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MULTIPLIERS OF A WANDERING SUBSPACE FOR
A SHIFT INVARIANT SUBSPACE II

TAKAHIKO NAKAZI

Abstract. Let M be a shift invariant subspace in the two variable Hardy space

H2(Γz × Γw). We study M(Mz) = {ϕ ∈ H∞(Γz × Γw) : ϕMz ⊆ Mz} where

Mz = M ⊖ zM . We give several sufficient conditions for M(Mz) = H∞(Γw)

where H∞(Γw) is the one variable Hardy space.

1. Introduction

Let Γ2 be the torus that is the Cartesian product of two unit circle Γ in C. For

1 ≤ p ≤ ∞, the usual Lebesgue spaces, with respect to the Lebesgue measure m on

Γ2, are denoted by Lp = Lp(Γ2), and Hp = Hp(Γ2) is the space of all f in Lp whose

Fourier coefficients

f̂(j, ℓ) =

∫
Γ2

f(z, w)z̄jw̄ℓdm(z, w)

are zero as soon as at least one component of (j, ℓ) is negative. Then Hp is called

a Hardy space. As Γ2 = Γz × Γw, H
p(Γz) and Hp(Γw) denote one variable Hardy

spaces. H∞(Γq) (or L
∞(Γq)) is a weak ∗ closure of polynomials of q (or q and q̄).

A closed subspace M ⊆ H2 is said to be (shift) invariant if zM ⊆M and wM ⊆
M . Suppose ζ = ζ(z, w) is in H∞ and Tζf = ζf (f ∈ H2). Put Vζ = Tζ | M .

Then M = RanVζ ⊕KerV ∗
ζ where RanVζ denotes the closure of the range of Vζ and

KerV ∗
ζ = the kernel of V ∗

ζ . We write Mζ = KerV ∗
ζ and [ζM ] = RanVζ . We call Mζ

a wandering subspace and M(Mζ) = {f ∈ H∞ : fMζ ⊆ Mζ} the set of multipliers

of Mζ . In this paper we assume Mζ ̸= ⟨0⟩.
In the previous paper [5], we considered M(Mζ) when ζ = z. Then we show

M(Mz) = H∞(Γw) when M(Mz) ∩ H∞(Γw) ̸= C. K. J. Izuchi pointed out me

privately that the proof of Lemma 2 in the previous paper [5] has a gap. Lemma 2

can be proved only in a very special case. Hence Theorem in [5] has not shown yet

in general. Therefore we would like to study the following problem for a nonzero

invariant subspace M in H2.
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I. If M(Mz) contains a nonconstant function then M(Mz) = H∞(Γw).

II. It is true that M(Mz) ∩M(Mw) = C.

Of course, I shows II.

In this paper, we use the following notations. Put Kz = {f ∈ Mz : wℓf ∈ Mz

for ℓ = 1, 2, · · · }. If Kz = Mz then M(Mz) contains w. Z denotes the set of all

integers and Z+ denotes the set of nonnegative integers. If ϕ is a function in H∞

with absolute value one, ϕ is called inner.

2. M(Mζ) for general ζ

In this section, M(Mζ) is studied for arbitrary ζ = ζ(z, w) in H∞.

Proposition 1. Let ϕ and ψ be nonconstant functions in H∞.

(1) If V ∗
ψVϕ = VϕV

∗
ψ then ϕ ∈ M(Mψ) and ψ ∈ M(Mϕ).

(2) Suppose ϕ or ψ is inner. Then if ϕ ∈ M(Mψ) and ψ ∈ M(Mϕ) then

V ∗
ψVϕ = VϕV

∗
ψ .

Proof. (1) Since V ∗
ψVϕ = VϕV

∗
ψ and V ∗

ϕ Vψ = VψV
∗
ϕ , it is clear because ϕKerV ∗

ψ ⊆
KerV ∗

ψ and ψKerV ∗
ϕ ⊆ KerV ∗

ϕ .

(2) Let ψ be inner. If ϕ is in M(Mψ) then V ∗
ψVϕ = VϕV

∗
ψ on KerV ∗

ψ . While,

V ∗
ψVϕ = VϕV

∗
ψ holds clearly on ψM . This shows (2). □

Theorem 1. Let ζ = ζ(z, w) be a function in H∞. Then M(Mζ) ∩ H∞(Γw) =

H∞(Γw) or C.

Proof. If ζ is a constant c then Mζ =M or Mζ = {0}. Hence M(Mζ) = H∞ and so

M(Mζ)∩H∞(Γw) = H∞(Γw). Suppose ζ is nonconstant and M(Mζ)∩H∞(Γw) ̸=
C. If f is a nonconstant function in M(Mζ) ∩ H∞(Γw) then f(w) − f(0) belongs

to M(Mζ) ∩ H∞(Γw) because f(0) ∈ M(Mζ). Let f(w) − f(0) = wh(w) and

h ∈ H∞(Γw). If g is a function in Mζ then whg ∈ Mζ and so whg ⊥ wζM . This

implies that hg ⊥ ζM and so hg ∈ Mζ . Since g is arbitrary, h ∈ M(Mζ) and so

(f(w)−f(0))/w belongs to M(Mζ)∩H∞(Γw). Since M(Mζ)∩H∞(Γw) is a nonzero

weak ∗ closed subalgebra in H∞(Γw) which contains constants, by [1, Theorem 1]

M(Mζ) ∩H∞(Γw) = H∞(Γw). □

Corollary 1. Let ζ = ζ(z, w) be a function in H∞.

(1) If ϕ = ϕ(w) is a nonconstant function in M(Mζ), then M(Mζ)∩H∞(Γw) =

H∞(Γw).

(2) If ϕ = ϕ(w) is a nonconstant function and ζ = ζ(z), then the inner part of

ζ belongs to M(Mw) and w belongs to M(Mζ).
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Proof. (1) It is clear by Theorem 1.

(2) If ζ = ζ(z) then we can write ζ = q(z)h(z) where q is inner and h is outer.

Then M(Mζ) = M(Mq) because h is outer. By (1) w ∈ M(Mq), and so by

Proposition 1 V ∗
wVq = VqV

∗
w and q belongs to M(Mw). □

3. One variable function and M(Mz)

In this section, we study M(Mz) which contains nonconstant one variable functions

in some sense. Corollary 2 is known in [3].

Theorem 2. Let M be a nonzero invariant subspace.

(1) M(Mz) does not contain any nonconstant function f with f = f(z).

(2) If M(Mz) contains a nonconstant function f with f = f(w) then M(Mz) =

H∞(Γw).

Proof. (1) Suppose f is a nonconstant function in M(Mz) ∩ L∞(Γz). If g ∈ Mz

then |g|2 ⊥ zkf ℓ for k ∈ H∞(Γz) and ℓ ≥ 0. Hence for any ℓ, t ≥ 0 and any

k, h ∈ H∞(Γz), z̄|g|2 is orthogonal to kf ℓ + hf t and (kf ℓ)(hf t). Therefore z̄|g|2
is orthogonal to the weak ∗ closed algebra generated by H∞(Γz) and f̄ . Wermer’s

maximality theorem in [2] shows such an algebra is just L∞(Γz). Thus z̄|g|2 is

orthogonal to L∞(Γz) and so g ≡ 0. This contradiction shows (1).

(2) By Corollary 1, M(Mz)∩H∞(Γw) = H∞(Γw). By [4, Theorem 5] M = QH2

for some inner Q and so Mz = QH2(Γw). Thus M(Mz) = H∞(Γw). □

Corollary 2. Let ζ = ζ(z) be in H∞(Γz). If M(Mζ)∩H∞(Γw) ̸= C then M(Mζ) =

H∞(Γw).

Proof. This is a result of Corollary 1 and (2) of Theorem 2. □

Corollary 3. Let M be a nonzero invariant subspace. If ϕ(z, w) = ϕ1(z, w)ϕ2(w)

and ϕ2 is nonconstant, ϕ1 is inner and ϕ is in M(Mz) then M(Mz) = H∞(Γw).

Proof. If f ∈ Mz then ϕ1ϕ2f ∈ Mz and so ϕ1ϕ2f⊥zϕ1M . Hence ϕ2f ∈ Mz and so

ϕ2 belongs to M(Mz). (2) of Theorem 2 implies the corollary. □

Theorem 3. Let M be a nonzero invariant subspace. If w̄ is contained in the weak

∗ closed subalgebra generated by the complex conjugate of M(Mz) and H∞, then

M(Mz) = H∞(Γw).

Proof. If k ∈ Mz and f ∈ M(Mz) then f ℓk ∈ Mz for any ℓ ≥ 0. Hence |k|2 is

orthogonal to f̄ ℓzH∞ for ℓ ≥ 0. By the hypothesis, w̄t can be approximated by∑
t,ℓ≥0 f̄

ℓ
t gℓt where ft ∈ M(Mz) and gℓt ∈ H∞. Therefore |k|2 is orthogonal to

w̄tzH∞ for t ≥ 0. Hence |k(z, w)|2 = u(w) for some u ∈ L1(Γw) and so there exists
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an outer function h1 = h1(w) in H
2(Γw) such that |k(z, w)|2 = |h1(w)|2. Since ϕk ∈

Mz for any ϕ ∈ M(Mz), by the proof above |ϕ(z, w)k(z, w)|2 = |h2(w)| for some

outer function h2 = h2(w). Hence k(z, w) = q1(z, w)h1(w) and ϕ(z, w)k(z, w) =

q2(z, w)h2(w) where qj is inner in H∞ (j = 1, 2). Therefore ϕ = q2h2/q1h1. If

q = q2q̄1, h = h2/h1 and ϕ = qh then q is inner and h is outer in H2(Γw). Thus

qh ∈ M(Mz) and so h ∈ M(Mz). If h is nonconstant, by (2) of Theorem 2

M(Mz) = H∞(Γw). Now we may assume that any nonzero functions in M(Mz)

are scalar multiples of inner functions. Thus M(Mζ) = ⟨q⟩. Since M(Mζ) is an

algebra, this shows M(Mζ) = C. □

Corollary 4. Let M be a nonzero invariant subspace. If ϕ(z, w) = f(zw) and f is

nonconstant in H∞(Γ), and ϕ is in M(Mz) then M(Mz) = H∞(Γw).

Proof. The weak ∗ closed algebra [f(zw), H∞] generated by f(zw) and H∞ contains

[f(zw), H∞(Γzw)]. Since H∞(Γzw) is maximal in L∞(Γzw) as a weak star closed

subalgebra by [2], [f(zw), H∞(Γzw)] contains zw. Hence [f̄ , H∞] contains w̄. Now

Theorem 2 shows the corollary. □

4. Kz and M(Mz)

If Kz = Mz then M(Mz) contains w and so (2) of Theorem 2 shows M(Mz) =

H∞(Γw). Hence we are interested in when Kz ̸=Mz.

Theorem 4. Let M be a nonzero invariant subspace in H2. If Kz ̸= {0} and

M(Mz) ̸= C then M(Mz) = H∞(Γw).

Proof. Since Kz ̸= {0}, there exists f ∈Mz such that wℓf belongs toMz for ℓ ∈ Z+.

Then wℓf ⊥ fwmzt for m ∈ Z+ and t ∈ Z+ \ {0}. Thus∫
|f |2wsztdm = 0 (s ∈ Z, t ∈ Z+ \ {0}).

Therefore F = |f |2 ∈ L1(Γw) and logF ∈ L1(Γw). Hence F = |h|2 for some outer

h ∈ H2(Γw). Then f = qh and q is an inner function in H∞.

Since wℓ(qh) ∈ Mz, qH
2(Γw) ⊂ Mz. Let ϕ be in M(Mz). Then ϕqH2(Γw) is

orthogonal to ztϕqH2(Γw) for t ∈ Z+\{0}. Therefore |ϕ|2 ⊥ ztL1(Γw) for t ∈ Z+\{0}
and so |ϕ|2 ∈ L∞(Γw). There exists an outer function k inH∞(Γw) such that ϕ = Qk

and Q is an inner function in H∞. By Corollary 3 k = k(w) belongs to M(Mz) and

so (2) of Theorem 2 shows M(Mz) = H∞(Γw). □

5. Intersection of M(Mz) and M(Mw)

If M = qH2 and q = q(z, w) is inner, then M(Mz) = H∞(Γw) and M(Mw) =

H∞(Γz). Hence M(Mz) ∩M(Mw) = C. If M = q1H
2 + q2H

2, and q1 = q1(z) and
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q2 = q2(w) are inner, then M(Mz) = C and M(Mw) = C by [4, Example 3]. Hence

M(Mz) ∩M(Mw) = C.

Lemma 1. Suppose M is a nonzero invariant subspace in H2. If M is orthogonal

to an invariant subspace M ′ in H2 then M ′ = {0}.

Proof. It is easy to see. □

Theorem 5. Let M be a nonzero invariant subspace. If ϕ is a nonzero function in

M(Mz) ∩M(Mw) then [ϕM ] =M . Hence [ϕMz] =Mz and [ϕMw] =Mw.

Proof. If ϕ ∈ M(Mz) then by Proposition 1 VϕV
∗
z = V ∗

z Vϕ and so V ∗
ϕ Vz = VzV

∗
ϕ .

This shows zMϕ ⊆ Mϕ. Similarly ϕ ∈ M(Mw) shows wMϕ ⊆ Mϕ. Hence Mϕ

and [ϕM ] are invariant subspaces in H2, and Mϕ is orthogonal to [ϕM ]. Therefore

Lemma 1 shows [ϕM ] =M . Since ϕMz ⊂Mz and ϕzM ⊂ zM, ϕM = ϕMz⊕ϕzM .

This shows [ϕMz] =Mz because [ϕM ] =M and so [ϕzM ] = zM . □

Corollary 5. Suppose ϕ is a nonzero function in M(Mz) ∩M(Mw). If ϕ has an

inner factor then its part is constant.

Proof. Since ϕ ̸= 0, by Theorem 5 [ϕM ] =M . This shows the corollary. □

Theorem 6. Let M be a nonzero invariant subspace. If Mz ∩ H2(Γw) ̸= {0} and

Mw ∩H2(Γz) ̸= {0} then M(Mz) ∩M(Mw) = C.

Proof. If f is a nonzero function in Mz ∩H2(Γw) then for any n ≥ 0 wnf ∈M and

wnf ⊥ zM because z̄wnf ⊥ H2. Hence wnf ∈ Mz for any n ≥ 0 and so Kz ̸= {0}.
If ϕ is a nonconstant function in M(Mz) then by Theorem 4 M(Mz) = H∞(Γw).

Similarly if f is a nonzero function in Mw ∩H2(Γz) and ϕ is a nonconstant function

in M(Mw) then M(Mw) = H∞(Γz). Thus M(Mz) ∩M(Mw) = C. □

If M is of finite codimension in H2 then M(Mz) ∩ M(Mw) = C. This is a

corollary of Theorem 6. In fact, if M is of finite codimension then by [4, (3) of

Theorem 6] M ⊇ qzH
2 + qwH

2 where qz and qz are one variable inner functions.

Since zM ⊥ qwH
2(Γw), M satisfies the condition in Theorem 6. When M is a

nonzero invariant subspace andM ′ = FM where F is a unimodular function in L∞,

it is easy to see M(Mz) = M(M ′
z) and M(Mw) = M(M ′

w). Therefore Theorem 6

can be applied to a lot of examples.
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