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TOPOLOGICAL LINEAR SUBSPACE OF L0(Ω, µ) FOR
THE INFINITE MEASURE µ

YOSHIAKI OKAZAKI

Abstract. Let (Ω,A, µ) be a measure space. We shall characterize the maximal

topological linear subspace M∞ of L0(Ω,A, µ) in the case where µ(Ω) = +∞.

M∞ is the truncated L∞ space which is open and closed in L0(Ω,A, µ). In the

case where Ω = N(natural numbers), µ(A) = ♯A = the cardinal number of A, the

maximal linear subspace of L0(N, µ) is ℓ∞.

1. Introduction

Let (Ω,A, µ) be a measure space. Let L0 := L0(Ω,A, µ) be the space of all real

valued µ-measurable functions on (Ω,A, µ). The topology of L0 is given by the

following translation invariant metric:

d0(f, g) = inf
α>0

arctan {α + µ ({ω ∈ Ω | |f(ω)− g(ω)| > α})}

for f, g ∈ L0. Then d0(fn, f) → 0 if and only if fn converges to f in measure. The

metric space (L0, d0) is a topological additive group but not necessarily a topological

linear space in the case where µ(Ω) = +∞. In fact, the scalar multiplication in not

necessarily continuous. We remark that if µ(Ω) < +∞, then (L0, d0) is a topological

linear space.

The aim of this paper is to characterize the maximal topological linear subspace

M∞ of (L0, d0) set theoretically and topologically in the case where µ(Ω) = +∞.

Similar problems are considered for the Shepp sequence space which is a topological

metric additive group [2, 3, 4, 5]. We show that M∞ is the truncated L∞ space

given in Section 3. Furthermore M∞ is the open and closed subset of (L0, d0).

As a special case, we consider the case where Ω = N(natural numbers), µ(A) =

♯A = the cardinal number of A. Then the maximal topological linear subspace of
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L0(N) is the well-known ℓ∞, the Banach space of all bounded sequences, and ℓ∞ is

open and closed in L0(N).

In the case where µ(Ω) = +∞, the metric topology d0 of the convergence in

measure is very strong. (L0, d0) induces the truncated L∞ metric on the maximal

topological linear subspace M∞. If f /∈ M∞, then on the one-dimensional subspace

IRf := {tf | t ∈ IR}, (L0, d0) induces the discrete topology. In particular (L0, d0) is

not separable even if the measure space (Ω,A, µ) is separable.

2. The metric on L0(Ω, µ)

Definition 2.1. ([1, Chapter 7]) Let {fn} ⊂ L0 be a sequence of µ-measurable real

functions. Then {fn} converges in measure to a µ-measurable function f ∈ L0 if

and only if for every positive ε > 0,

µ (|fn − f | > ε) = µ ({ω ∈ Ω | |fn(ω)− f(ω)| > ε}) → 0(n → +∞).

The convergence in measure on L0 is characterized by the metric d0(f, g):

d0(f, g) = inf
α>0

arctan {α + µ (|f − g| > α)} ,

where arctan x : [0,+∞] → [0, π
2
] is the inverse function of tan θ : [0, π

2
] → [0,+∞].

Lemma 2.1. ([1, 7.1, Excercise 9]) d0 is a metric on L0. Furthermore we have fn
converges in measure to f if and only if d0(fn, f) → 0.

Lemma 2.2. (L0, d0) is a topological additive group.

Proof. The metric d0 is translation invariant, that is,

d0(f + h, g + h) = d0(f, g), d0(−f, 0) = d0(f, 0) for f, g, h ∈ L0.

So that the group operation

L0 × L0 → L0, (f, g) → f − g

is continuous. In fact, if d0(fn, f) → 0 and d0(gn, g) → 0, then we have d0(fn −
gn, f − g) = d0(fn − f, gn − g) ≦ d0(fn, f) + d0(gn, g) → 0(n → +∞). □

Remark. In the case where µ(Ω) < +∞, the following metric determines also the

same topology on L0:

inf
α>0

{α + µ(|f − g| > α)} .

— 148 —



3. Truncated L∞ subspace M∞ of L0

For a subset D ∈ A, the restricted L∞ seminorm, ∥f∥L∞(D) is defined by

∥f∥L∞(D) = Min{r | µ({ω ∈ D | |f(ω)| > r}) = 0} = ess. sup{f(ω) | ω ∈ D}.

Define |f |∞ by

|f |∞ = inf
A∈A

{
µ(A) + ∥f∥L∞(Ω\A)

}
.

Then |f |∞ is characterized as follows.

Lemma 3.1.

|f |∞ = inf
α>0

{α + µ(|f | > α)} .

Proof. First we show the inequality |f |∞ ≦ infα>0 {α + µ(|f | > α)} . If

infα>0 {α+ µ(|f | > α)} = +∞, the inequality is clear. So assume that k =

infα>0 {α+ µ(|f | > α)} < +∞. Then for every ε > 0, there exists α = α(ε) > 0

such that α + µ(|f | > α) < k + ε. It follows that µ(|f | > α) < k + ε − α. We set

A = {ω ∈ Ω | |f(ω)| > α}, then we have

µ(A) < k + ε− α, and ∥f∥L∞(Ω\A) ≦ α,

and it follows that

µ(A) + ∥f∥L∞(Ω\A) < k + ε.

Letting ε ↓ 0, we have |f |∞ ≦ k = infα>0 {α + µ(|f | > α)} .
Next we show the converse inequality |f |∞ ≧ infα>0 {α + µ(|f | > α)} . If |f |∞ =

+∞, then the inequality is clear. Assume ℓ = |f |∞ < +∞. Then for every ε > 0,

there exists A = A(ε) ∈ A such that µ(A) + ∥f∥L∞(Ω\A) < ℓ + ε, which implies

∥f∥L∞(Ω\A) < ℓ + ε − µ(A). Consequently we have µ({ω ∈ Ω\A | |f | > ℓ + ε −
µ(A)}) = 0, and

ℓ+ ε = ℓ+ ε− µ(A) + µ(A) + µ({ω ∈ Ω\A | |f | > ℓ+ ε− µ(A)})
≧ ℓ+ ε− µ(A) + µ({ω ∈ Ω | |f | > ℓ+ ε− µ(A)}).

So that we have infα>0 {α + µ(|f | > α)} ≦ ℓ + ε. Letting ε ↓ 0, it follows that

infα>0 {α+ µ(|f | > α)} ≦ ℓ = |f |∞. □

Definition 3.1. We call the set M∞ = {f ∈ L0 | |f |∞ < +∞} the truncated L∞

space and |f |∞ the truncated L∞ metric on M∞.

Remark. By Lemma 3.1, we have M∞ = {f ∈ L0 | infα>0 {α + µ(|f | > α)} <

+∞} = {f ∈ L0 | d0(f, 0) < π
2
}.

Theorem 3.2. |f − g|∞ is a translation invariant metric on M∞. The metric

topology |f − g|∞ is equivalent to the induced topology from (L0, d0) on M∞.
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Proof. Let f, g ∈ M∞. Then for every ε > 0 there exists A,B ∈ A such that

µ(A) + ∥f∥L∞(Ω\A) < |f |∞ + ε, µ(B) + ∥g∥L∞(Ω\B) < |g|∞ + ε.

This implies

µ(A ∪B) + ∥f − g∥L∞(Ω\A∪B) ≤ {µ(A) + ∥f∥L∞(Ω\A)}+ {µ(B) + ∥g∥L∞(Ω\B)}
< |f |∞ + |g|∞ + 2ε.

Consequently we have |f − g|∞ ≤ |f |∞ + |g|∞ + 2ε. Letting ε ↓ 0, we have the

triangle inequality. By Lemma 3.1, two metrics |f − g|∞ and d0 define the same

topology on M∞. In fact we have |f − g|∞ < ε if and only if d0(f, g) < arctan ε. □

Lemma 3.2. M∞ is a linear subspace of L0.

Proof. For f, g ∈ M∞, it follows that f−g ∈ M∞ since |f−g|∞ ≦ |f |∞+|g|∞ < +∞
(Theorem 3.2). This means that M∞ is an additive group. For every real number c

and f ∈ M∞, by

|cf |∞ = inf
A∈A

{
µ(A) + ∥cf∥L∞(Ω\A)

}
= inf

A∈A

{
µ(A) + |c|∥f∥L∞(Ω\A)

}
≦ (|c| ∨ 1)|f |∞ < +∞,

where a ∨ b = Max{a, b}, we have cf ∈ M∞. □

Remark. We have L∞(Ω, µ) ⊂ M∞. If µ(Ω) < +∞ then we have M∞ = L0.

Lemma 3.3. M∞ is an open and closed subset of (L0, d0).

Proof. By Lemma 3.1 we have M∞ = {f ∈ L0 | d0(f, 0) < π
2
}. So that M∞ is an

open subset of (L0, d0).

Let f ∈ L0 be arbitrary element in the closure M∞ of M∞ in (L0, d0). Then there

exist fn ∈ M∞, n = 1, 2, · · · , such that d0(fn, f) → 0(n → +∞), in particular, there

exists N such that d0(fN , f) <
π
2
. By the definition of d0, there exists an α > 0 such

that α + µ(|fN − f | > α) < +∞. By Lemma 3.1, it follows that |fN − f |∞ < +∞
and consequently we have f = (f − fN) + fN ∈ M∞. □

Theorem 3.3. Assume f /∈ M∞. Then the metric d0 induces the discrete topology

on the one-dimensional subspace IRf = {tf | t ∈ IR}.

Proof. We show that for every s, t ∈ IR with s ̸= t, d0(sf, tf) =
π
2
. Since f /∈ M∞,

for every A ∈ A it holds that µ(A) + ∥f∥L∞(Ω\A) = +∞. If there exists R > 0 such

that

µ(|s− t∥f | > R) < +∞
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then putting B = {|s − t∥f | > R}, it follows that µ(B) < +∞ and |s − t∥f | ≦ R

on Ω\B, which implies

∥f∥L∞(Ω\B) ≦
R

|s− t|
< +∞.

Consequently it follows that µ(B) + ∥f∥L∞(Ω\B) < +∞, which contradicts to f /∈
M∞. So that for every R > 0, we have µ(|s− t∥f | > R) = ∞ and hence

d0(sf, tf) = inf
ε>0

arctan{ε+ µ(|sf − tf | > ε)} = arctan(+∞) =
π

2
.

□

Example. For the Lebesgue measure µ on Ω = IR, the function f(x) = x does not

belong to M∞ by Lemma 3.1.

Lemma 3.4. Assume that f ∈ M∞. Then for every ε > 0 there exists A ∈ A such

that

µ(A) < ε, µ(A) + ∥f∥L∞(Ω\A) < +∞.

Proof. By the condition |f |∞ < +∞, there exists B ∈ A such that

µ(B) + ∥f∥L∞(Ω\B) < +∞.

Now we set Bn := {ω ∈ B | |f(ω)| ≥ n}. Since B ⊃ Bn ↓ ϕ and µ(B) < +∞, there

exists a natural number N such that µ(BN) < ε. Then we have

∥f∥L∞(Ω\BN ) ≤ ∥f∥L∞(Ω\B) + ∥f∥L∞(B\BN )

≤ ∥f∥L∞(Ω\B) +N < +∞.

So that the subset A := BN satisfies the required properties. □

Theorem 3.4. M∞ is the maximal topological linear subspace of L0.

Proof. (1) M∞ is a topological additive group by Lemma 2.2 and Theorem 3.2.

(2) The continuity of the scalar multiplication is proved as follows. Assume |tn −
t0| → 0, |fn − f0|∞ → 0. We shall prove that |tnfn − t0f0|∞ → 0. Since {tn} is a

bounded real sequence, we can assume also |tn| ≤ K < +∞. We have

|tnfn − t0f0|∞ ≤ |tn(fn − f0)|∞ + |(tn − t0)f0|∞.

The first term is estimated as

|tn(fn − f0)|∞ = inf
A∈A

{µ(A) + ∥tn(fn − f0)∥L∞(Ω\A)}

≤ inf
A∈A

{µ(A) +K∥fn − f0∥L∞(Ω\A)}

≤ (K ∨ 1) inf
A∈A

{µ(A) + ∥fn − f0∥L∞(Ω\A)}

= (K ∨ 1)|fn − f0|∞ → 0.
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We show the second term also converges to 0. For every ε > 0 by Lemma 3.4 there

exists Aε ∈ A such that

µ(Aε) < ε, µ(Aε) + ∥f0∥L∞(Ω\Aε) < +∞.

So that we have

|(tn − t0)f0|∞ ≤ µ(Aε) + ∥(tn − t0)f0∥L∞(Ω\Aε)

= µ(Aε) + |tn − t0∥|f0∥L∞(Ω\Aε).

It follows that limn→+∞ |(tn−t0)f0|∞ ≤ µ(Aε) ≤ ε, that is, limn→+∞ |(tn−t0)f0|∞ =

0.

(3) The maximality of M∞: Let S be a topological linear subspace of (L0, d0). We

show that S ⊂ M∞. Let f ∈ S, then by the continuity of the scalar multiplication

in S, we have
1

n
f → 0 in S (and in L0).

By Lemma 3.3 there exists N such that 1
N
f ∈ M∞, which implies f ∈ M∞. □

Remark. Assume f ∈ L0. Then we have f ∈ M∞ if and only if 1
n
f → 0 in (L0, d0).

Theorem 3.5. L∞(Ω) = M∞ if and only if inf{µ(A) | µ(A) > 0} > 0.

Proof. Assume that L∞(Ω) = M∞. Assume also that inf{µ(A) | µ(A) > 0} = 0,

that is, there exists An ∈ A such that µ(An) > 0, µ(An) → 0. We can assume that

{An} is disjoint, µ(An) > 0,
∑

n µ(An) < +∞. We consider the mapping

φ : IR∞ → L0(Ω, µ), φ(a) :=
∑
n

anχAn(ω).

By
∑

n µ(An) < +∞, we have φ(IR∞) ⊂ M∞. On the other hand for a = {an}, an :=

n, we have φ(a) /∈ L∞(Ω), so that L∞(Ω) ̸= M∞ (L∞(Ω) is a proper subset of M∞).

Conversely assume that α := inf{µ(A) | µ(A) > 0} > 0. Take arbitrary f ∈ M∞.

Then for every 0 < ε < α, there exists Aε ∈ A such that

µ(Aε) < ε, ∥f∥L∞(Ω\Aε) < +∞.

Since 0 < ε < α, we have µ(Aε) = 0 and ∥f∥L∞(Ω) < +∞，which shows f ∈
L∞(Ω). □

4. L0(N)

In this section we consider the case where Ω = N(natural numbers), µ(A) = ♯A =

the cardinal number of A. Denote by L0(N) for L0(N, µ). Remark that L0(N) =
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IR∞(= the set of all real sequences) as a set. For a = (an),b = (bn) ∈ L0(N) the

metric d0 is given by

d0(a,b) = inf
α>0

arctan{α + ♯{k | |ak − bk| > α}}.

In this case it follows that M∞ = ℓ∞.

Lemma 4.1. The basis of neighborhoods of 0 in L0(N) is given by the following

subsets:

Vε = {a ∈ L0(N) | ∥a∥ℓ∞ < ε}, 0 < ε < 1.

Proof. Assume 0 < ε < 1. We have

d0(a,0) < ε ⇐⇒ inf
α>0

arctan{α + ♯{k | |ak| > α}} < ε.

If arctan ♯{k | |ak| > α}} < ε < 1 then ♯{k | |ak| > α} = 0. So that in this case,

we have |ak| ≤ α for every k and a ∈ ℓ∞. Furthermore we have

inf
α>0

arctan{α + ♯{k | |ak| > α}} = ∥a∥ℓ∞ ,

which shows

d0(a,0) < ε ⇐⇒ d0(a,0) = ∥a∥ℓ∞ < ε.

□

Lemma 4.2. ℓ∞ is an open and closed subset of (L0(N), d0).

Proof. See Lemma 3.3. □

Theorem 4.1. Assume a /∈ ℓ∞. Then the metric d0 induces the discrete topology

on the one-dimensional subspace IRa = {ta | t ∈ IR}.

Proof. Since a /∈ ℓ∞, for every ε > 0 and every s ̸= t, ♯{k | |s − t∥ak| > ε} = +∞.

Consequently it holds that d0(sa, ta) = arctan(+∞) = π
2
. □

Theorem 4.2. ℓ∞ is the maximal topological linear subspace of L0(N).

Proof. See Theorem 3.4. □

Remark. The convergence of s sequence {a(n)} in (L0(N), d0) is as follows:

a(n) → a(0)

⇐⇒
∃N ; a(n) − a(0) ∈ ℓ∞(n ≥ N) and ∥a(n) − a(0)∥ℓ∞ → 0(n → +∞).
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