$$M_2 \ominus w M_2 \subset ((M_1 \ominus w M_1) \ominus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot w f_0,$$

so we get the assertion.

By the proof, the assertion of Lemma 3.2 holds if  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ .

**Lemma 3.3.** Suppose that  $f_0 \in \Omega(M_1)$ . Then we have the following.

(i) 
$$\Omega(M_2) = (\Omega(M_1) \ominus \mathbb{C} \cdot f_0) \oplus$$
  
 $\{h \in ((M_1 \ominus wM_1) \ominus \Omega(M_1)) \oplus \mathbb{C} \cdot wf_0 : (R_z^{M_1})^* h \in \mathbb{C} \cdot f_0\}.$   
(ii)  $\widetilde{\Omega}(N_2) = (\widetilde{\Omega}(N_1) \ominus (\mathbb{C} \cdot \varphi_0 + \mathbb{C} \cdot \psi_0)) \oplus \mathbb{C} \cdot f_0.$ 

*Proof.* (i) By (2.1),

$$\Omega(M_2) = \left\{ h \in M_2 \ominus wM_2 : T_z^* h \in N_2 \right\}.$$

Since  $N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ , we have

$$\Omega(M_2) = \left\{ h \in M_2 \ominus w M_2 : (R_z^{M_1})^* h \in \mathbb{C} \cdot f_0 \right\}.$$

By Lemma 3.2,

$$M_2 \ominus wM_2 = (\Omega(M_1) \ominus \mathbb{C} \cdot f_0) \oplus (((M_1 \ominus wM_1) \ominus \Omega(M_1)) \oplus \mathbb{C} \cdot wf_0).$$

Since  $f_0 \in \Omega(M_1)$ , we have  $(M_1 \ominus wM_1) \ominus \Omega(M_1) \subset M_2$  and  $\Omega(M_1) \ominus \mathbb{C} \cdot f_0 \subset \Omega(M_2)$ . Hence we have

$$\Omega(M_2) = (\Omega(M_1) \ominus \mathbb{C} \cdot f_0) \oplus \{h \in ((M_1 \ominus wM_1) \ominus \Omega(M_1)) \oplus \mathbb{C} \cdot wf_0 : (R_z^{M_1})^* h \in \mathbb{C} \cdot f_0\}.$$

(ii) Since  $f_0 \in \Omega(M_1)$ , we have  $\mathbb{C} \cdot f_0 \subset \widetilde{\Omega}(N_2)$ . By (2.2), we have

$$\widetilde{\Omega}(N_2) = \left\{ h \in \widetilde{\Omega}(N_1) : zh \perp f_0, wh \perp f_0 \right\} \oplus \mathbb{C} \cdot f_0.$$

Hence we get (ii).

The following follows directly from Lemma 3.3 (ii).

**Corollary 3.1.** Suppose that  $f_0 \in \Omega(M_1)$ . Then we have the following.

- (i) If  $\varphi_0 = \psi_0 = 0$ , then  $\widetilde{\Omega}(N_2) = \widetilde{\Omega}(N_1) \oplus \mathbb{C} \cdot f_0$ .
- (ii) If  $\varphi_0 \neq 0$  and  $\psi_0 = 0$ , then  $\widetilde{\Omega}(N_2) = (\widetilde{\Omega}(N_1) \ominus \mathbb{C} \cdot \varphi_0) \oplus \mathbb{C} \cdot f_0$ .
- (iii) Suppose that  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ . If  $\mathbb{C} \cdot \varphi_0 = \mathbb{C} \cdot \psi_0$ , then

$$\widetilde{\Omega}(N_2) = (\widetilde{\Omega}(N_1) \ominus \mathbb{C} \cdot \varphi_0) \oplus \mathbb{C} \cdot f_0.$$

(iv) Suppose that  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ . If  $\mathbb{C} \cdot \varphi_0 \neq \mathbb{C} \cdot \psi_0$ , then

$$\widetilde{\Omega}(N_2) = \left(\widetilde{\Omega}(N_1) \ominus (\mathbb{C} \cdot \varphi_0 + \mathbb{C} \cdot \psi_0)\right) \oplus \mathbb{C} \cdot f_0.$$

**Theorem 3.1.** Suppose that  $f_0 \in \Omega(M_1)$ . Moreover suppose that  $(F_z^{M_1})^*$  has closed range. Then we have the following.

(i) If  $\varphi_0 = \psi_0 = 0$ , then there are nonzero functions  $h_1$  and  $h_2$  (may be zero) in  $(M_1 \ominus wM_1) \ominus \Omega(M_1)$  such that

$$\Omega(M_2) = (\Omega(M_1) \ominus \mathbb{C} \cdot f_0) \oplus (\mathbb{C} \cdot h_1 + \mathbb{C} \cdot (h_2 \oplus w f_0)).$$

(ii) If  $\varphi_0 \neq 0$  and  $\psi_0 = 0$ , then there is a nonzero function  $h_3$  in  $(M_1 \ominus wM_1) \ominus \Omega(M_1)$  such that

$$\Omega(M_2) = (\Omega(M_1) \ominus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot h_3.$$

(iii) Suppose that  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ . If  $\mathbb{C} \cdot \varphi_0 = \mathbb{C} \cdot \psi_0$ , then there is a function  $g_1$  in  $(M_1 \ominus wM_1) \ominus \Omega(M_1)$  such that

$$\Omega(M_2) = (\Omega(M_1) \ominus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot (g_1 \oplus w f_0).$$

(iv) Suppose that  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ . If  $\mathbb{C} \cdot \varphi_0 \neq \mathbb{C} \cdot \psi_0$ , then

$$\Omega(M_2) = \Omega(M_1) \ominus \mathbb{C} \cdot f_0$$

Proof. (i) Since  $\psi_0 = 0$ , by Lemma 3.1 (iii) we have  $f_0 \perp w \widetilde{\Omega}(N_1)$ . Since  $f_0 \in \Omega(M_1) \subset M_1 \ominus w M_1$ , by Lemma 2.2 there is a unique nonzero function  $h_1$  in  $(M_1 \ominus w M_1) \ominus \Omega(M_1)$  satisfying  $(R_z^{M_1})^* h_1 = f_0$ . We note that

(3.1) 
$$\left\{h \in (M_1 \ominus wM_1) \ominus \Omega(M_1) : (R_z^{M_1})^* h \in \mathbb{C} \cdot f_0\right\} = \mathbb{C} \cdot h_1.$$

Since  $f_0 \in \Omega(M_1)$ , by Lemma 3.1 (i) we have  $(R_z^{M_1})^* w f_0 \in M_1 \oplus w M_1$ . Since  $\varphi_0 = 0$ , by Lemma 3.1 (ii) we have  $(R_z^{M_1})^* w f_0 \perp w \widetilde{\Omega}(N_1)$ . Then by Lemma 2.2 again, there is a unique function  $h_2$  in  $(M_1 \oplus w M_1) \oplus \Omega(M_1)$  satisfying  $(R_z^{M_1})^* h_2 = -(R_z^{M_1})^* w f_0$ . Hence  $(R_z^{M_1})^* (h_2 \oplus w f_0) = 0 \in \mathbb{C} \cdot f_0$ .

Suppose that  $(R_z^{M_1})^*(h \oplus wf_0) \in \mathbb{C} \cdot f_0$  for some  $h \in (M_1 \oplus wM_1) \oplus \Omega(M_1)$ . Then  $(R_z^{M_1})^*(h-h_2) \in \mathbb{C} \cdot f_0$ . Since  $h-h_2 \in (M_1 \oplus wM_1) \oplus \Omega(M_1)$ , by (3.1) we have  $h-h_2 \in \mathbb{C} \cdot h_1$ , and

$$h \oplus wf_0 \in h_2 + \mathbb{C} \cdot h_1 + wf_0 \subset \mathbb{C} \cdot h_1 + \mathbb{C} \cdot (h_2 \oplus wf_0).$$

By Lemma 3.3 (i), we get (i).

(ii) Since  $f_0 \in \Omega(M_1)$ , by Lemma 3.1 (i) we have  $f_0 \in M_1 \oplus wM_1$  and  $(R_z^{M_1})^* w f_0 \in M_1 \oplus wM_1$ . Since  $\psi_0 = 0$ , by Lemma 3.1 (ii)  $f_0 \perp w \widetilde{\Omega}(N_1)$ . Then by Lemma 2.2, there is a unique nonzero function  $h_3$  in  $(M_1 \oplus wM_1) \oplus \Omega(M_1)$  such that  $(R_z^{M_1})^* h_3 = f_0$ . Since  $\varphi_0 \neq 0$ , by Lemma 3.1 (ii) we have  $(R_z^{M_1})^* w f_0 \not\perp w \widetilde{\Omega}(N_1)$ . Then by Lemma 2.2 again,  $(R_z^{M_1})^* h \neq (R_z^{M_1})^* w f_0$  for any  $h \in (M_1 \oplus wM_1) \oplus \Omega(M_1)$ .

Suppose that there is  $g \in (M_1 \ominus wM_1) \ominus \Omega(M_1)$  satisfying that  $(R_z^{M_1})^*(g \oplus wf_0) = cf_0$  for some  $c \in \mathbb{C}$ . Then

$$(R_z^{M_1})^* w f_0 = (R_z^{M_1})^* (g \oplus w f_0) - (R_z^{M_1})^* g = c f_0 - (R_z^{M_1})^* g$$
  
=  $(R_z^{M_1})^* (c h_3 - g).$ 

Since  $ch_3 - g \in (M_1 \oplus wM_1) \oplus \Omega(M_1)$ , this contradicts the last paragraph. Hence by Lemma 3.3 (i), we get (ii).

(iii) Suppose that  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ . By the assumption,  $\varphi_0 = c_1 \psi_0$  for some  $c_1 \in \mathbb{C}$  with  $c_1 \neq 0$ . Then  $P_{\widetilde{\Omega}(N_1)}(c_1 T_w^* f_0 - T_z^* f_0) = 0$ , so

$$P_{w\widetilde{\Omega}(N_1)}(c_1wT_w^*f_0 - wT_z^*f_0) = 0.$$

We have

$$P_{w\tilde{\Omega}(N_1)}wT_z^*f_0 = P_{w\tilde{\Omega}(N_1)}P_{M_1}T_z^*wf_0 = P_{w\tilde{\Omega}(N_1)}(R_z^{M_1})^*wf_0$$

-6 -

and  $P_{w\tilde{\Omega}(N_1)}wT_w^*f_0 = P_{w\tilde{\Omega}(N_1)}f_0$ . Then

$$P_{w\tilde{\Omega}(N_1)}(c_1f_0 - (R_z^{M_1})^*wf_0) = 0.$$

Hence  $c_1 f_0 - (R_z^{M_1})^* w f_0 \perp w \widetilde{\Omega}(N_1)$ . Since  $f_0 \in \Omega(M_1)$ , by Lemma 3.1 (i) we have  $c_1 f_0 - (R_z^{M_1})^* w f_0 \in M_1 \ominus w M_1$ .

By Lemma 2.2, there is a unique function  $g_1$  in  $(M_1 \ominus wM_1) \ominus \Omega(M_1)$  such that

$$(R_z^{M_1})^*g_1 = c_1f_0 - (R_z^{M_1})^*wf_0$$

Hence

$$(R_z^{M_1})^*(g_1 \oplus wf_0) = c_1 f_0.$$

Since  $\psi_0 \neq 0$ , by Lemma 3.1 (iii) we have  $f_0 \not\perp w \widetilde{\Omega}(N_1)$ . Since  $f_0 \in M_1 \ominus w M_1$ , by Lemma 2.2  $(R_z^{M_1})^*h \notin \mathbb{C} \cdot f_0$  for any nonzero function  $h \in (M_1 \ominus w M_1) \ominus \Omega(M_1)$ . Hence by Lemma 3.3 (i), we get (iii).

(iv) By the assumption,

$$\mathbb{C} \cdot P_{\widetilde{\Omega}(N_1)} T_z^* f_0 \neq \mathbb{C} \cdot P_{\widetilde{\Omega}(N_1)} T_w^* f_0.$$

As the proof of (iii), we have

(3.2) 
$$\mathbb{C} \cdot P_{w\widetilde{\Omega}(N_1)}(R_z^{M_1})^* w f_0 \neq \mathbb{C} \cdot P_{w\widetilde{\Omega}(N_1)} f_0.$$

As the last paragraph of (iii),  $(R_z^{M_1})^*h \notin \mathbb{C} \cdot f_0$  for any nonzero function  $h \in (M_1 \ominus wM_1) \ominus \Omega(M_1)$ .

Assume that

$$(R_z^{M_1})^*(g \oplus wf_0) \in \mathbb{C} \cdot f_0$$

for some  $g \in (M_1 \ominus wM_1) \ominus \Omega(M_1)$ . Since  $(R_z^{M_1})^*g \in M_1 \ominus wM_1$ ,  $(R_z^{M_1})^*wf_0 \in M_1 \ominus wM_1$ , so we may write

(3.3) 
$$(R_z^{M_1})^* w f_0 = p \oplus c_1 f_0 \in \left( (M_1 \oplus w M_1) \oplus \mathbb{C} \cdot f_0 \right) \oplus \mathbb{C} \cdot f_0.$$

Then  $(R_z^{M_1})^*g = -p \oplus c_2 f_0$  for some  $c_2 \in \mathbb{C}$ . We have

$$(R_z^{M_1})^*(M_1 \ominus wM_1) \perp \ker F_z^{M_1}$$

By Lemma 2.1,

$$(R_z^{M_1})^*(M_1 \ominus wM_1) \perp w\widetilde{\Omega}(N_1).$$
  
Hence  $-p \oplus c_2 f_0 \perp w\widetilde{\Omega}(N_1)$ , so  $P_{w\widetilde{\Omega}(N_1)}p = c_2 P_{w\widetilde{\Omega}(N_1)}f_0$ . By (3.3),  
 $P_{w\widetilde{\Omega}(N_1)}(R_z^{M_1})^*wf_0 = P_{w\widetilde{\Omega}(N_1)}p + c_1 P_{w\widetilde{\Omega}(N_1)}f_0$   
 $= (c_1 + c_2) P_{w\widetilde{\Omega}(N_1)}f_0.$ 

Since  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ , by Lemma 3.1 (ii) and (iii) we have  $P_{w\widetilde{\Omega}(N_1)}(R_z^{M_1})^* w f_0 \neq 0$ and  $P_{w\widetilde{\Omega}(N_1)}f_0 \neq 0$ . Hence the above equations contradict (3.2). Therefore there are no  $g \in (M_1 \ominus wM_1) \ominus \Omega(M_1)$  satisfying that  $(R_z^{M_1})^*(g \oplus wf_0) \in \mathbb{C} \cdot f_0$ . By Lemma 3.3 (i), we get (iv).

When  $\varphi_0 = 0$  and  $\psi_0 \neq 0$  in Corollary 3.1 and Theorem 3.1, we can describe  $\widetilde{\Omega}(N_2)$  and  $\Omega(M_2)$  exchanging variables z and w in Corollary 3.1 (ii) and Theorem 3.1 (ii), respectively. We do not know whether in Theorem 3.1 (iii) we can take  $g_1$  as  $g_1 \neq 0$ , and this is equivalent to  $(R_z^{M_1})^* w f_0 \notin \mathbb{C} \cdot f_0$ .

We shall show the examples which satisfy each conditions in Corollary 3.1 and Theorem 3.1.

Example 3.1. (i-1) Let  $M_1 = z^2 H^2 + w H^2$ ,  $f_0 = w$  and  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$ . Then  $M_1$  and  $M_2$  are invariant subspaces. We have

$$M_1 \ominus w M_1 = z^2 H^2(z) \oplus \mathbb{C} \cdot z w \oplus \mathbb{C} \cdot w,$$

where  $H^2(z)$  is the z-variable Hardy space,  $\Omega(M_1) = \mathbb{C} \cdot z^2 \oplus \mathbb{C} \cdot w$ ,  $f_0 \in \Omega(M_1)$  and  $\widetilde{\Omega}(N_1) = \mathbb{C} \cdot z$ . Hence  $T_z^* f_0 = 0 \perp \widetilde{\Omega}(N_1)$  and  $T_w^* f_0 = 1 \perp \widetilde{\Omega}(N_1)$ , so  $\varphi_0 = \psi_0 = 0$ . In the proof of Theorem 3.1 (i),  $h_2$  belongs to  $(M_1 \ominus wM_1) \ominus \Omega(M_1)$  and  $(R_z^{M_1})^* h_2 = (R_z^{M_1})^* w f_0$ . In this case, we have  $(R_z^{M_1})^* w f_0 = 0$ , so  $h_2 \in \Omega(M_1)$  and  $h_2 = 0$ . Note that

$$(R_z^{M_1})^*(M_1 \ominus wM_1) = z^2 H^2(z) \oplus \mathbb{C} \cdot w.$$

(i-2) Let

$$M_1 = z^2 b_{\alpha}(z) H^2 + b_{\alpha}(z) w H^2 + w^2 H^2,$$

where  $b_{\alpha} = (z - \alpha)/(1 - \overline{\alpha}z)$  and  $\alpha \in \mathbb{D}$  with  $0 < |\alpha| < 1$ . Then

$$\Omega(M_1) = \mathbb{C} \cdot z^2 b_\alpha(z) \oplus \mathbb{C} \cdot b_\alpha(z) w.$$

Take  $f_0 = b_{\alpha}(z)w \in \Omega(M_1)$ . We have  $\widetilde{\Omega}(N_1) = \mathbb{C} \cdot zb_{\alpha}(z)$ . Then  $T_z^*f_0 \perp \widetilde{\Omega}(N_1)$  and  $T_w^*f_0 \perp \widetilde{\Omega}(N_1)$ , so  $\varphi_0 = \psi_0 = 0$ . We have

$$M_1 \oplus wM_1 = z^2 b_{\alpha}(z) H^2(z) \oplus \mathbb{C} \cdot z b_{\alpha}(z) w \oplus \mathbb{C} \cdot \frac{w^2}{1 - \overline{\alpha} z}$$

and

$$(M_1 \ominus wM_1) \ominus \Omega(M_1) = z^3 b_\alpha(z) H^2(z) \oplus \mathbb{C} \cdot z b_\alpha(z) w \oplus \mathbb{C} \cdot \frac{w^2}{1 - \overline{\alpha} z}$$

Take  $h_2 = w^2/(1 - \overline{\alpha}z)$ . Then  $h_2 \in (M_1 \ominus wM_1) \ominus \Omega(M_1)$  and  $h_2 \neq 0$ . We have

$$(R_z^{M_1})^* w f_0 = (R_z^{M_1})^* b_\alpha(z) w^2 = \frac{\alpha}{1 - \overline{\alpha} z} w^2 = (R_z^{M_1})^* h_2.$$

Note that

$$(R_z^{M_1})^*(M_1 \oplus wM_1) = z^2 b_\alpha(z) H^2(z) \oplus \mathbb{C} \cdot \frac{w^2}{1 - \overline{\alpha} z}$$

(ii) Let  $M_1 = zH^2 + wH^2$ ,  $f_0 = z$  and  $M_2 = M_1 \oplus \mathbb{C} \cdot f_0$ . Then  $M_1$  and  $M_2$  are invariant subspaces. We have  $M_1 \oplus wM_1 = zH^2(z) \oplus \mathbb{C} \cdot w$ ,  $\Omega(M_1) = \mathbb{C} \cdot z \oplus \mathbb{C} \cdot w$ ,

— 8 —

 $f_0 \in \Omega(M_1)$  and  $\widetilde{\Omega}(N_1) = \mathbb{C} \cdot 1$ . Hence  $T_z^* f_0 = 1 \not\perp \widetilde{\Omega}(N_1)$  and  $T_w^* f_0 = 0 \perp \widetilde{\Omega}(N_1)$ , so  $\varphi_0 \neq 0$  and  $\psi_0 = 0$ . Note that  $(R_z^{M_1})^* (M_1 \ominus wM_1) = zH^2(z)$ .

(iii) Let  $M_1 = zH^2 + wH^2$ ,  $f_0 = z + w$  and  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$ . Then  $M_1, M_2$  are invariant subspaces. We have  $\Omega(M_1) = \mathbb{C} \cdot z \oplus \mathbb{C} \cdot w$ ,  $f_0 \in \Omega(M_1)$  and  $\widetilde{\Omega}(N_1) = \mathbb{C} \cdot 1$ . Hence  $T_z^* f_0 = T_w^* f_0 = 1 \not\perp \widetilde{\Omega}(N_1)$ , so  $\varphi_0 \neq 0, \psi_0 \neq 0$  and  $\mathbb{C} \cdot \varphi_0 = \mathbb{C} \cdot \psi_0$ . We have that  $c_1 = 1$  in the proof of Theorem 3.1 (iv). Hence

$$(R_z^{M_1})^* w f_0 - c_1 f_0 = w - (z + w) = -z.$$

We also have

$$(M_1 \ominus wM_1) \ominus \Omega(M_1) = z^2 H^2(z).$$

Let  $g_1 = -z^2 \in (M_1 \ominus wM_1) \ominus \Omega(M_1)$ . Then  $g_1 \neq 0$  and  $(D^{M_1})^* = (D^{M_1})^* = f$ 

$$(R_z^{M_1})^* g_1 = (R_z^{M_1})^* w f_0 - c_1 f_0$$

(iv) Let  $M_1 = z^2 H^2 + z w H^2 + w^2 H^2$ ,  $f_0 = z w$  and  $M_2 = M_1 \oplus \mathbb{C} \cdot f_0$ . Then  $M_1, M_2$  are invariant subspaces. We have

$$M_1 \oplus wM_1 = z^2 H^2(z) \oplus \mathbb{C} \cdot zw \oplus \mathbb{C} \cdot w^2,$$
$$\Omega(M_1) = \mathbb{C} \cdot z^2 \oplus \mathbb{C} \cdot zw \oplus \mathbb{C} \cdot w^2,$$

 $f_0 \in \Omega(M_1) \text{ and } \widetilde{\Omega}(N_1) = \mathbb{C} \cdot z + \mathbb{C} \cdot w. \text{ Hence } T_z^* f_0 = w \not\perp \widetilde{\Omega}(N_1), T_w^* f_0 = z \not\perp \widetilde{\Omega}(N_1) \text{ and } P_{\widetilde{\Omega}(N_1)} T_z^* f_0 = w \neq z = P_{\widetilde{\Omega}(N_1)} T_w^* f_0. \text{ Therefore } \varphi_0 \neq 0, \psi_0 \neq 0 \text{ and } \mathbb{C} \cdot \varphi_0 \neq \mathbb{C} \cdot \psi_0.$ Note that  $(R_z^{M_1})^* (M_1 \ominus w M_1) = z^2 H^2(z).$ 

# 4. The case that $f_0 \notin M_1 \ominus zM_1$ and $f_0 \in M_1 \ominus wM_1$

If  $f_0 \notin \Omega(M_1)$ , then either  $f_0 \notin M_1 \ominus zM_1$  or  $f_0 \notin M_1 \ominus wM_1$ . In this section, we assume that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . Since  $M_1 \ominus M_2 = \mathbb{C} \cdot f_0$ , there is  $\alpha_0 \in \mathbb{C}$  with  $\alpha_0 \neq 0$  satisfying that

(4.1) 
$$(R_z^{M_1})^* f_0 = \alpha_0 f_0.$$

We shall study the structure of  $\Omega(M_2)$  and  $\Omega(N_2)$ . Let

$$\sigma_0 = P_{M_1 \ominus z M_1} f_0.$$

Since  $\Omega(M_1) \subset M_1 \ominus zM_1$ , we have  $P_{\Omega(M_1)}\sigma_0 = P_{\Omega(M_1)}f_0$ .

**Lemma 4.1.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . Then  $\sigma_0 \neq 0$  and  $f_0 = \sigma_0/(1 - \alpha_0 z)$ .

*Proof.* Since  $(R_z^{M_1})^* f_0 = \alpha_0 f_0$ , we have  $f_0 = \alpha_0 z f_0 + \sigma_0$ . Then we get the assertion.

**Lemma 4.2.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . Then

 $M_2 \ominus wM_2 = ((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot wf_0.$ 

*Proof.* Since  $M_1 \ominus M_2 = \mathbb{C} \cdot f_0$  and  $wf_0 \perp f_0$ , we have  $wf_0 \in M_2$ . In the same way as the proof of Lemma 3.2, we have the assertion.

**Lemma 4.3.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . Then we have the following.

(i)  $\Omega(M_2) = \{ f \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0 : (R_z^{M_1})^* f \in \mathbb{C} \cdot f_0 \}.$ 

(ii)  $\widetilde{\Omega}(N_2) = (N_1 \oplus \mathbb{C} \cdot f_0) \ominus (\overline{T_z^* N_1 + T_w^* N_1} + \mathbb{C} \cdot T_z^* f_0).$ 

Proof. (i) By (2.1),

$$\Omega(M_2) = \left\{ f \in M_2 \ominus wM_2 : T_z^* f \in N_2 \right\}.$$

Since  $N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ , we have

$$\Omega(M_2) = \left\{ f \in M_2 \ominus w M_2 : (R_z^{M_1})^* f \in \mathbb{C} \cdot f_0 \right\}.$$

By Lemma 4.2,

$$\Omega(M_2) = \left\{ f \in \left( (M_1 \ominus w M_1) \ominus \mathbb{C} \cdot f_0 \right) \oplus \mathbb{C} \cdot w f_0 : (R_z^{M_1})^* f \in \mathbb{C} \cdot f_0 \right\}.$$

Suppose that  $(R_z^{M_1})^*(g \oplus wf_0) \in \mathbb{C} \cdot f_0$  for some  $g \in (M_1 \oplus wM_1) \oplus \mathbb{C} \cdot f_0$ . We have  $(R_z^{M_1})^*g = 0$  and  $f_0 \in M_1 \oplus wM_1$ . Hence  $(R_z^{M_1})^*wf_0 \in M_1 \oplus wM_1$ .

By (4.1), we may write  $T_z^* f_0 = \alpha_0 f_0 \oplus f_1$  for some  $f_1 \in N_1$ . Then

$$(R_z^{M_1})^* w f_0 = P_{M_1} w T_z^* f_0 = \alpha_0 w f_0 + P_{M_1} w f_1$$

Since  $f_1 \in N_1$ ,  $P_{M_1}wf_1 \in M_1 \ominus wM_1$ . Hence  $\alpha_0 wf_0 \in M_1 \ominus wM_1$ , so  $\alpha_0 = 0$ . This contradicts  $\alpha_0 \neq 0$ . Therefore  $(R_z^{M_1})^*(g \oplus wf_0) \notin \mathbb{C} \cdot f_0$  for any  $g \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0$ . Hence we get (i).

(ii) We have  $N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ . Hence

$$\overline{T_z^*N_2 + T_w^*N_2} = \overline{T_z^*N_1 + T_w^*N_1} + \mathbb{C} \cdot T_z^*f_0 + \mathbb{C} \cdot T_w^*f_0.$$

By (4.1), we have  $f_0 \perp \ker F_z^{M_1}$ , so by Lemma 2.1  $f_0 \perp w \widetilde{\Omega}(N_1)$ . Hence  $T_w^* f_0 \perp \widetilde{\Omega}(N_1)$ . Since  $f_0 \in M_1 \ominus w M_1$ , we have  $T_w^* f_0 \in N_1$ . By (2.2),  $T_w^* f_0 \in \overline{T_z^* N_1 + T_w^* N_1}$ . Therefore

$$\overline{T_z^* N_2 + T_w^* N_2} = \overline{T_z^* N_1 + T_w^* N_1} + \mathbb{C} \cdot T_z^* f_0.$$

By (2.2) again, we get (ii).

**Theorem 4.1.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . Then we have the following.

(i) If  $f_0 \perp \Omega(M_1)$ , then  $\Omega(M_2) = \Omega(M_1)$ .

(ii) If  $f_0 \not\perp \Omega(M_1)$ , then there is a nonzero function  $h_0$  in  $(M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0$ such that

$$\Omega(M_2) = \left(\Omega(M_1) \ominus \mathbb{C} \cdot P_{\Omega(M_1)} f_0\right) \oplus \mathbb{C} \cdot h_0.$$

*Proof.* (i) Suppose that there is  $h \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0$  satisfying  $(R_z^{M_1})^*h = f_0$ . By (4.1), we have that  $(R_z^{M_1})^*(h - f_0/\alpha_0) = 0$ , so  $h - f_0/\alpha_0 \in \Omega(M_1)$ . Since  $f_0 \perp \Omega(M_1)$ , we have

$$0 = \langle h - f_0 / \alpha_0, f_0 \rangle = - \|f_0\|^2 / \alpha_0$$

This contradicts  $f_0 \neq 0$ . Hence by Lemma 4.3 (i), we have

$$\Omega(M_2) = \{ f \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0 : (R_z^{M_1})^* f = 0 \}$$
  
=  $((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0) \cap \Omega(M_1) = \Omega(M_1).$ 

(ii) By the assumption, we have  $P_{\Omega(M_1)}f_0 \neq 0$ . Let

$$h_0 = \frac{1}{\alpha_0} \left( f_0 - \frac{\|f_0\|^2}{\|P_{\Omega(M_1)} f_0\|^2} P_{\Omega(M_1)} f_0 \right) \in M_1 \ominus w M_1.$$

Since  $f_0 \notin \Omega(M_1)$ , we have that  $h_0 \neq 0$  and

$$\langle h_0, f_0 \rangle = \frac{1}{\alpha_0} (\|f_0\|^2 - \|f_0\|^2) = 0.$$

Hence  $h_0 \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0, h_0 \in M_2 \ominus wM_2$  and

$$(R_z^{M_1})^*h_0 = \frac{1}{\alpha_0}(R_z^{M_1})^*f_0 = f_0$$

Moreover we have  $h_0 \in \Omega(M_2)$ . Therefore by Lemma 4.3 (i), we have

$$\Omega(M_2) = \{ f \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0 : (R_z^{M_1})^* f = 0 \} \oplus \mathbb{C} \cdot h_0$$
  
=  $(((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_0) \cap \Omega(M_1)) \oplus \mathbb{C} \cdot h_0$   
=  $(\Omega(M_1) \ominus \mathbb{C} \cdot P_{\Omega(M_1)} f_0) \oplus \mathbb{C} \cdot h_0.$ 

Recall that  $\varphi_0 = P_{\widetilde{\Omega}(N_1)}T_z^*f_0$ .

**Theorem 4.2.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . Then we have the following.

- (i) If  $\varphi_0 = 0$ , then  $\widetilde{\Omega}(N_2) = \widetilde{\Omega}(N_1)$ .
- (ii) If  $\varphi_0 \neq 0$ , then

$$\widetilde{\Omega}(N_2) = (\widetilde{\Omega}(N_1) \oplus \mathbb{C} \cdot f_0) \oplus \mathbb{C} \cdot (\varphi_0 \oplus \alpha_0 f_0).$$

*Proof.* (i) Since  $\varphi_0 = 0$ , we have  $T_z^* f_0 \perp \widetilde{\Omega}(N_1)$ . Then by (2.2),  $P_{N_1} T_z^* f_0 \in \overline{T_z^* N_1 + T_w^* N_1}$ . Since  $T_z^* f_0 \in N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ , we have

$$T_z^* f_0 \in \overline{T_z^* N_1 + T_w^* N_1} \oplus \mathbb{C} \cdot f_0,$$

 $\mathbf{SO}$ 

$$\overline{T_z^*N_1 + T_w^*N_1} + \mathbb{C} \cdot T_z^* f_0 = \overline{T_z^*N_1 + T_w^*N_1} \oplus \mathbb{C} \cdot f_0$$

Then by Lemma 4.3 (ii),

$$\widetilde{\Omega}(N_2) = (N_1 \oplus \mathbb{C} \cdot f_0) \ominus \left(\overline{T_z^* N_1 + T_w^* N_1} + \mathbb{C} \cdot T_z^* f_0\right) \\ = (N_1 \oplus \mathbb{C} \cdot f_0) \ominus \left(\overline{T_z^* N_1 + T_w^* N_1} \oplus \mathbb{C} \cdot f_0\right) \\ = N_1 \ominus \overline{T_z^* N_1 + T_w^* N_1} = \widetilde{\Omega}(N_1) \quad \text{by (2.2).}$$

(ii) Suppose that  $\varphi_0 \neq 0$ . We have

$$\overline{T_z^* N_1 + T_w^* N_1} + \mathbb{C} \cdot T_z^* f_0$$
  
=  $\overline{T_z^* N_1 + T_w^* N_1} \oplus \mathbb{C} \cdot (P_{\widetilde{\Omega}(N_1)} T_z^* f_0 \oplus \alpha_0 f_0)$   
=  $\overline{T_z^* N_1 + T_w^* N_1} \oplus \mathbb{C} \cdot (\varphi_0 \oplus \alpha_0 f_0).$ 

Hence by Lemma 4.3 (ii),

$$\widetilde{\Omega}(N_2) = (N_1 \oplus \mathbb{C} \cdot f_0) \ominus \left(\overline{T_z^* N_1 + T_w^* N_1} + \mathbb{C} \cdot T_z^* f_0\right) \\ = (\widetilde{\Omega}(N_1) \oplus \mathbb{C} \cdot f_0) \ominus \mathbb{C} \cdot (\varphi_0 \oplus \alpha_0 f_0) \quad \text{by (2.2) again.}$$

We shall show four examples which satisfy each conditions in the proof of Theorems 4.1 and 4.2.

Example 4.1. (i) Let

$$M_1 = \frac{z-a}{1-\overline{a}z}H^2 + wH^2, \quad 0 < |a| < 1,$$

 $f_0 = \frac{w}{1-\overline{a}z}$  and  $M_2 = M_1 \oplus \mathbb{C} \cdot f_0$ . Then  $M_1$  and  $M_2$  are invariant subspaces. We have

$$M_1 \ominus z M_1 = \mathbb{C} \cdot \frac{z-a}{1-\overline{a}z} \oplus w H^2(w)$$

and

$$M_1 \ominus w M_1 = \frac{z-a}{1-\overline{a}z} H^2(z) \oplus \mathbb{C} \cdot \frac{w}{1-\overline{a}z}$$

Then  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . We have  $\Omega(M_1) = \mathbb{C} \cdot \frac{z-a}{1-\overline{a}z}$  (see [5]). Then  $f_0 \perp \Omega(M_1)$ . We have  $\widetilde{\Omega}(N_1) = \{0\}$ , so  $\varphi_0 = P_{\widetilde{\Omega}(N_1)}T_z^*f_0 = 0$ .

(ii) Let

$$M_1 = z \frac{z-a}{1-\overline{a}z} H^2 + zwH^2 + w^2H^2, \quad 0 < |a| < 1,$$

-12 -

 $f_0 = \frac{zw}{1-\overline{a}z}$  and  $M_2 = M_1 \oplus \mathbb{C} \cdot f_0$ . Then  $M_1$  and  $M_2$  are invariant subspaces. We have

$$M_1 \ominus z M_1 = \mathbb{C} \cdot z \frac{z-a}{1-\overline{a}z} \oplus \mathbb{C} \cdot z w \oplus w^2 H^2(w)$$

and

$$M_1 \ominus wM_1 = z \frac{z-a}{1-\overline{a}z} H^2(z) \oplus \mathbb{C} \cdot \frac{zw}{1-\overline{a}z} \oplus \mathbb{C} \cdot w^2.$$

Then  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . We have

$$\Omega(M_1) = \mathbb{C} \cdot z \frac{z-a}{1-\overline{a}z} \oplus \mathbb{C} \cdot w^2.$$

Hence  $f_0 \perp \Omega(M_1)$ . We have  $\widetilde{\Omega}(N_1) = \mathbb{C} \cdot w$  and  $T_z^* f_0 = w/(1 - \overline{a}z)$ , so  $\varphi_0 = P_{\widetilde{\Omega}(N_1)}T_z^* f_0 \neq 0$ .

(iii) Let

$$M_1 = \frac{z - \alpha}{1 - \overline{\alpha}z} H^2 + \frac{w - \beta}{1 - \overline{\beta}w} H^2, \quad 0 < |\alpha| < 1, \quad 0 < |\beta| < 1,$$

 $f_0 = \frac{1}{1-\overline{\alpha}z} \frac{w-\beta}{1-\overline{\beta}w}$  and  $M_2 = M_1 \oplus \mathbb{C} \cdot f_0$ . Then  $M_1$  and  $M_2$  are invariant subspaces. We have

$$M_1 \ominus zM_1 = \mathbb{C} \cdot \frac{z - \alpha}{1 - \overline{\alpha}z} \frac{1}{1 - \overline{\beta}w} \oplus \frac{w - \beta}{1 - \overline{\beta}w} H^2(w)$$

and

$$M_1 \ominus w M_1 = \frac{z - \alpha}{1 - \overline{\alpha} z} H^2(z) \oplus \mathbb{C} \cdot \frac{1}{1 - \overline{\alpha} z} \frac{w - \beta}{1 - \overline{\beta} w}$$

Then  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . We have

$$\Omega(M_1) = \mathbb{C} \cdot \left(\frac{-\overline{\beta}}{1-|\beta|^2} \frac{w-\beta}{1-\overline{\beta}w} + \frac{-\overline{\alpha}}{1-\overline{\beta}w} \frac{z-\alpha}{1-\overline{\alpha}z}\right)$$

(see [5]). Then  $f_0 \not\perp \Omega(M_1)$ . We also have  $\widetilde{\Omega}(N_1) = \{0\}$ , so  $\varphi_0 = 0$ . (iv) Let

$$M_{1} = z \frac{z - \alpha}{1 - \overline{\alpha}z} H^{2} + w \frac{w - \beta}{1 - \overline{\beta}w} H^{2}, \quad 0 < |\alpha| < 1, \ 0 < |\beta| < 1,$$

 $f_0 = \frac{z}{1-\overline{\alpha}z} \frac{z-\alpha}{1-\overline{\alpha}z}$  and  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$ . Then  $M_1$  and  $M_2$  are invariant subspaces. We have

$$M_1 \ominus zM_1 = \mathbb{C} \cdot z \frac{z - \alpha}{1 - \overline{\alpha}z} \frac{1}{1 - \overline{\beta}w} \oplus \mathbb{C} \cdot z \frac{z - \alpha}{1 - \overline{\alpha}z} \frac{w - \beta}{1 - \overline{\beta}w}$$
$$\oplus w \frac{w - \beta}{1 - \overline{\beta}w} H^2(w)$$

and

$$M_1 \ominus w M_1 = \mathbb{C} \cdot \frac{1}{1 - \overline{\alpha} z} w \frac{w - \beta}{1 - \overline{\beta} w} \oplus \mathbb{C} \cdot \frac{z - \alpha}{1 - \overline{\alpha} z} w \frac{w - \beta}{1 - \overline{\beta} w} \\ \oplus z \frac{z - \alpha}{1 - \overline{\alpha} z} H^2(z).$$

Hence  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \in M_1 \ominus wM_1$ . We have

$$\Omega(M_1) = \mathbb{C} \cdot z \frac{z - \alpha}{1 - \overline{\alpha}z} + \mathbb{C} \cdot w \frac{w - \beta}{1 - \overline{\beta}w}$$

This shows that  $f_0 \not\perp \Omega(M_1)$ . We have

$$\widetilde{\Omega}(N_1) = \mathbb{C} \cdot \frac{z - \alpha}{1 - \overline{\alpha}z} \frac{w - \beta}{1 - \overline{\beta}w}.$$

Then

$$\left\langle T_z^* f_0, \frac{z-\alpha}{1-\overline{\alpha}z} \frac{w-\beta}{1-\overline{\beta}w} \right\rangle = \left\langle \frac{1}{1-\overline{\alpha}z} \frac{z-\alpha}{1-\overline{\alpha}z}, \frac{z-\alpha}{1-\overline{\alpha}z} \frac{w-\beta}{1-\overline{\beta}w} \right\rangle = -\overline{\beta}.$$

Hence  $T_z^* f_0 \not\perp \widetilde{\Omega}(N_1)$  and  $\varphi_0 \neq 0$ .

When  $f_0 \in M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ , exchanging the variables z and w in Lemma 4.3, Theorems 4.1, 4.2 and 4.1 we have the corresponding results.

## 5. The case that $f_0 \notin M_1 \ominus zM_1$ and $f_0 \notin M_1 \ominus wM_1$

In this section, we assume that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$  and we shall study the structure of  $\Omega(M_2)$  and  $\widetilde{\Omega}(N_2)$ . Let

 $\eta_0 = P_{M_1 \ominus w M_1} f_0 \quad \text{and} \quad \sigma_0 = P_{M_1 \ominus z M_1} f_0.$ 

Since  $\Omega(M_1) = (M_1 \ominus zM_1) \cap (M_1 \ominus wM_1)$ , we have

$$P_{\Omega(M_1)}\eta_0 = P_{\Omega(M_1)}\sigma_0 = P_{\Omega(M_1)}f_0.$$

By (4.1),  $(R_z^{M_1})^* f_0 = \alpha_0 f_0$  for some  $\alpha_0 \in \mathbb{D}$  with  $\alpha_0 \neq 0$ . Similarly we have that  $(R_w^{M_1})^* f_0 = \beta_0 f_0$  for some  $\beta_0 \in \mathbb{D}$  with  $\beta_0 \neq 0$ .

**Lemma 5.1.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . Then we have the following.

- (i)  $\eta_0 \neq 0$  and  $f_0 = \eta_0 / (1 \beta_0 w)$ .
- (ii) Either  $\eta_0 \notin \Omega(M_1)$  or  $\sigma_0 \notin \Omega(M_1)$ .

*Proof.* Since  $(R_w^{M_1})^* f_0 = \beta_0 f_0$ , we have  $f_0 = \beta_0 w f_0 + \eta_0$ . (i) follows from this fact.

To show (ii), suppose that  $\eta_0 \in \Omega(M_1)$  and  $\sigma_0 \in \Omega(M_1)$ . Since  $\Omega(M_1) = (M_1 \ominus zM_1) \cap (M_1 \ominus wM_1)$ , we have

$$\eta_0 = P_{\Omega(M_1)} \eta_0 = P_{\Omega(M_1)} P_{M_1 \ominus w M_1} f_0$$
  
=  $P_{\Omega(M_1)} P_{M_1 \ominus z M_1} f_0 = \sigma_0.$ 

By (i),  $f_0 = \eta_0/(1-\beta_0 w)$ , and  $f_0 = \sigma_0/(1-\alpha_0 z)$ . Hence  $\eta_0/(1-\beta_0 w) = \sigma_0/(1-\alpha_0 z)$ , so  $(\alpha_0 z - \beta_0 w)\eta_0 = 0$ . Since  $\alpha_0\beta_0 \neq 0$ , we have  $\eta_0 = 0$ . This contradicts  $\eta_0 \neq 0$ .  $\Box$ 

By Lemma 5.1 (ii), we may assume that  $\eta_0 \notin \Omega(M_1)$ . Similarly as Lemma 5.1 (i), we have  $\sigma_0 \neq 0$  and  $f_0 = \sigma_0/(1 - \alpha_0 z)$ . When  $\sigma_0 \notin \Omega(M_1)$ , exchanging variables z and w we can get the similar result.

**Lemma 5.2.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . If  $\eta_0 \notin \Omega(M_1)$ , then

$$M_2 \ominus wM_2 = \left( (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0 \right) \oplus \mathbb{C} \cdot \left( f_0 - \frac{1}{1 - |\beta_0|^2} \eta_0 \right).$$

*Proof.* By Lemma 5.1 (i), we have  $\eta_0 \neq 0$  and  $f_0 = \bigoplus_{n=0}^{\infty} \beta_0^n \eta_0 w^n$ . Since  $||f_0|| = 1$  by the starting assumption, we have  $||\eta_0||^2/(1-|\beta_0|^2) = 1$ . Let

$$g_0 = f_0 - \frac{1}{1 - |\beta_0|^2} \eta_0 \in M_1.$$

Then  $g_0 \neq 0$ . We have

$$\langle g_0, f_0 \rangle = 1 - \frac{1}{1 - |\beta_0|^2} \langle \eta_0, f_0 \rangle = 1 - \frac{1}{1 - |\beta_0|^2} \langle \eta_0, \eta_0 \rangle = 0$$

and  $(R_w^{M_1})^*g_0 = \beta_0 f_0$ . Hence  $g_0 \in M_2 \ominus wM_2$ . Since  $(M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0 \perp f_0$ , we have

$$(M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0 \subset M_2 \ominus wM_2.$$

Therefore

$$((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0) \oplus \mathbb{C} \cdot g_0 \subset M_2 \ominus wM_2$$

To show the reverse inclusion, let  $g \in M_2 \ominus wM_2$ . Then  $(R_w^{M_1})^*g = cf_0$  for some  $c \in \mathbb{C}$ . If c = 0, then  $g \in M_1 \ominus wM_1$ . Since  $g \perp f_0$ , we have that

$$\langle g, \eta_0 \rangle = \langle g, f_0 - \beta_0 w f_0 \rangle = -\overline{\beta_0} \langle (R_w^{M_1})^* g, f_0 \rangle = 0.$$

Hence  $g \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0$ .

Suppose that  $c \neq 0$ . Since  $(R_w^{M_1})^* g_0 = \beta_0 f_0$ , we have  $(R_w^{M_1})^* (g/c - g_0/\beta_0) = 0$ , so  $g/c - g_0/\beta_0 \in M_1 \ominus wM_1$ . Since  $g \perp f_0$  and  $g_0 \perp f_0$ , we have that

$$\begin{array}{rcl} \langle g/c - g_0/\beta_0, \eta_0 \rangle &=& \langle g/c - g_0/\beta_0, f_0 - \beta_0 w f_0 \rangle \\ &=& -\overline{\beta_0} \langle (R_w^{M_1})^* (g/c - g_0/\beta_0), f_0 \rangle = 0 \end{array}$$

-15 -

Hence  $g/c - g_0/\beta_0 \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0$ , so

$$g \in ((M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0) \oplus \mathbb{C} \cdot g_0.$$

Thus we get the assertion.

**Theorem 5.1.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . Moreover suppose that  $\eta_0 \notin \Omega(M_1)$ . Then we have the following.

(i) There is  $h_0$  in  $M_2 \ominus wM_2$  satisfying that

 $\Omega(M_2) = \left(\Omega(M_1) \ominus \mathbb{C} \cdot P_{\Omega(M_1)} f_0\right) \oplus \mathbb{C} \cdot h_0.$ 

- (ii) If  $\eta_0 \perp \Omega(M_1)$ , then  $h_0 = 0$  and  $\Omega(M_2) = \Omega(M_1)$ .
- (iii) If  $\eta_0 \not\perp \Omega(M_1)$ , then  $h_0 \neq 0$ .

Proof. We put

$$g_0 = f_0 - \frac{1}{1 - |\beta_0|^2} \eta_0 \in M_2 \ominus w M_2.$$

Then by Lemma 5.2,

$$M_2 \ominus wM_2 = ((M_1 \ominus wM_1) \oplus \mathbb{C} \cdot \eta_0) \oplus g_0$$

and  $g_0 \neq 0$ .

(i) By (2.1), we have

$$\Omega(M_2) = \left\{ f \in M_2 \ominus wM_2 : T_z^* f \in N_2 \right\}.$$

Since  $N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ , we have that

$$\Omega(M_2) = \left\{ f \in M_2 \ominus w M_2 : (R_z^{M_1})^* f \in \mathbb{C} \cdot f_0 \right\}.$$

Hence there is  $h_0$  in  $M_2 \ominus wM_2$  such that

(5.1) 
$$\Omega(M_2) = \left\{ f \in M_2 \ominus w M_2 : (R_z^{M_1})^* f = 0 \right\} \oplus \mathbb{C} \cdot h_0.$$

We have that  $f_0 \in (R_z^{M_1})^*(M_2 \ominus wM_2)$  if and only if  $h_0 \neq 0$ , and in this case we may assume that  $(R_z^{M_1})^*h_0 = f_0$ . We have

$$(R_z^{M_1})^* g_0 = \alpha_0 f_0 - \frac{1}{1 - |\beta_0|^2} (R_z^{M_1})^* \eta_0$$

Note that  $(R_z^{M_1})^*(M_1 \ominus wM_1) \subset M_1 \ominus wM_1$ . Since  $f_0 \notin M_1 \ominus wM_1$ ,  $(R_z^{M_1})^*g_0 \notin M_1 \ominus wM_1$ , and by Lemma 5.2 we have

$$\left\{ f \in M_2 \ominus w M_2 : (R_z^{M_1})^* f = 0 \right\}$$
  
=  $\left\{ f \in (M_1 \ominus w M_1) \ominus \mathbb{C} \cdot \eta_0 : (R_z^{M_1})^* f = 0 \right\}$ 

-16-

We also have

$$\{ f \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0 : (R_z^{M_1})^* f = 0 \}$$
  
=  $\Omega(M_1) \ominus \mathbb{C} \cdot P_{\Omega(M_1)} \eta_0$   
=  $\Omega(M_1) \ominus \mathbb{C} \cdot P_{\Omega(M_1)} f_0.$ 

Hence by (5.1), we get (i).

(ii) By Lemma 5.1 (i), we have  $\eta_0 \neq 0$ . Suppose that  $\eta_0 \perp \Omega(M_1)$ , i.e.,  $f_0 \perp \Omega(M_1)$ . Then  $P_{\Omega(M_1)}f_0 = P_{\Omega(M_1)}\eta_0 = 0$  and

$$\Omega(M_1) \ominus \mathbb{C} \cdot P_{\Omega(M_1)} f_0 = \Omega(M_1).$$

Since  $\eta_0 \in M_1 \ominus wM_1$  and  $\eta_0 \perp \Omega(M_1)$ , we have  $(R_z^{M_1})^* \eta_0 \neq 0$ .

Suppose that  $(R_z^{M_1})^*h = c(R_z^{M_1})^*\eta_0$  for some nonzero  $h \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0$ and  $c \in \mathbb{C}$  with  $c \neq 0$ . Then  $(R_z^{M_1})^*(h - c\eta_0) = 0$ . Since  $h - c\eta_0 \in M_1 \ominus wM_1$ , we have  $h - c\eta_0 \in \Omega(M_1)$ . Since  $\eta_0 \perp \Omega(M_1)$ ,

$$0 = \langle h - c\eta_0, \eta_0 \rangle = -c \|\eta_0\|^2 \neq 0.$$

This contradiction shows that there are no such h and c.

To show  $h_0 = 0$ , suppose that  $h_0 \neq 0$ . As mentioned in the proof of (i), we may consider that  $(R_z^{M_1})^* h_0 = f_0$ . Since  $g_0 \in M_2 \ominus wM_2$ , by Lemma 5.2 we may write  $h_0 = F \oplus dg_0$  for some  $F \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0$  and  $d \in \mathbb{C}$ . Since

$$(R_z^{M_1})^* g_0 = \alpha_0 f_0 - \frac{1}{1 - |\beta_0|^2} (R_z^{M_1})^* \eta_0,$$

we have that

$$f_0 = (R_z^{M_1})^* h_0 = (R_z^{M_1})^* F + d(R_z^{M_1})^* g_0$$
  
=  $(R_z^{M_1})^* F + \alpha_0 df_0 - \frac{d}{1 - |\beta_0|^2} (R_z^{M_1})^* \eta_0$ .

Since  $\eta_0, F \in M_1 \ominus wM_1$ , we have

$$(1 - \alpha_0 d) f_0 = (R_z^{M_1})^* F - \frac{d}{1 - |\beta_0|^2} (R_z^{M_1})^* \eta_0 \in M_1 \ominus w M_1.$$

Since  $f_0 \notin M_1 \ominus wM_1$ , we have  $\alpha_0 d = 1$  and  $d \neq 0$ . Hence

$$(R_z^{M_1})^*F = \frac{d}{1 - |\beta_0|^2} (R_z^{M_1})^*\eta_0 \neq 0.$$

This contradicts the fact given in the last paragraph. Hence  $h_0 = 0$ . Therefore by (i), we get (ii).

(iii) Suppose that  $\eta_0 \not\perp \Omega(M_1)$ . Then  $P_{\Omega(M_1)} f_0 = P_{\Omega(M_1)} \eta_0 \neq 0$ . We have

$$\left\langle \eta_0 - \frac{\|\eta_0\|^2}{\|P_{\Omega(M_1)}f_0\|^2} P_{\Omega(M_1)}f_0, \eta_0 \right\rangle$$
  
=  $\|\eta_0\|^2 - \frac{\|\eta_0\|^2}{\|P_{\Omega(M_1)}f_0\|^2} \|P_{\Omega(M_1)}f_0\|^2 = 0.$ 

Putting

$$h = \frac{1}{1 - |\beta_0|^2} \Big( \eta_0 - \frac{\|\eta_0\|^2}{\|P_{\Omega(M_1)}f_0\|^2} P_{\Omega(M_1)}f_0 \Big),$$

we have  $h \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot \eta_0$ . Since  $\eta_0 \notin \Omega(M_1)$ , we have  $h \neq 0$ . By Lemma 5.2,  $h + g_0 \in M_2 \ominus wM_2$ . We have

$$(R_z^{M_1})^*(h+g_0) = \frac{1}{1-|\beta_0|^2} (R_z^{M_1})^* \eta_0 + (R_z^{M_1})^* g_0 = \frac{1}{1-|\beta_0|^2} (R_z^{M_1})^* \eta_0 + \alpha_0 f_0 - \frac{1}{1-|\beta_0|^2} (R_z^{M_1})^* \eta_0 = \alpha_0 f_0.$$

Hence  $h + g_0 \in \Omega(M_2)$ . Since  $\alpha_0 f_0 \neq 0$ , we also have  $h + g_0 \notin \Omega(M_1)$ . Therefore by Theorem 5.1 (i), we get  $h_0 \neq 0$ .

In the last part, we shall study the structure of  $\widetilde{\Omega}(N_2)$ . Recall that  $\varphi_0 = P_{\widetilde{\Omega}(N_1)}T_z^*f_0$  and  $\psi_0 = P_{\widetilde{\Omega}(N_1)}T_w^*f_0$ .

**Theorem 5.2.** Suppose that  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . Then we have the following.

- (i) If  $\varphi_0 = \psi_0 = 0$ , then  $\widetilde{\Omega}(N_2) = \widetilde{\Omega}(N_1)$ .
- (ii) If either  $\varphi_0 \neq 0$  or  $\psi_0 \neq 0$ , then  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ .
- (iii) If  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ , then

$$\frac{\overline{\alpha_0}}{\|\varphi_0\|^2}\varphi_0 = \frac{\overline{\beta_0}}{\|\psi_0\|^2}\psi_0$$

and

$$\widetilde{\Omega}(N_2) = \left(\widetilde{\Omega}(N_1) \ominus \mathbb{C} \cdot \varphi_0\right) \oplus \mathbb{C} \cdot \left(f_0 - \frac{\overline{\alpha_0}}{\|\varphi_0\|^2} \varphi_0\right).$$

*Proof.* Let  $\xi \in \widetilde{\Omega}(N_1) \ominus (\mathbb{C} \cdot \varphi_0 + \mathbb{C} \cdot \psi_0)$ . Since  $z\xi \in M_1$ , by the definition of  $\varphi_0$  we have

$$\langle z\xi, f_0 \rangle = \langle \xi, T_z^* f_0 \rangle = \langle \xi, P_{\widetilde{\Omega}(N_1)} T_z^* f_0 \rangle = \langle \xi, \varphi_0 \rangle = 0.$$

Similarly we have  $\langle w\xi, f_0 \rangle = 0$ . Note that  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$ . Then  $z\xi, w\xi \in M_2$ . Hence  $\xi \in \widetilde{\Omega}(N_2)$ . Thus

$$\widetilde{\Omega}(N_1) \ominus (\mathbb{C} \cdot \varphi_0 + \mathbb{C} \cdot \psi_0) \subset \widetilde{\Omega}(N_2).$$

Since  $N_2 = N_1 \oplus \mathbb{C} \cdot f_0$ , we have

(5.2) 
$$\widehat{\Omega}(N_2) = \left(\widehat{\Omega}(N_1) \ominus (\mathbb{C} \cdot \varphi_0 + \mathbb{C} \cdot \psi_0)\right) \oplus \Lambda,$$

where

(5.3) 
$$\Lambda = \left\{ h \in \mathbb{C} \cdot \varphi_0 + \mathbb{C} \cdot \psi_0 + \mathbb{C} \cdot f_0 : zh \perp f_0, wh \perp f_0 \right\}.$$

Suppose that  $c_1\varphi_0 + c_2\psi_0 \in \widetilde{\Omega}(N_2)$  for some  $c_1, c_2 \in \mathbb{C}$ . Then  $z(c_1\varphi_0 + c_2\psi_0) \in M_2$ , and  $z(c_1\varphi_0 + c_2\psi_0) \perp f_0$ . Hence  $c_1\varphi_0 + c_2\psi_0 \perp T_z^*f_0$ , so  $c_1\varphi_0 + c_2\psi_0 \perp P_{\widetilde{\Omega}(N_1)}T_z^*f_0 = \varphi_0$ . Similarly we have  $c_1\varphi_0 + c_2\psi_0 \perp \psi_0$ . Hence  $c_1\varphi_0 + c_2\psi_0 = 0$ .

(i) Suppose that  $\varphi_0 = \psi_0 = 0$ . Since  $||f_0|| = 1$  and  $(R_z^{M_1})^* f_0 = \alpha_0 f_0$ , we have

$$\langle zf_0, f_0 \rangle = \langle f_0, (R_z^{M_1})^* f_0 \rangle = \langle f_0, \alpha_0 f_0 \rangle = \overline{\alpha_0} \neq 0.$$

Hence by (5.3), we have  $\Lambda = \{0\}$ , so by (5.2) we get (i).

(ii) We assume that  $\psi_0 \neq 0$ . Recall that  $(R_w^{M_1})^* f_0 = \beta_0 f_0$ . Since  $\psi_0 = P_{\tilde{\Omega}(N_1)} T_w^* f_0$ , we have

$$\left\langle T_w^* f_0, f_0 - \frac{\overline{\beta_0}}{\|\psi_0\|^2} \psi_0 \right\rangle = \beta_0 - \frac{\beta_0}{\|\psi_0\|^2} \left\langle T_w^* f_0, \psi_0 \right\rangle$$
  
=  $\beta_0 - \frac{\beta_0}{\|\psi_0\|^2} \|\psi_0\|^2 = 0.$ 

Hence

(5.4) 
$$T_w^* f_0 \perp f_0 - \frac{\beta_0}{\|\psi_0\|^2} \psi_0$$

Since  $z\psi_0 \in M_1 \ominus zM_1$  and  $w\psi_0 \in M_1 \ominus wM_1$ , we also have that

$$\begin{aligned} \beta_0 \langle f_0, z\psi_0 \rangle &= \langle (R_w^{M_1})^* f_0, z\psi_0 \rangle = \langle T_w^* f_0, z\psi_0 \rangle \\ &= \langle f_0, zw\psi_0 \rangle = \langle T_z^* f_0, w\psi_0 \rangle = \alpha_0 \langle f_0, w\psi_0 \rangle \\ &= \alpha_0 \langle P_{\widetilde{\Omega}(N_1)} T_w^* f_0, \psi_0 \rangle = \alpha_0 \|\psi_0\|^2. \end{aligned}$$

Hence

(5.5) 
$$\langle \varphi_0, \psi_0 \rangle = \langle T_z^* f_0, \psi_0 \rangle = \langle f_0, z \psi_0 \rangle = \frac{\alpha_0}{\beta_0} \|\psi_0\|^2 \neq 0.$$

This shows that  $\varphi_0 \neq 0$ . Similarly if  $\varphi_0 \neq 0$ , then  $\psi_0 \neq 0$ .

(iii) Suppose that  $\varphi_0 \neq 0$  and  $\psi_0 \neq 0$ . We have that

$$\left\langle T_{z}^{*}f_{0}, f_{0} - \frac{\overline{\beta_{0}}}{\|\psi_{0}\|^{2}}\psi_{0} \right\rangle$$

$$= \left\langle T_{z}^{*}f_{0}, f_{0} \right\rangle - \frac{\beta_{0}}{\|\psi_{0}\|^{2}}\left\langle T_{z}^{*}f_{0}, \psi_{0} \right\rangle$$

$$= \left\langle (R_{z}^{M_{1}})^{*}f_{0}, f_{0} \right\rangle - \frac{\beta_{0}}{\|\psi_{0}\|^{2}}\frac{\alpha_{0}}{\beta_{0}}\|\psi_{0}\|^{2} \qquad \text{by (5.5)}$$

$$= \left\langle \alpha_{0}f_{0}, f_{0} \right\rangle - \alpha_{0} = \alpha_{0} - \alpha_{0} = 0.$$

Then

$$T_z^* f_0 \perp f_0 - \frac{\overline{\beta_0}}{\|\psi_0\|^2} \psi_0.$$

Therefore by (5.4) and (5.5),

$$f_0 - \frac{\overline{\beta_0}}{\|\psi_0\|^2} \psi_0 \in \Lambda.$$

Similarly, we have

$$f_0 - \frac{\overline{\alpha_0}}{\|\varphi_0\|^2} \varphi_0 \in \Lambda.$$

Hence by (5.3),

$$\frac{\overline{\alpha_0}}{\|\varphi_0\|^2}\varphi_0 - \frac{\beta_0}{\|\psi_0\|^2}\psi_0 \in \Lambda,$$

so by (5.2) we have

$$\frac{\overline{\alpha_0}}{\|\varphi_0\|^2}\varphi_0 - \frac{\overline{\beta_0}}{\|\psi_0\|^2}\psi_0 \in \widetilde{\Omega}(N_2).$$

By the second paragraph of the proof,

$$\frac{\overline{\alpha_0}}{\|\varphi_0\|^2}\varphi_0 = \frac{\overline{\beta_0}}{\|\psi_0\|^2}\psi_0.$$

Then

$$\Lambda = \mathbb{C} \cdot \left( f_0 - \frac{\overline{\alpha_0}}{\|\varphi_0\|^2} \varphi_0 \right)$$

and by (5.2), we get

$$\widetilde{\Omega}(N_2) = \left(\widetilde{\Omega}(N_1) \ominus \mathbb{C} \cdot \varphi_0\right) \oplus \mathbb{C} \cdot \left(f_0 - \frac{\overline{\alpha_0}}{\|\varphi_0\|^2} \varphi_0\right).$$

We shall show examples which satisfy each conditions in Theorems 5.1 and 5.2. Example 5.1. (i) Let

$$M_1 = zH^2 + \frac{w - \beta}{1 - \overline{\beta}w}H^2, \quad 0 < |\beta| < 1,$$

 $f_0 = \frac{z}{1-\overline{\alpha}z} \frac{1}{1-\overline{\beta}w}$  for some  $0 < |\alpha| < 1$  and  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$ . Then

$$M_2 = z \frac{z - \alpha}{1 - \overline{\alpha}z} H^2 + \frac{w - \beta}{1 - \overline{\beta}w} H^2,$$

so  $M_1$  and  $M_2$  are invariant subspaces. We have

$$M_1 \ominus z M_1 = \mathbb{C} \cdot \frac{z}{1 - \overline{\beta}w} \oplus \frac{w - \beta}{1 - \overline{\beta}w} H^2(w)$$

and

$$M_1 \ominus w M_1 = z H^2(z) \oplus \mathbb{C} \cdot \frac{w - \beta}{1 - \overline{\beta}w}.$$

-20 -

Then  $f_0 \notin M_1 \ominus zM_1$ ,  $f_0 \notin M_1 \ominus wM_1$  and

$$\eta_0 = P_{M_1 \ominus w M_1} f_0 = \frac{z}{1 - \overline{\alpha} z}.$$

We have

$$\Omega(M_1) = \mathbb{C} \cdot \frac{w - \beta}{1 - \overline{\beta}w}$$
 and  $\eta_0 \perp \Omega(M_1)$ .

Since  $N_1 = \mathbb{C} \cdot 1/(1 - \overline{\beta}w)$ , we have  $\widetilde{\Omega}(N_1) = \{0\}$ . Hence  $\varphi_0 = \psi_0 = 0$ . (ii) Let  $\alpha \in \mathbb{D}$  with  $\alpha \neq 0$  and

$$M_{1} = z^{2} \frac{z - \alpha}{1 - \overline{\alpha}z} H^{2} + z^{2} w H^{2} + z w^{2} H^{2} + w^{2} \frac{w - \alpha}{1 - \overline{\alpha}w} H^{2}.$$

Then  $M_1$  is an invariant subspace and

$$M_1 \ominus zM_1 = \mathbb{C} \cdot z^2 \frac{z - \alpha}{1 - \overline{\alpha} z} \oplus \mathbb{C} \cdot z^2 w \oplus \mathbb{C} \cdot z \frac{w^2}{1 - \overline{\alpha} w}$$
$$\oplus \mathbb{C} \cdot w^2 \frac{w - \alpha}{1 - \overline{\alpha} w} H^2(w)$$

and

$$M_{1} \oplus wM_{1} = z^{2} \frac{z - \alpha}{1 - \overline{\alpha}z} H^{2}(z) \oplus \mathbb{C} \cdot \frac{z^{2}}{1 - \overline{\alpha}z} w \oplus \mathbb{C} \cdot zw^{2}$$
$$\oplus \mathbb{C} \cdot w^{2} \frac{w - \alpha}{1 - \overline{\alpha}w}.$$

Hence

$$\Omega(M_1) = \mathbb{C} \cdot z^2 \frac{z - \alpha}{1 - \overline{\alpha} z} \oplus \mathbb{C} \cdot w^2 \frac{w - \alpha}{1 - \overline{\alpha} w}$$

Let

$$f_0 = \frac{z^2}{1 - \overline{\alpha} z} w \oplus z \frac{w^2}{1 - \overline{\alpha} w}.$$

Then  $f_0 \in M_1$ ,  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . Let  $M_2 = M_1 \ominus \mathbb{C} \cdot f_0$ . We have

$$M_2 = z^2 \frac{z - \alpha}{1 - \overline{\alpha}z} H^2 + z^2 w^2 H^2 + w^2 \frac{w - \alpha}{1 - \overline{\alpha}w} H^2,$$

so  $M_2$  is an invariant subspace. Moreover we have  $f_0 \perp \Omega(M_1)$ , so we get  $\eta_0 \perp \Omega(M_1)$ .

We have  $\widetilde{\Omega}(N_1) = \mathbb{C} \cdot zw$ , and

$$\langle T_z^* f_0, zw \rangle = \langle f_0, z^2 w \rangle = \left\langle \frac{z^2}{1 - \overline{\alpha} z} w, z^2 w \right\rangle = 1.$$

Hence  $\varphi_0 = P_{\widetilde{\Omega}(N_1)}T_z^*f_0 = zw \neq 0.$ 

(iii) Let  $\alpha, \beta \in \mathbb{D}$  satisfy  $\alpha \neq 0, \beta \neq 0$  and  $\alpha \neq \beta$ . Let  $M_1 = \overline{(z-w)H^2}$  and  $M_2 = \{f \in M_1 : f(\alpha, \beta) = 0\}$ . Then  $M_1, M_2$  are invariant subspaces,

$$M_2 = (z - w) \left( \frac{z - \alpha}{1 - \overline{\alpha}z} H^2 + \frac{w - \beta}{1 - \overline{\beta}w} H^2 \right)$$

and

$$M_1 \ominus M_2 = \mathbb{C} \cdot P_{M_1} \frac{1}{1 - \overline{\alpha}z} \frac{1}{1 - \overline{\beta}w}.$$

Put

$$f_0 = P_{M_1} \frac{1}{1 - \overline{\alpha}z} \frac{1}{1 - \overline{\beta}w}.$$

We have  $f_0 \not\perp zM_1$  and  $f_0 \not\perp wM_1$ . Hence  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . We have  $\Omega(M_1) = \mathbb{C} \cdot (z - w)$  and

$$\begin{aligned} \langle z - w, \eta_0 \rangle &= \langle z - w, P_{M_1 \ominus w M_1} f_0 \rangle = \langle z - w, f_0 \rangle \\ &= \langle z - w, \frac{1}{1 - \overline{\alpha} z} \frac{1}{1 - \overline{\beta} w} \rangle = \alpha - \beta \neq 0. \end{aligned}$$

Hence  $\eta_0 \notin \Omega(M_1)$  and  $\eta_0 \not\perp \Omega(M_1)$ .

Since  $\widetilde{\Omega}(N_1) = \{0\}$ , we have that  $\varphi_0 = \psi_0 = 0$ .

(iv) Let  $\alpha, \beta$  be nonzero numbers in  $\mathbb{D}$ . Let  $M_1 = zH^2 + wH^2$ ,  $f_0 = P_{M_1} \frac{1}{1-\overline{\alpha}z} \frac{1}{1-\overline{\beta}w}$ and  $M_2 = M_1 \oplus \mathbb{C} \cdot f_0$ . Then  $M_2 = \{f \in M_1 : f(\alpha, \beta) = 0\}$  and  $M_1, M_2$  are invariant subspaces. Since  $f_0 \not\perp zM_1$  and  $f_0 \not\perp wM_1$ , we have  $f_0 \notin M_1 \ominus zM_1$  and  $f_0 \notin M_1 \ominus wM_1$ . We have  $\Omega(M_1) = \mathbb{C} \cdot z + \mathbb{C} \cdot w$ , and

$$\begin{aligned} \langle z, \eta_0 \rangle &= \langle z, P_{M_1 \ominus w M_1} f_0 \rangle = \langle z, f_0 \rangle \\ &= \left\langle z, \frac{1}{1 - \overline{\alpha} z} \frac{1}{1 - \overline{\beta} w} \right\rangle = \alpha \neq 0. \end{aligned}$$

Hence  $\eta_0 \notin \Omega(M_1)$  and  $\eta_0 \not\perp \Omega(M_1)$ .

Since  $\widehat{\Omega}(N_1) = \mathbb{C} \cdot 1$ , we have

$$\langle 1, \varphi_0 \rangle = \langle 1, P_{\widetilde{\Omega}(N_1)} T_z^* f_0 \rangle = \langle z, f_0 \rangle \neq 0,$$

so  $\varphi_0 \neq 0$ .

#### 6. Related topics and problems

[1] Fredholm fringe operators.

**Proposition 6.1.** Let  $M_1$  be an invariant subspace of  $H^2$  and  $f_0 \in M_1$  such that  $M_2 := M_1 \oplus \mathbb{C} \cdot f_0$  is an invariant subspace. Then  $F_z^{M_1}$  on  $M_1 \oplus wM_1$  is a Fredholm operator if and only if so is  $F_z^{M_2}$  on  $M_2 \oplus wM_2$ . In this case, we have ind  $F_z^{M_1} = \inf F_z^{M_2}$ .

*Proof.* There is a unique function  $f_1$  (except constant multiplication) in  $M_2 \ominus wM_2$ such that  $(R_z^{M_1})^* f_1 \in \mathbb{C} \cdot f_0$  and

$$(M_2 \ominus wM_2) \ominus \mathbb{C} \cdot f_1 \subset M_1 \ominus wM_1$$

Then we have

$$M_2 \ominus wM_2 = \left( (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot P_{M_1 \ominus wM_1} f_0 \right) \oplus \mathbb{C} \cdot f_1.$$

There is also a unique function  $f_2$  (except constant multiplication) in  $M_1 \ominus wM_1$ such that  $P_{M_1 \ominus wM_1} f_0 \perp zh$  for every  $h \in (M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_2$ , and there is a unique function  $f_3$  (except constant multiplication) in  $(M_1 \ominus wM_1) \ominus \mathbb{C} \cdot f_2$  such that  $f_1 \perp zh$ for every

$$h \in (M_1 \ominus wM_1) \ominus (\mathbb{C} \cdot f_2 + \mathbb{C} \cdot f_3).$$

Let

$$L = (M_1 \ominus wM_1) \ominus \left(\mathbb{C} \cdot P_{M_1 + wM_1} f_0 + \mathbb{C} \cdot f_2 + \mathbb{C} \cdot f_3\right)$$

Since dim  $(M_1 \ominus wM_1) = \infty$ , we have  $L \neq \{0\}$ . For every  $g \in L$ , we have  $g \in M_2 \ominus wM_2$  and

$$F_z^{M_2}g = P_{M_2 \ominus wM_2}zg = P_{M_1 \ominus wM_1}zg = F_z^{M_1}g$$

Then  $F_z^{M_1}|_L = F_z^{M_2}|_L$ . Let  $A_1$  be the operator on  $M_1 \ominus wM_1$  defined by

$$A_1 = \begin{cases} F_z^{M_1} & \text{on } L\\ 0 & \text{on } (M_1 \ominus wM_1) \ominus L \end{cases}$$

and  $A_2$  be the operator on  $M_2 \ominus wM_2$  defined by

$$A_2 = \begin{cases} F_z^{M_2} & \text{on } L \\ 0 & \text{on } (M_2 \ominus wM_2) \ominus L. \end{cases}$$

Since  $F_z^{M_1}$  on  $M_1 \ominus wM_1$  and  $A_1$  differ by a finite rank operator, their Fredholmness and index are identical (see [2]). Similarly Fredholmness and index of  $F_z^{M_2}$  on  $M_2 \ominus wM_2$  and  $A_2$  are identical. As a result, we get the assertion.

**Corollary 6.1.** Let  $L_1, L_2$  be invariant subspaces of  $H^2$  such that  $L_1 \subset L_2$  and  $\dim(L_2 \ominus L_1) < \infty$ . Then  $F_z^{L_1}$  on  $L_1 \ominus wL_1$  is a Fredholm operator if and only if so is  $F_z^{L_2}$  on  $L_2 \ominus wL_2$ . In this case, we have ind  $F_z^{L_1} = \operatorname{ind} F_z^{L_2}$ .

Question 1. Let M be an invariant subspace of  $H^2$  satisfying dim  $\Omega(M) < \infty$ . Is  $F_z^M$  on  $M \ominus wM$  a Fredholm operator?

When  $F^M_z$  on  $M \ominus wM$  is a Fredholm operator, the Fredholm index of  $F^M_z$  is defined by

$$\operatorname{ind} F_z^M = \dim \ker F_z^M - \dim \ker F_z^{M*}.$$

For a nonzero function f in  $H^2$ , we denote by [f] the smallest invariant subspace of  $H^2$  containing f, that is,  $[f] = \overline{f \cdot \mathbb{C}[z, w]}$ , where  $\mathbb{C}[z, w]$  is the polynomial ring. Similarly for a subset E of  $H^2$ , we denote by [E] the smallest invariant subspace of  $H^2$  containing E.

Question 2. Is  $F_z^{[f]}$  on  $[f] \ominus w[f]$  a Fredholm operator for any nonzero  $f \in H^2$ ?

In [7], Yang showed that  $F_z^M$  on  $M \ominus wM$  has closed range if and only if zM + wM is closed.

Question 3. Is z[f] + w[f] closed for any  $f \in H^2$ ?

When f is an inner function, it is easy to see that  $F_z^{[f]}$  on  $[f] \ominus w[f]$  is Fredholm and ind  $F_z^{[f]} = -1$ .

[2] One dimensional perturbation.

Let M be an invariant subspace of  $H^2$  satisfying  $M \subsetneq H^2$  and  $N = H^2 \ominus M$ . As mentioned in the introduction, there is a nonzero function  $f_0$  in M such that  $M \ominus \mathbb{C} \cdot f_0$  is an invariant subspace. First, we shall show that there are a lot of such  $f_0$ . Write  $D_z = \partial/\partial z$  and  $D_w = \partial/\partial w$ .

Example 6.1. Take  $(\alpha, \beta) \in \mathbb{D}^2$ . For each  $f \in M$ , let  $\Gamma(f)$  be the family of pairs of nonnegative integers (n,m) such that  $(D_z^n D_w^m f)(\alpha, \beta) \neq 0$ . Let  $\Gamma_M = \bigcup_{f \in M} \Gamma(f)$ . Then  $\Gamma_M \neq \emptyset$ , and if  $(n,m) \in \Gamma_M$ , then  $(n+1,m) \in \Gamma_M$  and  $(n,m+1) \in \Gamma_M$ . Moreover if  $(n,m) \notin \Gamma_M$ , then  $(n-1,m) \notin \Gamma_M$  and  $(n,m-1) \notin \Gamma_M$ . Take  $(n_1,m_1) \in \Gamma_M$  satisfying that

$$n_1 + m_1 = \min\{n + m : (n, m) \in \Gamma_M\}.$$

Set

$$M_{(\alpha,\beta)} = \left\{ f \in M : (D_z^n D_w^m f)(\alpha,\beta) = 0 \right\}.$$

Then  $M_{(\alpha,\beta)}$  is an invariant subspace and  $M_{(\alpha,\beta)} \subsetneqq M$ . It is easy to see that  $M = M_{(\alpha,\beta)} \oplus \mathbb{C} \cdot f_{(\alpha,\beta)}$  for some  $f_{(\alpha,\beta)} \in M$  with  $f_{(\alpha,\beta)} \neq 0$ .

As a counterpart, one may ask whether there is a nonzero function g in N such that  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace. If  $\widetilde{\Omega}(N) \neq \{0\}$  and  $g \in \widetilde{\Omega}(N)$ , then trivially  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace. For  $f \in H^2$ , we denote by Z(f) the zero set of f in  $\mathbb{D}^2$ . For a closed subset  $E \subset \mathbb{D}^2$ , let

$$M_E = \{ f \in H^2 : f = 0 \text{ on } E \}$$

**Proposition 6.2.** Let E be a connected closed subset of  $\mathbb{D}^2$  containing more than one point. If  $M_E \neq \{0\}$ , then  $M_E \oplus \mathbb{C} \cdot g$  is not an invariant subspace for any nonzero function g in  $H^2 \oplus M_E$ .

Proof. Suppose that  $M_E \oplus \mathbb{C} \cdot g$  is an invariant subspace for some nonzero  $g \in H^2 \oplus M_E$ . Since  $g \notin M_E$ , we have  $E \setminus Z(g) \neq \emptyset$ . By the assumption on E, there are  $\alpha, \beta \in E$  such that  $\alpha \neq \beta$ ,  $g(\alpha) \neq 0$  and  $g(\beta) \neq 0$ . Take a polynomial p such that  $p(\alpha) \neq p(\beta)$ . We have  $pg \in M_E \oplus \mathbb{C} \cdot g$ , so  $pg - cg \in M_E$  for some  $c \in \mathbb{C}$ . Hence  $p(\alpha)g(\alpha) - cg(\alpha) = 0$  and  $p(\beta)g(\beta) - cg(\beta) = 0$ , so  $p(\alpha) = c = p(\beta)$ . This is a contradiction.

Let  $E = \{(\alpha, \alpha) : \alpha \in \mathbb{D}\}$ . It is known that  $M_E = [z - w]$ . So  $[z - w] \oplus \mathbb{C} \cdot g$  is not an invariant subspace for any nonzero function g in  $H^2 \ominus [z - w]$ .

**Proposition 6.3.** Let  $\varphi(z), \psi(w)$  be nonconstant one variable inner functions and  $M = \varphi(z)H^2 + \psi(w)H^2$ . Then there is a nonzero function g in N such that  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace if and only if both  $\varphi(z), \psi(w)$  have Blaschke factors.

Proof. Suppose that  $\varphi(\alpha) = \psi(\beta) = 0$  for some  $(\alpha, \beta) \in \mathbb{D}^2$ . Let  $b_{\alpha}(z) = (z - \alpha)/(1 - \overline{\alpha}z)$  and  $b_{\beta}(w) = (w - \beta)/(1 - \overline{\beta}w)$ . Then  $\varphi_1(z) := \varphi(z)/b_{\alpha}(z)$  and  $\psi_1(w) := \psi(w)/b_{\beta}(w)$  are one variable inner functions. We have

$$g := \varphi_1(z) \frac{1}{1 - \overline{\alpha}z} \psi_1(w) \frac{1}{1 - \overline{\beta}w} \in N,$$
$$zg = \varphi(z)\psi_1(w) \frac{1}{1 - \overline{\beta}w} + \alpha g \in M \oplus \mathbb{C} \cdot g$$

and

$$wg = \varphi_1(z) \frac{1}{1 - \overline{\alpha}z} \psi(w) + \beta g \in M \oplus \mathbb{C} \cdot g.$$

Then  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace.

Suppose that  $\varphi(z)$  is a singular inner function. Moreover assume that  $M \oplus \mathbb{C} \cdot g$ is an invariant subspace for some nonzero  $g \in N$ . If  $zg \in M$ , then  $zg \in \varphi(z)H^2$ . Since  $\varphi(0) \neq 0$ , we have  $g \in \varphi(z)H^2$  and this is a contradiction. Hence  $P_{\mathbb{C} \cdot g}zg = cg$ for some  $c \in \mathbb{D}$  with  $c \neq 0$ . This shows that  $P_{\mathbb{C} \cdot g}\varphi(z)g = \varphi(c)g$ . Since  $\varphi(z)g \in M$ , we have  $P_{\mathbb{C} \cdot g}\varphi(z)g = 0$ , so  $\varphi(c) = 0$ . This is a contradiction. Therefore there are no nonzero  $g \in N$  such that  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace.  $\Box$ 

Let M be an invariant subspace of  $H^2$  satisfying  $M \subsetneq H^2$ . Suppose that there is a nonzero function g in N such that  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace. Then there are  $\alpha, \beta \in \mathbb{D}$  such that  $(z - \alpha)g \in M$  and  $(w - \beta)g \in M$ . Hence  $(p - p(\alpha, \beta))g \in M$ for every polynomial p.

An invariant subspace  $L_1$  of  $L_2$  is said to be unitarily equivalent if there is a unitary module map U from  $L_1$  onto  $L_2$ , that is,  $T_z U = UT_z$  and  $T_w U = UT_w$  on  $L_1$ . In this case, it is known that there is a unimodular function  $\theta$  on  $\partial \mathbb{D} \times \partial \mathbb{D}$  such that  $L_2 = \theta L_1$  (see [1, 3]).

**Proposition 6.4.** Let M be an invariant subspace of  $H^2$  satisfying  $M \subsetneq H^2$ . Suppose that there is a nonzero function g in  $H^2 \ominus M$  such that  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace. If L is an invariant subspace of  $H^2$  which is unitarily equivalent to M, then there is a nonzero function  $g_1$  in  $H^2 \ominus L$  such that  $L \oplus \mathbb{C} \cdot g_1$  is an invariant subspace.

*Proof.* Let  $\theta$  be a unimodular function on  $\partial \mathbb{D} \times \partial \mathbb{D}$  such that  $L = \theta M \subset H^2$  By the fact above Proposition 6.4, there is  $\alpha, \beta \in \mathbb{D}$  such that  $(z - \alpha)g \in M$  and  $(z - \beta)g \in M$ . Then  $(z - \alpha)\theta g \in L \subset H^2$  and  $(z - \beta)\theta g \in H^2$ . Hence  $\theta g \in H^2$ . Since  $g \perp M$ , we have  $\theta g \perp \theta M = L$ , so  $\theta g \in H^2 \ominus L$ . Since  $L \oplus \mathbb{C} \cdot \theta g = \theta(M \oplus \mathbb{C} \cdot g)$ ,  $L \oplus \mathbb{C} \cdot \theta g$  is an invariant subspace.

Proposition 6.4 shows that the property of M "there is a nonzero function g in  $H^2 \ominus M$  such that  $M \oplus \mathbb{C} \cdot g$  is an invariant subspace " is *invariant* for unitary module maps.

Question 4. Let  $f \in H^2$  satisfy  $\{0\} \neq [f] \subsetneq H^2$ . Is  $[f] \oplus \mathbb{C} \cdot g$  not an invariant subspace for any  $g \in H^2 \ominus [f]$  with  $g \neq 0$ ?

Question 5. Let  $f \in H^2$  satisfy  $\{0\} \neq [f] \subsetneq H^2$ . Is  $\widetilde{\Omega}(H^2 \ominus [f]) = \{0\}$ ?

**Question 6.** Characterize an invariant subspace M such that  $M \oplus \mathbb{C} \cdot g$  is not an invariant subspace for any nonzero function g in N.

**Question 7.** Let f, h be functions in  $H^2$  such that  $[f] \subsetneq [h]$ . Is dim  $([h] \ominus [f]) = \infty$ ?

[3] Ranks of invariant subspaces.

Let  $M_1$  be an invariant subspace of  $H^2$  and  $f_0 \in M_1$  with  $||f_0|| = 1$  such that  $M_2 := M_1 \oplus \mathbb{C} \cdot f_0$  is an invariant subspace. We denote by rank  $M_1$  the rank of  $M_1$ , that is, rank  $M_1$  (may be  $\infty$ ) is the smallest number of elements in  $M_1$  which generate  $M_1$  as an invariant subspace.

**Proposition 6.5.** rank  $M_1 - 1 \leq \operatorname{rank} M_2 \leq \operatorname{rank} M_1 + 1$ .

*Proof.* It is easy to see that rank  $M_1 \leq \operatorname{rank} M_2 + 1$ . So, when rank  $M_1 = \infty$  we get the assertion.

Suppose that  $m := \operatorname{rank} M_1 < \infty$ . Let  $f_1, f_2, \dots, f_m \in M_1$  such that  $[f_1, f_2, \dots, f_m] = M_1$ . We may assume that  $f_1 \not\perp f_0$ . If  $f_j \not\perp f_0$  for some  $2 \leq j \leq m$ , replacing  $f_j$  by

$$f_j - \frac{\langle f_j, f_0 \rangle}{\|f_0\|^2} f_0,$$

we may assume that  $f_j \perp f_0$  for every  $2 \leq j \leq m$ , that is,  $f_j \in M_2$  for every  $2 \leq j \leq m$ . Since  $M_1 \ominus \mathbb{C} \cdot f_0$  is an invariant subspace, there are  $\alpha, \beta \in \mathbb{D}^2$  such that  $(z - \alpha)f_0 \in M_2$  and  $(w - \beta)f_0 \in M_2$ . Hence  $(z - \alpha)f_1 \in M_2$  and  $(w - \beta)f_1 \in M_2$ . We shall show that

(6.1) 
$$[(z-\alpha)f_1, (w-\beta)f_1, f_2, \cdots, f_m] = M_2.$$

Let  $h \in M_2$ . Then there are sequences of polynomials

$${p_{1,k}}_{k\geq 1}, {p_{2,k}}_{k\geq 1}, \cdots, {p_{m,k}}_{k\geq 1}$$

such that

$$\lim_{k \to \infty} \sum_{\ell=1}^m p_{\ell,k} f_\ell = h.$$

We have

$$0 = \langle h, f_0 \rangle = \lim_{k \to \infty} \sum_{\ell=1}^m \langle p_{\ell,k} f_\ell, f_0 \rangle = \lim_{k \to \infty} \langle p_{1,k} f_1, f_0 \rangle.$$

Let

$$p_{1,k}(z,w) = \sum_{i,j} c_{k,i,j} (z-\alpha)^i (w-\beta)^j$$

be the Taylor expansion of  $p_{1,k}$  at  $(\alpha, \beta)$ . Then

$$0 = \lim_{k \to \infty} \langle p_{1,k} f_1, f_0 \rangle = \lim_{k \to \infty} c_{k,0,0} \langle f_1, f_0 \rangle.$$

Since  $\langle f_1, f_0 \rangle \neq 0$ ,  $c_{k,0,0} \to 0$  as  $k \to \infty$ . Hence

$$h = \lim_{k \to \infty} \sum_{\ell=1}^{m} p_{\ell,k} f_{\ell} = \lim_{k \to \infty} \left( (p_{1,k} - c_{k,0,0}) f_1 + \sum_{\ell=2}^{m} p_{\ell,k} f_{\ell} \right).$$

Since

$$(p_{1,k} - c_{k,0,0})f_1 \in [(z - \alpha)f_1, (w - \beta)f_1],$$

we have

$$h \in [(z-\alpha)f_1, (w-\beta)f_1, f_2, \cdots, f_m].$$

Thus we get (6.1), so

$$\operatorname{rank} M_2 \le m+1 = \operatorname{rank} M_1 + 1$$

Example 6.2. (i) Let  $M_1 = H^2$  and  $f_0 = 1$ . Then  $M_2 := M_1 \oplus \mathbb{C} \cdot 1 = zH^2 + wH^2$  is an invariant subspace. It is easy to check that rank  $M_1 = 1$  and rank  $M_2 = 2$ .

(ii) Let  $M_3 = z^2 H^2 + w H^2$ . Then  $M_2 \ominus \mathbb{C} \cdot z = M_3$  is an invariant subspace. We have rank  $M_2 = 2 = \operatorname{rank} M_3$ .

(iii) Let  $M_1 = z^2 H^2 + zwH^2 + w^2H^2$  and  $f_0 = zw$ . We have rank  $M_1 = 3$ . Since  $M_2 := M_1 \ominus \mathbb{C} \cdot f_0 = z^2H^2 + w^2H^2$ , we have rank  $M_2 = 2$ .

Suppose that rank  $M_1 = 1$ , that is,  $M_1 = [f]$  for some nonzero  $f \in H^2$ . Then rank  $M_2 \ge 1$ .

**Question 8.** Do there exist  $M_1$  and  $f_0 \in M_1$  such that rank  $M_1 = \operatorname{rank} M_2 = 1$ ?

Question 9. Do there exist  $M_1$  and  $f_0 \in M_1$  such that rank  $M_1 = 2$  and rank  $M_2 = 1$ ?

Question 10. Let  $f \in H^2$  be a nonzero function and  $f_0 \in [f]$  be a nonzero function such that  $M_2 := [f] \ominus \mathbb{C} \cdot f_0$  is an invariant subspace. Does rank  $M_2 = 2$  hold?

These questions have some connection with Questions 4 and 7.

Let  $N_j = H^2 \ominus M_j$  for j = 1, 2. Since  $T_z^* N_j \subset N_j$  and  $T_w^* N_j \subset N_j$ , we may consider rank  $N_j$  for the operators  $T_z^*, T_w^*$ . In the similar way as Proposition 6.5, we can prove the following.

**Proposition 6.6.** Suppose that  $M_1 \neq H^2$ . Then we have

 $\operatorname{rank} N_1 - 1 \le \operatorname{rank} N_2 \le \operatorname{rank} N_1 + 1.$ 

*Example* 6.3. (i) Let  $M_1 = zH^2 + wH^2$  and  $f_0 = z$ . We have  $N_1 = \mathbb{C} \cdot 1$  and  $N_2 = \mathbb{C} \cdot 1 + \mathbb{C} \cdot z$ . Hence rank  $N_1 = 1 = \operatorname{rank} N_2$ .

(ii) Let  $M_1 = z^2 H^2 + zwH^2 + w^2 H^2$  and  $f_0 = zw$ . We have  $N_1 = \mathbb{C} \cdot z + \mathbb{C} \cdot w + \mathbb{C} \cdot 1$ and  $N_2 = \mathbb{C} \cdot z + \mathbb{C} \cdot w + \mathbb{C} \cdot 1 + \mathbb{C} \cdot zw$ . Hence rank  $N_1 = 2$  and rank  $N_2 = 1$ .

(iii) Let  $M_1 = z^2 H^2 + zwH^2 + w^2H^2 + \mathbb{C} \cdot (z+w)$  and  $f_0 = z+w$ . We have  $N_1 = \mathbb{C} \cdot (z-w) + \mathbb{C} \cdot 1$  and  $N_2 = \mathbb{C} \cdot z + \mathbb{C} \cdot w + \mathbb{C} \cdot 1$ . Hence rank  $N_1 = 1$  and rank  $N_2 = 2$ .

In the forthcoming paper, we shall study relationship of ranks of the cross commutators on  $M_1, M_2$  and on  $N_1, N_2$ , respectively.

### References

- X. Chen and K. Guo, Analytic Hilbert Modules, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [2] J. Conway, A Course in Operator Theory, Grad. Stud. Math., Vol. 21, Amer. Math. Soc., RI, 2000.
- [3] R. Douglas and K. Yan, On the rigidity of Hardy submodules, Integral Equations Operator Theory 13 (1990), 350–363.
- [4] K. Guo and R. Yang, The core function of submodules over the bidisk, Indiana Univ. Math. J. 53 (2004), 205–222.
- [5] K. H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk III, Hokkaido Math. J. 38 (2009), 663–681.
- [6] W. Rudin, *Function Theory in Polydiscs*, Benjamin, New York, 1969.
- [7] R. Yang, Operator theory in the Hardy space over the bidisk (III), J. Funct. Anal. 186 (2001), 521–545.
- [8] R. Yang, Beurling's phenomenon in two variables, Integral Equations Operator Theory 48 (2004), 411–423.

[9] R. Yang, On two variable Jordan block II, Integral Equations Operator Theory 56 (2006), 431–449.

(Kei Ji Izuchi) Department of Mathematics, Niigata University, Niigata 950-2181, Japan

(Kou Hei Izuchi) Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan

(Yuko Izuchi) Asahidori 2-2-23, Yamaguchi 753-0051, Japan *E-mail address*: izuchi@m.sc.niigata-u.ac.jp (K. J. Izuchi), izuchi@yamaguchi-u.ac.jp (K. H. Izuchi), yfd10198@nifty.com (Y. Izuchi)

Received September 24, 2015 Revised May 14, 2016