TOPOLOGICAL LINEAR SUBSPACE OF $L_0(\Omega, \mu)$ FOR THE INFINITE MEASURE μ

YOSHIAKI OKAZAKI

ABSTRACT. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. We shall characterize the maximal topological linear subspace M_{∞} of $L_0(\Omega, \mathcal{A}, \mu)$ in the case where $\mu(\Omega) = +\infty$. M_{∞} is the truncated L_{∞} space which is open and closed in $L_0(\Omega, \mathcal{A}, \mu)$. In the case where $\Omega = \mathbf{N}$ (natural numbers), $\mu(A) = \sharp A =$ the cardinal number of A, the maximal linear subspace of $L_0(\mathbf{N}, \mu)$ is ℓ_{∞} .

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Let $L_0 := L_0(\Omega, \mathcal{A}, \mu)$ be the space of all real valued μ -measurable functions on $(\Omega, \mathcal{A}, \mu)$. The topology of L_0 is given by the following translation invariant metric:

$$d_0(f,g) = \inf_{\alpha > 0} \arctan \left\{ \alpha + \mu \left(\left\{ \omega \in \Omega \mid |f(\omega) - g(\omega)| > \alpha \right\} \right) \right\}$$

for $f,g \in L_0$. Then $d_0(f_n,f) \to 0$ if and only if f_n converges to f in measure. The metric space (L_0,d_0) is a topological additive group but not necessarily a topological linear space in the case where $\mu(\Omega) = +\infty$. In fact, the scalar multiplication in not necessarily continuous. We remark that if $\mu(\Omega) < +\infty$, then (L_0,d_0) is a topological linear space.

The aim of this paper is to characterize the maximal topological linear subspace M_{∞} of (L_0, d_0) set theoretically and topologically in the case where $\mu(\Omega) = +\infty$. Similar problems are considered for the Shepp sequence space which is a topological metric additive group [2, 3, 4, 5]. We show that M_{∞} is the truncated L_{∞} space given in Section 3. Furthermore M_{∞} is the open and closed subset of (L_0, d_0) .

As a special case, we consider the case where $\Omega = \mathbf{N}$ (natural numbers), $\mu(A) = \sharp A = \text{the cardinal number of } A$. Then the maximal topological linear subspace of

 $^{2010\ \}textit{Mathematics Subject Classification}.\ \text{Primary 46A16, 46E30; Secondary 28A20}.$

Key words and phrases. Measurable function, L_0 , convergence in measure, topological linear space, truncated L_{∞} space.

This work is based on research 26400155 supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science.

 $L_0(\mathbf{N})$ is the well-known ℓ_{∞} , the Banach space of all bounded sequences, and ℓ_{∞} is open and closed in $L_0(\mathbf{N})$.

In the case where $\mu(\Omega) = +\infty$, the metric topology d_0 of the convergence in measure is very strong. (L_0, d_0) induces the truncated L_{∞} metric on the maximal topological linear subspace M_{∞} . If $f \notin M_{\infty}$, then on the one-dimensional subspace $\mathbb{R}f := \{tf \mid t \in \mathbb{R}\}, (L_0, d_0)$ induces the discrete topology. In particular (L_0, d_0) is not separable even if the measure space $(\Omega, \mathcal{A}, \mu)$ is separable.

2. The metric on $L_0(\Omega, \mu)$

Definition 2.1. ([1, Chapter 7]) Let $\{f_n\} \subset L_0$ be a sequence of μ -measurable real functions. Then $\{f_n\}$ converges in measure to a μ -measurable function $f \in L_0$ if and only if for every positive $\varepsilon > 0$,

$$\mu\left(|f_n - f| > \varepsilon\right) = \mu\left(\left\{\omega \in \Omega \mid |f_n(\omega) - f(\omega)| > \varepsilon\right\}\right) \to 0 (n \to +\infty).$$

The convergence in measure on L_0 is characterized by the metric $d_0(f,g)$:

$$d_0(f,g) = \inf_{\alpha > 0} \arctan \left\{ \alpha + \mu \left(|f - g| > \alpha \right) \right\},\,$$

where $\arctan x:[0,+\infty]\to[0,\frac{\pi}{2}]$ is the inverse function of $\tan\theta:[0,\frac{\pi}{2}]\to[0,+\infty]$.

Lemma 2.1. ([1, 7.1, Excercise 9]) d_0 is a metric on L_0 . Furthermore we have f_n converges in measure to f if and only if $d_0(f_n, f) \to 0$.

Lemma 2.2. (L_0, d_0) is a topological additive group.

Proof. The metric d_0 is translation invariant, that is,

$$d_0(f+h,q+h) = d_0(f,q), d_0(-f,0) = d_0(f,0)$$
 for $f,q,h \in L_0$.

So that the group operation

$$L_0 \times L_0 \to L_0$$
, $(f, q) \to f - q$

is continuous. In fact, if $d_0(f_n, f) \to 0$ and $d_0(g_n, g) \to 0$, then we have $d_0(f_n - g_n, f - g) = d_0(f_n - f, g_n - g) \le d_0(f_n, f) + d_0(g_n, g) \to 0 (n \to +\infty)$.

Remark. In the case where $\mu(\Omega) < +\infty$, the following metric determines also the same topology on L_0 :

$$\inf_{\alpha>0} \left\{ \alpha + \mu(|f-g| > \alpha) \right\}.$$

3. Truncated L_{∞} subspace M_{∞} of L_0

For a subset $D \in \mathcal{A}$, the restricted L_{∞} seminorm, $||f||_{L_{\infty}(D)}$ is defined by

$$||f||_{L_{\infty}(D)} = \min\{r \mid \mu(\{\omega \in D \mid |f(\omega)| > r\}) = 0\} = \text{ess. sup}\{f(\omega) \mid \omega \in D\}.$$

Define $|f|_{\infty}$ by

$$|f|_{\infty} = \inf_{A \in \mathcal{A}} \{ \mu(A) + ||f||_{L_{\infty}(\Omega \setminus A)} \}.$$

Then $|f|_{\infty}$ is characterized as follows.

Lemma 3.1.

$$|f|_{\infty} = \inf_{\alpha > 0} \left\{ \alpha + \mu(|f| > \alpha) \right\}.$$

Proof. First we show the inequality $|f|_{\infty} \leq \inf_{\alpha>0} \{\alpha + \mu(|f| > \alpha)\}$. If $\inf_{\alpha>0} \{\alpha + \mu(|f| > \alpha)\} = +\infty$, the inequality is clear. So assume that $k = \inf_{\alpha>0} \{\alpha + \mu(|f| > \alpha)\} < +\infty$. Then for every $\varepsilon > 0$, there exists $\alpha = \alpha(\varepsilon) > 0$ such that $\alpha + \mu(|f| > \alpha) < k + \varepsilon$. It follows that $\mu(|f| > \alpha) < k + \varepsilon - \alpha$. We set $A = \{\omega \in \Omega \mid |f(\omega)| > \alpha\}$, then we have

$$\mu(A) < k + \varepsilon - \alpha$$
, and $||f||_{L_{\infty}(\Omega \setminus A)} \leq \alpha$,

and it follows that

$$\mu(A) + ||f||_{L_{\infty}(\Omega \setminus A)} < k + \varepsilon.$$

Letting $\varepsilon \downarrow 0$, we have $|f|_{\infty} \leq k = \inf_{\alpha > 0} \{\alpha + \mu(|f| > \alpha)\}$.

Next we show the converse inequality $|f|_{\infty} \geq \inf_{\alpha>0} \{\alpha + \mu(|f| > \alpha)\}$. If $|f|_{\infty} = +\infty$, then the inequality is clear. Assume $\ell = |f|_{\infty} < +\infty$. Then for every $\varepsilon > 0$, there exists $A = A(\varepsilon) \in \mathcal{A}$ such that $\mu(A) + \|f\|_{L_{\infty}(\Omega \setminus A)} < \ell + \varepsilon$, which implies $\|f\|_{L_{\infty}(\Omega \setminus A)} < \ell + \varepsilon - \mu(A)$. Consequently we have $\mu(\{\omega \in \Omega \setminus A \mid |f| > \ell + \varepsilon - \mu(A)\}) = 0$, and

$$\ell + \varepsilon = \ell + \varepsilon - \mu(A) + \mu(A) + \mu(\{\omega \in \Omega \setminus A \mid |f| > \ell + \varepsilon - \mu(A)\})$$

$$\geq \ell + \varepsilon - \mu(A) + \mu(\{\omega \in \Omega \mid |f| > \ell + \varepsilon - \mu(A)\}).$$

So that we have $\inf_{\alpha>0} \{\alpha + \mu(|f| > \alpha)\} \leq \ell + \varepsilon$. Letting $\varepsilon \downarrow 0$, it follows that $\inf_{\alpha>0} \{\alpha + \mu(|f| > \alpha)\} \leq \ell = |f|_{\infty}$.

Definition 3.1. We call the set $M_{\infty} = \{ f \in L_0 \mid |f|_{\infty} < +\infty \}$ the truncated L_{∞} space and $|f|_{\infty}$ the truncated L_{∞} metric on M_{∞} .

Remark. By Lemma 3.1, we have $M_{\infty} = \{ f \in L_0 \mid \inf_{\alpha>0} \{ \alpha + \mu(|f| > \alpha) \} < +\infty \} = \{ f \in L_0 \mid d_0(f,0) < \frac{\pi}{2} \}.$

Theorem 3.2. $|f - g|_{\infty}$ is a translation invariant metric on M_{∞} . The metric topology $|f - g|_{\infty}$ is equivalent to the induced topology from (L_0, d_0) on M_{∞} .

Proof. Let $f, g \in M_{\infty}$. Then for every $\varepsilon > 0$ there exists $A, B \in \mathcal{A}$ such that

$$\mu(A) + \|f\|_{L_{\infty}(\Omega \setminus A)} < |f|_{\infty} + \varepsilon, \ \mu(B) + \|g\|_{L_{\infty}(\Omega \setminus B)} < |g|_{\infty} + \varepsilon.$$

This implies

$$\mu(A \cup B) + \|f - g\|_{L_{\infty}(\Omega \setminus A \cup B)} \leq \{\mu(A) + \|f\|_{L_{\infty}(\Omega \setminus A)}\} + \{\mu(B) + \|g\|_{L_{\infty}(\Omega \setminus B)}\}$$
$$< |f|_{\infty} + |g|_{\infty} + 2\varepsilon.$$

Consequently we have $|f - g|_{\infty} \leq |f|_{\infty} + |g|_{\infty} + 2\varepsilon$. Letting $\varepsilon \downarrow 0$, we have the triangle inequality. By Lemma 3.1, two metrics $|f - g|_{\infty}$ and d_0 define the same topology on M_{∞} . In fact we have $|f - g|_{\infty} < \varepsilon$ if and only if $d_0(f, g) < \arctan \varepsilon$. \square

Lemma 3.2. M_{∞} is a linear subspace of L_0 .

Proof. For $f, g \in M_{\infty}$, it follows that $f - g \in M_{\infty}$ since $|f - g|_{\infty} \leq |f|_{\infty} + |g|_{\infty} < +\infty$ (Theorem 3.2). This means that M_{∞} is an additive group. For every real number c and $f \in M_{\infty}$, by

$$|cf|_{\infty} = \inf_{A \in \mathcal{A}} \left\{ \mu(A) + ||cf||_{L_{\infty}(\Omega \setminus A)} \right\}$$
$$= \inf_{A \in \mathcal{A}} \left\{ \mu(A) + |c|||f||_{L_{\infty}(\Omega \setminus A)} \right\}$$
$$\leq (|c| \vee 1)|f|_{\infty} < +\infty,$$

where $a \vee b = \text{Max}\{a, b\}$, we have $cf \in M_{\infty}$.

Remark. We have $L_{\infty}(\Omega, \mu) \subset M_{\infty}$. If $\mu(\Omega) < +\infty$ then we have $M_{\infty} = L_0$.

Lemma 3.3. M_{∞} is an open and closed subset of (L_0, d_0) .

Proof. By Lemma 3.1 we have $M_{\infty} = \{ f \in L_0 \mid d_0(f,0) < \frac{\pi}{2} \}$. So that M_{∞} is an open subset of (L_0, d_0) .

Let $f \in L_0$ be arbitrary element in the closure \overline{M}_{∞} of M_{∞} in (L_0, d_0) . Then there exist $f_n \in M_{\infty}, n = 1, 2, \cdots$, such that $d_0(f_n, f) \to 0 (n \to +\infty)$, in particular, there exists N such that $d_0(f_N, f) < \frac{\pi}{2}$. By the definition of d_0 , there exists an $\alpha > 0$ such that $\alpha + \mu(|f_N - f| > \alpha) < +\infty$. By Lemma 3.1, it follows that $|f_N - f|_{\infty} < +\infty$ and consequently we have $f = (f - f_N) + f_N \in M_{\infty}$.

Theorem 3.3. Assume $f \notin M_{\infty}$. Then the metric d_0 induces the discrete topology on the one-dimensional subspace $\mathbb{R}f = \{tf \mid t \in \mathbb{R}\}.$

Proof. We show that for every $s, t \in \mathbb{R}$ with $s \neq t$, $d_0(sf, tf) = \frac{\pi}{2}$. Since $f \notin M_{\infty}$, for every $A \in \mathcal{A}$ it holds that $\mu(A) + \|f\|_{L_{\infty}(\Omega \setminus A)} = +\infty$. If there exists R > 0 such that

$$\mu(|s - t||f| > R) < +\infty$$

then putting $B = \{|s - t||f| > R\}$, it follows that $\mu(B) < +\infty$ and $|s - t||f| \le R$ on $\Omega \setminus B$, which implies

$$||f||_{L_{\infty}(\Omega\setminus B)} \le \frac{R}{|s-t|} < +\infty.$$

Consequently it follows that $\mu(B) + \|f\|_{L_{\infty}(\Omega \setminus B)} < +\infty$, which contradicts to $f \notin M_{\infty}$. So that for every R > 0, we have $\mu(|s - t||f| > R) = \infty$ and hence

$$d_0(sf, tf) = \inf_{\varepsilon > 0} \arctan\{\varepsilon + \mu(|sf - tf| > \varepsilon)\} = \arctan(+\infty) = \frac{\pi}{2}$$

Example. For the Lebesgue measure μ on $\Omega = \mathbb{R}$, the function f(x) = x does not belong to M_{∞} by Lemma 3.1.

Lemma 3.4. Assume that $f \in M_{\infty}$. Then for every $\varepsilon > 0$ there exists $A \in \mathcal{A}$ such that

$$\mu(A) < \varepsilon, \ \mu(A) + ||f||_{L_{\infty}(\Omega \setminus A)} < +\infty.$$

Proof. By the condition $|f|_{\infty} < +\infty$, there exists $B \in \mathcal{A}$ such that

$$\mu(B) + ||f||_{L_{\infty}(\Omega \setminus B)} < +\infty.$$

Now we set $B_n := \{ \omega \in B \mid |f(\omega)| \ge n \}$. Since $B \supset B_n \downarrow \phi$ and $\mu(B) < +\infty$, there exists a natural number N such that $\mu(B_N) < \varepsilon$. Then we have

$$||f||_{L_{\infty}(\Omega \backslash B_N)} \leq ||f||_{L_{\infty}(\Omega \backslash B)} + ||f||_{L_{\infty}(B \backslash B_N)}$$

$$\leq ||f||_{L_{\infty}(\Omega \backslash B)} + N < +\infty.$$

So that the subset $A := B_N$ satisfies the required properties.

Theorem 3.4. M_{∞} is the maximal topological linear subspace of L_0 .

Proof. (1) M_{∞} is a topological additive group by Lemma 2.2 and Theorem 3.2. (2) The continuity of the scalar multiplication is proved as follows. Assume $|t_n - t_0| \to 0$, $|f_n - f_0|_{\infty} \to 0$. We shall prove that $|t_n f_n - t_0 f_0|_{\infty} \to 0$. Since $\{t_n\}$ is a bounded real sequence, we can assume also $|t_n| \le K < +\infty$. We have

$$|t_n f_n - t_0 f_0|_{\infty} \le |t_n (f_n - f_0)|_{\infty} + |(t_n - t_0) f_0|_{\infty}.$$

The first term is estimated as

$$|t_{n}(f_{n} - f_{0})|_{\infty} = \inf_{A \in \mathcal{A}} \{\mu(A) + ||t_{n}(f_{n} - f_{0})||_{L_{\infty}(\Omega \setminus A)} \}$$

$$\leq \inf_{A \in \mathcal{A}} \{\mu(A) + K||f_{n} - f_{0}||_{L_{\infty}(\Omega \setminus A)} \}$$

$$\leq (K \vee 1) \inf_{A \in \mathcal{A}} \{\mu(A) + ||f_{n} - f_{0}||_{L_{\infty}(\Omega \setminus A)} \}$$

$$= (K \vee 1)|f_{n} - f_{0}|_{\infty} \to 0.$$

-151 -

We show the second term also converges to 0. For every $\varepsilon > 0$ by Lemma 3.4 there exists $A_{\varepsilon} \in \mathcal{A}$ such that

$$\mu(A_{\varepsilon}) < \varepsilon, \ \mu(A_{\varepsilon}) + \|f_0\|_{L_{\infty}(\Omega \setminus A_{\varepsilon})} < +\infty.$$

So that we have

$$|(t_n - t_0)f_0|_{\infty} \leq \mu(A_{\varepsilon}) + ||(t_n - t_0)f_0||_{L_{\infty}(\Omega \setminus A_{\varepsilon})}$$
$$= \mu(A_{\varepsilon}) + |t_n - t_0|||f_0||_{L_{\infty}(\Omega \setminus A_{\varepsilon})}.$$

It follows that $\lim_{n\to+\infty} |(t_n-t_0)f_0|_{\infty} \le \mu(A_{\varepsilon}) \le \varepsilon$, that is, $\lim_{n\to+\infty} |(t_n-t_0)f_0|_{\infty} = 0$.

(3) The maximality of M_{∞} : Let S be a topological linear subspace of (L_0, d_0) . We show that $S \subset M_{\infty}$. Let $f \in S$, then by the continuity of the scalar multiplication in S, we have

$$\frac{1}{n}f \to 0 \text{ in } S \text{ (and in } L_0).$$

By Lemma 3.3 there exists N such that $\frac{1}{N}f \in M_{\infty}$, which implies $f \in M_{\infty}$.

Remark. Assume $f \in L_0$. Then we have $f \in M_{\infty}$ if and only if $\frac{1}{n}f \to 0$ in (L_0, d_0) .

Theorem 3.5. $L_{\infty}(\Omega) = M_{\infty}$ if and only if $\inf\{\mu(A) \mid \mu(A) > 0\} > 0$.

Proof. Assume that $L_{\infty}(\Omega) = M_{\infty}$. Assume also that $\inf\{\mu(A) \mid \mu(A) > 0\} = 0$, that is, there exists $A_n \in \mathcal{A}$ such that $\mu(A_n) > 0$, $\mu(A_n) \to 0$. We can assume that $\{A_n\}$ is disjoint, $\mu(A_n) > 0$, $\sum_n \mu(A_n) < +\infty$. We consider the mapping

$$\varphi: \mathbb{R}^{\infty} \to L_0(\Omega, \mu), \quad \varphi(\mathbf{a}) := \sum_n a_n \chi_{A_n}(\omega).$$

By $\sum_n \mu(A_n) < +\infty$, we have $\varphi(\mathbb{R}^{\infty}) \subset M_{\infty}$. On the other hand for $\mathbf{a} = \{a_n\}, a_n := n$, we have $\varphi(\mathbf{a}) \notin L_{\infty}(\Omega)$, so that $L_{\infty}(\Omega) \neq M_{\infty}$ ($L_{\infty}(\Omega)$ is a proper subset of M_{∞}). Conversely assume that $\alpha := \inf\{\mu(A) \mid \mu(A) > 0\} > 0$. Take arbitrary $f \in M_{\infty}$. Then for every $0 < \varepsilon < \alpha$, there exists $A_{\varepsilon} \in \mathcal{A}$ such that

$$\mu(A_{\varepsilon}) < \varepsilon, \ \|f\|_{L_{\infty}(\Omega \setminus A_{\varepsilon})} < +\infty.$$

Since $0 < \varepsilon < \alpha$, we have $\mu(A_{\varepsilon}) = 0$ and $||f||_{L_{\infty}(\Omega)} < +\infty$, which shows $f \in L_{\infty}(\Omega)$.

4. $L_0(\mathbf{N})$

In this section we consider the case where $\Omega = \mathbf{N}(\text{natural numbers})$, $\mu(A) = \sharp A = \text{the cardinal number of } A$. Denote by $L_0(\mathbf{N})$ for $L_0(\mathbf{N}, \mu)$. Remark that $L_0(\mathbf{N}) = \mathbb{N}$

 $\mathbb{R}^{\infty}(=\text{the set of all real sequences})$ as a set. For $\mathbf{a}=(a_n), \mathbf{b}=(b_n)\in L_0(\mathbf{N})$ the metric d_0 is given by

$$d_0(\mathbf{a}, \mathbf{b}) = \inf_{\alpha > 0} \arctan\{\alpha + \sharp\{k \mid |a_k - b_k| > \alpha\}\}.$$

In this case it follows that $M_{\infty} = \ell_{\infty}$.

Lemma 4.1. The basis of neighborhoods of 0 in $L_0(\mathbf{N})$ is given by the following subsets:

$$V_{\varepsilon} = \{ \mathbf{a} \in L_0(\mathbf{N}) \mid \|\mathbf{a}\|_{\ell_{\infty}} < \varepsilon \}, \quad 0 < \varepsilon < 1.$$

Proof. Assume $0 < \varepsilon < 1$. We have

$$d_0(\mathbf{a}, \mathbf{0}) < \varepsilon \iff \inf_{\alpha > 0} \arctan\{\alpha + \sharp\{k \mid |a_k| > \alpha\}\} < \varepsilon.$$

If $\arctan \sharp \{k \mid |a_k| > \alpha\}\} < \varepsilon < 1$ then $\sharp \{k \mid |a_k| > \alpha\} = 0$. So that in this case, we have $|a_k| \le \alpha$ for every k and $\mathbf{a} \in \ell_{\infty}$. Furthermore we have

$$\inf_{\alpha>0} \arctan\{\alpha + \sharp\{k \mid |a_k| > \alpha\}\} = \|\mathbf{a}\|_{\ell_{\infty}},$$

which shows

$$d_0(\mathbf{a}, \mathbf{0}) < \varepsilon \iff d_0(\mathbf{a}, \mathbf{0}) = \|\mathbf{a}\|_{\ell \infty} < \varepsilon.$$

Lemma 4.2. ℓ_{∞} is an open and closed subset of $(L_0(\mathbf{N}), d_0)$.

Proof. See Lemma 3.3.
$$\square$$

Theorem 4.1. Assume $\mathbf{a} \notin \ell_{\infty}$. Then the metric d_0 induces the discrete topology on the one-dimensional subspace $\mathbb{R}\mathbf{a} = \{t\mathbf{a} \mid t \in \mathbb{R}\}.$

Proof. Since $\mathbf{a} \notin \ell_{\infty}$, for every $\varepsilon > 0$ and every $s \neq t$, $\sharp \{k \mid |s - t|| a_k| > \varepsilon\} = +\infty$. Consequently it holds that $d_0(s\mathbf{a}, t\mathbf{a}) = \arctan(+\infty) = \frac{\pi}{2}$.

Theorem 4.2. ℓ_{∞} is the maximal topological linear subspace of $L_0(\mathbf{N})$.

Proof. See Theorem 3.4.
$$\Box$$

Remark. The convergence of s sequence $\{\mathbf{a}^{(n)}\}$ in $(L_0(\mathbf{N}), d_0)$ is as follows: $\mathbf{a}^{(n)} \to \mathbf{a}^{(0)}$

$$\iff \exists N ; \mathbf{a}^{(n)} - \mathbf{a}^{(0)} \in \ell_{\infty}(n \ge N) \text{ and } \|\mathbf{a}^{(n)} - \mathbf{a}^{(0)}\|_{\ell_{\infty}} \to 0(n \to +\infty).$$

References

- [1] G. de Barra, *Introduction to Measure Theory*, Van Nostrand Reinhold Company, 1974.
- [2] A. Honda, Y. Okazaki and H. Sato, Doubling condition and linearity of the sequence space $\Lambda_p(f)$, Kyushu J. Math. **65** (2011), 335–347.
- [3] A. Honda, Y. Okazaki and H. Sato, Metrics on the sequence space $\Lambda_p(f)$, Kyushu J. Math. **66** (2012), 365–374.
- [4] A. Honda, Y. Okazaki and H. Sato, Approximation and the linearity of the Shepp space, Kyushu J. Math. **69** (2015), 173–194.
- [5] G. Nakamura and K. Hashimoto, On the linearity of some sets of sequences defined by L_p -functions and L_1 -functions determining ℓ_1 , Proc. Japan Acad. Ser. A 87 (2011), 77–82.

(Yoshiaki Okazaki) Fuzzy Logic Systems Institure(FLSI), Iizuka, Fukuoka 820-0067, Japan *E-mail address*: okazaki@flsi.or.jp

Received February 1, 2016 Revised September 7, 2016