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VISCOSITY APPROXIMATION METHOD FOR
QUASINONEXPANSIVE MAPPINGS WITH

CONTRACTION-LIKE MAPPINGS

KOJI AOYAMA

Abstract. We study the viscosity approximation method for a sequence of quasi-

nonexpansive mappings with contraction-like mappings. We establish a strong

convergence theorem and then we apply our result to approximate a solution of

a split feasibility problem and a fixed point of a Lipschitz continuous pseudo-

contraction.

1. Introduction

In this paper, an algorithm for finding a common fixed point of quasinonexpansive

mappings in a Hilbert space is analyzed. In particular, we study convergence of a

sequence {xn} in C defined by any point x1 ∈ C and

xn+1 = αnfn(xn) + (1− αn)Snxn (1.1)

for n ∈ N, where C is a nonempty closed convex subset of a Hilbert space, fn is

a contraction-like self-mapping of C, Sn is a quasinonexpansive self-mapping of C,

and αn is a real number in [0, 1] for every n ∈ N. The iterative algorithm (1.1) is

called the viscosity approximation method [23] and has extensively studied; see [32,

25, 26, 27, 17, 20, 29, 22] and references therein.

It is known that the viscosity approximation method is closely related to the

hybrid steepest descent method [33, 13] for solving a variational inequality problem

over the fixed point set of nonexpansive or quasinonexpansive mappings; see [3, 8].

Recently, Hojo and Takahashi [16] considered the generalized split feasibility prob-

lem as follows: Find z ∈ C such that z = Uz, 0 ∈ Bz, and Lz = TLz, where C

is a nonempty closed convex subset of a Hilbert space H1, U is a widely more

generalized hybrid self-mapping of C in the sense of Kawasaki and Takahashi [19],

B ⊂ H1×H1 is a maximal monotone operator, T is a nonexpansive self-mapping of

a Hilbert space H2, and L is a bounded linear operator of H1 into H2. Then, under
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some appropriate conditions, Hojo and Takahashi [16] established that the following

iterative sequence {xn} converges strongly to a solution of the problem: x1 ∈ C and

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)UJλn

(
xn − λnL

∗(I − T )Lxn

))
(1.2)

for n ∈ N, where αn and βn are real numbers in [0, 1], {un} is a convergent sequence

in C, λn is a positive real number, I is the identity mapping, and Jλn = (I+λnB)−1.

This iteration is also related the viscosity approximation method. Indeed, we can

reduce (1.2) to (1.1) and the convergence of {xn} can be guaranteed by Theorem 3.1,

which is a generalization of our previous result [8, Theorem 3.1]; see Sections 3 and

4 for more details.

This paper is organized as follows: In Section 2, we recall some definitions and list

some lemmas in order to prove our main results. In Section 3, we present our main

result (Theorem 3.1) and its corollaries. In Section 4, we consider the generalized

split feasibility problem and apply our main result to approximate a solution of

the problem. In section 5, we prove strong convergence theorem for a Lipschitz

continuous pseudo-contraction by using our main result.

2. Preliminaries

Throughout the present paper, H denotes a real Hilbert space, ⟨ · , · ⟩ the inner

product of H, ∥ · ∥ the norm of H, C a nonempty closed convex subset of H, I the

identity mapping on H, and N the set of positive integers. Strong convergence of

a sequence {xn} in H to x ∈ H is denoted by xn → x and weak convergence by

xn ⇀ x.

Let T : C → H be a mapping. The set of fixed points of T is denoted by F(T ).

A mapping T is said to be quasinonexpansive if F(T ) ̸= ∅ and ∥Tx− p∥ ≤ ∥x− p∥
for all x ∈ C and p ∈ F(T ); T is said to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥
for all x, y ∈ C; T is demiclosed at 0 if Tp = 0 whenever {xn} is a sequence in C

such that xn ⇀ p and Txn → 0. We know that if T : C → H is quasinonexpansive,

then F(T ) is closed and convex; see [14, Theorem 1].

It is known that, for each x ∈ H, there exists a unique point x0 ∈ C such that

∥x− x0∥ = min{∥x− y∥ : y ∈ C}.

Such a point x0 is denoted by PC(x) and PC is called the metric projection of H

onto C. It is also known that the metric projection PC is nonexpansive and

⟨y − PC(x), x− PC(x)⟩ ≤ 0 (2.1)

for all x ∈ H and y ∈ C; see [28].

Let f : C → C be a mapping, F a nonempty subset of C, and θ a real num-

ber in [0, 1). A mapping f is said to be a θ-contraction with respect to F [3] if
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∥f(x)− f(z)∥ ≤ θ ∥x− z∥ for all x ∈ C and z ∈ F ; f is said to be a θ-contraction

if f is a θ-contraction with respect to C.

Let A : C → H be a mapping and ρ a positive real number. A mapping A is

said to be ρ-inverse strongly monotone if ⟨x− y,Ax− Ay⟩ ≥ ρ ∥Ax− Ay∥2 for all

x, y ∈ C.

Let B be a set-valued mapping of H into H. The effective domain of B is denoted

by D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}; the set of zeros of B is denoted by

B−10, that is, B−10 = {z ∈ D(B) : Bz ∋ 0}. We identify B with its graph

{(x, y) ∈ H ×H : x ∈ D(B), y ∈ Bx}. A set-valued mapping B ⊂ H ×H is said to

be a monotone operator if ⟨x− u, y − v⟩ ≥ 0 for all (x, y), (u, v) ∈ B. A monotone

operator B ⊂ H × H is said to be maximal if B = B′ whenever B′ ⊂ H × H is a

monotone operator and B ⊂ B′. Let B ⊂ H ×H be a maximal monotone operator

and λ > 0. It is known that (I + λB)−1 is a single-valued mapping of H into D(B);

see [28].

A function τ : N → N is said to be eventually increasing [4] if limn→∞ τ(n) = ∞
and τ(n) ≤ τ(n+ 1) for all n ∈ N. The following is clear from the definition.

Lemma 2.1. Let τ : N → N be an eventually increasing function and {ξn} a sequence

of real numbers such that ξn → ξ. Then ξτ(n) → ξ.

The following is directly obtained from [21, Lemma 3.1].

Lemma 2.2 ([4, Lemma 3.4]). Let {ξn} be a sequence of nonnegative real numbers

which is not convergent. Then there exist N ∈ N and an eventually increasing

function τ : N → N such that ξτ(n) ≤ ξτ(n)+1 for all n ∈ N and ξn ≤ ξτ(n)+1 for all

n ≥ N .

Under the assumptions of Lemma 2.2, we cannot choose a strictly increasing

function τ ; see [4, Example 3.3].

Let {Tn} be a sequence of mappings of C into H such that F =
∩∞

n=1 F(Tn) is

nonempty. Then {Tn} is said to be strongly quasinonexpansive type [8] if each Tn

is quasinonexpansive and Tnxn − xn → 0 whenever {xn} is a bounded sequence in

C and ∥xn − p∥ − ∥Tnxn − p∥ → 0 for some point p ∈ F ; z ∈ C is said to be an

asymptotic fixed point of {Tn} if there exist a sequence {xn} in C and a subsequence

{xni
} of {xn} such that Tnxn − xn → 0 and xni

⇀ z; see [1]. The set of asymptotic

fixed points of {Tn} is denoted by F̂({Tn}). It is clear that F ⊂ F̂({Tn}).

Remark 2.3. It is known that {Tn} is strongly quasinonexpansive type if and only

if it is a strongly relatively nonexpansive sequence in the sense of [4, 10]; see [8,

Remark 2.5]. It is also known that F = F̂({Tn}) if and only if {Tn} satisfies the

condition (Z); see [1, Proposition 6]. Recall that {Tn} is said to satisfy the con-

dition (Z) if every weak cluster point of {xn} belongs to F whenever {xn} is a
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bounded sequence in C such that Tnxn−xn → 0; see [2, 4, 9]. We know some exam-

ples of strongly quasinonexpansive type sequences with the condition (Z); see [10],

[8, Example 4.5], and [6, 2].

We know the following lemmas:

Lemma 2.4 ([8, Lemma 2.6]). Let {Tn} be a sequence of mappings of C into H

such that F =
∩∞

n=1 F(Tn) is nonempty, τ : N → N an eventually increasing function,

and {zn} a bounded sequence in C such that ∥zn − p∥−
∥∥Tτ(n)zn − p

∥∥ → 0 for some

p ∈ F . If {Tn} is strongly quasinonexpansive type, then Tτ(n)zn − zn → 0.

Lemma 2.5 ([4, Lemma 3.6]). Let {Tn} be a sequence of mappings of C into H such

that F =
∩∞

n=1 F(Tn) is nonempty, τ : N → N an eventually increasing function, and

{zn} a bounded sequence in C such that Tτ(n)zn−zn → 0. Suppose that F̂({Tn}) = F .

Then every weak cluster point of {zn} belongs to F .

The following lemma is similar to [4, Lemma 3.7]. For the sake of completeness,

we give the proof.

Lemma 2.6. Let {Tn} be a sequence of mappings of C into H, F a nonempty closed

convex subset of H, {zn} a bounded sequence in C such that Tnzn − zn → 0, and

{un} a sequence in H such that un → u ∈ H. Suppose that every weak cluster point

of {zn} belongs to F . Then

lim sup
n→∞

⟨Tnzn − w, un − w⟩ ≤ 0,

where w = PF (u).

Proof. Since Tnzn − zn → 0, un → u, and {zn} is bounded, there exists a weakly

convergent subsequence {zni
} of {zn} such that

lim sup
n→∞

⟨Tnzn − w, un − w⟩ = lim
i→∞

⟨zni
− w, u− w⟩ .

Let z be the weak limit of {zni
}. By assumption, we see that z ∈ F . Thus (2.1)

shows that

lim
i→∞

⟨zni
− w, u− w⟩ = ⟨z − w, u− w⟩ ≤ 0.

This completes the proof. □

The following lemma is a well-known result; see [31, 5].

Lemma 2.7. Let {ξn} be a sequence of nonnegative real numbers, {δn} a sequence

of real numbers, and {βn} a sequence in [0, 1]. Suppose that ξn+1 ≤ (1−βn)ξn+βnδn
for every n ∈ N, lim supn→∞ δn ≤ 0, and

∑∞
n=1 βn = ∞. Then ξn → 0.
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3. Main results

Firstly, we prove the following theorem by using the technique developed in [8]; see

also [4].

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H,

{Sn} a sequence of self-mappings of C, F the set of common fixed points of {Sn},
and {αn} a sequence in (0, 1]. Suppose that {Sn} is strongly quasinonexpansive type,

F is nonempty, F̂({Sn}) = F , αn → 0, and
∑∞

n=1 αn = ∞. Let {fn} be a sequence

of self-mappings of C and θ ∈ [0, 1). Suppose that each fn is a θ-contraction with

respect to F and there exists u ∈ C such that fn ◦ PF (u) → u. Then the sequence

{xn} defined by x1 ∈ C and (1.1) for n ∈ N converges strongly to PF (u).

Proof. We first show that {xn}, {Snxn}, and {fn(xn)} are bounded and obtain some

inequalities. Set

w = PF (u), βn = αn

(
1 + (1− 2θ)(1− αn)

)
and

γn = α2
n ∥fn(xn)− w∥2 + 2αn(1− αn) ⟨Snxn − w, fn(w)− w⟩

for n ∈ N. Since fn is a θ-contraction with respect to F , Sn is quasinonexpansive,

and w ∈ F ⊂ F(Sn), we have

∥xn+1 − w∥ ≤ αn ∥fn(xn)− w∥+ (1− αn) ∥Snxn − w∥ (3.1)

≤ αn(∥fn(xn)− fn(w)∥+ ∥fn(w)− w∥) + (1− αn) ∥xn − w∥

≤
(
1− αn(1− θ)

)
∥xn − w∥+ αn(1− θ)

∥fn(w)− w∥
1− θ

.

From the assumption that {fn(w)} is convergent, M = supn ∥fn(w)− w∥ /(1− θ) <

∞, and thus, by induction on n, it holds that

∥Snxn − w∥ ≤ ∥xn − w∥ ≤ max{∥x1 − w∥ ,M},

for every n ∈ N. Therefore we conclude that {xn} and {Snxn} are bounded. Thus

{fn(xn)} is also bounded. Since

⟨Snxn − w, fn(xn)− w⟩ ≤ ∥Snxn − w∥ ∥fn(xn)− fn(w)∥+ ⟨Snxn − w, fn(w)− w⟩

≤ θ ∥xn − w∥2 + ⟨Snxn − w, fn(w)− w⟩ ,

we have

∥xn+1 − w∥2 = α2
n ∥fn(xn)− w∥2 + (1− αn)

2 ∥Snxn − w∥2

+ 2αn(1− αn) ⟨Snxn − w, fn(xn)− w⟩

≤ α2
n ∥fn(xn)− w∥2 +

(
(1− αn)

2 + 2αn(1− αn)θ
)
∥xn − w∥2

+ 2αn(1− αn) ⟨Snxn − w, fn(w)− w⟩ .
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Hence

∥xn+1 − w∥2 ≤ (1− βn) ∥xn − w∥2 + γn (3.2)

holds for every n ∈ N. Moreover, we can check that 0 < βn ≤ 1 for every n ∈ N,

2αn(1− αn)/βn → 1/(1− θ), and α2
n ∥fn(xn)− w∥2 /βn → 0 (3.3)

in the same way as in [7, Lemma 3.3].

We next show that {∥xn − w∥} is convergent. Assume that {∥xn − w∥} is not

convergent. Then Lemma 2.2 implies that there exist N ∈ N and an eventually

increasing function τ : N → N such that∥∥xτ(n) − w
∥∥ ≤

∥∥xτ(n)+1 − w
∥∥ (3.4)

for every n ∈ N and

∥xn − w∥ ≤
∥∥xτ(n)+1 − w

∥∥ (3.5)

for every n ≥ N . Since Sτ(n) is quasinonexpansive and w ∈ F ⊂ F(Sτ(n)), αn → 0,

and {fτ(n)(xτ(n))} is bounded, it follows from (3.4), (3.1), and Lemma 2.1 that

0 ≤
∥∥xτ(n) − w

∥∥−
∥∥Sτ(n)xτ(n) − w

∥∥
≤

∥∥xτ(n)+1 − w
∥∥−

∥∥Sτ(n)xτ(n) − w
∥∥

≤ ατ(n)

∥∥fτ(n)(xτ(n))− w
∥∥ → 0

as n → ∞. Thus Lemma 2.4 implies that Sτ(n)xτ(n) − xτ(n) → 0. Furthermore,

Lemma 2.5 implies that every weak cluster point of {xτ(n)} belongs to F . Noticing

that fτ(n)(w) = fτ(n) ◦ PF (u) → u, we conclude from Lemma 2.6 that

lim sup
n→∞

⟨
Sτ(n)xτ(n) − w, fτ(n)(w)− w

⟩
≤ 0. (3.6)

Since ∥∥xτ(n)+1 − w
∥∥2 ≤ (1− βτ(n))

∥∥xτ(n) − w
∥∥2

+ γτ(n)

≤ (1− βτ(n))
∥∥xτ(n)+1 − w

∥∥2
+ γτ(n)

by (3.2) and (3.4), we deduce that∥∥xτ(n)+1 − w
∥∥2 ≤

γτ(n)
βτ(n)

(3.7)

for every n ∈ N. Using (3.5), (3.7), (3.3), and (3.6), we obtain

lim sup
n→∞

∥xn − w∥2 ≤ lim sup
n→∞

∥∥xτ(n)+1 − w
∥∥2 ≤ lim sup

n→∞

γτ(n)
βτ(n)

≤ 0,

which is a contradiction. Therefore, {∥xn − w∥} is convergent.
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Lastly, we show that xn → PF (u). Since Sn is quasinonexpansive, w ∈ F(Tn),

αn > 0, {∥xn − w∥} is convergent, αn → 0, and {fn(xn)} is bounded, it follows

from (3.1) that

0 ≤ ∥xn − w∥ − ∥Snxn − w∥
≤ ∥xn − w∥ − (1− αn) ∥Snxn − w∥
≤ ∥xn − w∥ − ∥xn+1 − w∥+ αn ∥fn(xn)− w∥ → 0

as n → ∞. Thus Snxn − xn → 0 because {Sn} is strongly quasinonexpansive type

and {xn} is bounded. Since F̂({Sn}) = F , Lemma 2.6 implies that

lim sup
n→∞

⟨Snxn − w, fn(w)− w⟩ ≤ 0. (3.8)

Using (3.3) and (3.8), we have lim supn→∞ γn/βn ≤ 0. Note that

∥xn+1 − w∥2 ≤ (1− βn) ∥xn − w∥2 + βn
γn
βn

by (3.2) and
∑∞

n=1 βn = ∞ by [7, Lemma 3.3]. Taking into account Lemma 2.7, we

conclude that xn − w → 0. This completes the proof. □

The following results are direct consequences of Theorem 3.1:

Corollary 3.2. Let H, C, {Sn}, F , and {αn} be the same as in Theorem 3.1.

Let {un} be a strongly convergent sequence in C and u the limit of {un}. Then

the sequence {xn} defined by x1 ∈ C and xn+1 = αnun + (1 − αn)Snxn for n ∈ N
converges strongly to PF (u).

Proof. For each n ∈ N, let fn : C → C be a mapping defined by fn(x) = un for all

x ∈ C. Then it is clear that each fn is a 0-contraction and fn ◦ PF (u) = un → u.

Therefore, Theorem 3.1 implies the conclusion. □

Corollary 3.3 ([8, Theorem 3.1]). Let H, C, {Sn}, F , and {αn} be the same as in

Theorem 3.1. Let {fn} be a sequence of self-mappings of C and θ ∈ [0, 1). Suppose

that each fn is a θ-contraction with respect to F and {fn(z) : n ∈ N} is a singleton

for every z ∈ F . Then the sequence {xn} defined by x1 ∈ C and (1.1) for n ∈ N
converges strongly to w, where w is a unique fixed point of PF ◦ f1.

Proof. Since PF ◦ f1 is a contraction on F , PF ◦ f1 has a unique fixed point w ∈ F .

Noting that {fn(w) : n ∈ N} is a singleton, we see that fn(w) = f1(w) for every

n ∈ N. Thus, fn ◦ PF (f1(w)) = fn(w) = f1(w) for every n ∈ N. Therefore,

Theorem 3.1 implies the conclusion. □

— 173 —



4. Application to a split feasibility problem

In this section, we consider the generalized split feasibility problem studied in Hojo

and Takahashi [16] as follows:

Problem 4.1. Let H1 and H2 be two Hilbert spaces, C a nonempty closed convex

subset of H1, U : C → H1 a quasinonexpansive mapping, B ⊂ H1 ×H1 a maximal

monotone operator, T : H2 → H2 a nonexpansive mapping, and L : H1 → H2 a

bounded linear operator such that L ̸= 0. Then find z ∈ F(U) ∩B−10 ∩ L−1 F(T ).

Hojo and Takahashi [16] dealt with a special case of this problem and they estab-

lished some strong convergence results for the problem.

In this section, we show a strong convergence theorem for Problem 4.1. Before

proving it, we show the following theorem by using Corollary 3.2.

Theorem 4.2. Let H be a Hilbert space, C a nonempty closed convex subset of H,

ρ a positive real number, A : H → H a ρ-inverse strongly monotone mapping, B ⊂
H × H a maximal monotone operator, U : C → H a quasinonexpansive mapping,

{un} a sequence in H, {αn} a sequence in (0, 1], {βn} a sequence in [a, b], and {λn}
a sequence in [c, d], where 0 < a ≤ b < 1 and 0 < c ≤ d < 2ρ. Suppose that

F = F(U)∩ (A+B)−10 is nonempty, D(B) ⊂ C, I −U is demiclosed at 0, un → u,

αn → 0, and
∑∞

n=1 αn = ∞. Let {xn} be a sequence in H defined by x1 ∈ H and

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)UJλn(xn − λnAxn)

)
for n ∈ N, where Jλn = (I + λnB)−1. Then {xn} converges strongly to PF (u).

Proof. Set Tn = UJλn(I − λnA). Since Jλn and I − λnA are strongly nonexpansive

in the sense of [12], [12, Proposition 1.1] shows that Jλn(I−λnA) is strongly nonex-

pansive. Thus it follows from [6, Lemma 5.8], [24, Lemma 2.3], and [9, Lemma 3.2]

that F(Tn) = F and Tn is quasinonexpansive for every n ∈ N. By the definition of

{xn}, we see that

xn+1 = γnun + (1− γn)

[
βn

1− γn
xn +

(
1− βn

1− γn

)
Tnxn

]
= γnun + (1− γn)Snxn

for every n ∈ N, where γn = αn(1− βn) and

Sn =
βn

1− γn
I +

(
1− βn

1− γn

)
Tn.

Then it is not hard to verify that

0 < inf
n

βn

1− γn
, sup

n

βn

1− γn
< 1,
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γn → 0, and
∑∞

n=1 γn = ∞. Thus it follows from
∩∞

n=1 F(Tn) = F and [10, Theo-

rem 3.8] that {Sn} is strongly quasinonexpansive type and F̂({Sn}) = F . Therefore,

Corollary 3.2 implies the conclusion. □

Using Theorem 4.2 and other known results, we obtain the following:

Theorem 4.3. Let H1, H2, C, B, U , T , and L be the same as in Problem 4.1.

Let L∗ be the adjoint operator of L and F the set of solutions of Problem 4.1. Let

{αn} and {βn} be the same as in Theorem 4.2. Let {un} be a sequence in H1 and

{λn} a sequence in [c, d], where 0 < c ≤ d < 1/ ∥L∥2. Suppose that F is nonempty,

D(B) ⊂ C, I − U is demiclosed at 0, and un → u. Let {xn} be a sequence in H1

defined by x1 ∈ H1 and

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)UJλn

(
xn − λnL

∗(I − T )Lxn

))
for n ∈ N, where Jλn = (I + λnB)−1. Then {xn} converges strongly to PF (u).

Proof. Set A = L∗(I − T )L. From [30, Lemma 3.3] and [30, Lemma 3.4], we know

that A is 1/(2 ∥L∥2)-inverse strongly monotone and B−10∩L−1 F(T ) = (A+B)−10.

Thus F = F(U) ∩ (A+B)−10. Therefore, Theorem 4.2 implies the conclusion. □

Remark 4.4. The main result in [16], [16, Theorem 3.1], is a direct consequence of

Theorem 4.3. Indeed, suppose that a mapping U is the same as in [16, Theorem 3.1],

that is, α, β, γ, δ, ϵ, ζ, η are real numbers such that

α + β + γ + δ ≥ 0, α + β > 0, and ζ + η ≥ 0,

and U is an (α, β, γ, δ, ϵ, ζ, η)-widely more generalized hybrid mapping in the sense of

Kawasaki and Takahashi [19]. In this case, it is known that U is quasinonexpansive;

see [19, Lemma 5.3] and [15, Lemma 4.1]. It is also known that I −U is demiclosed

at 0; see [15, Lemma 4.2].

5. Strong convergence theorem for a pseudo-contraction

In this section, applying Theorem 3.1, we prove a strong convergence theorem for a

pseudo-contraction.

Throughout this section, let C be a nonempty closed convex subset of a Hilbert

space H and T : C → C an η-Lipschitz continuous pseudo-contraction [11], that is,

we assume that η is a positive real number and

∥Tx− Ty∥ ≤ η ∥x− y∥ and ∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥x− Tx− (y − Ty)∥2

for all x, y ∈ C. In this case, it is clear that I − T is monotone, that is,

⟨x− y, (I − T )x− (I − T )y⟩ ≥ 0
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for all x, y ∈ C.

We know the following fact. For the sake of completeness, we give the proof.

Lemma 5.1. I − T is demiclosed at 0.

Proof. Let {zn} be a sequence in C such that zn − Tzn → 0 and zn ⇀ z. Note that

z ∈ C. Set yλ = λTz+(1−λ)z for λ ∈ (0, 1). Then it follows from the monotonicity

of I − T that

λ ⟨Tz − z, (I − T )yλ⟩ = ⟨yλ − z, (I − T )yλ⟩
= lim

n→∞
⟨yλ − zn, (I − T )yλ⟩

≥ lim
n→∞

⟨yλ − zn, (I − T )zn⟩ = 0,

and hence ⟨Tz − z, (I − T )yλ⟩ ≥ 0 for all λ ∈ (0, 1). Since T is continuous and

yλ → z as λ ↓ 0,

−∥z − Tz∥2 = ⟨Tz − z, z − Tz⟩ = lim
λ↓0

⟨Tz − z, (I − T )yλ⟩ ≥ 0,

and therefore, (I − T )z = 0. □

The following lemma was established in Ishikawa [18]:

Lemma 5.2. Let U : C → C be a mapping defined by

U = λT
(
µT + (1− µ)I

)
+ (1− λ)I,

where 0 ≤ λ ≤ µ ≤ 1. Then

λµ(1− 2µ− µ2η2) ∥x− Tx∥2 ≤ ∥x− z∥2 − ∥Ux− z∥2

for all x ∈ C and z ∈ F(T ).

Using Lemmas 5.1 and 5.2, we obtain the following:

Lemma 5.3. Let {λn} and {µn} be sequences of real numbers such that

0 < inf
n
λn, λn ≤ µn for all n ∈ N, and sup

n
µn <

−1 +
√
1 + η2

η2
.

Let Un : C → C be a mapping defined by

Un = λnT
(
µnT + (1− µn)I

)
+ (1− λn)I (5.1)

for n ∈ N. Suppose that F(T ) ̸= ∅. Then the following hold:

(1) F(Un) = F(T ) for every n ∈ N;
(2) {Un} is strongly quasinonexpansive type;

(3) F̂({Un}) = F(T ).

— 176 —



Proof. Set ρ = (infn λn)
2
(
1 − 2 supn µn − (supn µn)

2η2
)
. By assumption, it is clear

that

λnµn(1− 2µn − µ2
nη

2) ≥ ρ > 0

for all n ∈ N.
We first prove (1). Let w ∈ F(Un) and z ∈ F(T ). Then it follows from Lemma 5.2

that

0 ≤ ρ ∥w − Tw∥2 ≤ ∥w − z∥2 − ∥Unw − z∥2 = 0.

Hence we have w = Tw, and thus F(Un) ⊂ F(T ). On the other hand, it is obvious

that F(Un) ⊃ F(T ). Therefore, (1) holds.

We next show (2). Let x ∈ C and w ∈ F(Un). Then Lemma 5.2 and (1) imply

that ∥Unx− w∥ ≤ ∥x− w∥. Therefore each Un is quasinonexpansive. Let {yn} be a

bounded sequence in C such that ∥yn − z∥−∥Unyn − z∥ → 0 for z ∈
∩∞

n=1 F(Un) =

F(T ). Since {yn} and {Unyn} are bounded, it follows from Lemma 5.2 that

0 ≤ ρ ∥yn − Tyn∥2 ≤ (∥yn − z∥ − ∥Unyn − z∥)(∥yn − z∥+ ∥Unyn − z∥) → 0,

and thus yn − Tyn → 0. Since λn, µn ∈ [0, 1] and T is η-Lipschitz continuous,

∥yn − Unyn∥ = λn

∥∥T(µnTyn + (1− µn)yn
)
− yn

∥∥
≤

∥∥T(µnTyn + (1− µn)yn
)
− Tyn

∥∥+ ∥Tyn − yn∥
≤ (η + 1) ∥Tyn − yn∥ → 0.

Therefore, {Un} is strongly quasinonexpansive type.

Lastly, we show (3). It is obvious that F̂({Un}) ⊃ F(T ). Let z ∈ F̂({Un}) and

p ∈ F(T ). Then there exists a sequence {zn} in C and a subsequence {zni
} of {zn}

such that zn − Unzn → 0 and zni
→ z. Since {zni

} is bounded and

0 ≤ ∥zni
− p∥ − ∥Uni

zni
− p∥ ≤ ∥zni

− Uni
zni

∥ → 0,

it follows from Lemma 5.2 that

0 ≤ ρ ∥zni
− Tzni

∥2 ≤ (∥zni
− p∥ − ∥Uni

zni
− p∥)(∥zni

− p∥+ ∥Uni
zni

− p∥) → 0,

and thus zni
− Tzni

→ 0. By Lemma 5.1, we conclude that z ∈ F(T ). This means

that F̂({Un}) ⊂ F(T ). □

Using Theorem 3.1 and Lemma 5.3, we obtain the following:

Theorem 5.4. Let C be a nonempty closed convex subset of a Hilbert space H,

T : C → C an η-Lipschitz continuous pseudo-contraction, and Un : C → C a map-

ping defined by (5.1) for n ∈ N, where {λn} and {µn} are the same as in Lemma 5.3.

Suppose that F(T ) ̸= ∅. Let {αn} and θ be the same as in Theorem 3.1 and fn a
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θ-contraction with respect to F(T ) for n ∈ N. Suppose that there exists u ∈ C such

that fn ◦ PF(T )(u) → u. Let {xn} be a sequence in C defined by x1 ∈ C and

xn+1 = αnfn(xn) + (1− αn)Unxn

for n ∈ N. Then {xn} converges strongly to PF(T )(u).

Remark 5.5. In Theorem 5.4, PF(T ) is well-defined because F(T ) = F(Un) and Un is

quasinonexpansive by Lemma 5.3.

Remark 5.6. The assumptions on T can be relaxed in Theorem 5.4: It suffices to

assume that T is Lipschitz continuous,

∥Tx− z∥2 ≤ ∥x− z∥2 + ∥Tx− x∥2

for all x ∈ C and z ∈ F(T ), and I − T is demiclosed at 0.
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